Terminology SP 1

1. Scope

This standard practice provides terminology as interpreted and defined by the State of Alaska. The definitions of the American Association of State Highway and Transportation Officials (AASHTO) are the ones most commonly followed by DOT&PF.

2. Definitions

Absorption: The increase in the mass of aggregate due to water being absorbed into the pores of the material, but not including water adhering to the outside surface of the particles, expressed as a percentage of the dry mass.

Acceptance sampling and testing: Sampling and testing performed by the State of Alaska, or its designated agent, to evaluate acceptability of the final product. This is also called verification sampling and testing when specifically used to validate the contractor's data.

Admixture: Material other than water, cement, and aggregates in Portland cement concrete (PCC).

Aggregate: Hard granular material of mineral composition, including sand, gravel, slag or crushed stone, used in roadway base and in Portland Cement Concrete (PCC) and Asphalt mixtures.

- Coarse aggregate: Aggregate retained on or above the 4.75 mm (No. 4) sieve.
- Coarse-graded aggregate: Aggregate having a predominance of coarse sizes.
- **Dense-graded aggregate:** Aggregate having a particle size distribution such that voids occupy a relatively small percentage of the total volume.
- Fine aggregate: Aggregate passing the 4.75 mm (No. 4) sieve.
- Fine-graded aggregate: Aggregate having a predominance of fine sizes.
- Mineral filler: A fine mineral product at least 70 percent of which passes a 75 μm (No. 200) sieve.
- Open-graded gap-graded aggregate: Aggregate having a particle size distribution such that voids occupy a relatively large percentage of the total volume.
- Well-Graded Aggregate: Aggregate having an even distribution of particle sizes.

Aggregate storage bins: Bins that store aggregate for feeding material to the dryer in an asphalt mixture plant in substantially the same proportion as required in the finished mix.

Agitation: Provision of gentle motion in Portland Cement Concrete (PCC) sufficient to prevent segregation and loss of plasticity.

Air voids: Total volume of the small air pockets between coated aggregate particles in asphalt concrete pavement; expressed as a percentage of the bulk volume of the compacted paving mixture.

Ambient temperature: Temperature of the surrounding air.

Angular aggregate: Aggregate possessing well-defined edges at the intersection of roughly planar faces.

Apparent specific gravity: The ratio of the mass, in air, of a volume of the impermeable portion of aggregate to the mass of an equal volume of water.

Asphalt mixture: A dark brown to black cementitious material in which the predominate constituents are bitumens occurring in nature or obtained through petroleum processing. Asphalt is a constituent of most crude petroleum.

Asphalt binder: Asphalt specially prepared in quality and consistency for use in the manufacture of asphalt mixture pavement.

Asphalt material: Asphalt binder, tack or additives.

Asphalt mixture batch plant: A manufacturing facility for producing asphalt mixture that proportions aggregate by weight and asphalt by weight or volume.

Asphalt mixture continuous mix plant: A manufacturing facility for producing asphalt concrete that proportions aggregate and asphalt by a continuous volumetric proportioning system without specific batch intervals.

Automatic cycling control: A control system in which the opening and closing of the weigh hopper discharge gate, the bituminous discharge valve, and the pug mill discharge gate are actuated by means of automatic mechanical or electronic devices without manual control. The system includes preset timing of dry and wet mixing cycles.

Automatic dryer control: A control system that automatically maintains the temperature of aggregates discharged from the dryer.

Automatic proportioning control: A control system in which proportions of the aggregate and asphalt material fractions are controlled by means of gates or valves that are opened and closed by means of automatic mechanical or electronic devices without manual control.

Bag (of cement): 94 lb of Portland cement. (Approximately 1 ft³ of bulk cement.)

Base: A layer of selected material constructed on top of subgrade or subbase and below the paving on a roadway.

Bias: The offset or skewing of data or information away from its true or accurate position as the result of systematic error.

Binder: Asphalt cement or modified asphalt cement that binds the aggregate particles into a dense mass.

Boulders: Rock fragment, often rounded, with an average dimension larger than 300 mm (12 in.).

Bulk Density: The mass per volume of a material, including any voids that may occur within the volume.

Bulk specific gravity: The ratio of the mass, in air, of a volume of aggregate or compacted asphalt mixture (including the permeable and impermeable voids in the particles, but not including the voids between particles) to the mass of an equal volume of water.

Bulk specific gravity (SSD): The ratio of the mass, in air, of a volume of aggregate or compacted asphalt mixture, including the mass of water within the voids (but not including the voids between particles), to the mass of an equal volume of water. (See **Saturated Surface Dry**.)

Calibration: A process that establishes the relationship (traceability) between the results of a measurement instrument, measurement system, or a material measure and the corresponding values assigned to a reference standard.

Check: A specific type of inspection and/or measurement performed on equipment and materials to indicate compliance or otherwise with stated criteria.

Clay: Fine-grained soil that exhibits plasticity over a range of water contents, and that exhibits considerable strength when dry. Also, that portion of the soil finer than $2 \mu m$.

Cobble: Rock fragment, often rounded, with an average dimension between 75 and 300 mm (3 and 12 in.).

Cohesionless soil: Soil with little or no strength when dry and unconfined or when submerged, such as sand.

Cohesive soil: Soil with considerable strength when dry and that has significant cohesion when unconfined or submerged.

Compaction: Densification of a soil or asphalt mixture pavement by mechanical means.

Compaction curve (Proctor curve or moisture-density curve): The curve showing the relationship between the dry unit weight or density and the water content of a soil for a given compactive effort.

Compaction test (moisture-density test): Laboratory compaction procedure in which a soil of known water content is placed in a specified manner into a mold of given dimensions, subjected to a compactive effort of controlled magnitude, and the resulting density determined.

Compressibility: Property of a soil or rock relating to susceptibility to decrease in volume when subject to load.

Consolidation: In the placement of Portland cement concrete (PCC) it is the removal of entrapped air by either tamping or vibrating the material.

Constructor: The builder of a project. The individual or entity responsible for performing and completing the construction of a project required by the contract documents. Often called a contractor, since this individual or entity contracts with the owner.

Crusher-run: The total unscreened product of a stone crusher.

Delivery tolerances: Permissible variations from the desired proportions of aggregate and asphalt binder delivered to the pug mill.

Density: The ratio of mass to volume of a substance. Usually expressed in kg/m³ (lb/ft³).

Design professional: The designer of a project. This individual or entity may provide services relating to the planning, design, and construction of a project, possibly including materials testing and construction inspection. Sometimes called a "contractor", since this individual or entity contracts with the owner.

Dryer: An apparatus that dries aggregate and heats it to specified temperatures.

Dry mix time: The time interval between introduction of aggregate into the pug mill and the addition of asphalt binder.

Durability: The property of concrete that describes its ability to resist disintegration by weathering and traffic. Included under weathering are changes in the pavement and aggregate due to the action of water, including freezing and thawing.

Effective diameter (effective size): D_{10} , particle diameter corresponding to 10 percent finer or passing.

Embankment: Controlled, compacted material between the subgrade and subbase or base in a roadway.

Field Operating Procedure (FOP): Procedure used in field testing on a construction site or in a field laboratory. (Based on AASHTO, ASTM or WAQTC test methods.)

Fineness modulus: A factor equal to the sum of the cumulative percentages of aggregate retained on certain sieves divided by 100; the sieves are 150 mm (6"), 75 mm (3"), 37.5 mm (1 ½"), 19.0 mm (3/4"), 9.5 mm (3/8"), 4.75 mm (No. 4), 2.36 mm (No. 8), 1.18 mm (No. 16), 0.60 mm (No. 30), 0.30 mm (No. 50), and 0.15 mm mm (No. 100). Used in the design of concrete mixes. The lower the fineness modulus, the more water/cement paste that is needed to coat the aggregate.

Fines: Portion of a soil or aggregate finer than a 75 μm (No. 200) sieve. Also silts and clays.

Free water: Water on aggregate available for reaction with hydraulic cement. Mathematically, the difference between total moisture content and absorbed moisture content.

Glacial till: Material deposited by glaciation, usually composed of a wide range of particle sizes, which has not been subjected to the sorting action of water.

Gradation (grain-size or particle-size distribution): The proportions by mass of a soil or fragmented rock distributed by particle size.

Gradation analysis (grain size analysis, particle-size or sieve analysis): The process of determining grain-size distribution by separation of sieves with different size openings.

Hot aggregate storage bins: Bins that store heated and separated aggregate prior to final proportioning into the mixer.

Hot mix asphalt (HMA) / **Asphalt Mixture:** High quality, thoroughly controlled hot mixture of asphalt cement and well-graded, high quality aggregate. The term Warm Mix Asphalt (WMA) is interchangeable with Hot Mix Asphalt (HMA) in this Manual. See WMA for more information.

Hydraulic cement: Cement that sets and hardens by chemical reaction with water.

Independent assurance (IA): Activities that are an unbiased and independent evaluation of all the sampling and testing (or inspection) procedures used in the quality assurance program. [IA provides an independent verification of the reliability of the acceptance (or verification) data obtained by the process control and acceptance testing. The results of IA testing or inspection are not to be used as a basis of acceptance. IA provides information for quality system management.]

In situ: Rock or soil in its natural formation or deposit.

Liquid limit: Water content corresponding to the boundary between the liquid and plastic states.

Loam: A mixture of sand, silt and/or clay with organic matter.

Lot: A quantity of material to be controlled. It may represent a specified mass, a specified number of truckloads, a linear quantity, or a specified time period during production.

Manual proportioning control: A control system in which proportions of the aggregate and asphalt material fractions are controlled by means of gates or valves that are opened and closed by manual means. The system may or may not include power assisted devices in the actuation of gate and valve opening and closing.

Materials and methods specifications: Also called prescriptive specifications. Specifications that direct the Constructor (Contractor) to use specified materials in definite proportions and specific types of equipment and methods to place the material.

Maximum size: One sieve larger than nominal maximum size.

Maximum particle size: First sieve to retain any material.

Mesh: The square opening of a sieve.

Moisture content (Soils and Aggregate): The ratio, expressed as a percentage, of the mass of water in a material to the dry mass of the material.

Moisture content (Asphalt Mixture): The ratio, expressed as a percentage, of the mass of water in a material to the dry mass of the material.

Nominal maximum size: One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps between specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

Nuclear gauge: Instruments used to measure in-place density, moisture content, or asphalt content through the measurement of nuclear emissions.

Optimum moisture content (optimum water content): The water content at which a soil can be compacted to a maximum dry density by a given compactive effort.

Organic soil: Soil with a high organic content.

Paste: Mix of water and hydraulic cement that binds aggregate in Portland cement concrete (PCC).

Penetration: The consistency of an asphalt material, expressed as the distance in tenths of a millimeter (0.1 mm) that a standard needle vertically penetrates a sample of the material under specified conditions of loading, time, and temperature.

Percent compaction: The ratio of density of a soil, aggregate, or asphalt mixture in the field to maximum density determined by a standard compaction test, expressed as a percentage.

Plant screens: Screens located between the dryer and hot aggregate storage bins that separate the heated aggregates by size.

Plastic limit: Water content corresponding to the boundary between the plastic and the semisolid states.

Plasticity: Property of a material to continue to deform indefinitely while sustaining a constant stress.

Plasticity index: Numerical difference between the liquid limit and the plastic limit and, thus, the range of water content over which the soil is plastic.

Portland cement: Hydraulic cement produced by pulverizing Portland cement clinker.

Portland cement concrete (PCC): A controlled mix of aggregate, Portland cement, and water, and possibly other admixtures.

PCC batch plant: A manufacturing facility for producing Portland cement concrete.

Process control: See Quality control.

Proficiency samples: Homogeneous samples that are distributed and tested by two or more laboratories. The test results are compared to assure that the laboratories are obtaining the same results.

Pugmill: A shaft mixer designed to mix aggregate and cement.

Quality assurance (QA): (1) All those planned and systematic actions necessary to provide confidence that a product or facility will perform satisfactorily in service; or (2) making sure the quality of a product is what it should be. [QA addresses the overall process of obtaining the quality of a service, product, or facility in the most efficient, economical, and satisfactory manner possible. Within this broad context, QA includes the elements of quality control, independent assurance, acceptance, dispute resolution etc. The use of the term QA/QC or QC/QA is discouraged and the term QA should be used. QA involves continued evaluation of the activities of planning, design, development of plans and specifications, advertising and awarding of contracts, construction, and maintenance, and the interactions of these activities.]

Quality assurance specifications: Specifications that require contractor quality control and agency acceptance activities throughout production and placement of a product. Final acceptance of the product is usually based on a statistical sampling of the measured quality level for key quality characteristics. [QA specifications typically are statistically based specifications that use methods such as random sampling and lot-by-lot testing, which let the contractor know if the operations are producing an acceptable product.]

Quality control (QC): Also called *process control*. The system used by a contractor to monitor, assess and adjust their production or placement processes to ensure that the final product will meet the specified level of

quality. Quality control includes sampling, testing, inspection and corrective action (where required) to maintain continuous control of a production or placement process.

Reclaimed Asphalt Pavement (RAP): The term given to removed and/or reprocessed pavement materials containing asphalt and aggregates. These materials are typically generated when asphalt pavements are removed either by milling or full-depth removal. When properly crushed and screened, RAP consists of high-quality, well-graded aggregates coated by asphalt binder that may be recycled as a portion of new asphalt mixture pavement.

Random sampling: Procedure for obtaining non-biased, representative samples.

Sand: Particles of rock passing the 4.75 mm (No. 4) sieve and retained on the 75 µm (No. 200) sieve.

Saturated surface dry (SSD): Condition of an aggregate particle, asphalt mixture pavement or Portland cement concrete (PCC) core, or other porous solid when the permeable voids are filled with water, but no water is present on exposed surfaces. (See bulk specific gravity.)

Segregation: The separation of aggregate by size resulting in a non-uniform material.

SHRP: The Strategic Highway Research Program (SHRP) established in 1987 as a five-year research program to improve the performance and durability of roads and to make those roads safe for both motorists and highway workers. SHRP research funds were partly used for the development of performance-based specifications to directly relate laboratory analysis with field performance.

Sieve: Laboratory apparatus consisting of wire mesh with square openings, usually in circular or rectangular frames.

Silt: Material passing the 75 μ m (No. 200) sieve that is non-plastic or very slightly plastic, and that exhibits little or no strength when dry and unconfined. Also, that portion of the soil finer than 75 μ m and coarser than 2 μ m.

Slump: Measurement related to the workability of concrete.

Soil: Natural occurring sediments or unconsolidated accumulations of solid particles produced by the physical and chemical disintegration or rocks, and which may or may not contain organic matter.

Specific gravity: The ratio of the mass, in air, of a volume of a material to the mass of an equal volume of water.

Stability: The ability of an asphalt concrete to resist deformation from imposed loads. Stability is dependent upon internal friction, cohesion, temperature, and rate of loading.

Standard Density: A lab or field derived density value used to determine relative compaction in the field.

Standardization: A process that determines (1) the correction or correction factor to be applied to the result of a measuring instrument, measuring system, material measure or reference material when its values are compared to the values realized by standards, (2) the adjustment to be applied to a piece of equipment when its performance is compared with that of an accepted standard or process.

Stratified random sampling: Procedure for obtaining non-biased, representative samples in which the established lot size is divided into equally-sized sublots.

Subbase: A layer of selected material constructed between the subgrade and the base coarse in a flexible asphalt material pavement roadway, or between the subgrade and Portland Cement Concrete (PCC) pavement in a rigid PCC roadway.

Subgrade: Natural soil prepared and compacted to support a structure or roadway pavement.

Sublot: A segment of a lot chosen to represent the total lot.

SuperpaveTM: SuperpaveTM (Superior Performing Asphalt Pavement) is a trademark of the Strategic Highway Research Program (SHRP). SuperpaveTM is a product of the SHRP asphalt research. The SuperpaveTM system

incorporates performance-based asphalt materials characterization with design environmental conditions to improve performance by controlling rutting, low temperature cracking and fatigue cracking. The three major components of SuperpaveTM are the asphalt binder specification, the mix design and analysis system, and a computer software system.

Theoretical maximum specific gravity (Asphalt Material): The ratio of the mass of a given volume of asphalt mixture with no air voids to the mass of an equal volume of water, both at a stated temperature commonly referred to as the "Rice" value.

Theoretical maximum specific gravity (PCC): The ratio of a given volume of PCC with no air voids to the mass of an equal volume of water, at a stated temperature. Usually determined during the concrete mix design. Can be used to determine percent air in concrete, in conjunction with field determined unit weights.

Topsoil: Surface soil, usually containing organic matter.

Traceability: The property of a result of a measurement whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties.

Uncertainty: A parameter associated with the result of a measurement that defines the range of the values that could be attributed to the measured quantity.

Uniformity coefficient: C_u , a value employed to quantify how uniform or well-graded an aggregate is: $C_u = D_{60}/D_{10}$. 60 percent of the aggregate, by mass, has a diameter smaller than D_{60} and 10 percent of the aggregate, by mass, has a diameter smaller than D_{10} .

Unit weight: The ratio of weight to volume of a substance. The term "density" is more commonly used.

um: Micro millimeter (micron) used as measurement for sieve size.

Verification of calibration: A process that establishes whether the results of a previously calibrated measurement instrument, measurement system, or material measure are stable.

Verification sampling and testing: See acceptance sampling and testing.

Viscosity: A measure of the resistance to flow; one method of measuring the consistency of asphalt.

- **Absolute viscosity:** A method of measuring viscosity using the "poise" as the basic measurement unit. This method is used at a temperature of 60°C, typical of hot pavement.
- **Kinematic viscosity:** A method of measuring viscosity using the stoke as the basic measurement unit. This method is used at a temperature of 135°C, typical of hot asphalt at a plant.

Void in the mineral aggregate (VMA): The volume of inter-granular void space between aggregate particles of compacted asphalt concrete pavement that includes air and asphalt; expressed as a percentage of the bulk volume of the compacted paving mixture.

Voids filled with asphalt: The portion of the void in the mineral aggregate (VMA) that contains asphalt; expressed as a percentage of the bulk volume of mix or the VMA.

Warm Mix Asphalt (WMA): The generic term for a variety of technologies that allow the producers of asphalt mixtures material to lower the temperatures at which the material is mixed and placed on the road. Reductions from asphalt mixture temperatures of 50 to 100 degrees Fahrenheit are documented. Three general technologies are used at this time to decrease the mix and compaction temperatures including: chemical additives, organic additives (waxes) and foaming with water. Sampling and testing of WMA is done the same as with asphalt mixtures so these terms are interchangeable in this Manual.

Wet mixing period: The time interval between the beginning of application of asphalt material and the opening of the mixer gate.

HTO T 99/ T 180.			

Calibration of Mechanical Compaction Hammer/Rammer SP 2

1. Scope

This practice sets forth the apparatus, procedures, and materials necessary to calibrate a mechanical compaction hammer used in ATM 417, WAQTC FOP for AASHTO T 99/T 180, AASHTO T 245; and ASTM D 698/D 1557 in accordance with ASTM D 2168 Test Method A.

There are two parallel procedures providing instruction for verification of physical characteristics and calibration of dynamic characteristics for manual and mechanical Soils and Marshall compaction hammers and compaction pedestals. Physical Characteristics are examined first, verifying mass and critical dimensions of the manual and mechanical compaction hammers and compaction pedestals.

Warning – This test method involves potentially hazardous materials, operations and equipment. This method does not purport to address all of the safety problems associated with it use.

2. Apparatus

- Hand-operated compaction hammers and compaction pedestals conforming to the requirements of WAQTC FOP for AASHTO T 99/T 180, AASHTO T 245; and ASTM D 698/D 1557.
- Mechanical compaction hammers and pedestals conforming to the requirements of ATM 417, WAQTC FOP for AASHTO T 99/T 180, AASHTO T 245, and ASTM D 698/D 1557.
- Proctor and Marshall compaction molds, bases, collars and rubber plugs (roughly 50 mm (2") thick and cut to fit bottom of mold).
- Caliper capable of measuring to an accuracy of 0.005 inch.
- Calibrated ruler readable to 1/32 inch.
- Balance readable to 0.1 gram equipped with suspension apparatus and holder to permit weighing materials while suspended from the center of the scale in a water bath.
- Asphalt thermometer capable of measuring the hot-mix-asphalt temperature to within 5° F
- Oven: For asphalt set to 135°C (275°F), or specified compaction temperature, molds, tools and accessories required to prepare and extract six (6) Marshall Specimens.

3. Procedure for Verification of Physical Characteristics

Inspect and adjust the mechanical and hand-operated compaction hammers to conform to the requirements of ATM T 417, WAQTC FOP for AASHTO T 99/ T 180, AASHTO T 245; and ASTM D698 & D1557.

4. Physical Characteristics of Hand-Operated Manual Hammer and Pedestal

- 1. Asphalt: Inspect and adjust manual Marshall Hammer and compaction pedestal.
 - a. Using the caliper, measure and record the diameter of the rammer face by taking two readings 90° apart. The diameter of the face should average a minimum of 3.875 inches measured to the nearest 0.005 inch.
 - b. Lift the sliding weight up to the top of the guide rod and measure the drop height of the sliding weight to the nearest 1/16 inch from the bottom of the sliding weight face to the top of the foot sleeve, record measurement. The sliding weight should have a free fall of 18 ± 0.0625 (1/16) inch. Record measurement in decimal form.

- c. Remove the handle and sliding hammer weight from the guide rod. Weigh and record the slide weight mass to the nearest 1 gram. The hand-operated hammer should have a $4,536 \pm 9$ gram (10 ± 0.02 lbs.) sliding weight (including safety finger guard if equipped).
- d. Measure and record the dimensions of the wooden post and the steel plate portions of the pedestal. Pedestals should consist of an 8 x 8 x 18 inch wooden post capped with a 12 x 12 x 1 inch steel plate. Verify sturdy construction of the pedestal: The wooden post should be free of cracks or splits and be secured by four angle brackets to a solid concrete slab with the steel cap firmly fastened to the post. The assembly shall be installed so the post is plumb and the cap is level.
- 2. Soils: Inspect and adjust manual Proctor hammer and compaction pedestal for conformance to AASHTO T 99 or T 180, or for ASTM D698 or D1557.

5. Physical Characteristics of Mechanically Operated Hammer and Pedestal

- 1. Asphalt: Inspect and adjust the mechanical Marshall Hammer as done in Part 4. Steps 1a, 1b, and 1c. When measuring the slide weight free fall dimension, raise the slide weight up the guide rod until the pick-up pins recede by contact with the disengagement bar, measure and record height from bottom of slide weight face to the top of the foot sleeve. When weighing slide weight, remove disengagement assembly from the top of the guide rod and slide weight off rod.
 - a. Measure and record the dimensions of the wooden post and the steel plate portions of the pedestal. Pedestals should consist of an 8 x 8 x 18 inch wooden post capped with a 12 x 12 x 1 inch steel plate.
 - b. Verify sturdy construction of the pedestal: The wooden post should be free of cracks or splits and be secured by four angle brackets to a solid concrete slab with the steel cap firmly fastened to the post. The assembly shall be installed so the post is plumb and the cap is level.
- 2. Soils: Inspect and adjust mechanical Proctor hammer and compaction pedestal for conformance to AASHTO T 99 or T 180, or for ASTM D698 or D1557. Note ASTM D1557 allows use of a sector face hammer.

6. Procedure for Calibration of Dynamic Characteristics of Asphalt Mixes

- 1. Asphalt preparation:
 - a. If asphalt sample is workable, split into at least six equal portions of 1250 ± 5 grams using the WAQTC Loaf Method. Place the six equal portions and the remaining asphalt into the oven and heat to compaction temperature, typically $135 \pm 5^{\circ}$ C ($275 \pm 9^{\circ}$ F). If not workable, place asphalt into oven and allow time for asphalt to return to a plastic state so splitting can be accomplished, split as indicated above, then return the six equal portions and the remaining asphalt to the oven to obtain compaction temperature.
 - b. Place Marshall mold assemblies and other asphalt handling tools in oven to preheat to compaction temperature. Use hot plate or oven to heat compaction face of mechanical and manual compaction hammers to 93 149°C (200 300°F).
- 2. Once asphalt and other materials have reached compaction temperature, use the extra asphalt to butter the mixing bowl and specimen preparation tools. Loosen up the mechanical compactor mechanism by compacting a portion of the extra asphalt with a minimum of 25 blows. Discard the partially compacted asphalt used to "warm up" the mechanical compactor. Next, alternately compact a Marshall Specimen using the manual compaction hammer and a Marshall Specimen using the mechanical compaction hammer, until three specimens have been produced by each method. Follow the steps below in preparing the specimens.
 - a. Remove one Marshall base, mold, and collar assembly from oven when ready to use. Place filter paper in the bottom of the mold.

- b. Remove one asphalt portion from oven, place in a mixing bowl, vigorously and briefly mix asphalt and scoop into mold assembly. Using the spatula, vigorously spade the asphalt in the mold 15 times around the perimeter and then 10 times over the interior. Smooth surface of the asphalt in the mold to a rounded, convex shape.
- c. Place a piece of filter paper on top of asphalt in mold, place mold assembly on compaction pedestal and secure with mold holder.
- d. Apply 50 blows, unless otherwise specified, of compaction effort. (Manual Hammer notes: Hold the hammer axis perpendicular to the mold assembly. AASHTO allows use of a guide bar fixed to the compaction pedestal to maintain perpendicular alignment of the hammer. ASTM prohibits use of guide bar as the natural wandering from true perpendicular produces a kneading action that enhances compaction. Care shall be taken to avoid adding body weight to the hammer by leaning or pressing down on the hammer. Compaction shall be done at a minimum rate of 40 blows per minute. The compaction hammer shall apply only one blow with each fall that means there shall not be a rebound impact.)
- e. Remove mold holder and collar, remove mold from base plate and flip over (180° turn), return mold to base plate, replace collar and mold holder, and apply an additional 50 blows of compaction effort.
- f. Remove mold assembly from compaction pedestal; remove collar and base plate from mold specimen, set mold with specimen aside to cool until cohesion of the sample will allow specimen extraction from the mold. (When specimens in the steel mold have cooled to the point where they can be handled without gloves, generally below 60°C (140°F), they can be extracted from the molds without damage if handled carefully.) Marshall Specimens should be allowed to cool over night at room temperature; however cooling may be accelerated by the use of fans.
- g. Clean surfaces of compaction equipment used.
- 3. Perform specific gravity measurements for each Marshall specimen according to AASHTO T 166, Method A.
 - a. Measure and record dry weight of cooled specimen.
 - b. Immerse specimen in water bath at $25 \pm 1^{\circ}$ C ($77 \pm 1.8^{\circ}$ F) for 4 ± 1 minute and record the immersed mass.
 - c. Remove the specimen from the water and quickly damp dry the specimen with a damp towel to produce a saturated surface dry condition, record the surface dry mass of the specimen.

