Terminology SP 1

1. Scope

This standard practice provides terminology as interpreted and defined by the State of Alaska. The definitions of the American Association of State Highway and Transportation Officials (AASHTO) are the ones most commonly followed by DOT&PF.

2. Definitions

Absorption: The increase in the mass of aggregate due to water being absorbed into the pores of the material, but not including water adhering to the outside surface of the particles, expressed as a percentage of the dry mass.

Acceptance sampling and testing: Sampling and testing performed by the State of Alaska, or its designated agent, to evaluate acceptability of the final product. This is also called verification sampling and testing when specifically used to validate the contractor's data.

Admixture: Material other than water, cement, and aggregates in Portland cement concrete (PCC).

Aggregate: Hard granular material of mineral composition, including sand, gravel, slag or crushed stone, used in roadway base and in Portland Cement Concrete (PCC) and Asphalt concrete pavement.

- Coarse aggregate: Aggregate retained on or above the 4.75 mm (No. 4) sieve.
- Coarse-graded aggregate: Aggregate having a predominance of coarse sizes.
- **Dense-graded aggregate:** Aggregate having a particle size distribution such that voids occupy a relatively small percentage of the total volume.
- Fine aggregate: Aggregate passing the 4.75 mm (No. 4) sieve.
- Fine-graded aggregate: Aggregate having a predominance of fine sizes.
- Mineral filler: A fine mineral product at least 70 percent of which passes a 75 µm (No. 200) sieve.
- **Open-graded gap-graded aggregate:** Aggregate having a particle size distribution such that voids occupy a relatively large percentage of the total volume.
- Well-Graded Aggregate: Aggregate having an even distribution of particle sizes.

Aggregate storage bins: Bins that store aggregate for feeding material to the dryer in an asphalt concrete pavement plant in substantially the same proportion as required in the finished mix.

Agitation: Provision of gentle motion in Portland Cement Concrete (PCC) sufficient to prevent segregation and loss of plasticity.

Air voids: Total volume of the small air pockets between coated aggregate particles in asphalt concrete pavement; expressed as a percentage of the bulk volume of the compacted paving mixture.

Ambient temperature: Temperature of the surrounding air.

Angular aggregate: Aggregate possessing well-defined edges at the intersection of roughly planar faces.

Apparent specific gravity: The ratio of the mass, in air, of a volume of the impermeable portion of aggregate to the mass of an equal volume of water.

Asphalt: A dark brown to black cementitious material in which the predominate constituents are bitumens occurring in nature or obtained through petroleum processing. Asphalt is a constituent of most crude petroleum.

Asphalt cement: Asphalt specially prepared in quality and consistency for use in the manufacture of Hot Mix Asphalt (HMA) pavement.

Asphalt concrete batch plant: A manufacturing facility for producing asphalt concrete that proportions aggregate by weight and asphalt by weight or volume.

Asphalt concrete continuous mix plant: A manufacturing facility for producing asphalt concrete that proportions aggregate and asphalt by a continuous volumetric proportioning system without specific batch intervals.

Automatic cycling control: A control system in which the opening and closing of the weigh hopper discharge gate, the bituminous discharge valve, and the pug mill discharge gate are actuated by means of automatic mechanical or electronic devices without manual control. The system includes preset timing of dry and wet mixing cycles.

Automatic dryer control: A control system that automatically maintains the temperature of aggregates discharged from the dryer.

Automatic proportioning control: A control system in which proportions of the aggregate and asphalt fractions are controlled by means of gates or valves that are opened and closed by means of automatic mechanical or electronic devices without manual control.

Bag (of cement): 94 lb of Portland cement. (Approximately 1 ft³ of bulk cement.)

Base: A layer of selected material constructed on top of subgrade or subbase and below the paving on a roadway.

Bias: The offset or skewing of data or information away from its true or accurate position as the result of systematic error.

Binder: Asphalt cement or modified asphalt cement that binds the aggregate particles into a dense mass.

Boulders: Rock fragment, often rounded, with an average dimension larger than 300 mm (12 in.).