7. Calibration Comparison and Adjustment for Asphalt Mixes

1. Calculate the bulk specific gravity of the specimens as follows, round and report to the nearest three decimal places, or thousandth:

Bulk Specific Gravity =
$$A/(B - C)$$

Where:

A = mass in grams of sample in air;

B = mass in grams of surface-dry specimen in air; and

C = mass in grams of sample in water.

(Within each set prepared by a given hammer the densities shall not differ by more than 2.5 pcf for ½" and 3/4" mix and 3.0 pcf for 1" mix. If density consistency is not met then specimens shall be discarded and a new set of specimens prepared.)

2. Calculate the percent water absorbed by specimens (on volume basis) as follows:

Percent Water Absorbed by Volume = [(B-A)/(B-C)]*100

If percent water absorbed by the specimen is greater than 2% then paraffin coated specimens must be used to verify the mechanical compactor with the manual compactor. See AASHTO T275 or ASTM D1188.

- 3. Calculate the average specific gravity values for the mechanically compacted and the manually compacted specimens independently.
- 4. Calculate *W*, the percentage difference between the average specific gravity values for the two compaction methods. Calculation:

$$W = \%$$
 Difference =

(manual method avg. sp. G. - mechanical method avg. Sp. G.) |*100 / (manual method avg. Sp. G.)

If the absolute value of the difference between the results of the mechanical vs. the manual compaction method is 2.0% or less, the mechanical compaction hammer is ready for use.

5. If the difference is greater than 2.0%, adjust the weight or of the mechanical hammer and repeat the procedure until the mean value of the mechanical compaction hammer data varies from the mean value of the manual hammer data by 2.0% or less.

8. Procedure for Calibration of Dynamic Characteristics of Soils

- 1. Obtain at least 30 kg (66 lb) of soil classified as CL in accordance with Unified Soil Classification (ASTM D 2487) with liquid limit less than 50 and PI greater than 7. (ARML soil compaction samples typically meet this classification.)
- 2. Assure all the soil passes a #4 sieve and is at less than 3% moisture. Dry at 60° C or less, if needed. Pass material through splitter to assure uniform mixing.
- 3. Split out 5 portions of approximately 6500g each. Batch 5 moisture points, cover with plastic wrap and allow points to sit overnight to assure complete hydration of material. Using approximately 3, 5, 7, 9, 11% moisture typically works well for AMRL compaction sample material (Review the AMRL summary report and adjust moisture range as required for the reported proctor result. Use the reported optimum moisture and maximum density to double check the calibration specimen values.)
- 4. Using soil, as prepared above, determine the optimal moisture and maximum dry unit weight by the method appropriate for the mechanical compactor being calibrated. Pound each moisture point with both the mechanical and manual hammer, passing the sample through the #4 sieve before re-compacting. Be careful to minimize drying of sample while re-sieving material.
- 5. Plot data points and determine the moisture/density curve for the manual and mechanical hammers.

9. Calibration Comparison and Adjustment for Soils

- 1. If *W*, the absolute value of the difference between the two maximum dry unit weights is less than 2.0%, the mechanical hammer is satisfactory for immediate use. If the difference *W* is greater than 2.0%, then obtain **TWO** additional sets of data, reusing the previously used soil. Determine *W* for the average of the three data sets for mechanical and manual hammer. If *W* is less than 2.0%, the mechanical hammer is satisfactory for use.
- 2. If *W* exceeds 2.0%, then add weight to or reduce the drop height of the mechanical hammer until 3 data sets are obtained with *W* less than 2.0%. If addition of greater than 10% of the mechanical hammer weight is needed, the mechanical compactor needs to be adjusted or rebuilt. If weight needs to be removed from the mechanical hammer, recheck and verify all hammer weight and drop height calibrations. If weight removal is STILL indicated, then reduce drop height to obtain *W* less than 2.0%.

10. Report

- 1. Calibrate all compaction hammers every 12 months or prior to use if the existing calibration is more than one (1) year old.
- 2. File original calibration certificate and test data with the calibrating laboratory.
- 3. Keep a copy of the calibration certificate with the Compaction Hammer.

Γhis page intentionally left blank.		

Reserved for WAQTC Discipline Policy SP 3				

his page intentionally left blank.	

Random Sampling SP 4

1. Significance

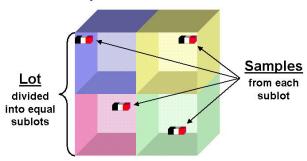
Sampling and testing are two of the most important functions in quality assurance (QA). Data from the tests are the tools with which the quality of product is controlled. For this reason, great care must be used in following standardized sampling and testing procedures. This practice is useful for determining the location or time, or both, to take a sample in order to minimize any unintentional bias on the part of the person taking the sample.

The selection procedures and examples in this standard provide a practical approach for ensuring that construction material samples are obtained in a random manner. Additional details concerning the number of sample increments, the number of samples, the quantities of material in each, and the procedures for extracting sample increments or samples from the construction lot or process are contained in the Materials Samples and Testing Frequency tables and the individual test procedures. This standard contains examples using road and paving materials. The concepts outlined here are applicable to the random sampling of any construction material.

2. Scope

The procedure presented here eliminates bias in sampling materials when followed carefully. Randomly selecting a set of numbers from a table or calculator will eliminate the possibility for bias. Random numbers are used to identify sampling times and/or locations within a lot or sublot. This method does not cover how to sample, but rather how to determine sampling times and/or locations.

3. Sampling Concepts


A lot is the quantity of material evaluated by QA procedures. A lot is a preselected quantity that may represent hours of production, a quantity or number of loads of material, or an interval of time. A lot may be comprised of several portions that are called sublots or units. The number of sublots comprising a lot will be determined by DOT&PF's specifications

Stratified Random Sampling: Stratified random sampling divides the lot into a specified number of sublots or units and then determines each sample location within a distinct sublot.

All random sampling shall be stratified random sampling unless otherwise directed.

Stratified Random Sampling

The lot is divided into two or more equal sublots. Samples are taken from each sublot

4. Instructions for Using the Three-Digit Table of Random Numbers

Table 1 consists of 1,000 numbers from 0.000 to 0.999. Each number appears only once in the Table of 100 rows by 10 columns. The Table is most effectively used when a row and column are randomly selected and the entered

value from the Table is then used for sample selection. Several methods of selection of row and column are available including:

Use of the RANDOM function in pocket calculators (if available) to select row and column. For example, for selection of row: the RANDOM function generates 0.620. Then the row to be used is $0.620 \times$ the number of rows = 0.620(100) = 62.0 or 62. Likewise for the column, the RANDOM function generates 0.958 and the column is 0.958(10) = 9.58 or 10. The random number to be used for the sample is in row 62, column 10 = 0.460.

Similarly, if Microsoft Excel is available, the RAND function can be used to generate random numbers for selection of row and column. This can be accomplished by selecting an open cell in Excel entering: =RAND() or: =rand(). Do this once for a row and a second for column, multiplying as explained above.

Start a digital stop watch and stop it several seconds later, using the decimal part of the seconds as multipliers to determine your Row/Column number(s).

Table 1

Row\										
Column	1	2	3	4	5	6	7	8	9	10
1	0.910	0.921	0.889	0.985	0.697	0.562	0.701	0.284	0.534	0.519
2	0.769	0.814	0.210	0.758	0.846	0.113	0.312	0.716	0.975	0.729
3	0.722	0.220	0.726	0.942	0.825	0.177	0.120	0.558	0.979	0.451
4	0.872	0.772	0.338	0.374	0.000	0.387	0.491	0.647	0.445	0.053
5	0.850	0.836	0.145	0.216	0.270	0.109	0.590	0.882	0.740	0.434
6	0.291	0.780	0.782	0.306	0.470	0.712	0.252	0.630	0.231	0.694
7	0.295	0.502	0.615	0.541	0.765	0.092	0.376	0.523	0.551	0.733
8	0.761	0.370	0.278	0.288	0.256	0.352	0.064	0.195	0.334	0.652
9	0.790	0.750	0.402	0.182	0.577	0.391	0.214	0.481	0.680	0.348
10	0.547	0.011	0.355	0.587	0.359	0.310	0.192	0.545	0.487	0.925
11	0.868	0.049	0.505	0.139	0.705	0.007	0.633	0.754	0.124	0.280
12	0.384	0.968	0.483	0.203	0.513	0.583	0.637	0.477	0.957	0.515
13	0.996	0.665	0.658	0.412	0.149	0.673	0.103	0.344	0.619	0.263
14	0.804	0.242	0.662	0.135	0.248	0.173	0.398	0.459	0.744	0.156
15	0.440	0.331	0.128	0.737	0.529	0.313	0.683	0.839	0.636	0.245
16	0.042	0.027	0.337	0.142	0.196	0.036	0.516	0.074	0.666	0.277
17	0.497	0.903	0.444	0.822	0.886	0.230	0.463	0.234	0.185	0.068
18	0.508	0.999	0.469	0.480	0.448	0.544	0.121	0.260	0.843	0.078
19	0.672	0.871	0.540	0.025	0.548	0.978	0.495	0.138	0.202	0.281
20	0.031	0.059	0.241	0.431	0.897	0.198	0.559	0.946	0.206	0.003
21	0.775	0.668	0.441	0.993	0.644	0.634	0.591	0.604	0.341	0.865
22	0.174	0.100	0.324	0.651	0.935	0.110	0.292	0.747	0.213	0.249
23	0.465	0.309	0.961	0.006	0.401	0.950	0.038	0.305	0.907	0.166
24	0.369	0.046	0.484	0.170	0.377	0.416	0.640	0.967	0.399	0.608
25	0.597	0.864	0.063	0.725	0.146	0.687	0.330	0.394	0.693	0.928
26	0.052	0.629	0.351	0.586	0.896	0.020	0.860	0.490	0.881	0.913
27	0.892	0.922	0.360	0.253	0.127	0.067	0.189	0.815	0.084	0.018
28	0.832	0.159	0.178	0.618	0.800	0.255	0.890	0.456	0.757	0.383
29	0.095	0.349	0.157	0.426	0.554	0.992	0.413	0.885	0.924	0.148

Row \										
Column	1	2	3	4	5	6	7	8	9	10
30	0.778	0.981	0.237	0.906	0.703	0.970	0.874	0.810	0.949	0.472
31	0.917	0.767	0.002	0.714	0.899	0.867	0.824	0.326	0.621	0.561
32	0.760	0.593	0.589	0.696	0.835	0.600	0.856	0.682	0.415	0.518
33	0.180	0.625	0.550	0.447	0.817	0.689	0.614	0.582	0.678	0.646
34	0.301	0.532	0.329	0.500	0.436	0.575	0.536	0.564	0.671	0.372
35	0.397	0.258	0.653	0.290	0.557	0.418	0.358	0.386	0.888	0.322
36	0.080	0.347	0.244	0.251	0.176	0.187	0.443	0.212	0.315	0.977
37	0.379	0.155	0.411	0.507	0.009	0.041	0.308	0.169	0.137	0.066
38	0.062	0.201	0.831	0.297	0.098	0.998	0.265	0.105	0.094	0.927
39	0.863	0.884	0.916	0.183	0.895	0.130	0.948	0.087	0.920	0.215
40	0.717	0.781	0.984	0.037	0.909	0.706	0.973	0.304	0.877	0.802
41	0.635	0.667	0.934	0.795	0.763	0.592	0.158	0.699	0.838	0.656
42	0.624	0.891	0.731	0.806	0.692	0.617	0.585	0.681	0.980	0.649
43	0.012	0.660	0.457	0.482	0.724	0.553	0.745	0.820	0.503	0.439
44	0.364	0.546	0.514	0.343	0.571	0.407	0.610	0.866	0.336	0.535
45	0.400	0.720	0.261	0.293	0.560	0.421	0.389	0.425	0.218	0.325
46	0.179	0.446	0.279	0.318	0.777	0.243	0.211	0.307	0.222	0.275
47	0.133	0.140	0.969	0.076	0.033	0.631	0.236	0.161	0.396	0.129
48	0.311	0.172	0.663	0.752	0.930	0.154	0.122	0.197	0.485	0.983
49	0.015	0.250	0.517	0.951	0.090	0.855	0.165	0.880	0.805	0.816
50	0.869	0.837	0.848	0.741	0.773	0.008	0.784	0.040	0.912	0.709
51	0.926	0.627	0.958	0.894	0.734	0.723	0.638	0.670	0.937	0.798
52	0.314	0.791	0.047	0.727	0.556	0.823	0.282	0.620	0.588	0.492
53	0.378	0.645	0.136	0.403	0.474	0.346	0.410	0.613	0.435	0.264
54	0.257	0.531	0.499	0.150	0.385	0.289	0.086	0.111	0.353	0.079
55	0.698	0.004	0.175	0.143	0.972	0.997	0.029	0.061	0.965	0.093
56	0.940	0.730	0.794	0.762	0.826	0.858	0.648	0.616	0.787	0.584
57	0.829	0.900	0.953	0.793	0.274	0.566	0.423	0.117	0.809	0.254
58	0.466	0.989	0.419	0.395	0.936	0.579	0.914	0.643	0.286	0.083
59	0.299	0.224	0.449	0.776	0.060	0.473	0.235	0.417	0.898	0.097
60	0.227	0.238	0.205	0.302	0.748	0.878	0.017	0.601	0.186	0.987
61	0.085	0.131	0.526	0.075	0.163	0.430	0.363	0.032	0.104	0.019
62	0.039	0.537	0.043	0.259	0.141	0.494	0.171	0.609	0.428	0.460
63	0.188	0.088	0.654	0.690	0.316	0.438	0.808	0.964	0.193	0.549
64	0.167	0.152	0.462	0.267	0.320	0.160	0.641	0.199	0.677	0.901
65	0.342	0.096	0.099	0.622	0.786	0.028	0.569	0.947	0.755	0.990
66	0.611	0.818	0.932	0.857	0.081	0.408	0.427	0.840	0.207	0.168
67	0.077	0.686	0.594	0.605	0.573	0.669	0.380	0.246	0.908	0.876
68	0.107	0.801	0.718	0.498	0.893	0.707	0.530	0.797	0.453	0.350
69	0.598	0.327	0.406	0.904	0.675	0.626	0.509	0.861	0.382	0.414
70	0.184	0.366	0.555	0.455	0.021	0.323	0.684	0.071	0.268	0.108

Row \										
Column	1	2	3	4	5	6	7	8	9	10
71	0.153	0.164	0.132	0.228	0.939	0.070	0.209	0.527	0.887	0.919
72	0.057	0.452	0.266	0.089	0.356	0.217	0.971	0.974	0.051	0.574
73	0.420	0.807	0.732	0.303	0.715	0.743	0.014	0.580	0.873	0.830
74	0.388	0.512	0.833	0.982	0.676	0.373	0.768	0.405	0.659	0.862
75	0.779	0.501	0.736	0.679	0.538	0.010	0.273	0.335	0.581	0.371
76	0.612	0.796	0.764	0.572	0.437	0.576	0.409	0.704	0.467	0.232
77	0.294	0.271	0.811	0.602	0.700	0.995	0.433	0.854	0.239	0.933
78	0.875	0.262	0.367	0.929	0.102	0.623	0.476	0.711	0.819	0.915
79	0.655	0.181	0.345	0.506	0.106	0.570	0.918	0.134	0.528	0.496
80	0.963	0.285	0.650	0.024	0.317	0.520	0.565	0.960	0.542	0.147
81	0.050	0.223	0.986	0.522	0.125	0.751	0.988	0.956	0.300	0.001
82	0.114	0.783	0.533	0.056	0.221	0.381	0.789	0.287	0.058	0.026
83	0.911	0.392	0.847	0.849	0.319	0.298	0.943	0.362	0.944	0.606
84	0.828	0.719	0.954	0.708	0.552	0.458	0.424	0.853	0.905	0.691
85	0.116	0.821	0.191	0.082	0.879	0.488	0.661	0.035	0.595	0.702
86	0.739	0.938	0.045	0.746	0.013	0.504	0.842	0.735	0.759	0.442
87	0.728	0.803	0.771	0.091	0.632	0.664	0.931	0.792	0.225	0.328
88	0.753	0.710	0.475	0.945	0.785	0.657	0.454	0.721	0.118	0.200
89	0.486	0.543	0.034	0.511	0.340	0.404	0.799	0.607	0.883	0.022
90	0.639	0.479	0.269	0.468	0.354	0.365	0.333	0.429	0.464	0.229
91	0.461	0.226	0.123	0.390	0.525	0.493	0.568	0.283	0.115	0.044
92	0.422	0.240	0.208	0.219	0.272	0.112	0.742	0.144	0.065	0.204
93	0.966	0.073	0.030	0.233	0.361	0.596	0.126	0.276	0.994	0.962
94	0.151	0.119	0.194	0.450	0.991	0.959	0.055	0.023	0.072	0.841
95	0.852	0.685	0.162	0.774	0.845	0.738	0.770	0.005	0.339	0.976
96	0.813	0.952	0.069	0.539	0.941	0.048	0.749	0.016	0.766	0.695
97	0.603	0.859	0.628	0.902	0.870	0.827	0.393	0.923	0.812	0.524
98	0.489	0.510	0.521	0.756	0.713	0.478	0.788	0.247	0.296	0.563
99	0.578	0.101	0.567	0.674	0.834	0.375	0.642	0.471	0.321	0.844
00	0.332	0.599	0.955	0.688	0.190	0.357	0.368	0.432	0.054	0.851

5. Alternate Procedures for Random Number Selection

Random numbers may be generated using the RANDOM function in pocket calculators and spreadsheets. For example, the RANDOM function generates 0.620. The number 0.620 should be entered as the random number and multiplied by the quantity under consideration to determine the sample location.

Similarly, if Microsoft Excel is available, the RAND function can be used to generate random numbers for selection of the sample location.

6. Random Number Sampling Procedures

Determine the number of random numbers necessary for each sample location from Table 2.

Table 2

Sample Type or WAQTC Method	# of Random Numbers Required
Oil from plant or truck	1
T 2/T 168 from Belt	1
T 2/T 168 from Truck	1
T 2/T 168 from Roadway	2
T 2/T 168 from Windrow	1
TM 11 Core	2
TM 2 Plastic Concrete	1
TP 83 Grout	1

Multiply the random number by the unit quantity in each sublot to determine sample location. When a sample is taken from a discrete location such as a truck load, and the sample method treats the load as a unit, sample per the procedure from the truck that contains the determined location.

Sample locations are for that sample only and are not reused for other samples. This would apply for samples of in place soil, aggregate, hot mix asphalt or cores. Each would require a separate set of random numbers. When two random numbers are used, such as in hot mix asphalt, the first random number would be multiplied by the length to determine where the sample would be taken along the project. The second would be multiplied by the width to determine where, widthwise, the sample would be taken.

When a test procedure does not allow tests from a portion of the lot being considered, those areas may be deleted from consideration. As an example, paving is 14 feet wide but testing does not allow tests within one foot of the edge. Testing must be done only in the 12 foot section in the middle of the width.

Two random numbers Example:

Given: Sublot length = 3,342 feet (when the 1 foot edge removed, we consider just 3340 feet)

Sublot width = 14 feet (when the 1 foot edge removed, we consider just 12 feet)

Random numbers for Row = 0.0262 and 0.3687 Random numbers for Column = 0.1696 and 0.3410

Find: length and width locations of sample

Solution: First Row number is: 100(0.0262) = 2.62 or Row 3

First Column number is: 10(0.1696) = 1.696 or Column 2

From Table 1, Row 3, Column 2, the random number for Length is: 0.220

So the sample location for length is: $0.220(3,340^\circ) = 734.8$ or 735' from beginning If sampling material requiring only 1 random number this sample is located.

Second Row number is: 100(0.3687) = 36.87 or Row 37 Second Column number is: 10(0.3410) = 3.41 or Column 3

From Table 1, Row 37, Column 3, the random number for width is: 0.411 So the sample location for width is: 12(0.411) = 5' from the left edge of the sublot

When developing a sampling plan, determine a new set of random numbers for each sample required. For example, if the testing frequency specified indicates there will be twenty samples from a material, determine twenty different random number identified locations for the plan.

Additional examples are available in the Random Number section of all WAQTC modules and in ASTM D3665.

Γhis page intentionally left blank.		

1. Scope

This standard practice provides a table of equivalents when using ACI Concrete design methods. Since ACI uses ASTM exclusively, this table provides a reference to determine appropriate methods that are standard with DOT&PF.

ASTM	Title	WAQTC/AASHTO
A184	Standard Specification for Welded Deformed Steel Bar Mats for Concrete Reinforcement	M 54
A 185	Standard Specification for Steel Welded Wire Reinforcement, Plain, for Concrete	M 55
A 416	Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete	M 203
A 421	Standard Specification for Uncoated Stress-Relieved Steel Wire for Prestressed Concrete	M 204
A 496	Standard Specification for Steel Wire, Deformed, for Concrete Reinforcement	M 225
A 497	Standard Specification for Steel Welded Wire Reinforcement, Deformed, for Concrete	M 221
A 615	Standard Specification for Deformed and Plain Carbon- Steel Bars for Concrete Reinforcement	M 31
A 722	Standard Specification for Uncoated High-Strength Steel Bars for Prestressing Concrete	M 275
A 775	Standard Specification for Epoxy-Coated Steel Reinforcing Bars	M 284
A 82	Standard Specification for Steel Wire, Plain, for Concrete Reinforcement	M 32
A 996	Standard Specification for Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement	M 322
C 1064	Standard Test Method for Temperature of Freshly Mixed Hydraulic-Cement Concrete	WAQTC FOP for T 309
C 1107	Standard Specification for Packaged Dry, Hydraulic- Cement Grout (Nonshrink)	TP 83
C 1240	Standard Specification for Silica Fume Used in Cementitious Mixtures	M 307
C 138	Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete	WAQTC FOP for T 121
C 143	Standard Test Method for Slump of Hydraulic-Cement Concrete	WAQTC FOP for T 119
C 150	Standard Specification for Portland Cement	M 85
C 171	Standard Specification for Sheet Materials for Curing Concrete	M 171
C 172	Standard Practice for Sampling Freshly Mixed Concrete	WAQTC TM 2
C 192	Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory	R 39

ASTM	Title	WAQTC/AASHTO
C 231	Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method	WAQTC FOP for T 152
C 260	Standard Specification for Air-Entraining Admixtures for Concrete	M 154
C 309	Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete	M 148
C 31	Standard Practice for Making and Curing Concrete Test Specimens in the Field	WAQTC FOP for R 100
C 33	Standard Specification for Concrete Aggregates	M 6/M 80
C 330	Standard Specification for Lightweight Aggregates for Structural Concrete	M 195
C 39	Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens	T 22
C 494	Standard Specification for Chemical Admixtures for Concrete	M 194
C 595	Standard Specification for Blended Hydraulic Cements	M 240
C 618 REV A	Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete	M 295
C 685	Standard Specification for Concrete Made by Volumetric Batching and Continuous Mixing	M 241
C 881	Standard Specification for Epoxy-Resin-Base Bonding Systems for Concrete	M 235
C 989	Standard Specification for Slag Cement for Use in Concrete and Mortars	M 302
D1557	Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft- lbf/ft³(2,700 kN-m/m³))	WAQTC FOP for T 99/ T 180
D 1751	Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types)	M 212
D 1752	Standard Specification for Preformed Sponge Rubber Cork and Recycled PVC Expansion Joint Fillers for Concrete Paving and Structural Construction	M 153
D 698	Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft³ (600 kN-m/m³))	WAQTC FOP for T 99/ T 180
D 98	Standard Specification for Calcium Chloride	M 144
M 994	Standard Specification for Preformed Expansion Joint Filler for Concrete (Bituminous Type)	M 33

Rounding and Precision in Materials Test Reporting SP 6

1. Scope

This standard practice provides a procedure for rounding off numbers generated during the process of calculating materials testing results when a specific test method does not specify rounding procedures.

2. Calculation Procedures

Follow the rounding rules found in Section **4.7 Degree of Accuracy** of the current *Alaska Construction Manual*.

https://dot.alaska.gov/stwddes/dcsconst/constructionmanual.shtml

Γhis page intentionally left blank.		
ins page intentionally left blank.		

Determination of Outlier Test Results SP 7

1. Scope

This standard practice provides a mechanism for rejecting individual test values that may misrepresent the physical properties of a material lot. The method statistically identifies a non-representative "outlier" and justifies its removal from the remaining test data for the lot.

2. General

- 1. When a test result is clearly a result of a gross deviation from prescribed sampling or testing procedure, the test result should be discarded, without further analysis. When no direct evidence of sampling and/or testing errors exists, the lot data will be statistically evaluated for the presence of an outlier.
- 2. An outlying test result will be assumed to be non-characteristic of the overall quality of the material tested. Outlying test results will be excluded from the price adjustment calculation, by either documental evidence or through statistical analysis.

3. Basis of Statistical Criteria For Outliers

All test results in a lot are included in the calculation of the numerical value of a sample criterion (or statistic), which is then compared with a critical value based on the theory of random sampling from a normal distribution to determine whether the doubtful test result is to be retained or rejected. The critical value is that value of the sample criterion that would be exceeded by chance with 5% total probability. This 5% probability is the risk of erroneously rejecting a good observation and is the Department's defined outlier threshold limit.

4. Procedure

1. Calculate the arithmetic mean [x] of all test results for the lot using the following formula:

$$\frac{1}{x} = \frac{\sum X}{n}$$

Where:

 \sum = summation of

X = individual test value to xn

n = total number of test values

And where: x is rounded to the nearest 0.1 percent for density and all sieve sizes except the 0.075 mm (No. 200) sieve.

 $^{\chi}$ is rounded to the nearest 0.01 percent for asphalt content and the 0.075 mm (No. 200) sieve.

2. Calculate sample standard deviation (s) of all test results for the lot using the following formula:

$$s = \sqrt{\frac{n\sum(x^2) - (\sum x)^2}{n(n-1)}}$$

Where:

s = standard deviation of the lot

 $\sum (x^2) = \text{summation of the squares of individual test values.}$

 $(\sum x)^2$ = square of the summation of the individual test values.

n = total number of test values

- 3. The lot standard deviation (s) is rounded to the nearest 0.01 for density and all sieve sizes except the 0.075 mm (No. 200) sieve. The lot standard deviation(s) is rounded to the nearest 0.001 for asphalt content and the 0.075 mm (No. 200) sieve.
 - **Note 1:** This is the sample standard deviation and not the population (sigma) standard deviation. Many computer spreadsheet programs have formulas for population standard deviation and not sample standard deviation.
- 4. Calculate the difference between the arithmetic mean $\frac{(\bar{x})}{x}$ and the lowest test result (XL); and between the highest test result (XH) and the arithmetic mean \bar{x}
- 5. Calculate test criterion, TL or TH, of the test result with the greatest difference from the arithmetic mean (\bar{x})
- 6. If the lowest test result (X_L) has the greatest difference from the arithmetic mean $^{\mathcal{X}}$, then T_L is calculated as follows:

$$T_L = \frac{(X_L - \bar{x})}{s}$$

7. If the highest test result (X_H) has the greatest difference from the arithmetic mean (x), then T_H is calculated as follows:

$$T_H = \frac{(X_H - \bar{x})}{s}$$

Determine critical T value from Table 1.