Bulk Density: The mass per volume of a material, including any voids that may occur within the volume.

Bulk specific gravity: The ratio of the mass, in air, of a volume of aggregate or compacted asphalt concrete mix (including the permeable and impermeable voids in the particles, but not including the voids between particles) to the mass of an equal volume of water.

Bulk specific gravity (SSD): The ratio of the mass, in air, of a volume of aggregate or compacted asphalt concrete mix, including the mass of water within the voids (but not including the voids between particles), to the mass of an equal volume of water. (See **Saturated Surface Dry**.)

Calibration: A process that establishes the relationship (traceability) between the results of a measurement instrument, measurement system, or a material measure and the corresponding values assigned to a reference standard.

Check: A specific type of inspection and/or measurement performed on equipment and materials to indicate compliance or otherwise with stated criteria.

Clay: Fine-grained soil that exhibits plasticity over a range of water contents, and that exhibits considerable strength when dry. Also, that portion of the soil finer than 2 µm.

Cobble: Rock fragment, often rounded, with an average dimension between 75 and 300 mm (3 and 12 in.).

Cohesionless soil: Soil with little or no strength when dry and unconfined or when submerged, such as sand.

Cohesive soil: Soil with considerable strength when dry and that has significant cohesion when unconfined or submerged.

Compaction: Densification of a soil or asphalt concrete pavement by mechanical means.

Compaction curve (Proctor curve or moisture-density curve): The curve showing the relationship between the dry unit weight or density and the water content of a soil for a given compactive effort.

Compaction test (moisture-density test): Laboratory compaction procedure in which a soil of known water content is placed in a specified manner into a mold of given dimensions, subjected to a compactive effort of controlled magnitude, and the resulting density determined.

Compressibility: Property of a soil or rock relating to susceptibility to decrease in volume when subject to load.

Consolidation: In the placement of Portland cement concrete (PCC) it is the removal of entrapped air by either tamping or vibrating the material.

Constructor: The builder of a project. The individual or entity responsible for performing and completing the construction of a project required by the contract documents. Often called a contractor, since this individual or entity contracts with the owner.

Crusher-run: The total unscreened product of a stone crusher.

Delivery tolerances: Permissible variations from the desired proportions of aggregate and asphalt cement delivered to the pug mill.

Density: The ratio of mass to volume of a substance. Usually expressed in kg/m³ (lb/ft³).

Design professional: The designer of a project. This individual or entity may provide services relating to the planning, design, and construction of a project, possibly including materials testing and construction inspection. Sometimes called a "contractor", since this individual or entity contracts with the owner.

Dryer: An apparatus that dries aggregate and heats it to specified temperatures.

Dry mix time: The time interval between introduction of aggregate into the pug mill and the addition of asphalt cement.

Durability: The property of concrete that describes its ability to resist disintegration by weathering and traffic. Included under weathering are changes in the pavement and aggregate due to the action of water, including freezing and thawing.

Effective diameter (effective size): D_{10} , particle diameter corresponding to 10 percent finer or passing.

Embankment: Controlled, compacted material between the subgrade and subbase or base in a roadway.

Field Operating Procedure (FOP): Procedure used in field testing on a construction site or in a field laboratory. (Based on AASHTO, ASTM or WAQTC test methods.)

Fineness modulus: A factor equal to the sum of the cumulative percentages of aggregate retained on certain sieves divided by 100; the sieves are 150 mm (6"), 75 mm (3"), 37.5 mm (1 ½"), 19.0 mm (3/4"), 9.5 mm (3/8"), 4.75 mm (No. 4), 2.36 mm (No. 8), 1.18 mm (No. 16), 0.60 mm (No. 30), 0.30 mm (No. 50), and 0.15 mm mm (No. 100). Used in the design of concrete mixes. The lower the fineness modulus, the more water/cement paste that is needed to coat the aggregate.

Fines: Portion of a soil or aggregate finer than a 75 μm (No. 200) sieve. Also silts and clays.

Free water: Water on aggregate available for reaction with hydraulic cement. Mathematically, the difference between total moisture content and absorbed moisture content.

Glacial till: Material deposited by glaciation, usually composed of a wide range of particle sizes, which has not been subjected to the sorting action of water.

Gradation (grain-size or particle-size distribution): The proportions by mass of a soil or fragmented rock distributed by particle size.

Gradation analysis (grain size analysis, particle-size or sieve analysis): The process of determining grain-size distribution by separation of sieves with different size openings.

Hot aggregate storage bins: Bins that store heated and separated aggregate prior to final proportioning into the mixer.

Hot mix asphalt (HMA): High quality, thoroughly controlled hot mixture of asphalt cement and well-graded, high quality aggregate. The term Warm Mix Asphalt (WMA) is interchangeable with Hot Mix Asphalt (HMA) in this Manual. See WMA for more information.

Hydraulic cement: Cement that sets and hardens by chemical reaction with water.

Independent assurance (IA): Activities that are an unbiased and independent evaluation of all the sampling and testing (or inspection) procedures used in the quality assurance program. [IA provides an independent verification of the reliability of the acceptance (or verification) data obtained by the process control and acceptance testing. The results of IA testing or inspection are not to be used as a basis of acceptance. IA provides information for quality system management.]

In situ: Rock or soil in its natural formation or deposit.

Liquid limit: Water content corresponding to the boundary between the liquid and plastic states.

Loam: A mixture of sand, silt and/or clay with organic matter.

Lot: A quantity of material to be controlled. It may represent a specified mass, a specified number of truckloads, a linear quantity, or a specified time period during production.

Manual proportioning control: A control system in which proportions of the aggregate and asphalt fractions are controlled by means of gates or valves that are opened and closed by manual means. The system may or may not include power assisted devices in the actuation of gate and valve opening and closing.

Materials and methods specifications: Also called prescriptive specifications. Specifications that direct the Constructor (Contractor) to use specified materials in definite proportions and specific types of equipment and methods to place the material.

Maximum size: One sieve larger than nominal maximum size.

Maximum particle size: First sieve to retain any material.

Mesh: The square opening of a sieve.

Moisture content (Soils and Aggregate): The ratio, expressed as a percentage, of the mass of water in a material to the dry mass of the material.

Moisture content (Asphalt): The ratio, expressed as a percentage, of the mass of water in a material to the wet mass of the material.

Nominal maximum size: One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps between specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

Nuclear gauge: Instruments used to measure in-place density, moisture content, or asphalt content through the measurement of nuclear emissions.

Optimum moisture content (optimum water content): The water content at which a soil can be compacted to a maximum dry density by a given compactive effort.

Organic soil: Soil with a high organic content.

Paste: Mix of water and hydraulic cement that binds aggregate in Portland cement concrete (PCC).

Penetration: The consistency of a bituminous material, expressed as the distance in tenths of a millimeter (0.1 mm) that a standard needle vertically penetrates a sample of the material under specified conditions of loading, time, and temperature.

Percent compaction: The ratio of density of a soil, aggregate, or asphalt concrete mix in the field to maximum density determined by a standard compaction test, expressed as a percentage.

Plant screens: Screens located between the dryer and hot aggregate storage bins that separate the heated aggregates by size.

Plastic limit: Water content corresponding to the boundary between the plastic and the semisolid states.

Plasticity: Property of a material to continue to deform indefinitely while sustaining a constant stress.

Plasticity index: Numerical difference between the liquid limit and the plastic limit and, thus, the range of water content over which the soil is plastic.

Portland cement: Hydraulic cement produced by pulverizing Portland cement clinker.

Portland cement concrete (PCC): A controlled mix of aggregate, Portland cement, and water, and possibly other admixtures.

PCC batch plant: A manufacturing facility for producing Portland cement concrete.

Process control: See Quality control.

Proficiency samples: Homogeneous samples that are distributed and tested by two or more laboratories. The test results are compared to assure that the laboratories are obtaining the same results.

Pugmill: A shaft mixer designed to mix aggregate and cement.