- 8. If T_L or T_H, whichever is larger, exceeds the critical T value from Table 1, then that test result is an outlier and will be excluded from the price adjustment calculations. If one or more additional test result(s) has the same value as the outlier, then none of the test results will be outliers and all test results will be included in the price adjustment calculations. If T_L and T_H are equal, then neither test result will be an outlier and all test results will be included in the price adjustment calculations.
 - **Note 2:** This test method will not be reapplied to identify additional "outliers" based on the new arithmetic mean and sample standard deviations calculated after the "outliers" have been excluded.

Table 1
Critical T Values for a Sample Standard Deviation

Number Of Samples, n	Critical T
3	1.155
4	1.481
5	1.715
6	1.887
7	2.020
8	2.126
9	2.215
10	2.290
11	2.355
12	2.412
13	2.462
14	2.507
15	2.549
16	2.585
17	2.620

5. Example 1

1. Consider the following test results on percent asphalt content:

2. Calculate the arithmetic mean (\bar{x}) :

$$(x) = \underbrace{5.3+5.6+5.8+5.8+5.9+5.9+5.9+6.0+6.0+6.0}_{10}$$

$$(\bar{x})_{=5.82\%}$$

3. Calculate the sample standard deviation:

$$s = \sqrt{\frac{n\sum(x^2) - (\sum x)^2}{n(n-1)}}$$

Where:

$$\sum (x)2 = 339.16$$

$$(\sum x)2 = 3,387.24$$

$$n = 10$$

$$s = 0.220$$

4. The difference between the arithmetic mean (x) and the lowest test result is:

$$(5.82\% - 5.3\%) = 0.52\%$$

5. The difference between the highest test result and the arithmetic mean (x) is:

$$(6.0\% - 5.82\%) = .18\%$$

6. Calculate T_L or T_H . Since the lowest test result (5.3%) had the greatest difference from the arithmetic mean (\bar{x}) it is evaluated to determine if it is an outlier. TL is calculated as follows:

$$T_L = (5.82\% - 5.3\%) \div 0.220$$

 $T_L = 2.364$

7. Determine Critical T. From Table 1, the critical T for 10 samples is 2.290. Since $T_L = 2.364$ is greater than 2.290, the test result of 5.3% is an outlier and is excluded from the price adjustment calculations.

6. Example 2

1. Consider the following test result on percent asphalt content:

2. Calculate arithmetic mean (\bar{x}) :

$$x = \underline{5.3+5.8+5.8+5.8+5.9+5.9+6.0+6.0+6.0+6.5}$$

$$x = 5.90\%$$

3. Calculate sample standard deviation:

$$s = \sqrt{\frac{n\sum(x^2) - (\sum x)^2}{n(n-1)}}$$

Where:

$$\sum (x)2 = 348.88$$

$$(\sum x)2 = 3,481.00$$

$$n = 10$$

$$s = 0.294$$

4. The difference between the arithmetic mean x and the lowest test result is:

$$(5.90\% - 5.3\%) = 0.6\%$$

5. The difference between the highest test result and the arithmetic mean (\bar{x}) is:

$$(6.5\% - 5.90\%) = 0.6\%$$

6. Calculate T_L or T_H . Since the lowest test result (5.3%) and the highest test result (6.5%) have the same difference from the arithmetic mean (\bar{x}) , both T_L and T_H are calculated.

$$T_L = (5.90\% - 5.3\%) \div 0.294$$

$$T_H = (6.5\% - 5.90\%) \div 0.294$$

$$T_L = T_H = 2.041$$

7.	Since T_L and T_H are equal, neither test result is considered to be an outlier and all test results are include in the price adjustment calculation.	d

This page intentionally left blank.							

Standard Practice for Standardization of Pressure Type Air Meter SP 8

1. Scope

This practice covers the standardization of pressure type air meters used to determine the air content of freshly mixed concrete. Standardization procedures are developed to meet AASHTO T 152.

Note: This practice is equipment specific for two models of air meters currently in use by regional/field laboratories.

2. Apparatus

- Press-Ur-Meter (Charles R. Watts Company and Gilson)
- Appropriate standardization vessels for the air meters listed. Standardization vessels will have either be a vessel with an internal volume equal to 5 percent of the volume of the measuring bowl, or a vessel to place into the measuring bowl conforming to Note 1 in AASHTO T 152 and also equal to 5 percent. Regardless of type, the effective volume of the vessel should be checked.

3. Standardization Procedure for the Press-Ur-Meter:

- 1. Fill the measuring bowl with water.
- 2. Screw the straight tube into the threaded petcock hole on the underside of the cover. Clamp the cover assembly onto the measuring bowl with the tube extending down into the water.
- 3. With both petcocks open, add water through the petcock having the tubing extension, until all air is forced out the opposite petcock. Leave both petcocks open.
- 4. Pump air pressure to 0 percent or to the previous Initial Pressure line. Wait a few seconds for the compressed air to cool to ambient temperature, then stabilize the gauge needle at the assumed initial pressure by pumping up or bleeding off air, as necessary.
- 5. Close both petcocks and immediately press down on the air release lever exhausting the air into the measuring bowl. Wait a few seconds until the gauge needle is stabilized, tapping lightly on the gauge to keep gauge needle from sticking. If all the air was eliminated and the assumed Initial Pressure line was correct, the gauge should read 0 percent. If two or more tests show a consistent variation from 0 percent in the result, then change the Initial Pressure line to compensate for the variation, or remove the gauge glass and reset the gauge needle to 0 percent by turning the gauge's standardization screw. Use the newly established "Initial Pressure" line for subsequent tests.
- 6. Screw the curved tube into the outer end of the petcock with the straight tube below and, by pressing on the air release lever and controlling the flow with the petcock lever, fill the 5 percent calibrating vessel (345 ml) level full of water from the measuring bowl.
- 7. Release the air pressure at the free petcock. Open the other petcock and let the water in the curved pipe run back into the measuring bowl. There is now 5 percent air in the measuring bowl.
- 8. Pump air pressure to the Initial Pressure as determined in Step 5. Wait a few seconds for the compressed air to cool to ambient temperature and then stabilize the gauge needle at the assumed zero point by pumping up or bleeding off air, as necessary.
- 9. Close both petcocks and immediately press down on the air release lever exhausting the air into the measuring bowl. Wait a few seconds until the gauge needle is stabilized, tapping lightly on the gauge to keep gauge needle from sticking. If all the air was eliminated and the assumed Initial Pressure line was correct, the gauge should read 5 percent.

- 10. If two or more consistent tests show that the gauge at 5 percent air reads incorrectly in excess of 0.2 percent, then remove the gauge glass and reset the gauge needle to 5 percent by adjusting the gauge's standardization screw.
- 11. When the gauge reads correctly at 5 percent, additional water may be withdrawn in the same manner to check results at 10 percent.

4. Standardization Using Internal Standardization Vessel

- 1. Fill the measuring bowl with water.
- 2. Clamp the cover assembly onto the measuring bowl.
- 3. With both petcocks open, add water through one petcock, until all air is forced out the opposite petcock. Leave both petcocks open.
- 4. Pump air pressure to 0 percent or to the previous Initial Pressure Line. Wait a few seconds for the compressed air to cool to ambient temperature, then stabilize the gauge needle at the assumed zero point by pumping up or bleeding off air, as necessary.
- 5. Close both petcocks and immediately press down on the air release lever exhausting the air into the measuring bowl. Wait a few seconds until the gauge needle is stabilized, tapping lightly on the gauge to keep gauge needle from sticking. If all the air was eliminated and the assumed Initial Pressure line was correct, the gauge should read 0 percent. If two or more tests show a consistent variation from 0 percent in the result, then change the Initial Pressure line to compensate for the variation, or remove the gauge glass and reset the gauge needle to 0 percent by turning the gauge's standardization screw. Use the newly established "Initial Pressure" line for subsequent tests.
- 6. Release the pressure and remove the cover assembly.
- 7. Place the Internal Standardization Vessel into the measuring bowl, replace the cover assembly and refill as in step 3.
- 8. Pump the air pressure to the Initial Pressure Line allowing a few seconds for the gauge needle to stabilize.
- 9. Verify there is water standing in both petcocks and then close them.
- 10. Release to air into the measuring bowl by pressing down on the air release lever. Tap the gauge lightly and when stable, the meter should read 5 percent. If two or more consistent tests show that the gauge at 5 percent air reads incorrectly in excess of 0.2 percent, then remove the gauge glass and reset the gauge needle to 5 percent by adjusting the gauge's standardization screw and re-check.

5. Report

- 1. Report the results of the standardization as well as noting any adjustments or repairs made.
- 2. Label the meter with a sticker noting the month and year of the standardization.

Γhis page intentionally left blank.								

Worksheets with Examples SP 10

1. Scope

This standard practice includes copies of all the standard forms developed for use on DOT&PF projects. Examples have been included to help clarify their use.

Example Calculations ATM 202

Calculation

Constant Mass for Aggregates:

Calculate constant mass using the following formula:

$$\frac{M_p - M_n}{M_p} \times 100 = \% \text{ Change}$$

Where:

 M_p = previous mass measurement M_p = new mass measurement

Example:

Mass of container: 1232.1 g

Mass of container& sample after first drying cycle: 2637.2 g

Mass, M_p , of possibly dry sample: 2637.2 g - 1232.1 g = 1405.1 g

Mass of container and dry sample after second drying cycle: 2634.1 g

Mass, M_n , of dry sample: 2634.1 g - 1232.1 g = 1402.0 g

$$\frac{1405.1 \ g - 1402.0 \ g}{1405.1 \ g} \times 100 = 0.22\%$$

0.22 percent is not less than 0.10 percent, so continue drying

Mass of container and dry sample after third drying cycle: 2633.0 g

Mass, M_n , of dry sample: 2633.0 g - 1232.1 g = 1400.9 g

$$\frac{1402.0g - 1400.9g}{1402.0g} \times 100 = 0.08\%$$

0.08 percent is less than 0.10 percent, so constant mass has been reached for an aggregate, but continue drying for soil.

Moisture Content Aggregate and Soils:

Calculate the moisture content, as a percent, using the following formula:

$$w = \frac{M_W - M_D}{M_D} \times 100$$

Where:

w = moisture content, percent

 M_W = wet mass M_D = dry mass

Example:

Mass of container: 1232.1 g

Mass of container and wet sample: 2764.7 g

Mass, M_W , of wet sample: 2764.7 g - 1232.1 g = 1532.6 g Mass of container and dry sample (COOLED): 2633.0 g Mass, M_D , of dry sample: 2633.0 g - 1232.1 g = 1400.9 g

$$w = \frac{1532.6g - 1400.9g}{1400.9g} \times 100 = \frac{131.7g}{1400.9g} \times 100 = 9.39\% \ report 9.4\%$$

Example Calculations ATM 204

Calculate the liquid limit according to Method B as follows:

N	$(N/25)^{0.121}$	N	$(N/25)^{0.121}$
22	0.985	26	1.005
23	0.990	27	1.009
24	0.995	28	1.014
25	1.000		

$$LL = (W_N)(N/25)^{0.121}$$

Where:

LL = liquid limit

 W_N = moisture content of sample at N blows

N = number of blows

Example:

$$W_N = 16.0 \ \% \ and \ N = 23$$

$$LL = (16.0)(23/25)^{\ 0.121} = 15.8, \ say \ 16\%$$

Example Calculations ATM 205

The moisture content is the Plastic Limit (PL). It is advisable to run several trials on the same material to ensure a proper determination of the Plastic Limit of the soil.

The Plasticity Index (PI) of the soil is equal to the difference between the Liquid Limit (LL) and the Plastic Limit (PL).

Example Calculation

Container	Container Mass, g	Container and Wet Soil Mass, g	Wet Soil Mass, g	Container and Dry Soil Mass, g	Dry Soil Mass, g
1	14.44	22.65	8.21	21.45	7.01
2	14.18	23.69	9.51	22.81	8.63

Water Mass, g	Moisture Content	Plastic Limit
1.20	17.1	17
0.88	10.2	10

$$PI = LL - PL$$

$$LL = 34$$
 and $PL = 17$ $LL = 16$ and $PL = 10$ $PI = 34 - 17 = 17$ $PI = 16 - 10 = 6$

Example Calculations ATM 207

Volume

1b. Calculate the wet density, in kg/m³ (lb/ft³), by dividing the wet mass from Step 7 by the appropriate volume from Table 1 or Table 2.

#2

Example – Methods A or C mold:

Wet mass = 1.916 kg (4.22 lb)

$$\frac{1.1916 \ kg}{0.000943 \ m^3} = 2023 kg/m^3 \ Wet \ Density^* \qquad \frac{4.22 \ lb}{0.0333 ft^3} = 126.7 lb/ft^3 \ Wet \ Density^*$$

* Differences in wet density are due to rounding in the respective calculations.

Measured Volume

1c. Calculate the wet density, in kg/m³ (lb/ft³), by dividing the wet mass by the measured volume of the mold (T 19).

Example – Methods A or C mold:

Wet mass =
$$1.916 \text{ kg} (4.22 \text{ lb})$$

39

Measured volume of the mold = 0.000946m³ (0.0334 ft³)

$$\frac{1.1916 \ kg}{0.000946 \ m^3} = 2025 kg/m^3 \ Wet \ Density^* \qquad \frac{4.22 \ lb}{0.0334 ft^3} = 126.3 lb/ft^3 \ Wet \ Density^*$$

2. Calculate the dry density as follows.

$$\rho_d = \left(\frac{\rho_w}{w + 100}\right) \times 100 \quad or \quad \rho_d = \frac{\rho_w}{\left(\frac{w}{100}\right) + 1}$$

Where:

 ρ_d = Dry density, kg/m³ (lb/ft³) ρ_w = Wet density, kg/m³ (lb/ft³)

W = Moisture content, as a percentage

Example:

$$\rho_w$$
 = 2030 kg/m³ (126.6 lb/ft³) and w = 14.7%

$$\rho_d = \left(\frac{2030\,kg/m^3}{14.7 + 100}\right) \times \, 100 = 1770\,\,kg/m^3 \quad \rho_d = \left(\frac{126.6\,lb/ft^3}{14.7 + 100}\right) \times \, 100 = 110.4\,lb/ft^3$$

or

$$\rho_d = \left(\frac{2030\,kg/m^3}{\frac{14.7}{100} + 1}\right) = 1770\;kg/m^3\;\;\rho_d = \left(\frac{126.6\,lb/ft^3}{\frac{14.7}{100} + 1}\right) = 110.4\,lb/ft^3$$

Example Calculations ATM 207 Appendix A

Sample Calculations English:

Maximum laboratory dry density (D_f): 140.4 lb/ft³

Percent coarse particles (P_c): 27%

Percent fine particles (P_f): 73%

Mass per volume of coarse particles (P_f): (2.697) (62.4) = 168.3 lb/ft³

$$D_d = \frac{100 \times D_f \times k}{\left(D_f \times P_c\right) + \left(k \times P_f\right)} \qquad or \qquad D_d = \frac{100}{\frac{P_f}{D_f} + \frac{P_c}{k}}$$

$$\begin{split} D_d = & \frac{100 \times 140.4 \, lb/ft^3 \times 168.3 \, lb/ft^3}{(140.4 \, lb/ft^3 \times 27\%) + (168.3 \, lb/ft^3 \times 73\%)} \\ & or \ D_d = & \frac{100}{\frac{73\%}{140.4 \, lb/ft^3} + \frac{27\%}{168.3 \, lb/ft^3}} \end{split}$$

$$\begin{split} D_d = & \frac{2,362,932\,lb/ft^3}{(3790.8\,lb/ft^3 + 12285.9\,lb/ft^3)} \quad or \quad D_d = \frac{100}{0.51994\,lb/ft^3 + 0.16043\,lb/ft^3} \\ D_d = & \frac{2,362,932\,lb/ft^3}{16,076.7\,lb/ft^3} \quad or \quad D_d = \frac{100}{0.68037\,lb/ft^3} \end{split}$$

$$D_d = 146.98 \, lb/ft^3 \quad report \, 147.0 \, lb/ft^3$$

Example Calculations ATM 304

Method A Sample Calculation

Calculate percent retained on and passing each sieve on the basis of the total mass of the initial dry sample. This will include any material finer than 75 μ m (No. 200) that was washed out.

Example:

Dry mass of total sample, before washing: 5168.7 g Dry mass of sample, after washing out the $75\mu\text{m}$ (No. 200) minus: 4911.3 g Amount of $75\mu\text{m}$ (No. 200) minus washed out: 5168.7 g - 4911.3 g = 257.4 g

Gradation on All Sieves

Sieve Size mm (in.)		Individual Mass Retained, g (IMR)	Individual Percent Retained (IPR)	Cumulative Mass Retained, g (CMR)	Cumulative Percent Retained (CPR)	Calc'd Percent Passing (CPP)	Reported Percent Passing* (RPP)
19.0	(3/4)	0	0	0	0.0	100.0	100
12.5	(1/2)	724.7	14.0	724.7	14.0	86.0	86
9.5	(3/8)	619.2	12.0	1343.9	26.0	74.0	74
4.75	(No. 4)	1189.8	23.0	2533.7	49.0	51.0	51
2.36	(No. 8)	877.6	17.0	3411.3	66.0	34.0	34
1.18	(No. 16)	574.8	11.1	3986.1	77.1	22.9	23
0.600	(No. 30)	329.8	6.4	4315.9	83.5	16.5	16
0.300	(No. 50)	228.5	4.4	4544.4	87.9	12.1	12
0.150	(No. 100)	205.7	4.0	4750.1	91.9	8.1	8
0.075	(No. 200)	135.4	2.6	4885.5	94.5	5.5	5.5
F	an	20.4		4905.9			

^{*}Report 75 µm (No. 200) sieve to 0.1 percent. Report all others to 1 percent.

Check sum:

$$\frac{4911.3 g - 4905.9 g}{4911.3 g} \times 100 = 0.1\%$$

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

Percent Retained:

9.5 mm (3/8) sieve:

$$\frac{619.2 \ g}{5168.7 \ g} \times 100 = 12.0\%$$
 or $\frac{1343.9 \ g}{5168.7 \ g} \times 100 = 26.0\%$

Percent Passing (Calculated):

9.5 mm (3/8) sieve: 86.0% - 12.0% = 74.0% or 100% - 26.0% = 74.0%

Method B Sample Calculation

Sample calculation for percent retained and percent passing each sieve in accordance with Method B when the previously washed 4.75mm (No. 4) minus material is split:

Example:

Dry mass of total sample, before washing: 3214.0 g

Dry mass of sample, after washing out the 75 μ m (No. 200) minus: 3085.1 g Amount of 75 μ m (No. 200) minus washed out: 3214.0 g – 3085.1 g = 128.9 g

Gradation on Coarse Sieves

	ieve Size	Individual Mass Retained, g	Individual Percent Retained	Cumulative Mass Retained, g	Cumulative Percent Retained	Calculated Percent Passing
mm	(in.)	(IMR)	(IPR)	(CMR)	(CPR)	(CPP)
16.0	(5/8)	0	0	0	0	100
12.5	(1/2)	161.1	5.0	161.1	5.0	95.0
9.50	(3/8)	481.4	15.0	642.5	20.0	80.0
`4.75	(No. 4)	475.8	14.8	1118.3	34.8	65.2
Pan	·	1966.7 (M ₁)		3085.0		

Coarse check sum:

$$\frac{3085.1 \, g - 3085.0 \, g}{3085.1 \, g} \times 100 = 0.0\%$$

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

Note 5: The pan mass determined in the laboratory (M_1) and the calculated mass (3085.1 - 1118.3 = 1966.7) should be the same if no material was lost.

The pan (1966.7 g) was reduced in accordance with the FOP for AASHTO T 248, so that at least 500 g are available. In this case, the mass determined was 512.8 g. This is M_2 .

In order to account for the fact that only a portion of the minus 4.75mm (No. 4) material was sieved, the mass of material retained on the smaller sieves is adjusted by a factor equal to M_1/M_2 . The factor determined from M_1/M_2 must be carried to three decimal places. Both the individual mass retained and cumulative mass retained formulas are shown.

Individual Mass Retained:

 M_1 = total mass of the minus 4.75mm (No. 4) before reducing.

 M_2 = mass before sieving from the reduced portion of the minus 4.75 mm (No. 4).

$$\frac{M_1}{M_2} = \frac{1,966 \, g}{512.8 \, g} = 3.835$$

Each "individual mass retained" on the fine sieves must be multiplied by this adjustment factor.

For example, the overall mass retained on the 2.00mm (No. 10) sieve is:

 3.835×207.1 g = 794.2 g, as shown in the following table:

Final Gradation on All Sieves

Calculation by Individual Mass

G.	C.	Individual	Adjusted Individual	Individual Percent	Calc'd Percent	Reported Percent
mm	e Size (in.)	Mass Retained, g (IMR)	Mass Retained (AIMR)	Retained (IPR)	Passing (CPP)	Passing* (RPP)
16.0	(5/8)	0	0	0.0	100.0	100
12.5	(1/2)	161.1	161.1	5.0	95.0	95
9.5	(3/8)	481.4	481.4	15.0	80.0	80
4.75	(No. 4)	475.8	475.8	14.8	65.2	65
2.0	(No. 10)	207.1 × 3.835	794.2	24.7	40.5	40
0.425	(No. 40)	187.9 × 3.835	720.6	22.4	18.1	18

	re Size (in.)	Individual Mass Retained, g (IMR)	Adjusted Individual Mass Retained (AIMR)	Individual Percent Retained (IPR)	Calc'd Percent Passing (CPP)	Reported Percent Passing* (RPP)			
mm	(111.)	(IIVIK)	(AIIVIN)	(IFK)	(CII)	(KII)			
0.210	(No. 80)	59.9 × 3.835	229.7	7.1	11.0	11			
0.075	(No. 200)	49.1 × 3.835	188.3	5.9	5.1	5.1			
Pan		7.8 × 3.835	29.9						
Dry mass	Dry mass of total sample, before washing: 3214.0 g								

^{*}Report 75 µm (No. 200) sieve to 0.1 percent. Report all others to 1 percent.

Fine check sum:

$$\frac{512.8 \ g - 511.8 \ g}{512.8 \ g} \times 100 = 0.2\%$$

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

For Percent Passing (Calculated) see "Calculation" under Method A.

Cumulative Mass Retained:

 $M_1 = \text{mass of the minus } 4.75 \text{ mm (No. 4) before split}$

 M_2 = mass before sieving of the split of the minus 4.75 mm (No. 4)

$$\frac{M_1}{M_2} = \frac{1,966 \, g}{512.8 \, g} = 3.835$$

Each "cumulative mass retained" on the fine sieves must be multiplied by this adjustment factor then the cumulative mass of plus 4.75 mm (No. 4) portion of sample is added to equal the adjusted cumulative mass retained .

For example, the adjusted cumulative mass retained on the 0.425 mm (No. 40) sieve is:

$$3.835 \times 395.0 g = 1514.8 g$$

1514.8 + 1118.3 g = 2633.1: "Total Cumulative Mass Retained" as shown in the following table:

Final Gradation on All Sieves

Calculation by Cumulative Mass

Sie	eve Size	Cumulative Mass Retained, g	Adjusted Cumulative Mass Retained, g	Total Cumulative Mass Retnd., g	Cumulative Percent Retnd.	Calc'd Percent Passing	Reported Percent Passing*
mm	(in.)	(CMR)	(ACMR)	(TCMR)	(CPR)	(CPP)	(RPP)
16.0	(5/8)	0		0	0.0	100.0	100
12.5	(1/2)	161.1		161.1	5.0	95.0	95
9.5	(3/8)	642.5		642.5	20.0	80.0	80
4.75	(No. 4)	1118.3		1118.3	34.8	65.2	65
2.0	(No. 10)	207.1 × 3.835	794.2 + 1118.3	1912.5	59.5	40.5	40
0.425	(No. 40)	395.0 × 3.835	1514.8 + 1118.3	2633.1	81.9	18.1	18
0.210	(No. 80)	454.9 × 3.835	1744.5 + 1118.3	2862.8	89.1	10.9	11
0.075	(No. 200)	504.0 × 3.835	1932.8 + 1118.3	3051.1	94.9	5.1	5.1
Pan		511.8 × 3.835	1962.8 + 1118.3	3081.1			

*Report 75 µm (No. 200) sieve to 0.1 percent. Report all others to 1 percent.

Fine check sum:

$$\frac{512.8 \ g - 511.8g}{512.8 \ g} \times 100 = 0.2\%$$

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

For Percent Passing (Calculated) see "Calculation" under Method A.

Method C Sample Calculation

Sample calculation for percent retained and percent passing each sieve in accordance with Method C when the minus 4.75mm (No. 4) material is reduced and then washed:

Dry Mass of total sample:	3304.5 g
Dry Mass of minus 4.75mm (No. 4) reduced portion before wash, M _{-#4} :	527.6
Dry Mass of minus 4.75mm (No. 4) reduced portion after wash:	495.3

Gradation on Coarse Sieves

Sie mm	ve Size (in.)	Cumulative Mass Retained, g (CMR)	Calc'd Percent Retained (CPR)	Calc'd Percent Passing (CPP)	Reported Percent Passing* (RPP)				
16.0	(5/8)	0	0.0	100.0	100				
12.5	(1/2)	125.9	3.8	96.2	96				
9.50	(3/8)	604.1	18.3	81.7	82				
4.75	(No. 4)	1295.6	39.2	60.8	61				
Pan		2008.9							
Total	Total Dry Sample = 3304.5								

Coarse check sum:

$$\frac{3304.5 \, g - 3304.5 \, g}{3304.5 \, g} \times 100 = 0.0\%$$

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

The pan (2008.9 g) was reduced in accordance with the FOP for AASHTO T 248, so that at least 500 g are available. In this case, the mass determined was $M_{\text{-#4}} = 527.6 \text{ g}$.