Quality assurance (QA): (1) All those planned and systematic actions necessary to provide confidence that a product or facility will perform satisfactorily in service; or (2) making sure the quality of a product is what it should be. [QA addresses the overall process of obtaining the quality of a service, product, or facility in the most efficient, economical, and satisfactory manner possible. Within this broad context, QA includes the elements of quality control, independent assurance, acceptance, dispute resolution etc. The use of the term QA/QC or QC/QA is discouraged and the term QA should be used. QA involves continued evaluation of the activities of planning, design, development of plans and specifications, advertising and awarding of contracts, construction, and maintenance, and the interactions of these activities.]

Quality assurance specifications: Specifications that require contractor quality control and agency acceptance activities throughout production and placement of a product. Final acceptance of the product is usually based on a statistical sampling of the measured quality level for key quality characteristics. [QA specifications typically are

statistically based specifications that use methods such as random sampling and lot-by-lot testing, which let the contractor know if the operations are producing an acceptable product.]

Quality control (QC): Also called *process control*. The system used by a contractor to monitor, assess and adjust their production or placement processes to ensure that the final product will meet the specified level of quality. Quality control includes sampling, testing, inspection and corrective action (where required) to maintain continuous control of a production or placement process.

Reclaimed Asphalt Pavement (RAP): The term given to removed and/or reprocessed pavement materials containing asphalt and aggregates. These materials are typically generated when asphalt pavements are removed either by milling or full-depth removal. When properly crushed and screened, RAP consists of high-quality, well-graded aggregates coated by asphalt cement that may be recycled as a portion of new asphalt pavement.

Random sampling: Procedure for obtaining non-biased, representative samples.

Sand: Particles of rock passing the 4.75 mm (No. 4) sieve and retained on the 75 μm (No. 200) sieve.

Saturated surface dry (SSD): Condition of an aggregate particle, asphalt concrete pavement or Portland cement concrete (PCC) core, or other porous solid when the permeable voids are filled with water, but no water is present on exposed surfaces. (See bulk specific gravity.)

Segregation: The separation of aggregate by size resulting in a non-uniform material.

SHRP: The Strategic Highway Research Program (SHRP) established in 1987 as a five-year research program to improve the performance and durability of roads and to make those roads safe for both motorists and highway workers. SHRP research funds were partly used for the development of performance-based specifications to directly relate laboratory analysis with field performance.

Sieve: Laboratory apparatus consisting of wire mesh with square openings, usually in circular or rectangular frames.

Silt: Material passing the 75 μ m (No. 200) sieve that is non-plastic or very slightly plastic, and that exhibits little or no strength when dry and unconfined. Also, that portion of the soil finer than 75 μ m and coarser than 2 μ m.

Slump: Measurement related to the workability of concrete.

Soil: Natural occurring sediments or unconsolidated accumulations of solid particles produced by the physical and chemical disintegration or rocks, and which may or may not contain organic matter.

Specific gravity: The ratio of the mass, in air, of a volume of a material to the mass of an equal volume of water.

Stability: The ability of an asphalt concrete to resist deformation from imposed loads. Stability is dependent upon internal friction, cohesion, temperature, and rate of loading.

Standard Density: A lab or field derived density value used to determine relative compaction in the field.

Standardization: A process that determines (1) the correction or correction factor to be applied to the result of a measuring instrument, measuring system, material measure or reference material when its values are compared to the values realized by standards, (2) the adjustment to be applied to a piece of equipment when its performance is compared with that of an accepted standard or process.

Stratified random sampling: Procedure for obtaining non-biased, representative samples in which the established lot size is divided into equally-sized sublots.

Subbase: A layer of selected material constructed between the subgrade and the base coarse in a flexible asphalt concrete pavement roadway, or between the subgrade and Portland Cement Concrete (PCC) pavement in a rigid PCC roadway.

Subgrade: Natural soil prepared and compacted to support a structure or roadway pavement.

Sublot: A segment of a lot chosen to represent the total lot.

SuperpaveTM: SuperpaveTM (Superior Performing Asphalt Pavement) is a trademark of the Strategic Highway Research Program (SHRP). SuperpaveTM is a product of the SHRP asphalt research. The SuperpaveTM system incorporates performance-based asphalt materials characterization with design environmental conditions to improve performance by controlling rutting, low temperature cracking and fatigue cracking. The three major components of SuperpaveTM are the asphalt binder specification, the mix design and analysis system, and a computer software system.

Theoretical maximum specific gravity: The ratio of the mass of a given volume of asphalt concrete with no air voids to the mass of an equal volume of water, both at a stated temperature commonly referred to as the "Rice" value.

Topsoil: Surface soil, usually containing organic matter.

Traceability: The property of a result of a measurement whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties.

Uncertainty: A parameter associated with the result of a measurement that defines the range of the values that could be attributed to the measured quantity.

Uniformity coefficient: C_u , a value employed to quantify how uniform or well-graded an aggregate is: $C_u = D_{60}/D_{10}$. 60 percent of the aggregate, by mass, has a diameter smaller than D_{60} and 10 percent of the aggregate, by mass, has a diameter smaller than D_{10} .

Unit weight: The ratio of weight to volume of a substance. The term "density" is more commonly used.

μm: Micro millimeter (micron) used as measurement for sieve size.

Verification of calibration: A process that establishes whether the results of a previously calibrated measurement instrument, measurement system, or material measure are stable.

Verification sampling and testing: See acceptance sampling and testing.

Viscosity: A measure of the resistance to flow; one method of measuring the consistency of asphalt.

- **Absolute viscosity:** A method of measuring viscosity using the "poise" as the basic measurement unit. This method is used at a temperature of 60°C, typical of hot pavement.
- **Kinematic viscosity:** A method of measuring viscosity using the stoke as the basic measurement unit. This method is used at a temperature of 135°C, typical of hot asphalt at a plant.

Void in the mineral aggregate (VMA): The volume of inter-granular void space between aggregate particles of compacted asphalt concrete pavement that includes air and asphalt; expressed as a percentage of the bulk volume of the compacted paving mixture.

Voids filled with asphalt: The portion of the void in the mineral aggregate (VMA) that contains asphalt; expressed as a percentage of the bulk volume of mix or the VMA.

Warm Mix Asphalt (WMA): The generic term for a variety of technologies that allow the producers of HMA pavement material to lower the temperatures at which the material is mixed and placed on the road. Reductions from HMA temperatures of 50 to 100 degrees Fahrenheit are documented. Three general technologies are used at this time to decrease the mix and compaction temperatures including: chemical additives, organic additives (waxes) and foaming with water. Sampling and testing of WMA is done the same as with HMA so these terms are interchangeable in this Manual.

Wet mixing period: The time interval between the beginning of application of asphalt material and the opening of the mixer gate.

Zero air voids curve (saturation curve): Curve showing the zero air voids density as a function of water content. Points that define the curve are calculated in accordance with the addendum of WAQTC FOP for AASHTO T 99/ T 180.

Calibration of Mechanical Compaction Hammer/Rammer SP 2

1. Scope

This practice sets forth the apparatus, procedures, and materials necessary to calibrate a mechanical compaction hammer used in ATM 417, WAQTC FOP for AASHTO T 99/T 180, AASHTO T 245; and ASTM D 698/D 1557 in accordance with ASTM D 2168 Test Method A.

There are two parallel procedures providing instruction for verification of physical characteristics and calibration of dynamic characteristics for manual and mechanical Soils and Marshall compaction hammers and compaction pedestals. Physical Characteristics are examined first, verifying mass and critical dimensions of the manual and mechanical compaction hammers and compaction pedestals.

Warning – This test method involves potentially hazardous materials, operations and equipment. This method does not purport to address all of the safety problems associated with it use.