Final Gradation on All Sieves

Calculation by Cumulative Mass

Sie	ve Size	Cumulative Mass Retained, g	Cumulative Percent Retained _{-#4}	Calc'd Percent Passing _{-#4}	Calc'd Percent Passing	Reported Percent Passing*
mm	(in.)	(CMR _{-#4})	(CPR _{-#4})	(CPP _{-#4})	(CPP)	(RPP)
16.0	(5/8)	0	0.0		100.0	100
12.5	(1/2)	125.9	3.8		96.2	96
9.5	(3/8)	604.1	18.3		81.7	82
4.75	(No. 4)	1295.6	39.2		60.8	61
2.0	(No. 10)	194.3	36.8	63.2	38.4	38

Sie	ve Size	Cumulative Mass Retained, g	Cumulative Percent Retained.#4	Calc'd Percent Passing.#4	Calc'd Percent Passing	Reported Percent Passing*
mm	(in.)	(CMR _{-#4})	(CPR _{-#4})	(CPP _{-#4})	(CPP)	(RPP)
0.425	(No. 40)	365.6	69.3	30.7	18.7	19
0.210	(No. 80)	430.8	81.7	18.3	11.1	11
0.075	(No. 200)	484.4	91.8	8.2	5.0	5.0
Pan		495.1				

Dry mass (M) of minus 4.75 mm (No. 4) sample, before washing: 527.6 g

Dry mass of minus 4.75 mm (No. 4) sample, after washing: 495.3 g

Fine check sum:

$$\frac{495.3 g - 495.1 g}{495.3 g} \times 100 = 0.04\%$$

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

Also note that for minus No. 4 material using this method that:

$$CPP = \frac{CPP_{\#4} \times (M_{-\#4} - CMR_{-\#4})}{M_{-\#4}}$$

Example Calculations ATM 305

Example:

$$F = 632.6 \text{ g}, Q = 97.6 \text{ g}, N = 352.6 \text{ g}$$

% $Q =$

$$\frac{97.6 g}{632.6 g + 97.6 g + 352.6 g} \times 100 = 9.0\%$$
 %Q = 9%

Calculate the mass percentage of fractured faces to the nearest 1 percent using the following formula:

$$P = \frac{\frac{Q}{2} + F}{F + Q + N} \times 100$$

Where:

P = Percent of fracture

F = Mass of fractured particles

Q = Mass of questionable or borderline particles

N = Mass of unfractured particles

Example:

$$F = 632.6 \text{ g}, Q = 97.6 \text{ g}, N = 352.6 \text{ g}$$

$$P = \frac{\frac{97.6 \ g}{2} + 632.6 \ g}{632.6 \ g + 97.6 \ g + 352.6 \ g} \times 100 \qquad P = 63\%$$

^{*}Report 75 µm (No. 200) sieve to 0.1 percent. Report all others to 1 percent

Example Calculations ATM 306

Calculate the cumulative percent retained of each size group flat and elongated (F&E) in relation to the total plus 4.75 mm (No. 4).

F&E Group CPR =
$$(CPR \div \#4 CPR) \times 100$$

Example:

CPR=35%, #4 CPR=58%

F&E Group CPR = 60%

Calculate the individual percent retained of each group:

F&E Group Individual Percent Retained (IPR) = F&E Group CPR - Next Larger Group CPR

Example:

F&E Group CPR=100%, Next Larger Group CPR=60%

Calculate the percent flat and elongated for each size group.

Example:

Mass F&E Size Group=3.3g, Size Group Mass=104.9g

% F&E for Size Group (B) =
$$[(104.9)/(3.3)] \times 100$$
 B=3.1%

Calculate the weighted percent for each size to 0.1%.

Example:

% F&E for Size Group=3.1%, F&E Group IPR=40%

Weighted % F&E Size Group =
$$3.1\% \times 40\%$$
) ÷ 100 Weighted % F&E Size Group=1.2%

Calculate the total percentage of FnE by determining the sum of all the weighted % F&E for Size Groups.

Total Weighted %F&E=1.1%+1.2%

Total Weighted %F&E=2%

Example Calculations ATM 308

Perform calculations and determine values using the appropriate formula below. In these formulas, A = oven dry mass, B = SSD mass, and C = weight in water.

Bulk specific gravity (G_{sb})

$$G_{sb} = \frac{A}{B-C}$$

Bulk specific gravity, SSD (G_{sb} SSD)

$$G_{sb}SSD = \frac{B}{B - C}$$

Apparent specific gravity (Gsa)

$$G_{sa} = \frac{A}{A - C}$$

Absorption

Absorption =
$$\frac{B-A}{A} \times 100$$

Sample	A	В	C	B - C	A - C	B - A
1	2030.9	2044.9	1304.3	740.6	726.6	14.0
2	1820.0	1832.5	1168.1	664.4	651.9	12.5
3	2035.2	2049.4	1303.9	745.5	731.3	14.2

Sample	G_{sb}	G _{sb} SSD	Gsa	Absorption
1	2.742	2.761	2.795	0.7
2	2.739	2.758	2.792	0.7
3	2.730	2.749	2.783	0.7

These calculations demonstrate the relationship between G_{sb} , G_{sb} SSD, and G_{sa} . G_{sb} is always lowest, since the volume includes voids permeable to water. G_{sb} SSD is always intermediate. G_{sa} is always highest, since the volume does not include voids permeable to water. When running this test, check to make sure the values calculated make sense in relation to one another.

Example Calculations ATM 406

Calculate the asphalt binder content of the sample as follows:

$$P_b = \frac{M_i - M_f}{M_i} \times 100 - C_f - MC$$

Where:

P_b = the corrected asphalt binder content as a percent by mass of the HMA sample

 M_f = the final mass of aggregate remaining after ignition

 M_i = the initial mass of the HMA sample prior to ignition

 C_f = correction factor as a percent by mass of the HMA sample

MC= moisture content of the companion HMA sample, percent, as determined by the FOP for AASHTO T 329 (if the specimen was oven-dried prior to initiating the procedure, MC=0).

Example

Correction Factor	=	0.42
Moisture Content	=	0.04
Initial Mass of Sample and Basket	=	5292.7
Mass of Basket Assembly	=	2931.5
$M_{ m i}$	=	2361.2
Total Mass after First ignition + basket	=	5154.4

Sample Mass after First ignition

Sample Mass after additional 15 min ignition = 2222.7

$$\frac{2222.9 - 2222.7}{2222.9} \times 100 = 0.009$$

Not greater than 0.01 percent, so Mf

= 2222.7

2222.9

$$P_b = \frac{2361.2 - 2222.7}{2361.2} \times 100 - 0.42 - 0.04 = 5.41\%$$

$$P_b = 5.41\%$$

Example Calculations ATM 407

Constant Mass:

Calculate constant mass using the following formula:

$$\%Change = \frac{M_p - M_n}{M_p} \times 100$$

Where:

 M_p = previous mass measurement

 M_n = new mass measurement

Example:

Mass of container: 232.6 g

Mass of container and sample after first drying cycle: 1361.8 g

Mass, M_p , of possibly dry sample: 1361.8 $g-232.6\ g=1129.2\ g$

Mass of container and possibly dry sample after second drying cycle: 1360.4 g

Mass, M_n , of possibly dry sample: 1360.4 g – 232.6 g = 1127.8 g

$$\frac{1129.2 \ g - 1127.8 \ g}{1129.2 \ g} \times 100 = 0.12\%$$

0.12 percent is not less than 0.05 percent, so continue drying the sample.

Mass of container and possibly dry sample after third drying cycle: 1359.9 g Mass, M_n , of dry sample: 1359.9 g - 232.6 g = 1127.3 g

$$\frac{1127.8 \ g - 1127.3 \ g}{1127.8 \ g} \times 100 = 0.04\%$$

0.04 percent is less than 0.05 percent, so constant mass has been reached.

Moisture Content:

Calculate the moisture content, as a percent, using the following formula.

$$Moisture\ Content = \frac{M_i - M_f}{M_f} \times 100$$

Where:

 M_i = initial, moist mass M_f = final, dry mass

Example:

$$M_i = 1134.9 g$$

 $M_f = 1127.3 g$

Moisture Content =
$$\frac{1134.9 \ g - 1127.3 \ g}{1127.3 \ g} \times 100 = 0.674$$
, say 0.67%

Example Calculations ATM 408

Using the aggregate sample obtained from the FOP for AASHTO T 308, determine and record the mass of the sample to $0.1 \mathrm{~g}$ (M). This mass shall agree with the mass of the aggregate remaining after ignition (M_f from T 308) within 0.10 percent. If the variation exceeds 0.10 percent the results cannot be used for acceptance.

$$\frac{M_{f\,(T308)}\text{-}M_{(T30)}}{M_{f\,(T308)}}\times 100$$

Where:

$$M_{(T30)} = 2422.3 \text{ g}$$
 $M_{f(T308)} = 2422.5 \text{ g}$

$$\frac{2422.5 \text{ g} - 2422.3 \text{ g}}{2422.5 \text{ g}} \times 100 = 0.01\%$$

CHECK SUM

Total mass of material after sieving must agree with mass before sieving to within 0.2 percent.

$$\frac{\textit{dry mass after washing} - \textit{total mass after sieving}}{\textit{dry mass after washing}} \times 100$$

PERCENT RETAINED:

Where:

IPR = Individual Percent Retained CPR = Cumulative Percent Retained

M = Total Dry Sample mass before washing

IMR = Individual Mass Retained CMR = Cumulative Mass Retained

$$IPR = \frac{IMR}{M} \times 100$$
 OR $CPR = \frac{CMR}{M} \times 100$

PERCENT PASSING and REPORTED PERCENT PASSING:

Where:

PP = Calculated Percent Passing

PCP = Previous Calculated Percent Passing

RPP = Reported Percent Passing

$$PP = PCP - IPR$$
 OR $PP = 100 - CPR$

RPP = PP + Aggregate Correction Factor

Example:

Dry mass of total sample, before washing (M): 2422.3 g

Dry mass of sample, after washing out the 75 μm (No. 200) minus: 2296.2 g

Amount of 75 μ m (No. 200) minus washed out: 2422.3 g – 2296.2g = 126.1 g

Percent Retained 75 µm / No. 200:

$$\frac{63.5 \text{ g}}{2422.3 \text{ g}} \times 100 = 2.6\%$$
 or $\frac{2289.6 \text{ g}}{2422.3 \text{ g}} \times 100 = 94.5\%$

Percent Passing: 8.1% - 2.6% = 5.5% or 100% - 94.5% = 5.5%

Reported Percent Passing: 5.5% + (-0.6%) = 4.9%

Gradation on All Screens

	ve Size (in.)	Mass Retained (g) (MR)	Percent Retained (PR)	Cumulative Mass Retained (g) (CMR)	Cumulative Percent Retained (CPR)	Calc'd Percent Passing (PP)	Agg. Corr. Factor from T 308 (ACF)	Reported Percent Passing (RPP)
mm 19.0	(3/4)	0.0	(1 K)	0.0	0	100.0	(ACF)	100
12.5	(1/2)	346.9	14.3	346.9	14.3	85.7		86
9.5	(3/8)	207.8	8.6	554.7	22.9	77.1		77
4.75	(No. 4)	625.4	25.8	1180.1	48.7	51.3		51
2.36	(No. 8)	416.2	17.2	1596.3	65.9	34.1		34
01.18	(No. 16)	274.2	11.3	1870.5	77.2	22.8		23
0.600	(No. 30)	152.1	6.3	2022.6	83.5	16.5		16
0.300	(No. 50)	107.1	4.4	2129.7	87.9	12.1		12
0.150	(No. 100)	96.4	4.0	2226.1	91.9	8.1		8
75 μm	(No. 200)	63.5	2.6	2289.6	94.5	5.5	-0.6	4.9
Pan		5.7		2295.3				

Check sum:

$$\frac{2296.2 \ g - 2295.3 \ g}{2296.2 \ g} \times 100 = 0.04\%$$

This is less than 0.2 percent therefore the results can be used for acceptance purposes.

Example Calculations ATM 409

Flask Procedure

$$G_{mm} = \frac{A}{A+D-E} \times R \qquad \quad or \qquad \quad G_{mm} = \frac{A}{A_{SSD}+D-E} \times R$$

(for mixtures containing uncoated materials)

Where:

A = Mass of dry sample in air, g

A_{SSD} = Mass of saturated surface-dry sample in air, g

D = Mass of flask filled with water at 25°C (77°F), g, determined during the Standardization of Flask procedure

E = Mass of flask filled with water and the test sample at test temperature, g

R = Factor from Table 2 to correct the density of water – use when a test temperature is outside 25 ± 1 °C $(77 \pm 2$ °F)

Example (in which two increments of a large sample are averaged):

Increment 1 Increment 2

Temperature = 26.2°C Temperature = 25.0°C

$$G_{mm_1} = \frac{2200.3 \text{ g}}{2200.3 \text{ g} + 7502.5 \text{ g} - 8812.3 \text{ g}} \times 0.99968 = 2.470$$

$$G_{mm_2} = \frac{1960.2 \text{ g}}{1960.2 \text{ g} + 7525.5 \text{ g} - 8690.8 \text{ g}} \times 1.00000 = 2.466$$

Allowable variation is: 0.014

2.470 - 2.466 = 0.004, which is < 0.014, so they can be averaged.

Average

$$2.470 - 2.466 = 0.004$$
 $0.004 \div 2 = 0.002$ $0.002 + 2.466 = 2.468$

Or
$$2.470 + 2.466 = 4.936$$
 $4.936 \div 2 = 2.468$

Example Calculations ATM 409

Calculations - Method A (Suspension)

$$G_{mb} = \frac{A}{B - C}$$

Where:

A = Mass of dry specimen in air, g

B = Mass of SSD specimen in air, g

C = Weight of specimen in water at 25 ± 1 °C (77 ± 1.8 °F), g

Percent Water Absorbed (by volume) =
$$\frac{B-A}{B-C} \times 100$$

Example:

$$G_{mb} = \frac{4833.6 \ g}{4842.4 \ g - 2881.3 \ g} = 2.465$$

$$\%\ Water\ Absorbed\ (by\ volume) = \frac{4842.4\ g - 4833.6\ g}{4842.4\ g - 2881.3\ g} \times 100 = 0.4\%$$

Example Calculations ATM 504

Density – Calculate the net mass, M_m, of the concrete in the measure by subtracting the mass of the
measure from the gross mass of the measure plus the concrete. Calculate the density, W, by dividing
the net mass, M_m, by the volume, V_m, of the measure as shown below.

$$W = \frac{M_m}{V_m}$$

Example:
$$W = \frac{36.06 \, lb}{0.2494 \, ft^3} = 144.6 \, lb/ft^3$$

• **Yield** – Calculate the yield, Y, or volume of concrete produced per batch, by dividing the total mass of the batch, W₁, by the density, W, of the concrete as shown below.

$$W = \frac{W_1}{W}$$
 Example: $Y = \frac{3978lb}{27 \times 144.6lb/ft^3} = 1.02 \ yd^3$

Note 5: The total mass, W₁, includes the masses of the cement, water, and aggregates in the concrete.

Cement Content – Calculate the actual cement content, N, by dividing the mass of the cement, N_t, by the yield, Y, as shown below.

Note 6: Specifications may require Portland cement content and cementitious materials content

$$N = \frac{N_t}{Y}$$
 Example: $N = \frac{602 \ lb}{1.02 \ vd^3} = 590 \ lb/yd^3$

- Water Content Calculate the mass of water in a batch of concrete by summing the:
 - water added at batch plant
 - water added in transit
 - water added at jobsite
 - free water on coarse aggregate
 - free water on fine aggregate
 - liquid admixtures (if the agency requires this)

This information is obtained from concrete batch tickets collected from the driver. Use the following conversion factors.

To Convert From	To	Multiply By
Liters, L	Kilograms, kg	1.0
Gallons, gal	Kilograms, kg	3.785
Gallons, gal	Pounds, lb	8.34
Milliliters, mL	Kilograms, kg	0.001
Ounces, oz	Milliliters, mL	28.4
Ounces, oz	Kilograms, kg	0.0284
Ounces, oz	Pounds, lb	0.0625
Pounds, lb	Kilograms, kg	0.4536

Calculate the mass of free water on aggregate as follows:

$$Free\ Water\ Mass = Total\ Aggregate\ Mass - rac{Total\ Aggregate\ Mass}{1 + (Free\ Water\ Percentage/100)}$$

Example:

Total Aggregate Mass = 7804 lb Free Water Percentage = 1.7*

* To determine Free Water percentage:

Total moisture content of the aggregates – absorbed moisture = Free Water

Free Water Mass =
$$7804 lb - \frac{7804 lb}{1 + (1.7\%/100)}$$

Example for actual water content:

Water added at batch plant = 79 gal

Water added in transit =

Water added in transit

Water added at jobsite = 11 gal
90 gal = 751 lb

Coarse aggregate: 7804 lbs @ 1.7% free water Fine aggregate: 5489 lb @ 5.9% free water

CA Free Water =
$$7804 lb - \frac{7804 lb}{1 + (1.7\%/100)} = 130 lb$$

FA Free Water =
$$5489 lb - \frac{5489 lb}{1 + (5.9\%/100)} = 306 lb$$

Mass of water in batch = 751 lb + 130 lb + 306 lb = 1187 lb

Water/Cement Ratio – Calculate the water/cement ratio by dividing the mass of water in a batch of concrete by the mass of cementitious material in the batch. The masses of the cementitious materials are obtained from concrete batch tickets collected from the driver.

Example:

Cement: 2094 lb Fly Ash: 397 lb Water: 1187 lb

$$W/C = \frac{1187 lb}{2094 lb + 397 lb} = 0.476$$

Report 0.48

6	STATE OF ALASKA	I □ Acce	eptance	☐ Verific	ation 🔲 Info.	□ A □	QC Sar	mple No:		
	DOT & PF	Project	Name:					inpic ito.		
4		Federal						AKSAS	No:	
	OP for T 180 Modified Proctor FIELD WORKSHEET	Materia								
\Box	FIELD WORKSHEET	Item No					ation:			
Sam	pled by / Qualification No:						_	(epresented:		
	Standard Density — Mo	dified Proc	tor —	WAQTC	FOP for T	180	MET	HOD: D	Gradation	ı, % Pass
С	OMPACTION TEST 1		2	3	- 4	1	5	6	3"775mm	
Α	Mass of Mold								2"750mm	
В	Mass of Mold + Wet Soil								½"737.5mn	
M	Mass of Wet Sample B - A								1" / 25mm	
	MOISTURE CONTENT — V	VAQTC FOR	for T	255 / T 2	65 '	W = [(Mw	- MD) / N	MD] x 100	3/4" / 19mm	
С	Container								1/2" / 12.5mn	
D	Container + Moist Sample								3/8" / 9.5mm	
Mw	Moist sample D - C								#4 / 4.75mm	
E	Container + Dry Sample								#872.36mm	
MD	Dry Sample E-C								#16 / 1.18mm	
*W	Moisture Content, %								307.600mr	
Pw	Wet Density								507.300mr	
Pd	Dry Density								100 / .150mr 200 / .075m	
	ZAV Curve Calculations: $Ws = \frac{(62.4) (Gsa) - (Yd)}{(Yd) (Gsa)} \times 100$ Assumed Gsa: (if no T85)									
ZAV	/ Curve Calculations: Ws	= ` (Yd)	(Gsa)	—x100	ı				1	2
Ws	1				Dry	Density (Yo	f) Input for	r ZAV Curve:		
	1 2					DRY DENS	SITY vs.	MOISTURE	CONTENT	
	,			7					I I i i i i	
V	Mold Volume =								+	
			_							
<u> </u>	l.ov-15									
PW	Wet Density = (M ÷ V)									
			ے ا						+	
Pd	Dry Density = Pw / [1 + (W /	100)]	1,2							
			orkg/m³)						+	
SP	ECIFIC GRAVITY — WAQTC FO	P for T 85	7 %							
\vdash			يّ ا إ						+	
b	SSD Aggregate Mas	8	DENSITY, (Ib/ft ²							
С	Aggregate Weight in Wate	er	I Š							
а	Dry Aggregate Mas	s	-							
Geh	ULK Specific Gravity = a / (b - c	:)	PR-							
0317		1	- ا ا						+	
	SSD Specific Gravity = b / (b - c	-	↓							
Gsa	Apparent Specific Gravity = a / (a - o	:)							+	
	Absorption = [(b - a) / a] x 10	0	7							
<u> </u>			_				\vdash		+++++	
MA)	KIMUM DENSITY (0.1 lb/ft² or 1 kg	hr								
орт	IMUM MOISTURE (0.1%)			7.		7.		<u> </u>	<u> </u>	<u> </u>
Rom	arks:		_					NTENT, (%		
nem	ai noi				Tested by a					
					Checked by					
					or recited by	, / Date				

_		— <u> </u>							\neg					
6	STATE OF ALAS	KA	✓ Accep	otance										
1	DOT & PF	P	roject N		Alaska Hi		P 1267	-1314	Rehab	ilitatio	n	,		
F	OP for T 180 Modified Prod	tor F	ederal N											
	FIELD WORKSHEET	N	/laterial:	ial: Base Course, D-1				Sour	ce: MS	6-62-	2-005-5			
_		_	em No:	o: 301(1)				-		280, Alas				
Sam	pled by / Qualification No:	J. Groves	/#365			Date: <mark>07/</mark>	24/08	<u> </u>	uantity	Repr	resented:	Source	ce	
	Standard Density –	– Modified	Procte	or — V		OP for T	180	,		THC	D: D			, % Pass
С	OMPACTION TEST	1	2		3		4		5		6	3"17	'5mm	
Α	Mass of Mold	12.67	12.		12.67		2.67	+	2.67	_		2"75	0mm	
В	Mass of Mold + Wet Soil	23.26	23.		23.68		3.65	_	3.64			-	7.5mn	
М	Mass of Wet Sample B - A	10.59	10.		11.01).98		0.97			₩	:5mm	100
_	MOISTURE CONTENT							_		MID] x 100	-	19mm	95
С	Container Countie	1620.5	170		1670.3	_	26.0	_	92.3	+		1/2" / 1		72
D Mw	Container + Moist Sample Moist sample D - C	2636.0 1015.5	271 101		2692.1 1022.1		38.7 12.7	_	03.5 011.2			3/8"7: #474.		59
E	Container + Dry Sample	2604.3	267		2651.9	_	92.0	_	49.2			#474.		35
MD	Dry Sample E - C	983.8	974		981.3		6.0	_	56.9			#16/1		23 15
*W	Moisture Content, %	3.2	3.		4.2		1.8		5.7	+		307.6	_	12
Pw	Wet Density	141.0	144		146.6		6.2		46.1	+		╙	300mr	9
Pd	Dry Density	136.6	139		140.7		39.5	_	38.2	+		╫	150mr	6
								2007.	075m	4.2				
ZAV	/ Curve Calculations:	$Ws = \frac{(62)}{}$	(.4.) (GS:	a) - (Y	a) x 100	ASSUIT	iea Gs	sa: (irr	10 I 85)	' L_		1		2
Ws	% Water Content for co		, , ,			Dr	y Dens	ity (Yd)	Input f	for ZA	V Curve:	13	6.6	140.7
vvs	1 11.2 2	9.8	aturatioi	'	Г		DBA	DENSI	TV ve	- M/	DISTURE	CON	TENT	
	1 11.2 2	3.0						LING	11 V3	- IVI	JISTORE			
٧	Mold Volume =	0.0751										1		
_	l						₩		+	+			+++	
Pw	Wet Density = (M ÷ V)											111		
				_				+	++			+	-	
Pd	Dry Density = Pw / [1 +	(W / 100)]	or kg/m³)										
				, è										
SP	ECIFIC GRAVITY — WAQ1	C FOP for	T 85	P.F.			-		-			-		
b	SSD Aggregate	e Mass 2	784.3	٦,										
С	Aggregate Weight in		810.7	ISI										
a	Dry Aggregate		765.0	DRY DENSITY, (Ib/ft²										
\vdash	ULK Specific Gravity = a /			Z						₩				
GSD		-	2.840	-										
	SSD Specific Gravity = b /		2.860											
Gsa	Apparent Specific Gravity = a /	(a - c) 2	2.897											
	Absorption = [(b - a) / a]] x 100	0.7											
												1		
MA)	CIMUM DENSITY (0.1 lb/ft² o	r1 kg/m				<u> </u>				+	<u> </u>		: :	
ОРТ	IMUM MOISTURE (0.1%)				7.	7.		<u>,</u>	_	<u></u>	<u> </u>		%	×.
					<i></i>	<i></i>					ENT, (%	3	<i></i>	
Kett	arks:				L	rested by			JINE C	.5141		,		
						rested by Checked b								
					,	s, recircular	,, , va						i	

	STATE OF ALAS DOT & PF VAQTCFOP for T 310 (METHOI FIELD DENSITY WORKSHE	DA) F	roject Nam ederal No: laterial: em No:			rerification	Source:	AKSAS	No:	
	FIELD DENSITY TEST NUMBER	3ER								
	STATION									
	C/, REFERENCE									
	GRADE REFERENCE									
	QUANTITY REP'D OR PIPE'S	TRUCT. NO								
	DATE TESTED									
ST	ANDARD DENSITY		WAQTC F	OP for T 180	: 	□в □с		□ A1	ПМ 212	
	Standard DensityLab Num	ber			_					
Df	Standard Density T 99/T 180 (N	Vlaximum Lal								
	Optimum Moisture									
В	Specific Gravity 1 +3/4" Bulk	П #4 Ар	•							
DEI	NSITY DETERMINATION		•						•	
	Probe Depth									
			Reading#1	Reading #2	Reading#1	Reading#2	Reading#1	Reading#2	Reading#1	Reading#
	Wet Density, (lb/ft³ or kg/m³)	Cours								
С	Average Wet Density	Gauge		•		•				
Pd	Dry Density (gauge) 3/[1+	+(E/100)]								
ru	Dry Density (actual) / [1+	(W / 100)]								
МО	ISTURE CONTENT		Use WAQTO	FOP for T2	55/T 265 or :	use gauge m	oisture (E) if	it is within 1	% of actual r	moisture (V
	% Moisture	Gauge								
Е	Average % Moisture	Cauge								
F	Wet Mass + Container									
G	Dry Mass + Container									
J	Container									
W	% Moisture (actual) [(F-G)/((G-J)] x 1 00								
GR	ADATION / OVERSIZE CO	DRRECTION	ON *T 99	/ T 180 Note:	If % Overs	ize (Pc) is le	ss than or e	qual to 5%, n	o correction	is required
	ATM 212 or *WAQTC FOP 1	for T 224	□ 3/4"	# 4	□ 3/4"	# 4	3/4"	# 4	□ 3/4" [] #4
Р	Wet Mass + Container									
	Container									
	Wet Mass	P-Q								
Md	Dry Mass + r M m / [1+(E / 100)] o r M m	ı/[1+ (W / 10 0)]								
T	+3/4" or +#4 Mass + Contai	iner								
٧	Container									
	+3/4" or +#4 Mass	T-V								
		/Md) x 100								
	% Fines	100 – Pc								
	80 - Corrected Std. Density (D									
ΑП	M 212 — Vibratory Standard (La	ab Chart)							<u> </u>	
% C	compaction Pd / Max. Std. Den	sity) x 100								
Dd	= (100 * Df * k) / [(Df * Pc) +	(k * Pf)]	⇒ k = (62.4 lb/ft ³ *	B) or (1000) kg/m ³ * B)	Т	CTT = Too	Coarse To	Test

REMARKS:

Signature / Qualification No. / Date:

Checked by/Date:

Γ	STATE OF ALA	SKV		✓ Accep	otance Ve	erification _	☑ Info. ☑ I	A ∐ QC		
(DOT & PF		roiect Nam	e: AMATS:	Old Glenn	Highway 3	South Bircl	hwood Loo	p to Peters	Creek
`	THE OF ALLES	F	ederal No:			·-g,			No: 50946	
	VAQTCFOP for T 310 (METHO	DDA)		ubbase, Gr	· · ·		Source:	-	m Pit/Gran	
L	FIELD DENSITY WORKSH	CCI	_	04(1)		pec. (min.)		auge S/N:	33529	
hanan			_	(- /						
	RELD DENSITY TEST NUM	BER	SB-I	D - 44						
	STATION		332	+ 55						
	C/L REFERENCE			. C/L						
	GRADE REFERENCE	TT IOT NO	•	Subbase						
	QUANTITY REP'D OR PIPE/S	SIRUCI. NO	5,000) tons						
	DATE TESTED			1/10	_				<u></u>	
ST	ANDARD DENSITY		WAQTCF	OP for T 180	: <u>L</u> A	L_B	<u>L</u> c	⊻ D /	L ATM 212	2
	Standard Density Lab Num			SD-1					<u> </u>	
Df	Standard Density T 99/T 180	(Meximum Lai		0.4						
_	Optimum Moisture			.0						
	Specific Gravity 1 +34" Bulk		. 2.	75						
DEI	NSITY DETERMINATION								1	
-	Probe Depth			B	B - E - 74	B - F - 70	B - E - 74	D - E - "0	D - E - 74	D 1: 10
	MALAD ik. m. m2 1 1 2		Reading#1	-	Reading#1	Reading#2	Reading#1	Reading#2	Reading#1	Reading#2
	Wet Density, (lb/ft³ or kg/m³)	Gauge	151.8	151.6						
_	Average Wet Density	· (E (400)]		1.7						
Pd	Dry Density (gauge) 3/[1		14	4.8						
<u></u>	Dry Density (actual) / [1 -	`								
MO	ISTURE CONTENT Moisture				55/T 265 or o	use gauge m	voisture (E) i1	itiswithin 1	% of actual n	noisture (W).
_		Gauge	4.7	4.8						
	Average % Moisture Wet Mass + Container		4	.8						
	Dry Mass + Container									
J	Container									
	% Moisture (actual) [(F – G)	/ (C 1) v 100								
			ON ** 00	(T.488.)						
GR	ADATION / OVERSIZE C				r		1		o correction	
D	ATM 212 or *WAQTC FOP Wet Mass + Container	for 1 224		<u> </u> #4	3/4⁻	<u> </u>	3/4-	#4	<u></u> 3/4"	<u> </u>
	Container			.81						
	Wet Mass	P-Q		21						
	Dry Mass) r M m/[14(E / 100)] o r M i			.60						
	+3/4" or +#4 Mass + Conta		13	.93 76						
	Container	211101		76					-	
	+3/4" or +#4 Mass	T-V	2.1				-		 	
		/ Md) x 100		55			-		-	
	% Fines	100 – Pc		<u>.5</u>			-		 	
	80 - Corrected Std. Density (I			7 1					 	
	W1212 - Vibratory Standard ()		14	7.1						

Signature / Qualification No. / Date: M. Goldfarb / #538 / 9-11-10 Checked by / Date: W. Nelson / 9-12-10

REMARKS:

 $\Rightarrow k = (62.4 \text{ lb/ft}^3 * \text{B}) \text{ or } (1000 \text{ kg/m}^3 * \text{B})$

TCTT = Too Coarse To Test

98

% Compaction Pd / Max. Std. Density) x 100

Dd = (100 * Df * k) / [(Df * Pc) + (k * Pf)]

S PERMANENT OF ALL ST	
SOILS & AG	(
FIEL	C
	•

Mid Dry Mass B - C

W Moisture, %

W = [(Mw - Md) / Md] x 100 ਜ 6Change =

Mp = Previous Mass Measured / Mn = New Mass Measured

STATE OF ALASKA DOT & PF

SOILS & AGGREGATE, METHOD A
FIELD WORKSHEET

Acceptance _	Verification ☐ Info. ☐ IA ☐] ^{QC} Samı	ple No:
Project Name:			
Federal No:			AKSAS No:
Material:		Source:	
ttem No:		Location:	
	Sampled by / Qual. No:		
	Quantity Represented:		Date:

Sta	./Sampled from	n:				
c_{I_L}	& Grade Refere	nce:				
		-				
	FRACTURE	— WAQTO	C FOP for T	335		
	Single Face 🔲 D	ouble Fac	e All	Face		
	Fractured Mass F		%Q=[Q/(F +Q +N)	x 100	mm.
Q	uestionable Mass Q		* % Questi	onable <u></u>		
ļι	Unfractured Mass N		*Recount	if > 15%		
	% Fracture					*75
Toc	t by/date:		∠Spec.			50
	CDy/GBL.		(Cupu			*37.5
MO	STURE CONTENT	r — WAC	TC FOP fo	rT 255/1	265	25
С	Container		Const	ant Mas	s	*19.0
A	oist Mass +Contain		Tme	GrossM: Net Ma		12.5
^	OSEW 433 - COREAR					*9.5
Mw	WetMassA-C					6.3
I MA W	TRAINESS M = C					*4.7
В	DovM see +Contains					*23

mm/USC	Increment 1	Increment 2	Cumulative Mass Retained C	Cumulative % Retained (C/M)x100	% Passing = 100 – % Retained	Specs.
*75 / 3"						
50 / 2"						
* 37.5 / 1½"						
25 / 1"						
*19.0 / 3/4"						
12.5 / 1/2"						
*9.5 / 3/8"						
6.3 / 1/4"						
*4.75 / #4						
*2.36 / #8						
2.00 / #10						
*1.18/#16						
.850 / #20						
*.600/#30						
.425 / #40						
*.300/#50						
*.150 / #100						
.075 / #200						
Cum. Pan				_	Check Sum	(≤0.3%)
Cumulat	ive Mass AF	TER Sieving		c= G	[(A - G) / A	x 100=
Dry Mass AF⊓	∏ER Wash BE	FORE Sieving		←A		

GRADATION — WAQTC FOP for T 27 / T 11 — Method A

						- L.07:
QUID A	ND PLAST	IC LIMIT —	WAC	TC FOP for	orT89and	
			Щ	PL	1 ⊢"	
N	Number of Blows					1
С	Container					Dyl
Α	Moist Mass + Container		ner			
Mw	Moist Mass A – C		;]
В	Dry Mass + Container					
Md	Dry Mass B-C					PL
w	Moisture Content, % [(Mw – Md) / Md] x 100					
LL	W x (N / 25) ^{0.121}					LL Spec
Test by	/date:	Plasticity inc				PISpec

% Change = [(Mp - Mn) / Mp] x 100

FM ⇒			← Fineness Modulus Target (From M D)	
	to		c=FM Limits (±02 of Mix Design FM)	
(FM = Fineness Modulus = Total of % Retained of *Sieves / 100)				

Signature / Date:
Checked by / Date:

Original Dry Mass

Test by/date:

SOILS & AGGREGATE, METHOD A FIELD WORKSHEET

✓ Acceptance	o. L QC
--------------	---------

Park Street

Sample No: FA-G-1

Project Name:	Haines	Front	Street to	Park	2

Federal No: HHE-095-6(032)

AKSAS No: 69999

Material: Fine Concrete Aggregate

Source: Glacier Northwest

Item No: 501(1)

Location: Bellevue, Washington

Sta. / Sampled from: Stockpile, HNS Ready Mix Sampled by / Qual. No: P. Harmon # 007

^C/_L & Grade Reference: N/A

Quantity Represented: 100 CY Date: 03/24/11

FRACTURE — WAQTC FOP for T 335					
Single Face	Double	Face L All Face			
Fractured Mass F		%-Q=[Q/(F+Q+N)]x100			
Questionable Mass Q		*% Questionable =			
Unfractured Mass N		*Recount if > 15%			
% Fracture		←[(F+(Q/2))/(F+Q+N)X			
Test by/date:		← Spec.			

С	Container	626.3	Consta	nt Mass
A	oist M ass +Contain	1776 3	Time	GrossMass Net Mass
^	OSCINIUSS CONCE	1110.0	12:00 PM	1735.9
Mw	Wat Mass A C	N-C 1150.0	1109.6	
m w	TRAINES H-C	1130.0	12:30 PM	1735.6
В)ryMass+Containe	1736.7	EWI III	1109.3
Md	Dry Mass B – C	1110.4	-	
W	Moisture, %	3.6		
W	[(Mw - Md) / Md]	x 100 ਜ਼ੇ	6 Change =	0.03

Mp = Previous Mass Measured / Mn = New Mass Measured

DIED AL	ID PLAST	TC LIMIT — WA	ስፐሮ ENP f	orT 80 and	l L
COID AI		10 221111			Cum
			LL	PL	
N	Numi	ber of Blows			l
С	(Container			Dry M
A	Moist M	ass +Container			
Mw	Moist	Mass A - C			
В	Dry Ma:	ss + Container			
Md	Dry	Mass B⊢C			PL
w		re Content, % Md) / Md] x 100			
LL	W x (N / 25) ^{0.121}				LL Spec
Test by	/date:	Plasticity index			PISpec
		LL-PL			11200

	GRADATION — WAQTC FOP for T 27 / T 11 — Method A						
mm / USC	Increment 1	Increment 2	Cumulative Mass Retained C	Cumulative % Retained (C / M) x 100	% Passing = 100 – % Retained	Specs.	
*75/3"							
50/2"							
*37.5 / 1½"							
25 / 1"							
*19.0 / 3/4"							
12.5 / 1/2"							
*9.5 / 3/8"			0.0	0.0	100	100	
6.3 / 1/4"							
*4.75 / #4			30.9	5.4	95	95 - 100	
*2.36/#8			89.2	15.6	84	80 - 100	
200/#10							
*1.18 / #16			254.4	44.4	56	50 - 85	
.850/#20							
*.600 / #30			338.2	59.0	41	25 - 60	
.425/#40							
*.300 / #50			441.1	77.0	23	10 - 30	
*.150/#100			520.9	90.9	9	2 - 10	
.075/#200			556.8	97.2	2.8	3.0 max.	
Cum. Pan			557.7	∈ G	Check Surr	(≤0.3%)	
Cumulat	ive Mass AF	TER Sieving	331.1		[(A - G) / A] x 100=	
Dry Mass AF	TER Wash BE	FORE Sieving	558.2	←A	0.1%		
Original Dry Mass		573.0	← M	Test by/date: P.H. 3/24/11			

FM ⇒	2.92	2.78	← Fineness Modulus Target (From M D)		
2.58	to	2.98	ر—FM Limits (±02 of Mix Design FM)		
(FM = Fineness Modulus = Total of % Retained of *Sieves / 100)					

Nemaiks.			
	Signature / Date:	Patrick H. Harmon / #007 / 3-24-11	
	Checked by / Date:	CJK / 3-25-11	

S A P
COLLE P. AC

Fractured Mass F

Questionable Mass Q

Unfractured Mass N

STATE OF ALASKA DOT & PF	Acceptance Project Name:	☑ Verification ☑ Info. ☐ IA ☐] QC Sampl	e No:		
SOILS & AGGREGATE, METHOD B FIELD WORKSHEET	Federal No: Material:		Source:	AKSAS No):	
Sta. / Sampled from:	Item No:	Sampled by / Qual. No:	Location: _			
^C / _L & Grade Reference:		Quantity Represented:			Date:	
FRACTURE — WAQTC FOP for T	GRADATION — WAQTC FOP for T 27 / T 11 — Method B					
☐ Single Face ☐ Double Face ☐ Al	l Face		Cumulative Mass	Cumulative	% Passing =	

mm / USC | Increment 1 | Increment 2

*75/3" 50 / 2" *37.5 / 1½"

% Fracture ← [(F+(←[(F+(Q/ :	2))/ (F + Q+N) X	
Tes	by/date:		← Spec. (min.)		
MOI	STURE CONTENT	r — WAG	TC FOP for	T 255 / T 265	
С	Container		Const	ant Mass	
A	oist M ass +Contair		Time	GressMass Net Mass	
Mw	Wet Mass A - C				
В) ry M ass +Containe				
Md	Dry Mass B - C				
w	Moisture, %				
W	= [(Mw – Md) / Md]	х 100 û	6 Change <u>=</u>		
Test	by/date:	% Change	= [(Mp - M	n)/Mp]x 100	
Mp=	Previous Mass Me	asured / M	n=New M	lass Measured	

%Q = [Q / (F +Q +N)] x 100

% Questionable

*Recount if > 15%

QUID AI	ID PLA	STIC LIMIT — WA	QTC FOP 1	for T89and	
N Number of Blows					
С		Container			
Α	Moist	Mass + Container			
Mw	Mo	istMass A − C			
В	Dry N	Mass + Container			
Md	Di	ry Mass B−C			PL
w		sture Content, % - Md) / Md] x 100			
LL	Wx (N/25) ^{0.121}				LL Spec.
Test by	/date:	Plasticity index			PISpec.
		LL-PL			, , , , ,

25 / 1"						
19.0 / 3/4"						
12.5 / 1/2"						
*9.5 / 3/8"						
6.3 / 1/4"						
*4.75 / #4			[)		
Indiv. Pan				←M1	CA Check Su	ım (≤0.3%)
nulative Mas	s AFTER Sievi	ng = (D+M1)		←G	[(A – G) / A] x 100=
Dry Mass AF	TER Wash BE	ORE Sieving		←A		
	Origina	l Dry Mass		← M	Test by/date	:
			← F = (M1/M2	2) (0.001)		
		Cumulative	Total Sample	Cumulative	% Passing =	
	mm/USC	Mass B	Cumulative Mass	70.10	100 –	Specs.
			C=[FxB]+D	(C/M) x 100	%Retained	
	*2.36 / #8					
	200/#10					
	*1.18/#16					
	.850 / #20					
	*.600 / #30					
	.425 / #40					
				1		
	*.300 / #50					

Retained C

FM ⇒			← Fineness Modulus Target (From M D)		
	to		← FM Limits (±02 of Mix Design FM)		
(FM = Fineness Modulus = Total of % Retained of *Sieves / 100)					

Test by/date:

← −#4 Mass Actually Sieved FA Check Sum (<0.3%)</p>

Signature / Date: Checked by / Date:

Remarks:

.075 / #200 Cum. Pan P M2 ⇒

 $[(M2-P)/M2] \times 100 =$

Specs.

100 -

% Retained

% Retained

(C/M) x 100

SOILS & AGGREGATE, METHOD B FIELD WORKSHEET

✓ Acceptance	Verification	Info.	∐ QC

Sample No: BC-G-1

Location: 13 Mile, Miller Road

Project Name: Phillips Field Road Upgrades

Federal No: STP-0070(3) AKSAS No: 63481

Material: Base Course, D-1 Source: MS-02-001-32

Sta. / Sampled from: 28+50 / Roadway Sampled by / Qual. No: MK / #508

^C/_L & Grade Reference: 12 Rt. / -6" Top BC Quantity Represented: 2000 tons Date: 07/20/10

FRACTURE — WAQTC FOP for T 335						
☑ Single Face ☐ Double Face ☐ All Face						
Fractured Mass F 1113.4 %Q=[Q/(F+Q+N)] x 10(
Questionable Mass Q	132.3	*%Questionable = 8				
Unfractured Mass N	352.6					
% Fracture	74	←[(F+(Q/2))/(F+Q+N)X				
Test by/date: PH7-21-10	70%	Spec. (min.)				

MOISTURE CONTENT — WAQTC FOP for T 255/T 265					
С	Container	672.1	Consta	ant Mass	
A	oist Mass +Contain	3783 8	Time	GrossMass Net Mass	
^	John Good Gonkal	0.00.0	1:15 PM	3681.3	
Mw	WetMassA - C	31117	1.101 141	3009.2	
1111 44	TALIED A-C	0111.7	1:45 PM	3679.8	
В) ry M ass +Containe	3681 9		3007.7	
	-				
Md	Dry Mass B – C	3009 8			
		2230.0			
W	Moisture,%	3.4			
W	= [(Mw - Md) / Md]	x 100 ਜ਼ੇ	6Change <u>−</u>	0.05	
Test by/date: PH 7-20-10 % Change = [(Mp – Mn) / Mp] x 100					

Mp = Previous Mass Measured / Mn = New Mass Measured

UID A					
N	N Number of Blows				
С		Container	14.20	14.18	
Α	A Moist Mass + Container			23.89	
Mw	Mw Moist Mass A - C			9.71	
В	Dry N	Mass + Container	31.45	22.79	
Md	Dr	y Mass B – C	17.25	8.61	PL
w	W Moisture Content, % [(Mw – Md) / Md] x 100		16.1	12.8	13
LL	LL Wx (N / 25) ^{0.121}		16		LL Spec.
Test by/date: Plasticity		Plasticity index	3	6 max	PISpec.
PH 7-21	-10	LL−PL			

Remarks:			

	GRAD	ATION — V	VAQTC FOP for T 27	7/ T 11 — Met	hod B	
mm/USC	Increment 1	Increment 2	Cumulative Mass Retained C	Cumulative % Retained (C/M)x 100	% Passing = 100 – %Retained	Specs.
*75 / 3"						
50 / 2"						
*37.5 / 1½"						
25 / 1"			0.0	0.0	100	100
*19.0 / 3/4"			251.8	3.1	97	70 - 100
12.5 / 1/2"			1253.8	15.5	85	
*9.5 / 3/8"			2222.1	27.5	73	50 - 80
6.3 / 1/4"			3291.5	40.7	59	
*4.75/#4			4067.7 D	50.3	50	35 - 65
Indiv. Pan			4022.8	← M1	CA Check Su	 um (≤0.3%)
mulative Mass	AFTER Sievi	ing = (D+M1)	8090.5	←G	[(A-G) / A] x 100:	
Dry Mass AFTER Wash BEFORE Seving		FORE Sieving	8094.6	← A	0.1	%
Original Dry Mass		l Dry Mass	8094.7	← M	Test by/date	:
	7.5	i31	← F= (M1/M2)	(0.001)	PH 7-20-10	
		Cumulative	Total Sample	Cumulative	% Passing =	

mm/USC	Cumulative Mass B	Total Sample Cumulative Mass C=[F x B] +D	Cumulative % Retained (C / M) x 100	% Passing = 100 – % Retained	Specs.	
*2.36/#8	153.6	5224.5	64.5	36	20 - 50	
2.00/#10	181.1	5431.6	67.1	33		
*1.18/#16	238.9	5866.9	72.5	28		
.850 / #20	289.6	6248.7	77.2	23		
*.600 / #30	316.5	6451.3	79.7	20		
.425 / #40	364.9	6815.8	84.2	16		
*.300 / #50	438.1	7367.0	91.0	9	8 - 30	
*.150 / #100	457.1	7510.1	92.8	7		
.075 / #200	487.8	7741.3	95.6	4.4	0 - 6	
Cum. Pan P	533.1					
M2⇒	534.2	← −#4 Mass Ac	tually Sieve	FA Check Su	m (≤0.3%)	
		Test by/date: PHH 7-21-10 [(M2-P) / M2] x				

FM ⇒ CFINENESS Modulus Target (From M D)

to CFM Limits (±0.2 of M ix Design FM)

(FM = Fineness Modulus = Total of % Retained of *Sieves / 100)

Signature / Date: Pat Harmon / #007 / 7-21-10

Checked by / Date: MK / 7-22-10

0.2%

(m)	AND A PUNE	TATE OF	ALASKA	Δ .		Accepta	ance 🔲	Veri	ification 🔲 h	fo. 🔲 🗚 🏻] QC	Sampl	e No:		
TRAN		DOT 8		Ì	Proj	ect Na	me:					, ,			
	SOILS & AGGI	DECATE ME	ETHOD C	.	Fed	eral N	D :						AKSAS No)[
•		WORKSHEE			Mate	erial:					Sou	ırce:		•	
					Item	No:					Loc	ation:			
Sta	ı. / Sampled	from:						S	ampled by/	Qual. No:		_			
c/F	& Grade Re	ference:						Q	uantity Rep	resented:				Date:	
	FRACTU	RE — WAC	TC FOP	for T 3	335				GRADA	ТОМ — М	AQTC F	OPforT2	7/T11—Me	hod C	
	Single Face	Double F	Face [AII	Face						Cumul	ative Mass	Cumulative	% Passing =	
	Fractured Mas	s F	%Q=[Q/(F	+Q +N)] x 100	mmr/U	JSC	Increment 1	Increment 2		ained C	% Retained	100 -	Specs.
Q	uestionable Mas	s Q	*%Q	uestio	nable 🛁		450 /						(C/M)x 100	%Retained	
ı	Unfractured Mas	s N	*Rec	ount if	f > 15%		150 /								
	% Fractu	ле	Œ[(F	+ (Q/2))/(F † Q	+N)X	100 /								
Tes	tby/date: PH7-	21-10	(⇔Sp	ec. (m	nin.)		*75/							t	
	ICTUSE CO.	TENE 144	ACTEC FO	D &	T 255 / 1	T 202	50/2								
	ISTURE CON						*37.5 /								
С	Cont	ainer	-	- 1	ont Mas		25 / 1								
A	o ist M ass +Co	ntain	Tim	ne i	Net Ma		*19.0 /								
			_	-			12.5/								
Mw	Wet Mass A	_ c					*9.5 / 3								
				-			6.3/1								
В	DryMass+Con	taine					*4.75/						1		
							Indiv. I						← M1	CA Check Su	
Md	Dry Mass B	_c					Dry Ma	iss A	⊾FT⊞R Sieving	g = (D + M1)			←G	[(M – G) / M	/i] x 100=
							Origin	nal D	ry MassB⊞(ORE Sieving			←M		
W	Moisture,	.%												Test by/date:	
W	= [(Mw – Md) /								(1100	Cumulative	a	TR _{#4} =	CPP _{#4} =	% Passing =	
Tes	t by/date:	% Chan	nge=[(Mp	-Mn	n)/Mp]:	k 100			mm/USC	Mass Ret.	(CMR_	₄ /M _{#4}) _× 100	00-CPR ₂₄	(CPP _{at} × CPP _{at})/100	Specs.
Mp=	Previous Mass	s Measured /	Mn=Ne	sw Ma	ass Mea	sured			*2.36 / #8	CMR _#				31.1 3 47.100	
	D AND PLAS	OC LIMIT -	_ WANT	C FO	P for T f	T bne 09	1		2.00/#10						
	DAND! LAG		101(2)	ш		PL			*1.18/#16						
N	Num	ber of Blow	· s		_	· <u>-</u>			.850 / #20						
		Container	•						*.600 / #30						
A		tass + Conta	ainer						.425/#40						
Mv		t Mass A							*.300 / #50						
В		ss + Contair							*.150/#100					 	<u> </u>
M		Mass B – C					PL		.075 / #200					s	
	Moistr	ure Content,							.0757#200 Cum. Pan P		#2M) cm	_3" = f	│ (s/t)x1001 —		
W	7	Md)/Md]x							H⇒				FTERWash	FA Check Su	m (< 0.30€)
LI	_ w	c (N / 25) ^{0.12}	1				LL Spec.						FORE Wash		
Tes	tby/date:	Plasticity I	Index		+				M≠+⇒				LI CINE WASII	 ``	-
		LL_P					PISpec				iest	by/date:		<u> </u>	
Re	emarks:											ı			
	_							_	FM ⇒					ulus Target	
								_		to				2 of Mix Design	
								_	(FM=	Fineness Mo	dulus =	Total of	% Retained o	f *Sieves / 1	100)
								_	Signature /	Date:					
									oly nature /	Date.					