2. Apparatus

- Hand-operated compaction hammers and compaction pedestals conforming to the requirements of WAQTC FOP for AASHTO T 99/T 180, AASHTO T 245; and ASTM D 698/D 1557.
- Mechanical compaction hammers and pedestals conforming to the requirements of ATM 417, WAOTC FOP for AASHTO T 99/T 180, AASHTO T 245, and ASTM D 698/D 1557.
- Proctor and Marshall compaction molds, bases, collars and rubber plugs (roughly 50 mm (2") thick and cut to fit bottom of mold).
- Caliper capable of measuring to an accuracy of 0.005 inch.
- Calibrated ruler readable to 1/32 inch.
- Balance readable to 0.1 gram equipped with suspension apparatus and holder to permit weighing materials while suspended from the center of the scale in a water bath.
- Asphalt thermometer capable of measuring the hot-mix-asphalt temperature to within 5° F
- Oven: For asphalt set to 135°C (275°F), or specified compaction temperature, molds, tools and accessories required to prepare and extract six (6) Marshall Specimens.

3. Procedure for Verification of Physical Characteristics

1. Inspect and adjust the mechanical and hand-operated compaction hammers to conform to the requirements of ATM T 417, WAQTC FOP for AASHTO T 99/ T 180, AASHTO T 245; and ASTM D698 & D1557.

4. Physical Characteristics of Hand-Operated Manual Hammer and Pedestal

- 1. Asphalt: Inspect and adjust manual Marshall Hammer and compaction pedestal.
 - a. Using the caliper, measure and record the diameter of the rammer face by taking two readings 90° apart. The diameter of the face should average a minimum of 3.875 inches measured to the nearest 0.005 inch.
 - b. Lift the sliding weight up to the top of the guide rod and measure the drop height of the sliding weight to the nearest 1/16 inch from the bottom of the sliding weight face to the top of the foot sleeve, record measurement. The sliding weight should have a free fall of 18 ± 0.0625 (1/16) inch. Record measurement in decimal form.

- c. Remove the handle and sliding hammer weight from the guide rod. Weigh and record the slide weight mass to the nearest 1 gram. The hand-operated hammer should have a $4,536 \pm 9$ gram (10 \pm 0.02 lbs.) sliding weight (including safety finger guard if equipped).
- d. Measure and record the dimensions of the wooden post and the steel plate portions of the pedestal. Pedestals should consist of an 8 x 8 x 18 inch wooden post capped with a 12 x 12 x 1 inch steel plate. Verify sturdy construction of the pedestal: The wooden post should be free of cracks or splits and be secured by four angle brackets to a solid concrete slab with the steel cap firmly fastened to the post. The assembly shall be installed so the post is plumb and the cap is level.
- 2. Soils: Inspect and adjust manual Proctor hammer and compaction pedestal for conformance to AASHTO T 99 or T 180, or for ASTM D698 or D1557.

5. Physical Characteristics of Mechanically Operated Hammer and Pedestal

- 1. Asphalt: Inspect and adjust the mechanical Marshall Hammer as done in Part 4. Steps 1a, 1b, and 1c. When measuring the slide weight free fall dimension, raise the slide weight up the guide rod until the pick-up pins recede by contact with the disengagement bar, measure and record height from bottom of slide weight face to the top of the foot sleeve. When weighing slide weight, remove disengagement assembly from the top of the guide rod and slide weight off rod.
 - a. Measure and record the dimensions of the wooden post and the steel plate portions of the pedestal. Pedestals should consist of an 8 x 8 x 18 inch wooden post capped with a 12 x 12 x 1 inch steel plate.
 - b. Verify sturdy construction of the pedestal: The wooden post should be free of cracks or splits and be secured by four angle brackets to a solid concrete slab with the steel cap firmly fastened to the post. The assembly shall be installed so the post is plumb and the cap is level.
- 2. Soils: Inspect and adjust mechanical Proctor hammer and compaction pedestal for conformance to AASHTO T 99 or T 180, or for ASTM D698 or D1557. Note ASTM D1557 allows use of a sector face hammer.