Checked by / Date:

	SO A FEB				————. ☑ Accen			erification							
æ	STA	TE OF AL								· samp	le No: <u>EX</u>	A-G-1			
62		DOT &	PF			_		s Field Roa	d Upgrade:	5	*******	00404			
5	OILS & AGGREG		HOD C			_	STP-0070(3) AKSAS No: 63481								
ı	FIELD WO	RKSHEET		_			nolass, ExUseable Type A Source: Existing								
	10 1.17	20.5	O I D		em No:	203(3	03(3) Location: <u>Project Limits</u> Sampled by / Qual. No: MK / #508								
	/ Sampled from Crade Defect				F_L_L							D-1 071	20110		
ا '' ^{د ه}	: Grade Refere	nce: <u> </u> 2	Ht. (- 2 º	+ тор	EMDANK	ment	٠ ـ ـ	auantity Hep	oresentea:	10,000 tons		Date: <u>07/</u>	20/10		
	FRACTURE	— WAQ1	CFOP	for T 3	35			GRADAT	ION — ₩	AQTC FOP for	T 27 / T 11 — N	Method C			
	Single Face [Double	Face		Face	l		ļ		Cumulative	Cumulativ	, assg	_		
Fra	ctured Mass F		×0-[0:	(F+Q+	N)]×100	աայլ	USC	Increment 1	Increment 2			= 100 -	Specs.		
uestic	onable Mass Q		% Ques	tionab	le :	150 /	6"	0.0	0.0	0.0	Retained	%Rotained	 		
Unfra	ctured Mass N		*Recou	nt if > 1	15%	100 /		1468.8	1977.4	3446.2	100.0 5.5	100 95			
	% Fracture		← [(F+(Q/2)) / (I	F+Q+N)X	*757		2460.0	2866.7	5326.7	8.5	t 92			
Test	by/date: PH 7-2		⇔ Spe	e. (min.	.)	507		8975.4	11763.2	20738.6	33.2	67			
ISTU	RE CONTEN	T - MA	OTCEC	P for	1 255 / 1	*37.5									
C	Container		_			257		10354.2		23810.6	38.2	62			
屵	Container	012.1	╫──	Gri	Н	19.07		15674.3	17444.3	33118.6	53.1	47			
¦Α∤	oirt Mars + Contains	1534	Time	$\overline{}$	rlHann	12.57		18543.6	19555.3	38098.9	61.1	39			
\vdash			####	"	99.7	*9.57		19541.2	20339.7	39880.9	63.9	36			
Me	/et Mass A = 0	861.7		 	27.6	6.371		21841.7	22437.9	44279.6	71.0	29			
\vdash			####	#	99.3	*4.75			222422	40500 4	7 7 7				
В	Ory Mars + Contains	1500		+8	27.2				23948.6	10002.1	74.7		<u> 20 - 55</u>		
$\vdash \vdash$			1	\vdash		Indiv.		0010.0	8918.3	15795.2	← M1 ← G	<u>CACheckS</u> ; [(M – G) / f			
Maþ	ryMass B – (827.6	<u> </u>	+	-			FTER Sievin		62377.6	+	<u> </u>	-		
	Moisture, %	4.1	1	\vdash	-	Origina	ıı Dry	Mass BEF0	JHE SIEVING	62378.8	¢ Μ	0.1			
	4015(are, 2 [(Mw - Md) / M	4.1	 	+-	2.05			<u> </u>	Cumulativ	CPR. _M =	Т	Tortby/dato:/			
	by/date: PH 7-2				0.05			mm / USC	e Mass	(CMR _M /M.	CPP.se	= (CPP.M×	Specs.		
Ь—									Ret.	(2.00 x)×100	100-CPR.84	CPP14)/100			
E Files	vious Mass Me	asuleu ri	AIII = IA6	W IVIAS	SIVIEAS	_		*2.367#8	163.9	18.3	81.7	21			
aiuķ	AND PLAST	IC LIMIT	Г — w	40ТС FO	P for T 89 an]		2.00 / #10							
				LL	PL	1		*1.18 / #16	298.7	33.4	66.6	17			
N	Number	of Blows		23	> <]		.850 / #20							
С	Con	tainer	1	4.20	14.18			*.600 / #30	427.9	47.9	52.2	13			
Α	Moist Mas	s + Contai	ner 3	4.22	23.89			.4257#40							
Mv	Moist Ma	ss A - C	2	0.02	9.71			*.300 / #50	566.7	63.4	36.6	9			
В	Dry Mass	· Containe	er 3	31.45	22.79			*.150 / #100	725.6	81.1	18.9	5			
Md		s B - C		7.25	8.61	PL		.075 / #200	808.6	90.4	9.6	s 2.4			
V	Moisture			16.1	12.8	13		Cum. Pan P	021.0	200 on - 3" =		2.6	•0 - 6		
 	[(Mw - Md	<i>j r</i> (25) ^{0.424}	~	16		LLSpec		H⇒	827.9	← DRY Mass		1			
<u> </u>				Ю	<u> </u>	LLSpec		M. ₁₄ ⇒	894.3	← - #4 Mass		L	-		
	by/date: Pi '-21-10	lasticity In: LL – PL		3	6 max.	PISpec.				Test by/date:	PH 7-21-10	0.0	D		
Ren	narks:							FM ⇒		 -	Fineness Mo	dulus Tassasi	/F		
#200) determined o	n minus (3-inch r	nateri	al			M ⇒	+		FM Limits (*				
Dele	terious Free								to						
								(FM=	rineness M	odulus = Total o	or% Hetained	of "Sieves	r 100]		
								Signature	/Date: P	at Harmon / #0	007/07-21-	10			
								Checked	ou / Date: M	IK / 7-22-10					

STATE OF ALAS DOT & PF AGGREGATE, SAND EQUIVALE FLAT & ELONGATED FIELD WORKSHEET Sta. / Sampled from: C/L & Grade Reference:	Project I Federal Material Item No	No:	ampled by: ualification No	S Lo	ource: ocation	A	KSAS No:	
			.]		$\overline{}$		•	
	Se	edimentation T	ime					
	Trial N	0.	1	2	3			
	Sand Readir	ıg (SR)						
	Clay Readin	g (CR)					Average SE	ı.
	Sand Equivale	ent (SE)*						
	Sedimentation	on Time						
	*SE = (SR ÷ 0	R) * 100	Т	est by/date:				
		Flat and Elo	ngated — /	ATM 306				
					_		•	
				1:2			•	
Size Fraction mm — in.			1:3			s F&E Group	% F&E Size Group (B)	Weighted % F&E Size Group
	% Retained (Original Gradation)	atio: 1:5	☐ 1:3 ☐ F&E Group	1:2 Size Group				F&E Size
mm — in.	% Retained (Original Gradation)	atio: 1:5	☐ 1:3 ☐ F&E Group	1:2 Size Group				F&E Size
mm — in37.5 to +19.0 -1½ to +	% Retained (Original Gradation)	atio: 1:5	☐ 1:3 ☐ F&E Group	1:2 Size Group				F&E Size
mm — in. -37.5 to +19.0 -1 $\frac{1}{2}$ to + -19.0 to +9.5 - $\frac{3}{4}$ to +	% Retained (Original Gradation) 3/4 3/8 0. 4	F&E Group CPR (Rel. to +No. 4)	1:3 F&E Group IPR	1:2 Size Group Mass	Size (Group		F&E Size
mm — in. -37.5 to +19.0 -1½ to + -19.0 to +9.5 - $\frac{3}{4}$ to + -9.5 to +4.75 - $\frac{3}{8}$ to +N	% Retained (Original Gradation) 3/4 3/8 0. 4	F&E Group CPR (Rel. to +No. 4)	☐ 1:3 ☐ F&E Group IPR	1:2 Size Group Mass	Size (Group	Group (B)	F&E Size
mm — in. -37.5 to +19.0 -1½ to + -19.0 to +9.5 - $\frac{3}{4}$ to + -9.5 to +4.75 - $\frac{3}{8}$ to +N F&E Group CPR = (Sma	% Retained (Original Gradation) 3/4 3/8 0. 4 Ilest Sieve in Grou	F&E Group CPR (Rel. to +No. 4) up % Retained t Larger Group	□ 1:3 □ F&E Group IPR ÷ % No. 4 Re	1:2 Size Group Mass	Size (Group	Group (B) Weighted %	F&E Size
mm — in. -37.5 to +19.0 -1½ to + -19.0 to +9.5 -¾ to + -9.5 to +4.75 -¾ to +N F&E Group CPR = (Sma F&E Group IPR = F&E G	% Retained (Original Gradation) 3/4 3/8 0. 4 llest Sieve in Group coup CPR — Nex [(Mass F&E Size	F&E Group CPR (Rel. to +No. 4) up % Retained t Larger Group Group) ÷ (Siz	F&E Group IPR ÷ % No. 4 Recorded CPR	1:2 Size Group Mass	Size (Group	Group (B) Weighted %	F&E Size
mm — in. -37.5 to +19.0 -1½ to + -19.0 to +9.5 - $\frac{3}{4}$ to + -9.5 to +4.75 - $\frac{3}{8}$ to +N F&E Group CPR = (Sma F&E Group IPR = F&E G % F&E Size Group (B) =	% Retained (Original Gradation) 3/4 3/8 0. 4 llest Sieve in Group coup CPR — Nex [(Mass F&E Size	F&E Group CPR (Rel. to +No. 4) up % Retained t Larger Group Group) ÷ (Siz	F&E Group IPR ÷ % No. 4 Recorded CPR	Size Group Mass etained) x 10 CPR = Cu	Size (Total Test by	Group (B) Weighted %	F&E Size Group

STATE OF ALASK	A ✓ Accept	tance 🗌 Verific	cation 🗌 Info	. 🗆 IA 🔲 Q	C Sample N	No: <u>HMA-D</u>	A-11			
DOTAFF	Project N	Name: Atka A	Airport Runw	ay Extension		•				
AGGREGATE, SAND EQUIVALENT	/ Federal		-02-0394-00	5-2008	A	KSAS No: 5	9621			
FLAT & ELONGATED FIELD WORKSHEET	Material:	HMA, Typ	e IIB			a Quarry				
FIELD WORKSHEET	Item No:	P-401		Lo	Location: Atka, AK					
Sta. / Sampled from: Coldfeed		S	ampled by:	J. Christens	en					
^C / _L & Grade Reference: N/A		Q	ualification No	o: 165	D	ate Sampled:	07/10/10			
	Sand	Equivalent	— WAQTC	FOP for T 17	76					
	Se	dimentation Ti	ime	20 min.						
	Trial No	Э.	1	2	3					
	Sand Readin	g (SR)	4.1	4.3	4.1					
	Clay Reading	g (CR)	6.3	6.7	6.5	Average SE				
	Sand Equivale	nt (SE) *	66	65	64	65				
	Sedimentatio	n Time	20 min.	20 min.	20 min.					
	*SE = (SR ÷ C	R) * 100	Т	est by/date: J.	C. / 7-10-10					
	-	Flat and Elo	ngated —	ATM 306		ı				
•	Ra	atio: 🔽 1:	:5 🗌 1:3	□ 1:2						
Size Fraction mm — in.	% Retained (Original Gradation)	F&E Group CPR (Rel. to +No. 4)	F&E Group IPR	Size Group Mass	Mass F&E Size Group	% F&E Size Group (B)	Weighted F&E Siz Group			
-37.5 to $+19.0$ $-1\frac{1}{2}$ to $+\frac{3}{2}$	í									
-19.0 to +9.5 $-\frac{3}{4}$ to $+\frac{3}{8}$	35	60	60	753.6	14.5	1.9	1.1			

	Size Fraction mm — in.		% Retained (Original Gradation)	nal CPR (Rel. to IPR Mass		Size Group Mass	Mass F&E Size Group		% F&E Size Group (B)	Weighted % F&E Size Group		
	-37.5 to +19.0	-1½ to +¾										
	-19.0 to +9.5	-3/4 to +3/8	35	60	60	753.6	14	.5	1.9	1.1		
	-9.5 to +4.75	-3/8 to +No. 4	58	100	40	104.9	3.	3	3.1	1.2		
	F&E Group CPR = (Smallest Sieve in Group % Retained ÷ % No. 4 Retained) x 100 Total Weighted %											
	F&E Group IP	R = F&E Group	CPR - Next	: Larger Group	CPR			Test b	y/date: J.C.	/ 7-12-10		
	% F&E Size G	roup (B) = [(Ma	ass F&E Size	Group) ÷ (Siz	e Group Mass	s)] x 100						
	Weighted F&E	Size Group =	[(B) x F&E G	roup IPR] ÷	100							
Re	marks:								rcent Retaine ent Retained	-		

Signature / Date:

Checked by / Date: B. Anderson / 7-13-10

J. Christensen / #165 / 7-12-10

STATE OF AL	LASKA	∐ A	cceptance	e 🔲 V	erifica	tion III Info	. <u> </u> IA	QC Sam	ple No	o:		
DOT & P	PF	Proje	ct Name	e:								
		Fede	ral No:						AK	SAS No:		
HOT MIX ASPHALT (HI	· 11	Туре	Mix:				Agg	. Source:				
FIELD WORKSHEET			No:					e / Type:				
Sta. / Location:						ualification N						
^C / _L Offset:	Sam	ple M	lethod:					Date / Time S	ample	d:		
Lift: Quantity Re	ep'd: Lot:		Sublo	ot:		Mix Desig	n No:			Date Teste	d:	
AC Content of HMA by Nuc								by Ignition —		C EOD ex T 9	ne /Evtor	mai Ralanco)
Gauge Make & Model:	ciear metric	u —	ATM 400		_	✓ Method A	_	umace No. / I	_	Cropioris	UO (EXIE	nai balance)
Gauge Serial No:					Li	Method B	· F	umace Temp			 □ •	- □•c
	Calib. Date:				B	Basket Ass	<u> </u>				0.1 g	_ `
Calib. 140.	Callo. Date.	_			C			ket Assembly			Ĭ	gnition
*Sample Temperature	←		/A if using 3241-C		Mi	Initial Sam			_		0.1 g	- Igrittori
Sample Pan Mass		<u> </u>	324170	[↓] ┃				ket + Sample	_		_	ig of Mass C
Calib. / Target Mass	± 5g	ı		1	D			Sample Mass			ł	After Ignition
16 Min.	Count	Backgr	ound Coun	t	_	Final Same			_			gate Mass
Gauge Count				.				Mf) / Mi) x 100	_			Content, 0.01%
A Uncorrected AC	Gaug	e, 0.01	%		Cf				4			Specific
W Moisture Content	T 329	, 0.01 9	%	1	A			BC - (f		0.01 9	•
Corrected AC A - W	0.1 %			1	w	Moisture C			+			0.01 %
Test byldate:	¢	= Spec	CS.			Corrected		A - V	v		0.1 %	
Moisture of HMA —	WAOTC FOR	for T.3	29	_		t by/date:					_	← Specs.
			nt Mass	_		_						
			@<0.05%					lix — WAQTC			lask Me	thod
C Container, 0.1 g		_	/ Mp] x 100		D			+ Water @ 77	°F, 0	.1 g		
A Wet + Container	-	1635	5	8	В							
B Dry + Container	90 mi	n.		% Change	С			+ Sample, 0.	_			
Mi Moist Mass A-C	+30 m	in.			Α			in Air			- B	
Mf Dry Mass B-C	+30 m	in.		1	E			ed Water + Sa				
Moisture Content, %	+30 m	in.		1	R			ction Factor* reotherthan 77*Flsi				
[(Mi - Mf) / Mf] x 100 % We			ous Net Mass v Net Mass	1	Te	mp. of Wate				(A + D - E)]		
Test by/date: 0.5%		pecs.		┑.	Test	by/date:			Mi	x Design N	ISG:	
Il Damarka Course (Jamirian D	المستعددة					1111070	T.		Temp:		_	
V Remarks — Gauge / Ignition F	rintout V	Bui	•	mc Gra Method	•	— WAQTC F	Panel			hanna (i) ci) (ii)		tant Mass Mn)/Mp]x100
		С	Weight				ranei	JOINE		Previous Net Mass		
		\rightarrow	Mass at						Mh Initial Gro	= New Net Mass	Initial	% Change
		${}$	Dry Mas					_	Mass @		Net Net	9
		\vdash	Pan	55 T F &	iri, U.	.1 g			+2 hrs. Mass @		Net	
		\rightarrow		se in Ai	r 0 ·	1g (X-Y)			+2 hrs.	Core Thic		(inches)
		\vdash	Bulk Sp			A/(B-C)		+		core mile		(=iories)
			DOM: UP	ان.ن.	- 1	H/(D-0)	l .		- □		_	
		\vdash	orntion (0.1 [/9	1. AV	(B - C)1 × 100			22		0	
		Abso		D.1 [(B	3 - A) /	(B - C)] x 100			Panel		Joint	
		Abso	MSG						anel	0.00		0.00
		Abso Lot M			BSG/	(B - C)] x 100 MSG) x 100 Specs. ⇒	-	-	anel ()	0.00	Avg.	0.00
Signature / Date:		Abso Lot M	MSG paction,		B\$G/	MSG) x 100	Pater	-	anel ()	0.00		0.00

ALCOHOL: THE COLUMN TWO IS NOT THE COLUMN TW	OF ALASKA	ήL	Z Acce	ptance	Ve	rificat	tion Info	. 🗌 IA 📙	QC San	nple N	lo: HM	4-OD-1	1	
D	OT & PF		-				n Highway:		South Bir	chwoo	d			
HOT MIX ASPHA	ALT (HMA)						6)			Al	(SAS No:	5806	61	
FIELD WORK		1	Гуре Мі	x: HM/	4, Ту	pe IIE	3	Agg. S	ource: Pr	emier F	Pit/ Pruhs	Const		
TIEED WORK	OHEE	<u>ا ك</u>	tem No:	401	(1)		Asph. Ceme	ent Source	Type:	Tesor	/ PG 52	-28		
Sta. / Location: 240+5	0			Sampl	ed by	/ Qu	ualification N	o: S. Feb	ruary / #55	7				
^C / _L Offset: 8' RT (right	panel)	Samp	le Meth	od:			Plate	D	ate / Time	Sampl	ed: 9-	22-10/	12:48 PM	ı
Lift: Top Qua	ntity Rep'd: Lo	t: 1		Sublot:	11		Mix Design	n No: 2	010A-218	1	Date Tes	ted:	9/22/20	10
AC Content of HMA	by Nuclear Me	ethod	I — AT	M 405	Ī		AC Content	of HMA by	/ Ignition	— WA	QTC FOP for	T 308 (Ex	temal Baland	ce)
Gauge Make & Model:	Troxler 3241	I-C					✓ Method A	Fur	nace No. /	ID:	10118848			
Gauge Serial No: 7						Ī	Method B	Fur	nace Tem	_	538		°F 🔟	°C
Calib. No: 2010A-2		ate:	6/25/2	2010		В	Basket Ass	embly Mass	3		2987.8	0.1 g	, –	
						С	Sample Ma			,	5366.7	Befo	re Ignition	
*Sample Temperature		—	*N/A If 324	using 1-C		Mi			C -		2378.9	0.1 g	•	
Sample Pan Mass			-				Furnace Ma		t + Sample		5363.4	ı ±	5g of Mas	ss C
Calib. / Target Mass	7900	±5g				D	Basket Ass	embly + Sa	mple Mass	,	5235.7	_	, After Ign	
	16 Min. Count	E	Background	d Count		Mf	Final Samp		D		2247.9	_ `	egate Mas	
Gauge Count			211	2		ВС	Loss. %) / Mi) x 10	01	5.51		r Content. 0.	
A Uncorrected AC	5.43	Gauge	0.01 %			Cf	AC Correct		,,	-1	0.37		n Specific	
W Moisture Content	0.04	T 329,	0.01 %			Α	UnCorrecte		BC -	Cf	0.04	0.01		
Corrected AC A - W	5.4	0.1 %				w	Moisture Co			-	5.10	_	9. 0.01%	
Test by/date: WM/9-22-10	5.0 -5.8	⊏	Specs. W Moisture						Α-	w	5.0 -5.8	0.1 5		
Moisture of H	MA — WAQTC	FOP f	nr T 329		i '		by/date: W		N-	<u> </u>	5.0 - 5.8		⊂ Spec	-6
Oven, °F: Sample, *F: Tim			nstant	Mass	Ι.									
235 180 1:1	5PM 3:15PM	% Ch	nange @ <	0.05% =		•		of HMA Mix				Flask N		
C Container, 0.1 g	237.1	[(Mp	- Mn) / Mp	o] x 100		D	Mass of Fla			/°F, ().1 g		7363	
A Wet + Container	2359.5		1635	%		В	Mass of Fla						2984	
B Dry + Container	2358.7	90 min.	2359.	30 Change		С	Mass of Fla).1 g			5027	
Mi Moist Mass A-c	2122.4	+30 min.	2358.			Α	Mass of Dr					:-B	2042	
Mf Dry Mass B-C	2121.6	+30 min.				Е	Flask + Lid						8597	
Moisture Content, %	0.04	+30 min.				R		re Correction		•			1.000	000
[(Mi - Mf) / Mf] x 100			= Previous N In = New Net			Te	mp. of Water				(A + D - E		2.52	.5
Test by/date: WM/9-22-10	0.5% max	⊂ Sp		Mess		Test	by/date: W	M 9-22-10		M	lix Design	MSG:	2.51	1
V Remarks — Gauge / Id	unition Printout	ı	Bulk 9	Snacific	Grav	vitv	— WAQTC F	OD for T 188 /	T 275 Ou	n Temp:	230 F	Cor	stant Ma	200
V Nemarks — Gauge / ig	gindon'i initodi.	Ě	Duik (•	hod (_		Panel	Joint	_	Change @ <0			
		- 1	C We	eight in \				1223.4	OOIIIL	Мр	= Previous Net M		p,	×2.
		- -	-	ss at S		•		2098.3		Initial Gr	in = New Net Mas	Initial		Change
		-		v Mass			,	2327.8		Mess	0	Net Net		8
		<u>-</u>	Y Pa	,	rai	ι, υ.	. r y	236.4		+2 hrs Mass (0	Net		
		- -	_		n Air	η 1	lg (X-Y)	2091.4		+2 hr			S (inches)	
		<u> </u>		lk SpG,			A/(B-C)	2.390			1.75	- CALIES	o (mones)	,
		<u> </u>					(B - C)] x 100	0.8	\vdash	Panel	2.00	- 8	5	
		<u> </u>	Lot MS		I(D.	Aji	(D - O/J X 100	2.525		ne l	2.00	- ;	2	
		<u> </u>		ction, %	/01	2011	MSG) x 100	94.7		-	1.92	Avg	0.0	00
					_		Specs. ⇒	92 - 98	-	- ⇒	2.0"	AVÇ	, U.(⇒	00
a: , ,= .	ARTIC AL.	-			-					-		00.15		
Signature / Date:	William Nelso	on /#	320/9	-23-10		C	hecked by / I	Date:		Billy	Martin / 9-	23-10		

STATE PROPERTY.	☐ Accepta	nce Verif	ication 🔲 Info. 🛭]IA □Q0	Sample	e No:		
STATE OF ALA	Project Na	me:						
DOT & PI	Federal No	D:				AKSAS No:		
HMA Extracted Aggregate Grada	ation Material:				ource:			
FOP for T 30 - FIELD WORKSH	HEET Item No:			L	ocation:			
Sta. / Sampled from:			ampled by / Qua					
^C / _L & Grade Reference:	Qua		ented: Lot:			ate / Time:	į	
		NOD 30				•	•	
FRACTURE — WAQTO FO	OP for T 335		HMA AGGF	REGATE GR	adation —	WAQTC FOP		
Single Face Double	All Face		Cumulative Mass	Cumulative	% Passing =	***Aggregate	Reported	_
Fractured Mass F %	$Q = [Q/(F + Q + N)] \times 100$	mm/USC	Retained C	% Retained (C/M) x 100	100 – % Retained	Correction Add Subtra	% Passing	Specs.
	% Questionable ⇒	50 / 2"		(07111) X 100		/ lad Cabile	301	
Unfractured Mass N *1	Recount if > 15%	*37.5 / 1½"					+	
% Fracture ←	: [(F+(Q/2)) / (F+Q+N) X 100	25 / 1"					+ +	
Test by/date: ←	: Spec. (min.)	*19.0 / 3/4"					+ +	
MOISTURE CONTENT — WAQTO	C FOP for T 255 / T 265	12.5 / 1/2"					+ +	_
C Container	Constant Mass	*9.5 / 3/8"						
	Time Gross Mass	6.3 / 1/4"						_
A Moist Mass + Container	Netivass	*4.75 / #4						_
		*2.36 / #8						_
Mw Wet Mass A – C		2.00 / #10						_
B a w		*1.18 / #16						_
B Dry Mass + Container		.850 / #20						-
Md DayMass B C		*.600 / #30						_
Md Dry Mass B – C		.425 / #40						-
W Moisture, %		*.300 / #50						_
W = [(Mw − Md) / Md] x 100 û % 0	Change ⇒	*.150 / #100						=
Test by/date: % Change =	: [(Mp – Mn) / Mp] x 100	.075 / #200			*			_
Mp = Previous Mass Measured / Mn = N	lew Mass Measured	Pan (only)		← P	* #200 = {[(M – A) + P] / I	M} x 100	
Liquid and Plastic Limit — WAQTC FO)P for T 89 and T 90	Cur	nulative Mass AFTER	Sieving		⊂ G	Test by/date:	
	LL PL	Dry Mass Af	TER Wash BEFORE	Sieving		← A		
N Number of Blows	- 	**Dry	Sample Mass BEFOR	RE Wash		← M **(within	0.1% of Mf, FOF	of for T 308)
C Container	 							
A Moist Mass + Container	-		Mf) check (≤ 0.1%		Wetting Ag	ent Used	Check Sum	
Mw Moist Mass A - C	 	[(Mf _(T308) – N	1 _(T30)) / Mf _(T308)] x ⁻	100 =			[(A – G) / A	A] x 100 =
B Dry Mass + Container	 / \	[(-)/	1 x 1	00 =	(≤ 0.1%?)		
Md Dry Mass B – C	PL					,		
W Moisture Content, %		*** Lo. adi	ust sieves correctly for	r addredate con	rection volumus	t innut numbers t	from the HMA	_
[(Mw – Md) / Md] x 100	\rightarrow		n Factors Worksheet.					
LL W x (N / 25) ^{0.121}	LL Spec.	adiustme	ent.					
Plastic Index	PI Spec.	FM :	⇒		← Fineness	Modulus Targ	get (From MD)	\neg
Test by/date: LL – PL	7 · 5 p 5 5 .		to			(± 0.2 of Mix	(Design FM)	
			(FM = Fineness I	Modulus = To	otal of % Reta	ined of *Siev	/es / 100)	
Remarks:			Copy to Contrac	ctor / Date:				
			Tested by / Qua					
			Signature / Date	e:				

Checked by / Date:

STON & PURIAC
STATE OF ALASET

HMA Extracted Aggregate Gradation FOP for T 30 - FIELD WORKSHEET

^C/_L & Grade Reference: 6' Rt., Top Lift

Sta. / Sampled from: 133+00

☑ Accept	ance [☐ Verification ☐] Info.□] IA[□ Qc	Sam	ple No: HM	4-G-1	
Project Na	me:	Haines Highwa	ıy-Ferry T	ermir					
Federal No	o :	NH-095-6(18)					AKSAS No:	72170	
Material:	HMA	∖, Type II B			Sour	ce:	Haines Quarr	y & U.S. Oil	
Item No:	401	(1)			Loca	tion:	Haines, AK		
		Sampled I	y / Qual.	No:	Joe Ex	ample	#110		
Qua	ntity	Represented:	Lot: 1	S	Sublot:	1	Date / Time:	03/24/10	9:00 AM

FRACTURE — WAQTC FOP for T 335										
✓ Single Face ☐ Double Face ☐ All Face										
Fractured Mass F	1165.2	% Q = [Q / (F + Q + N)] x 100								
Questionable Mass Q	21.5	* % Questionable ⇒ 2								
Unfractured Mass N	73.1	*Recount if > 15%								
% Fracture	93									
Test by/date: JE 3-24-10	80%	⇒ Spec. (min.)								

MOISTURE CONTENT — WAQTC FOP for T 255 / T 265										
С	Container	448.4	Const	ant Mass						
A	Moist Mass + Container	2684.3	Time	Gross Mass Net Mass						
Ĺ	Worst Wass + Container	2004.5	4:00 PM	2584.3						
Mw	Wet Mass A - C	2235.9	4.001 101	2135.9						
IVIV	Wet Wass A - C	2200.5	4:30 PM	2584.1						
В	Dry Mass + Container	2584.0	4.00 T W	2135.7						
Ĺ	Dry mass * container	200 1.0								
Md	Dry Mass B - C	2135.6								
	5.lyaus 2 5	2,00.0								
W	Moisture, %	4.7								
W	I = [(Mw - Md) / Md]	x 100 企	% Change ⇒	0.01						
Test by/date: JE#110/3-24-10										
Mn = Previous Mass Measured / Mn = New Mass Measured										

LIQUID AND PLASTIC LIMIT — WAQTC FOP for T 89 and T 90									
			LL	PL	\ /				
N	Numb	er of Blows	23	Х	I\ /I				
С	Co	ontainer	14.20	14.18	I V I				
Α	Moist Ma	ss + Container	34.22	23.89	ΙΛΙ				
Mw	Moist I	Mass A-C	20.02	9.71	/ \				
В	Dry Mass	s + Container	31.45	22.79	/ \				
Md	Dry M	lass B-C	17.25	8.61	PL				
W	200000000000000000000000000000000000000	e Content, % ld) / Md] x 100	16.1	12.8	13				
Ц	W x (N / 25) ^{0.121}	16		LL Spec.				
Test by/date: JE #110 / 3-25-10		Plastic Index LL - PL	3	4 Max.	PI Spec.				

HMA AGGREGATE GRADATION — WAQTC FOP for T 30										
mm / USC	Cumulative Mass Retained C	Cumulative % Retained (C/M) x 100	% Passing = 100 – % Retained		***Aggregate Correction Add Subtract		Specs.			
50 / 2"							-			
*37.5 / 1½"							-			
25 / 1"							-			
*19.0 / 3/4"	0.0	0.0	100.0	0.0	0.0	100	100 – 100			
12.5 / 1/2"	501.1	22.3	77.7	0.0	0.0	78	71 – 83			
*9.5 / 3/8"	818.0	36.4	63.6	0.0	0.0	64	56 – 68			
6.3 / 1/4"							_			
*4.75 / #4	1259.9	56.1	43.9	0.0	0.0	44	36 – 48			
*2.36 / #8	1551.7	69.1	30.9	0.0	0.0	31	23 – 35			
2.00 / #10							-			
*1.18 / #16	1729.7	77.0	23.0	0.0	0.0	23	16 – 26			
.850 / #20							_			
*.600 / #30	1858.2	82.7	17.3	0.0	0.0	17	11 – 19			
.425 / #40							_			
*.300 / #50	1967.8	87.6	12.4	0.0	0.0	12	7 – 15			
*.150 / #100	2052.1	91.4	8.6	0.0	0.0	9	5 – 11			
.075 / #200	2115.5	94.2	* 5.8	0.0	0.0	5.8	3.5 - 7.5			
Pan (only)	20.0	⇔ P	* #200 = {[(M – A) ·		M} x 100				
Cun	nulative Mass AFTER	Sieving	2135.5	⊂ G	Te	est by/date:	3/24/10			
Dry Mass AF	oe Example#	[‡] 110								
**Dry	Sample Mass BEFOR	RE Wash	2246.4	← M **	(within 0.	1% of Mf, FC	P for T 308)			

**(M) vs. (Mf) check ($\leq 0.1\%$): $[Mf_{(T308)} - M_{(T30)}] / Mf_{(T308)}] \times 100 =$	✓ Wetting Agent L	Jsed
[(2247.9 — 2246.4)/ 2247.9] x 100 = 0.1 (≤ 0.	1%?)

Check Sum (\leq 0.2%) [(A - G) / A] x 100 = 0.0

***I o adjust sieves correctly for aggregate correction, you must input numbers from the HMA Correction Factors Worksheet. Use minus sign in subtract column. Enter "0" in column if no adjustment

$FM \Rightarrow$		0	⇐ Fineness Modulus Target (From MD)				
	to	,	⇐ FM Limits (± 0.2 of Mix Design FM)				
(FM = Fineness Modulus = Total of % Retained of *Sieves / 100)							

Copy to Contractor / Date: 03/24/10
Tested by / Qual. #: Joe Example / # 110
Signature / Date:
Checked by / Date: MK / 3-25-10

STAN & PUBLICA

HMA Correction Factors FIELD WORKSHEET

☐ Acceptance	□ Verification □ Info. □ IA □ QC Samp	ole No:
Project Name	_	
Federal No:		AKSAS No:
Material:	Agg. Source:	
Item No:	Location:	
-		

WAQTC FOP for	Γ 308, Method:	Mix Design No:		Furnace No. / ID:			Date:			
ASPHALT C	EMENT CORRECTION —	. WAQTC FOP for T	308	1	_	1	AG	REGATE CORRECTION	Sample #1	Sample #2
Mix Design %AC#1	After Burn %AC #1	%AC Diff. #1			E E		D	Sample & Basket Assembly		
Mix Design %AC#2	Alter Burn %AC #2	%AC Diff. #2			통 윤		В	Basket Assembly		
Cf AC CORREC	CTION FACTOR (averag	e of differences)			۱ ۲		Mf	Mass after Ignition (D-B)		

HMA AGGREGATE GRADATION — WAQTC FOP for T30			AGGREGATE CORRECTION — WAQTC FOP for T 308							
	Correction F	actor Blank	Sample	Correction	Correction Factor Sample #1 Correction I			Factor Sample #2		
mm / USC	Ournulative Mass Retained C	Ournulative %Retained (C/M)x100	% Passing = 100 - % Retained	Ournulative Mass Retained C	Ournulative %Retained (C/M)x100	100 =	Cumulative Mass Retained C	Cumulative %Retained (C/M)x100	% Passing = 100 - % Retained	
25 / 1"										
19.0 / 3/4"										
12.5 / 1/2"										
9.5 / 3/8"										
4.75 / #4										
2.36 / #8										
1.18 / #16										
.600 / #30										
.300 / #50										
.150 / #100										
.075 / #200										
Cum. Pan Mass		(⇒Cl	heck Sum ?0.2		←C	heck Sum ?0.2		←c	heck Sum ?0.2	
ry Mass After Wash ass Before Wash (M)			s After Wash re Wash (M)			Calculate & Report % Passing to 0.1%				

mm / USC	Allow able	Blank Sample	Sample #1	Sample #2	II	Difference from Blank Sample #1 #2		*Sie	ves to A	djus	it
	Difference	% Passing	% Passing	% Passing	#1			Add	Subtract	Ď	٠
25 / 1"	± 5.0 %									38	negative
19.0 / 3/4"	± 5.0 %									동	
12.5 / 1/2"	± 5.0 %									Gradation:	sign for colum.
9.5 / 3/8"	± 5.0 %									0	
4.75 / #4	± 5.0 %									<u>-</u>	e minus subtract
2.36 / #8	± 5.0 %									<u>0</u>	- RS _
1.18 / #16	± 3.0 %									~	• • •
.600 / #30	± 3.0 %									SS	nent N/A; numbers
.300 / #50	± 3.0 %									<u>₹</u>	토=
.150 / #100	± 3.0 %									Adjust Sleve	If adjustment N/A numbers
.075 / #200	± 0.5 %									8	_

Remarks:	M vs. Mf Check #1 =	M vs. Mf Check #2=	Signature / Date:	
	[(Mf-M) / Mf] x 100	[(Mf- M) / Mf] x 100	Checked by/ Date:	

HMA Correction Factors
FIELD WORKSHEET

✓ Acceptance	Verification	☐ Info.	∐ IA	∐ QC	Sam
					Jan

Sample No: HMA-CF-1

Project Name: HNS-Ferry Terminal to Union Street

Federal No: NH-095-(18) AKSAS No: 72170

Material: HMA, TYPE II, Class B Agg. Source: 4.5 Mile Quarry

Item No: 401(1) Location: Haines, Alaska

WAQTC FOP for T 308, Method: A Mix Design No: 09C-000 Furnace No. / ID: NTO-21 Date: 06/25/09

	ASPHALT CEMENT CORRECTION — WAQTC FOP for T30				308	ION SS	AG	REGATE CORRECTION	Sample #1	Sample #2	
Mix	Design %AC#1	6.00	After Burn %AC#1	6.41	%AC DIE #1	0.41	55	D Sample & Basket Assembly		5417.4	5293.4
Mix	Design %AC#2	6.00	Alter Burn %AC#2	6.33	%AC DIE #2	0.33	RRE	В	Basket Assembly	3342.2	3219.5
Cf AC CORRECTION FACTOR (average of differences)			0.37	CORI	Mf	Mass after Ignition (D – B)	2075.2	2073.9			

HIMA AGGREGATE GRADATION — WAQTC FOP for T30				AG	GREGATE	CORRECTIO	N — WAQTC FOP for T308					
Correction Factor Blank Sample			Correction	Correction Factor Sample #1 Correction Factor Sample #2								
mm/USC	Cumulative Mass Retained C	Cumulative % Retained (C /M)x 100	% Passing = 100 – % Retained	Cumulative Mass Retained C	Cumulative % Retained (C /M) x 100	701 assing -	Cumulative Mass Retained C	Cumulative % Retained (C /M) x 100	% Passing = 100 - % Retained			
25 / 1"	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	100.0			
19.0 / 3/4"	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	100.0			
12.5 / 1/2"	455.1	21.7	78.3	406.6	19.6	80.4	433.3	20.9	79.1			
9.5 / 3/8"	790.6	37.7	62.3	801.1	38.6	61.4	802.3	38.7	61.3			
4.75 / #4	1212.8	57.8	42.2	1212.6	58.4	41.6	1223.3	59.0	41.0			
2.36 / #8	1495.1	71.3	28.7	1484.3	71.5	28.5	1490.4	71.8	28.2			
1.18/#16	1655.2	78.9	21.1	1648.1	79.4	20.6	1653.3	79.7	20.3			
.600 / #30	1784.0	85.1	14.9	1758.3	84.7	15.3	1765.5	85.1	14.9			
.300 / #50	1866.1	89.0	11.0	1840.8	88.7	11.3	1845.2	89.0	11.0			
.150 / #100	1925.8	91.8	8.2	1898.9	91.5	8.5	1903.3	91.8	8.2			
.075 / #200	1980.6	94.5	5.5	1951.1	94.0	6.0	1955.5	94.3	5.7			
Cum. Pan Mass	1994.3	0.0 (∈CI	heck Sum 20.2	1966.1	0.0	heck Surn ?0.2	1971.4	0.0 ← C	neck Sum ?0.2			
ry Mass After Wash	1994.6	Dry Mass	s After Wash	1966.1	Dry Mas	s After Wash	1971.7	Calculat	e & Report			
ss Before Wash (M)	2096.7	Mass Befor	re Wash (M)	2074.8	Mass Befo	re Wash (M)	2074.4		ng to 0.1%			

mm / USC	Allow able	Blank Sample	Sample #1	Sample #2		ce from Sample	Average Difference	*Sie	ves to A	djust
	Difference	% Passing	% Passing	% Passing	#1	#1 #2		Add	Subtract	. Q.
25 / 1"	± 5.0 %	100.0	100.0	100.0	0.0	0.0	0.0	0.0	0.0	Test to
19.0 / 3/4"	± 5.0 %	100.0	100.0	100.0	0.0	0.0	0.0	0.0	0.0	. ng .
12.5 / 1/2"	± 5.0 %	78.3	80.4	79.1	-2.1	-0.8	-1.5	0.0	0.0	Gradend Sign for column
9.5 / 3/8"	± 5.0 %	62.3	61.4	61.3	0.9	1.0	0.9	0.0	0.0	
4.75 / #4	± 5.0 %	42.2	41.6	41.0	0.6	1.2	0.9	0.0	0.0	for T30 e minus subtract
2.36 / #8	± 5.0 %	28.7	28.5	28.2	0.2	0.5	0.4	0.0	0.0	De for use r In sur
1.18/#16	± 3.0 %	21.1	20.6	20.3	0.5	0.8	0.7	0.0	0.0	
.600 / #30	± 3.0 %	14.9	15.3	14.9	-0.4	0.0	-0.2	0.0	0.0	
.300 / #50	± 3.0 %	11.0	11.3	11.0	-0.3	0.0	-0.2	0.0	0.0	Sleves f istment num
.150 / #100	± 3.0 %	8.2	8.5	8.2	-0.3	0.0	-0.2	0.0	0.0	
.075 / #200	± 0.5 %	5.5	6.0	5.7	-0.5	-0.2	-0.4	0.0	0.0	<u>₽</u>

Remarks:	M vs. Mf Check #1 = 0.0	M vs. MfCheck #2 = 0.0	Signature / Date:	T.J. Hom / #000 / 6-25-09	
	[(Mf-M)/Mf] x 100	[(Mf - M) / Mf] x 100	Checked by / Date:	MK / 6-26-09	

SUN & PUNDA

STATE OF ALASKA DOT & PF

NUCLEAR DENSITY GAUGE MOISTURE OFFSET WORKSHEET

Project Name:			
Federal No:		AKSAS No:	
Material:	Source:		
Item No:	Location:		

	OVEN DRY				GAUGE MOISTURE	
	(0.1%)				(0.1%)	
1)		_		1)		_
2)				2)		
3)		_		3)		
4)				4)		
5)		- -		5)		
		(A)*				(B)*
	AVERAGE	-			AVERAGE	-
		A — B=	(C)*			

NOTE:

*Round (A), (B), & (C) to one decimal place.

OFFSET FACTOR (k) = $\frac{C}{100 + B}$ x 1000 =

Gauge Serial No. / Model No:

- **Report offset factor (k value) as a whole number.
- ***Remember to maintain the appropriate algebraic symbol (or +

MOISTURE CONTENT — WAQTCFOP for T 255 / T 265										
%M = [(a − b) / (b − c)] x 100										
c a b										
Sample #.	Tare Mass	Wet Mass + Tare	Dry Mass + Tare							
1										
2										
3										
4										
5										

Remarks:		
	Signature / Qualification No. / Date:	
	Checked by / Date:	

STATE OF ALASKA DOT & PF

NUCLEAR DENSITY GAUGE MOISTURE OFFSET WORKSHEET

Project Name: Old Glenn Highway, South Birchwood Loop to Peters Creek

Federal No: ARA-0558(7) AKSAS No: 50946

Material:Borrow, Type ASource:Moose Horn Pit / GraniteItem No:206(6A)Location:Chugiak, AK

Gauge Serial No. / Model No: 33402 / Troxler 3430

OVEN DRY GAUGE MOISTURE MOISTURE (0.1%)(0.1%)6.9 7.5 1) 4.5 2) 2) 5.1 3.7 4.2 4) 5.1 5.8 4.2 4.8 5) 4.9 (A)* 5.5 (B)* **AVERAGE AVERAGE**

$$A - B = -0.6$$
 (C)*

OFFSET FACTOR (k) =
$$\frac{C}{100 + B}$$
 x 1000 = $\frac{-6}{100 + B}$ ** / **

NOTE:

- *Round (A), (B), & (C) to one decimal place.
- **Report offset factor (k value) as a whole number.
- ***Remember to maintain the appropriate algebraic symbol (or +

MOISTURE CONTENT — WAQTC FOP for T 255 / T 265										
$%M = [(a - b) / (b - c)] \times 100$										
c a b										
Sample #:	Tare Mass	Wet Mass + Tare	Dry Mass + Tare							
1	1.25	11.97	11.28							
2	1.12	12.02	11.55							
3	1.83	13.53	13.11							
4	1.46	12.66	12.12							
5	1.55	11.88	11.46							

Kemarks:		
	Signature / Qualification No. / Date:	Cleve Cooper / #002 / 3-29-11
	Checked by / Date:	Tom Fisher / 3-30-11

STATE OF ALASKA DOT & PF RELATIVE STANDARD DENSITY by the CONTROL STRIP METHOD				Acceptance Verification Info. IA QC Sample No: Project Name:									
				roject r ederal	Name: No:						ΔKS	SAS No	•
			N	Federal No: AKSAS No: Material: Source:									·
ATM 412 -	FIELD W	ORKSHE	ET It	Item No: Gauge Model: Gauge S/N:									e S/N:
Lane:	Widt	h:	s	tation to	o Station:								Count:
*All readings a	re to be We	t Density	readings	and take	enin backs	catter	posi	tion (15 se	c. or 1 m	in.).			Date:
**Continue the	compaction	& testing	cyde until	there is:	less than 1 l	b/ft³ i	norea	se of the a	verage o	f all three	locations f	or two d	onsecutive passes.
Equipm	nent:	Pass #.	*Locati	ion 1	*Locatio	n 2	*Lo	cation 3	Av	егаде	**Cha	nge	Remarks / Temp.
Drum R	oller	1											
D-U D d-		2											
Roller Brand:		3											
Model Numb	er:	4											
Frequency (V	PM):	5											
A1:41		6											
Amplitude:		7											
		1											
		2											
		3											
<u>Pneumation</u>	c Roller	4											
		5											
		6											
		7											
Location	ns ⇒	1	2	3	4	5	;	6	7	8	9	10	
Reading 1	(1minute)												Relative
Reading 2	(1minute)												Standard Density
Average We	et Density												
			М	oisture	control is	not i	requ	ired for H	MA or	ATB.			
Reading 1	% M o isture												
Reading 2	% M o isture												Average Moisture
Average %	Moisture												
Remarks:						Te	estec	l By/Qua	lification	n No:			
						Sie	anat	ure / Date):				

Checked by / Date:

S Plant	STATE OF ALASKA DOT & PF
KELA LIVE STA	NDARD DENSITY by the
CONTR	OL STRIP METHOD
ATM 412 - I	FIELD WORKSHEET

Lane: Pathway Width: 10'

∠ Accepta	ance L	Verification	Sam	ple No:	CAB	C-SD	-2			
Project Name: AMATS: Old Glenn Highway, South Birchwood Loop to Peters Creek										
Federal No: HED-0558(7) AKSAS No: 50946									46	
Material:	4" Cr	ushed Asphal	t Base Course	Sou	rce:	_ Existing				
Item No:	308(1)	Gauge Model:	343	D	G	auge	S/N:	33529	
Station to	Station	n: P/W 304+	00 - 305+00			Stand	ard Co	unt	2402	

^{**}Continue the compaction & testing cycle until there is less than 1 lb/fl³ increase of the average of all three locations for two consecutive passes.

Equipment:	Pass #:	*Location 1	*Location 2	*Location 3	Average	**Change	Remarks / Temp.
Drum Roller	1	127.6	134.6	129.0	130.4		
Roller Brand:	2	132.2	138.8	128.5	133.2	2.8	
CATERPILLAR	3	135.3	140.0	135.9	137.1	3.9	
Model Number: CS 44	4	136.5	144.7	137.5	139.6	2.5	
Frequency (VPM):	5	137.2	143.4	137.8	139.5	(0.1)	
1914 Am plitude:	6	139.2	144.5	140.5	141.4	1.9	
0.066 in (High)	7	139.7	144.8	140.3	141.6	0.2	
	1/8	142.4	145.1	140.5	142.7	1.1	
	29	144.7	147.8	143.7	145.4	2.7	
	<i>3</i> 10	142.4	148.6	141.3	144.1	(1.3)	Visable cracking observed.
<u>Pneumatic Roller</u>	A 11	142.1	148.0	143.6	144.6	0.5	Less than 1pcf increase on 2nd consec. pass.
	<i>5</i> r 12						
	æ 13						
	<i>¥</i> 14						

Locations ⇒	1	2	3	4	5	6	7	8	9	10	
Reading 1 (1minute)	144.4	145.3	147.1	144.0	146.8	145.2	148.4	148.7	142.1	142.8	Relative
Reading 2 (1minute)	144.6	145.3	147.3	144.2	146.8	145.3	148.4	148.2	143.5	142.2	Standard Density
Average Wet Density	144.5	145.3	147.2	144.1	146.8	145.3	148.4	148.5	142.8	142.5	145.5
		M	oisture c	ontrol is	not requ	uired for l	HMA or A	ATB.			
Reading 1 %M oisture	8.6	8.0	8.5	7.6	7.7	7.2	7.6	7.5	8.3	9.2	
Reading 2 %Moisture	8.9	8.1	8.3	7.9	7.7	7.4	7.4	7.3	8.2	8.8	Average Moisture
Average % Moisture	8.8	8.1	8.4	7.8	7.7	7.3	7.5	7.4	8.3	9.0	8.0

Remarks:	Tested By / Qualification No: M. Goldfarb / #538 / 8-28-10
	Signature / Date:
	Checked by / Date: J. Smith / 8-29-10
	·

Date: 08/28/10

^{*}All readings are to be Wet Density readings and taken in backscatter position (15 sec. or 1 min).

(a)	otance 🔲 Verification 🔲 Ir	nfo. 🔲 🗛 🔲 QC					
DOT & PF PROJECT N	AME:				POUR No	C	
CONCRETE PLACEMENT REPORT FEDERAL N	o :				AKSAS N	D :	
ITEM No:		TICKET No:			DATE:	:	
TRUCK No.	NRMCA	_ ACentified? ☐ Ye	s 🔲 No	Mix	- Design No:		
BATCH (SCALE) WEIGHTS							
A. Coarse Aggregate	(CA)	Type of Constr	uction:				
B. Intermediate Aggregate	(IA)	Bridge No:	s	tation(s):			
C. Fine Aggregate or Sand	(FA)	Portion of Struct	ure or Sect	tion Repre	esented:		
D. Cements* + *+ =	Total:	0 5 5		_		_	
E. Water from batch ticket (gallons x	8.33)	Quantity Represe		50 CY		1/2 Da	-
E1. plus water added at site: (gallons x	8.33)	Source / Manufa	-	200 C	r	Precas	t Member
F. Total Batch Weight (A+B+C+D+E+E1)		Brand & Type of					
* D2 and D3 for Fly Ash, Slag or Silica Fume			`				
AGGREGATE MOISTURE CORREC	CTIONS	Class of Concret	e:		(A, A-A	, P. DS,	Other)
a. Moistures (decimal)+	=	Mix time:					
(free water) (abso	rption; * (total moisture)	MIX ume.					
b. Dry Weight [A / (1 + total moisture)]		Pour time:	Start:		Fin	ish:	
c. SSD Weight [b* (1 + absorption)]		Weather Condition	ns:				
J Maintanna (1 to 1)		Concrete Sample	d from:				
d. Moistures (decimal) + (free water) abso	rption; * (total moisture)	Concrete Carry	a none				
l e. Dry Weight [B / (1 + total moisture)			-				
A		Concrete Waste	-				
f. SSD Weight [e * (1 + absorption)]		Concrete Rejecte	ed:				
g. Moistures (decimal) 0.0227 + 0.0 (free water) abso	0.0347	Test Specimen ld	entification	n: 🔲 (Compressive	Flex	ıral
F Provide the IC ((4) that a print to (Specimens makir	ig procedu	re:			
A h. Dry Weight [C / (1 + total moisture)	o	Initial cure proce	dure:				
j. SSD Weight [h * (1 + absorption)]		No. of Test Spec	imens and	sizes:			
* from Mix Design							
WATER WEIGHT CORRECTION	<u>NS</u>	Remarks:					
	(A - c)						
	(B-f) -	Admixture	MD oz/cy	oz/batci	n from ticket	oz/cy	% off MD
			- 1				
J. Free Water in FA	(C - j)						
J. Free Water in FA K. Total Water Weight (E + E1 + G + I	H + J)						
J. Free Water in FA K. Total Water Weight (E+E1+G+I L. Total Water in Gallons (K/	` "						
J. Free Water in FA K. Total Water Weight L. Total Water in Gallons (K / TEST DATA	H + J)	U SPECIFICAT	TIONS #		⊕ MDTEST	RESULT	DATA #
J. Free Water in FA K. Total Water Weight (E+E1+G+I L Total Water in Gallons (K/ TEST DATA Concrete Temperature (°F): Slum	H + J)		TIONS (I		⊕ MDTEST	RESULT	DATA #
J. Free Water in FA K. Total Water Weight (E+E1+G+I L. Total Water in Gallons (K/ TEST DATA Concrete Temperature (°F): Slum Air Content, % (– Agg. Cor. Facker from MD)	H + J)		TIONS ()	_	⊕ MD TEST	RESULT	DATA 8
J. Free Water in FA K. Total Water Weight (E + E1 + G + I L. Total Water in Gallons (K / TEST DATA Concrete Temperature (°F): Slum Air Content, % (– Agg. Corr. Factor from MD) ML Density, (pcf)	H + J)		TIONS U	_	⊕ MD TEST	RESULT	DATA U
J. Free Water in FA K. Total Water Weight (E+E1+G+I L. Total Water in Gallons (K // TEST DATA Concrete Temperature (°F): Slum Air Content, % (– Agg. Cor. Factor from MD) M. Density, (pcf) BATCH DATA	H + J)	SPECIFICAT MD Check	ks #	_		RESULT	DATA 8
J. Free Water in FA K. Total Water Weight (E+E1+G+I L. Total Water in Gallons (K // TEST DATA Concrete Temperature (°F): Slum Air Content, % (– Agg. Cor. Factor from MD) M. Density, (pcf) BATCH DATA N. Sacks of Cement per Batch (D	H + J)	8 SPECIFICAT	ks #	_		RESULT	DATA #
J. Free Water in FA K. Total Water Weight (E+E1+G+I L. Total Water in Gallons (K // TEST DATA Concrete Temperature (°F): Slum Air Content, % (– Agg. Cor. Facker from MD) M. Density, (pcf) BATCH DATA N. Sacks of Cement per Batch (D. P. Yield, CY per Batch [(F / M.	H + J)	# SPECIFICAT # MD Chec Cement Fac	ks U tor, Sacks/	_		RESULT	DATA #
J. Free Water in FA K. Total Water Weight (E+E1+G+I L. Total Water in Gallons (K/ TEST DATA Concrete Temperature (°F): Shum Air Content, % (- Agg Cor. Facker from MD) M. Density, (pcf) BATCH DATA N. Sacks of Cement per Batch (D. P. Yield, CY per Batch [(F/M)] R. Water / Cementitious Ratio, lbs. / lbs. (H + J)	# SPECIFICAT # MD Chec Cement Fac W/Cm, lbs./lbs	ks U tor, Sacks/	CY (MD):		RESULT	DATA 8
J. Free Water in FA K. Total Water Weight (E+E1+G+I L. Total Water in Gallons (K/ TEST DATA Concrete Temperature (°F): Slum Air Content, % (- Agg Cor. Facker from MD) M. Density, (pcf) BATCH DATA N. Sacks of Cement per Batch (D P. Yield, CY per Batch [(F/M R. Water / Cementitious Ratio, lbs. / lbs. (S. % 2nd cementitious material [D2 /(Total)])	H + J) 8.34) pp (in): //94) //27] K/D) x 100]	# SPECIFICAT # MD Chec Cement Fac W/Cm, lbs./lbs % 2nd cementilitie	iks ∜ tor, Sacks/ s. (MD) sus materia	/CY (MD):		RESULT	DATA 8
J. Free Water in FA K. Total Water Weight (E+E1+G+I L. Total Water in Gallons (K/ TEST DATA Concrete Temperature (°F): Slum Air Content, % (- Agg. Cor. Facker from MD) M. Density, (pcf) BATCH DATA N. Sacks of Cement per Batch (D. Yield, CY per Batch [(F/M) R. Water / Cementitious Ratio, lbs. / lbs. (S. % 2nd cementitious material [D2 /(Total)]	H + J) 8.34) pp (in): 2/94) 1/27] K/D) x 100] x 100]	# SPECIFICAT # MD Chec Cement Fac W/Cm, lbs./lbs	ks & tor, Sacks/ i. (MD) ous materia	/CY (MD):		RESULT	DATA #
J. Free Water in FA K. Total Water Weight (E+E1+G+I L. Total Water in Gallons (K/ TEST DATA Concrete Temperature (°F): Slum Air Content, % (- Agg Cor. Facker from MD) M. Density, (pcf) BATCH DATA N. Sacks of Cement per Batch (D P. Yield, CY per Batch [(F/M) R. Water / Cementitious Ratio, lbs. / lbs. (S. % 2nd cementitious material [D2 /(Total)] T. % 3rd cementitious material [D3 /(Total)]	H + J)	# SPECIFICAT # MD Chec Cement Fac W/Cm, lbs./lbs % 2nd cementilitie	ks & tor, Sacks/ i. (MD) ous materia	/CY (MD): Il (MD): Il (MD): nd (MD):		RESULT	DATA 8
J. Free Water in FA K. Total Water Weight L. Total Water in Gallons TEST DATA	H + J) 8.34) 8.34) 9/94) 9/27] K/D) x 100] x 100] x 100 ——————————————————————————————————	# SPECIFICAT # MD Chec Cement Fac W/Cm, lbs./lbs % 2nd cementilitie	ks & tor, Sacks/ . (MD) sus materia ws material % Sar	/CY (MD): Il (MD): Il (MD): nd (MD):	(CA)	(IA)	DATA 8
J. Free Water in FA K. Total Water Weight L. Total Water in Gallons (K / TEST DATA Concrete Temperature (°F): Slum Air Content, % (— Agg. Cor. Facker from MD) M. Density, (pcf) BATCH DATA N. Sacks of Cement per Batch P. Yield, CY per Batch R. Water / Cementitious Ratio, lbs. / lbs. S. % 2nd cementitious material [D2 /(Total): T. % 3rd cementitious material [D3 /(Total): U. % Sand [] /(c + f + j)] V. Mix Ratios 1: (c / D): (f / D): (j / D):	H + J) 8.34) 8.34) 9/94) 9/27] K/D) x 100] x 100] x 100 ——————————————————————————————————	# SPECIFICAT # MD Chec Cement Fac W/Cm, lbs./lbs % 2nd cementilitie	ks U tor, Sacks/ i. (MD) rus materia ws materia % San Mix Ratios	/CY (MD): Il (MD): Il (MD): nd (MD):	(CA)		
J. Free Water in FA K. Total Water Weight L. Total Water in Gallons TEST DATA	H + J) 8.34) pp (in): p)/94) //27] K/D) x 100] x 100] x 100] (A) (FA)	# MD Chec Cement Fac W/Cm, lbs. / lbs % 2nd cementilio % 3rd cementilio	ks U tor, Sacks/ (MD) ous material % San Mix Ratios	/CY (MD): Il (MD): Il (MD): nd (MD):	(CA)	(IA)	
J. Free Water in FA K. Total Water Weight L. Total Water in Gallons (K // TEST DATA Concrete Temperature (°F): Slum Air Content, % (— Agg Cor. Factor from MD) M. Density, (pcf) BATCH DATA N. Sacks of Cement per Batch P. Yield, CY per Batch R. Water / Cementitious Ratio, lbs. / lbs. S. % 2nd cementitious Ratio, lbs. / lbs. S. % 2nd cementitious material T. % 3rd cementitious material U. % Sand [] /(c + f + j)] V. Mix Ratios 1: (c / D): (f / D): (j / D) (CA) SSD BATCH WEIGHTS REDUCED FOR 1 CY	H + J) 8.34) pp (in): p)/94) //27] K/D) x 100] x 100] x 100] (A) (FA)	# MD Chec Cement Fac W/Cm, lbs. / lbs % 2nd cementilio % 3rd cementilio	ks U tor, Sacks/ s. (MD) sus material % Sar Mix Ratios	(MD): I (MD): I (MD): I (MD): I (MD):	(CA)	(IA)	
J. Free Water in FA K. Total Water Weight L. Total Water in Gallons (K / TEST DATA Concrete Temperature (°F): Slum Air Content, % (— Agg. Cor. Factor from MD) M. Density, (pcf) BATCH DATA N. Sacks of Cement per Batch P. Yield, CY per Batch R. Water / Cementitious Ratio, lbs. / lbs. S. % 2nd cementitious Ratio, lbs. / lbs. S. % 2nd cementitious material D2 /(Total): T. % 3rd cementitious material U. % Sand [H + J) 8.34) pp (in): p)/94) //27] K/D) x 100] x 100] x 100] (A) (FA)	# MD Chec Cement Fac W/Cm, lbs. / lbs % 2nd cementilio % 3rd cementilio	ks U tor, Sacks/ i. (MD) sus material % Sar Mix Ratios	(CY (MD): I (MD): I (MD): I (MD): I (MD): I (MD) 1:	(CA)	(IA)	
J. Free Water in FA K. Total Water Weight L. Total Water in Gallons (K // TEST DATA Concrete Temperature (°F): Slum Air Content, % (— Agg. Cor. Factor from MD) M. Density, (pcf) BATCH DATA N. Sacks of Cement per Batch P. Yield, CY per Batch R. Water / Cementitious Ratio, lbs. / lbs. S. % 2nd cementitious material I. % 3rd cementitious material U. % Sand U. % Sand [J /(c+f+j)] V. Mix Ratios 1: (c / D): (f / D): (j / D) SSD BATCH WEIGHTS REDUCED FOR 1 CY Coarse Aggregate (c / P) Intermediate Aggregate (f / P) Fine Aggregate (j / P) Cement Content (D / P)	H + J) 8.34) pp (in): p)/94) //27] K/D) x 100] x 100] x 100] (A) (FA)	# MD Chec Cement Fac W/Cm, lbs. / lbs % 2nd cementilio % 3rd cementilio	ks U tor, Sacks/ i. (MD) bus material % Sar Mix Ratios	CY (MD): I (MD): I (MD): I (MD): (MD) 1: : 2% of : 2% of : 2% of : 1% of	(CA)	(IA)	
J. Free Water in FA K. Total Water Weight L. Total Water in Gallons (K // TEST DATA Concrete Temperature (°F): Slum Air Content, % (— Agg. Cor. Factor from MD) M. Density, (pcf) BATCH DATA N. Sacks of Cement per Batch P. Yield, CY per Batch R. Water / Cementitious Ratio, lbs. / lbs. S. % 2nd cementitious material I. % 3rd cementitious material U. % Sand U. % Sand [J /(c+f+j)] V. Mix Ratios 1: (c / D): (f / D): (j / D) SSD BATCH WEIGHTS REDUCED FOR 1 CY Coarse Aggregate (c / P) Intermediate Aggregate (f / P) Fine Aggregate (j / P)	H + J) 8.34) pp (in): p)/94) //27] K/D) x 100] x 100] x 100] (A) (FA)	# MD Chec Cement Fac W / Cm, lbs. / lbs % 2nd cementilio % 3rd cementilio	ks U tor, Sacks/ i. (MD) bus material % Sar Mix Ratios	CY (MD): I (MD): I (MD): I (MD): I (MD) 1: 2% of 2% of 2% of	(CA)	(IA)	
J. Free Water in FA K. Total Water Weight L. Total Water in Gallons TEST DATA	M + J) 8.34) 8.34) 8.34) 8.34) 9.794) 9.727] K/D) x 100] x 100] x 100	# SPECIFICAT # MD Chec Cement Fac W / Cm, lbs. / lbs % 2nd cementilio % 3rd cementilio # SPECIFICAT *	ks U tor, Sacks/ i. (MD) bus material % Sar Mix Ratios	CY (MD): I (MD): I (MD): I (MD): (MD) 1: : 2% of : 2% of : 2% of : 1% of	(CA) Batch We (from	(IA) lights / CY IMD)	
J. Free Water in FA K. Total Water Weight L. Total Water in Gallons (K // TEST DATA Concrete Temperature (°F): Slum Air Content, % (— Agg. Cor. Factor from MD) M. Density, (pcf) BATCH DATA N. Sacks of Cement per Batch P. Yield, CY per Batch R. Water / Cementitious Ratio, lbs. / lbs. S. % 2nd cementitious material I. % 3rd cementitious material U. % Sand U. % Sand [J /(c+f+j)] V. Mix Ratios 1: (c / D): (f / D): (j / D) SSD BATCH WEIGHTS REDUCED FOR 1 CY Coarse Aggregate (c / P) Intermediate Aggregate (f / P) Fine Aggregate (j / P) Cement Content (D / P)	H + J) 8.34) pp (in): p)/94) //27] K/D) x 100] x 100] x 100] (A) (FA)	# SPECIFICAT # MD Chec Cement Fac W / Cm, lbs. / lbs % 2nd cementilio % 3rd cementilio # SPECIFICAT *	ks U tor, Sacks/ i. (MD) bus material % Sar Mix Ratios	CY (MD): I (MD): I (MD): I (MD): (MD) 1: : 2% of : 2% of : 2% of : 1% of	(CA)	(IA) lights / CY IMD)	

STATE OF ALASKA	☐ Acceptance	☐ Verification ☐	Info. A QC	;			
DOT & PF	PROJECT NAME:	Glenn Hwy., Mi	P 109-118 Resur	ace, Box	Culverts POUR	No:	27
CONCRETE PLACEMENT REPORT	FEDERAL No:	IM-0A1-5(27)			AKSAS	No: <u>5209</u>	5
	ITEM No: 514(1)		TICKET No:		DA1	ΓΕ: 7/30/	/11
	TRUCK No.	459 NRMC	CA Certified?	s ∏ No	Mix Design N	lo: Cast	5 SCC 6500
BATCH (SCAL	E) WEIGHTS		Type of Const	uation: D	ny Cultant Santan	1454354	
A. Coars e Aggregate	(CA)	11380	Bridge No: n/a	_	ox Culvert Section tation(s): MP 114.	•	<u>, </u>
B. Intermediate Aggregate	(IA)	4900	_		tion Represented: B		
C. Fine Aggregate or Sand	(FA)	16360					
D. Cements*_7090_+* E. Water from batch ficket	+ = Total: (gallons x 8.33)	7090 2480	Quantity Repres	ented: [50 CY	1/2 D	ays Pour
	(gallons x 8.33)			I	200 CY	✓ Preca	ast Member
F. Total Batch Weight (A+B+C+	`•	42210			concrete: AS&G		
* D2 and D3 for Fly Ash, Slag or Silic	•		Brand & Type of	Cement (N	AD): ABIType) 	
AGGREGATE MOISTU	JRE CORRECTION	s	G		SCC (A. A	4 5 50	O#>
a. Moistures (decimal) -	0.0038 + 0.010 =	 : 0.0062	Class of Concre	e	SCC (A, A	-A, P, LO,	(Other)
	ree water) [absorption] *		Mix time: 1	2:27:00 P	<u>M</u>		
C b. Dry Weight [A/(1 + total mo	visture)]	11310	Pour time:	Start:	1:13 PM	Finish:	
с. SSD Weight [b* (1 + absorp	noiton)]	11423	Weather Condition	ons:	Sunny 65		
	0.0049 + 0.010 =		Concrete Sample	ed from:			
(f	ree water) [absorption] *	(total moisture)			Truck Chute		
A e. Dry Weight [B / (1 + total mo	<u>(</u> enutsik	4828	Concrete Waste	d:	none		
f. SSD Weight e * (1 + absor	ption)]	4876	Concrete Reject	ed:	none		
1 1 1 2	0.0227 + 0.012 = ree water) absorption *		Test Specimen l	lentification	n: Compressi	re 🔲 Flex	cural
F			Specimens maki	ng procedu	ire: WAQTC	FOR for AA	SHTO T23
A h. Dry Weight [C / (1 + total mo	жие)	15811	initial cure proce	dure:	WAQTC FOR 6	OT HASAA TC) T23
j. SSD Weight h * (1 + absor	ption)]	16001	No. of Test Spec	imens and	sizes: 4 ea.,	4"x8"	
* from Mix Design							
WATER WEIGHT G. Free Water in CA		43	Remarks:				
H. Free Water in IA	(A - c) (B - f)	-43 24					
J. Free Water in FA	(C - j)	359	Admixture	MID oz/cy	oz/batch from tick	et oz/cy	% off MD
	E+E1+G+H+J)	2820	Micro Air	6.45	60.00	5.5	-15%
L Total Water in Gallons	(K / 8.34)	338.1	PS-1466	65.8	532.00	48.8	-26%
TEST (1ΑΤΑ		⊪ BASFVMA ⊪ SPECIFICA	39.4	388.00	35.6 ST RESULT	-10% DATA II
Concrete Temperature (°F):	67 Skump(in):	27.00	30" max.		11"	31 RESULT	LAIA V
Air Content, % (- Agg. Corr. Factor		6.0	6.0% + 1.		_	6.0%	
ML Density, (pcf)	·	143.2			7	143.8	
BATCH	DATA		₿ MD Che d	ke II			
N. Sacks of Cement per Batch	(D/94)	75.4	6.9 Cement Fac		(CY (MD):		
P. Yield, CY per Batch	[(F/M)/27]	10.9					
R. Water / Cementitious Ratio, Ibs		0.40	W/Cm, lbs./lbs	s. (MD)	.4	15 max	
S. % 2nd cemenfitious material	[D2 /(Total) x 100]	N/A	% 2nd cementilio	ous materia	J (MD):	n/a	
T. % 3rd cementitious material	[D3 /(Total) x 100]	N/A	% 3rd cementitio	us materia.	I (MD):	n/a	
U. % Sand	[j/(c+f+j)]x100	49.5			nd (MD):	40%	
V. Mix Ratios 1:(c/D):(f/D):(j/D) <u>1.61</u> : <u>0.69</u> (CA) (IA)			Mix Ratios	(MD) 1: (CA)	: <u>(A)</u>	_ :
SSD BATCH WEIGHTS REDUCE		% off MD				Weights/CY	(17)
			U SPECIFICA		(fi	rom MD)	
Coarse Aggregate (c / P)	1048	0.4%	* 1023 -		: 2% of	1044	
Intermediate Aggregate (f / P)	1460	1.7%	* 431 -		:2% of	440	
Fine Aggregate (j / P) Cement Content (D / P)	1468 	0.1% -1.1%	* <u>1438 =</u> 651 =		:2% of :1% of	1467 658	
Sement content (D1F)		40.00/		200 1	. 170 01		

INSPECTOR / QUAL. No: 568 CHECKED BY: DATE PROJECT ENGINEER: DATE

286

304 ± 3% of

-12.3%

(K/P)

259

295

(\$(OF ALASK T & PF		Acceptance Verification Info. I A QC Sample No: Project Name:									
KELA IIV E STANDARD DEN	NSITY of SOIL	l _	, ederal No	-						AKSAS N	o :	
by the CONTROL STRIF		_ м	laterial:					Source:				
ATM 309 - FIELD W	ORKSHEE	T Ite	em No:			Gauge I	Model:			Gauge S/	N:	
Lane: Wid	th:	S	tation to s	Station:		-				Std. Cour	nt	
*Initial (Control Strip) readi	inan ahall be	tolon in	backmath	or position	The fine	I (ton mod	han karatia	al maden	<u> </u>	Dat	te:	
shall be done with direct	_			=		=		ii) icaalig	N.			
**Continue the compaction								f all three i	locations:	for two con	gen dive nagge	
Equipment	Pass#:	*Loca	ation 1	*Loca	tion 2	*Loca	tion 3	**Ave	rage:		Remarks:	
Roller #1:	1											
Roller Brand:	2											
	3											
Roller Model Number.	4											
Roller Type:	5											
Compaction Mode:	6											
☐ Vibe ☐ Static	7											
	1											
Roller #2:	2											
Roller Brand:												
	3											
Roller Model Number.	4											
Roller Type:	5											
	6											
Compaction Mode:	7											
☐ Vibe ☐ Static	ľ											
Locations ⇒	1	2	3	4	5	6	7	8	9	10	I	
Reading 1 (1minute)											Relative	
Reading 2 (1minute)											Standard Density	
Average Dry Density												
Reading 1 (%moisture)												
Reading 2 (%moisture)											Average	
Average % Moisture											Moisture	
Remarks:	<u> </u>				1	ı			1	ı	l	
				Signat	ture / Qua	alification	No / Dat	e :				

Lane: N/A

STATE OF ALASKA DOT & PF

Width: 8 feet

KELA IIVE STANDARD DENSITY OF SOILS by the CONTROL STRIP METHOD ATM 309 - FIELD WORKSHEET

✓ Accepta	ince [Verification	Info.	⊔ QC Sa	mple No:	SB - SD) - 1
Project Na	me:	Goodnews E	Bay Airport Imp	provements	\$		
Federal No	D:	AIP 3-02-010	07-001		Α	KSAS No:	51349
Material:	Sub	base Course		Source:	Upper &	Lower Qu	апу (Blend)
Item No:	P-1:	54b	Gauge Model:	Troxler 34	40 G	auge S/N:	33332
Station to S	Statio	on: R/W 29-	+80 to 31+00		s	ld. Count	2466

^{**}Continue the compaction & testing cycle until there is less than 1 lb/ft³ increase of the average of all three locations for two consecutive passes

Equipment	Pass#:	*Loca	tion 1	*Loca	tion 2	*Loca	tion 3	**Ave	rage:	F	Remarks:
Roller #1:	1	13	4.9	120	6.2	14	4.5	135	5.2		
	2	13	6.6	13	4.2	13	7.6	136	3.1		
Roller Brand: CATEPILLAR	3	13	3.2	13	8.3	14	6.7	139	9.4		
Roller Model Number. CS 44	4	13	8.7	13	8.7	14	0.9	139	9.4		
Roller Type:	5	13	1.6	13	8.8	14	6.1	138	3.8		ecutive pass wa 1 pcf increase.
DRUM	6										
Compaction Mode: ✓ Vibe	7										
Roller #2:	1										
	2										
Roller Brand:	3										
Roller Model Number.	4										
Roller Type:	5										
	6										
Compaction Mode:	7										
Locations ⇒	1	2	3	4	5	6	7	8	9	10	
Reading 1 (1minute)	135.7	150.9	142.5	132.6	131.9	130.8	138.0	140.2	139.8	134.7	Relative
Reading 2 (1minute)	138.7	151.5	141.8	133.1	135.2	131.2	138.3	140.8	138.1	134.6	Standard Density
Average Dry Density	137.2	151.2	142.2	132.9	133.6	131.0	138.2	140.5	139.0	134.7	138.0
Reading 1 (%moisture)	4.7	5.8	6.4	5.3	3.8	3.8	4.1	3.9	4.3	4.2	
Reading 2 (%moisture)	4.8	5.9	6.4	5.1	3.9	3.9	4.1	3.9	4.5	4.5	Average Moisture
Average % Moisture	4.8	5.9	6.4	5.2	3.9	3.9	4.1	3.9	4.4	4.4	4.7
Remarks:											
				Signat	ture / Qua	alification	No / Dat	e: Holly	DeLand	/ #308 / 7	7-13-09

Date: 07/13/09

^{*}Initial (Control Strip) readings shall be taken in backscatter position. The final (ten random location) readings shall be done with direct transmission when practicable. All readings are to be **Dry** Density.

ATM	STA 315: RIP F FIELD WO	RAP (T & I	PF ATIO		Pro Fee Ma	ject Name deral No: terial:			Sour	Sample No: AKSAS No:tition:	
Mea	sure (LxWx	H)	W	eigh)	t (lb-K	(g)	Meas	ure (LxWxH)	Weight (lb-K	1)	Measure (LxWxH)	Weight (lb-Kg)
	T-4-118/4					4	L.,	-4-118/4		- -	T-4-118/4	
	Total Wt.					\dashv		otal Wt. of Sample		⊣⊦	Total Wt. % of Sample	
	Veight = App							or 1,000 Kg/m ³	1	 E	Total Weight	of Sample
Spec. F	Percentages		Circl	e one	2	Spe	c. Weight				Test Results %	Weights
Min.	Max.	>	>/=	<	=</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Min.	Max.	>	>/=	<	=</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Min.	Max.	>	>/=	<	=</td <td>#:</td> <td></td> <td></td> <td></td> <td>L</td> <td></td> <td></td>	#:				L		
Min. Rema		>	>/=	<	=</td <td>#:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	#:						

Rev. 01/05

Checked by / Date:

Signature / Date:

	STATE OF ALASKA	✓ Acceptance Verfication Info. IA QC	rfication 🗌	Info.	ж Ц	Sample No:	No:	CABC-D-1	꿏			
	DOT & PF Proj	Project Name: POW - Craig-Klawock Highway Reconditioning	raig-Klawo	ck Highway	/Recondition	oning						
	Fed and Parents of Bitaminous Misse	Federal No: HDP-0003-93	13-93				AKSAS	AKSAS No: 68744				
		enal: Crushed Asphalt Base Course	halt Base (Course	Sour	Source: Project Grindings	t Grindings					
	ltem	1 No: 308(1)	Specificati	Specification: 98% min.	. [Quantity Represented: 5,000 S.Y.	sented: 5,	000 S.Y.				
-	Gau			Gauge Serial No:	al No: 33529		Density Standard (pcf):	dard (pcf):	145.5 SI	andard No	Standard No/ID: CABC-SD-2	SD-2
	oე .	*Correlation Factor: N/A	_ 	Location and Area Represented: Sta. 31+00 to 50+00	d Area Rep	resented:	Sta. 31+00	to 50+00			Date: 06/24/10	724/10
	FIELD DENSITY TEST NUMBER		-	2	3	4	5	9	7	œ	6	10
	STATION		31+25	36+35	41+35	46+40	49+95	20+00	48+85	44+00	39+50	34+75
	^С / _L REFERENCE (Offset)		6'Rt	4'Rt	3'Rt	8'Rt	5Rt	10°Lt	4"Lt	6Lt	3'Lt	8"Lt
	GRADE REFERENCE		Top CABC	Top CABC	Top CABC	Top CABC	Top CABC	Top CABC	Top CABC	Top CABC	Top CABC	Top CABC
	QUANTITY REPRESENTED		375	375	375'	375	375	375'	375'	375'	375'	375'
	DENSI TY DETERMINATION	NO	Back	✓ Backscatter Mode	a			(Readin	(Reading #2 is rotated 90° from Reading #1)	ed 90° from F	Reading #1)	
	Wet Density, lbs/ft ³	Reading #1	143.5	145.2	144.1	143.8	142.9	146.0	145.6	144.3	143.9	1462
	1)	Reading #2	144.2	145.3	144.6	145.0	144.4	144.7	144.9	143.9	1452	144.8
ш	Average Wet Density		143.9	145.3	144.4	144.4	143.7	145.4	145.3	144.1	144.6	145.5
ш	Adjusted Density	(use *Correlation Factor)										
9	% Compaction	(Eor F / Density Std.) x 100	98.9	6.66	99.2	99.2	98.8	99.9	99.9	99.0	99.4	100.0
	CORRE ATION with CORES	RES										
	WAQTC FOP for AASHTO T 166	T 166	Core 1	Core 2	Core 3	Core 4	Core 5	Core 6	Core 7	Core 8	Core 9	Core 10
工	Core Thickness	(sequi)										
Y	Mass of Dry Specimen in Air											
В	Mass of SSD Specimen in Air											
ပ	Weight of Specimen in Water											
7	Bulk Specific Gravity (0.001)	A / (B-C)										
У	Unit Weight = Bulk SpG x 62.4	(bct)										
Ξ	Average Wet Density	(from Eabove)										
_	Difference = Unit Weight - Average Wet Density	t Density K-E										
>	Filler Material (Native Fines) used?								Average	Average Difference:		
ı								Stand	Standard Deviation (? 2.5):	ภา (? 2.5):		
	Remarks		Test by/	Test by/Qualification No: C.J. McKellan#999	M No: C.J.	McKellan#	666					
	Density Strip Average = 99.4%		Signatu	Signature / Date:								
			Checked	Checked by / Date: NJ/6-26-10	NJ/6-26-10							

STATE OF ALASKA	3 <u> </u>	Verification Info.	Sample No:
DOT & PF	Project Name: Federal No:		AKSAS No:
Sand Cone ATM 211	Material:		Source:
	Item No:		Location:
ta. / Sampled from:		Sampled by / Qual. No:	
& Grade Reference:	76. 85.	Quantity Represented:	Date:
Determination	n of Bulk Densit	y of Sand and Co	ne Correction Factor
Г	Bulk Density		
	Af I	Mass of filled calibrati	on container
	Лt	Mass of the calibration	
	/	Volume of the contained	
P	b	Bulk Densi	ty
_			
	Pb =	$\frac{mf - mt}{V}$	
	Cone Correction Factor	or	
	/ii T	Mass of Filled A	paratus
- 22	Лf	Mass of Aparatus Afte	200000000000000000000000000000000000000
	2	Cone Correction	
		y Determination	
	/i []	Mass of Filled A	naratus
	Af	Mass of Aparatus Afte	
	'h	Volume of H	
3,000	1d	Mass of Dry Materia	
P	'd	Dry Densit	
<u></u>)	Corrected Standar	d Density
%	oc .	Percent Comp	action
		mi - mf	
	Vh = -	$\frac{mi-mf}{Pb}-C$	
	Po	$l = \frac{Md}{Rh}$	
Domarka		N.D.	
Remarks		→	
		_	
		<u> </u>	
		Ci	
		Signature Checked	
= 4			
Rev. 03/07/11			

Γhis page intentionally left blank.		

Materials Sample Identification System SP 12

Table VII, Materials Sample Identification System, also see ACM 5.4

Each materials sample taken on a construction contract project will be assigned a four part number that identifies the type of sample, the type of material, the test that will be performed on the sample and the sequential number of the test in that series on that type of material and sample. When a test sample fails to meet the specifications, the test number is circled in the Materials Testing Summary. A retest of a failing test is identified by adding the letter "A" after the test number for the first retest; a second retest adds the letter "B", and so on. Samples sent to the regional lab for testing will also be identified by this system, in addition to the project name and number, the location the sample was taken, and the name of the sampler. This sample identification system will be used on test results from the field lab and from the regional lab, and on the Materials Testing Summary form.

		pes of Samples		
Acceptance	No	prefix	Information	I
Independent Assurance	A		Quality	Q
		Ty	pes of Materials	
Aggregate Base Course (C-1, D-	1 etc)	BC ()	Gas Line Conduit	GC
Aggregate Surface Course		SC	Hot Mix Asphalt	HMA
Asphalt Cement		AC	Grout	GR
Asphalt Pathway		AP	Manhole Type (1, II, III)	MH()
Asphalt Sidewalk		AS	Medium Cure Liquid Asphalt	MC
Asphalt Surface Treatment		AST	Mineral Filler	MF
Asphalt Treated Base Course		ATB	Performance Grade Liquid Asphalt	PG
Bed Course Material		BCM	Porous Backfill	PB
Bedding and Backfill		BB	Reclaimed Asphalt Pavement	RAP
Borrow Material Type (A, B, C)		BM()	Rip Rap	RR
Common Excavation		CX	Rock Excavation	RX
Concrete Cylinder		CYL		
Concrete Coarse Aggregate		CA	Sewer Conduit	SC
Concrete Fine Aggregate		FA	Sidewalk	SW
Cover Coat Grading B		CCB	Stone Mastic Asphalt	SMA
Crushed Asphalt Base Course		CABC	Structural Backfill Material	SF
Culvert		С	Structural Plate Pipe	SPP
Ditch Lining		DL	Subbase (A, B, C, D, E)	SB()
Electrical Conduit		EC	Telephone Conduit	TC
Electrical - Miscellaneous		EL	Television Conduit	TV
Emulsified Asphalt Materials		EAM	Top Soil	TS
Emulsified Treated Base		ETB	Type A Inlet	AI
Field Inlet		FI	Unclassified Excavation	EX
Filter Blanket		FB	Useable Excavation, Type (A, B, C)	EX()
Filter Material		FM	Waste	EXW
Fire Hydrant		FH	Water Conduit	WC
Foundation Fill		FF	Waterline	WL
Gabion Backfill		GB	Warm Mix Asphalt	WMA
		7	Types of Tests	
Correction Factor - Ignition Over	1	CF	Mix Design	MD
Field Density		D	Moisture	M
Fracture Count		F	Oil Content	0
Gradation		G	Plastic Index	PI
Joint Density		DJ	Plastic Limit	PL
Mat Density		DM	Strength (Concrete)	S
Liquid Limit		LL	Standard Density	SD

Alaska Test Methods Manual SP 12-1 Effective May 19, 2025

Γhis page intentionally left blank.				