6. Procedure for Calibration of Dynamic Characteristics of Asphalt Mixes

- 1. Asphalt preparation:
 - a. If asphalt sample is workable, split into at least six equal portions of 1250 ± 5 grams using the WAQTC Loaf Method. Place the six equal portions and the remaining asphalt into the oven and heat to compaction temperature, typically $135 \pm 5^{\circ}$ C ($275 \pm 9^{\circ}$ F). If not workable, place asphalt into oven and allow time for asphalt to return to a plastic state so splitting can be accomplished, split as indicated above, then return the six equal portions and the remaining asphalt to the oven to obtain compaction temperature.
 - b. Place Marshall mold assemblies and other asphalt handling tools in oven to preheat to compaction temperature. Use hot plate or oven to heat compaction face of mechanical and manual compaction hammers to 93 149°C (200 300°F).
- 2. Once asphalt and other materials have reached compaction temperature, use the extra asphalt to butter the mixing bowl and specimen preparation tools. Loosen up the mechanical compactor mechanism by compacting a portion of the extra asphalt with a minimum of 25 blows. Discard the partially compacted asphalt used to "warm up" the mechanical compactor. Next, alternately compact a Marshall Specimen using the manual compaction hammer and a Marshall Specimen using the

mechanical compaction hammer, until three specimens have been produced by each method. Follow the steps below in preparing the specimens.

- a. Remove one Marshall base, mold, and collar assembly from oven when ready to use. Place filter paper in the bottom of the mold.
- b. Remove one asphalt portion from oven, place in a mixing bowl, vigorously and briefly mix asphalt and scoop into mold assembly. Using the spatula, vigorously spade the asphalt in the mold 15 times around the perimeter and then 10 times over the interior. Smooth surface of the asphalt in the mold to a rounded, convex shape.
- c. Place a piece of filter paper on top of asphalt in mold, place mold assembly on compaction pedestal and secure with mold holder.
- d. Apply 50 blows, unless otherwise specified, of compaction effort. (Manual Hammer notes: Hold the hammer axis perpendicular to the mold assembly. AASHTO allows use of a guide bar fixed to the compaction pedestal to maintain perpendicular alignment of the hammer. ASTM prohibits use of guide bar as the natural wandering from true perpendicular produces a kneading action that enhances compaction. Care shall be taken to avoid adding body weight to the hammer by leaning or pressing down on the hammer. Compaction shall be done at a minimum rate of 40 blows per minute. The compaction hammer shall apply only one blow with each fall that means there shall not be a rebound impact.)
- e. Remove mold holder and collar, remove mold from base plate and flip over (180° turn), return mold to base plate, replace collar and mold holder, and apply an additional 50 blows of compaction effort.
- f. Remove mold assembly from compaction pedestal; remove collar and base plate from mold specimen, set mold with specimen aside to cool until cohesion of the sample will allow specimen extraction from the mold. (When specimens in the steel mold have cooled to the point where they can be handled without gloves, generally below 60°C (140°F), they can be extracted from the molds without damage if handled carefully.) Marshall Specimens should be allowed to cool over night at room temperature; however cooling may be accelerated by the use of fans.
- g. Clean surfaces of compaction equipment used.
- 3. Perform specific gravity measurements for each Marshall specimen according to AASHTO T 166, Method A.
 - a. Measure and record dry weight of cooled specimen.
 - b. Immerse specimen in water bath at $25 \pm 1^{\circ}$ C (77 $\pm 1.8^{\circ}$ F) for 4 ± 1 minute and record the immersed mass.
 - c. Remove the specimen from the water and quickly damp dry the specimen with a damp towel to produce a saturated surface dry condition, record the surface dry mass of the specimen.

7. Calibration Comparison and Adjustment for Asphalt Mixes

1. Calculate the bulk specific gravity of the specimens as follows, round and report to the nearest three decimal places, or thousandth:

Bulk Specific Gravity = A/(B - C)

Where:

A = mass in grams of sample in air;

B = mass in grams of surface-dry specimen in air; and

C = mass in grams of sample in water.

(Within each set prepared by a given hammer the densities shall not differ by more than 2.5 pcf for ½" and 3/4" mix and 3.0 pcf for 1" mix. If density consistency is not met then specimens shall be discarded and a new set of specimens prepared.)

2. Calculate the percent water absorbed by specimens (on volume basis) as follows:

Percent Water Absorbed by Volume = [(B-A)/(B-C)]*100

If percent water absorbed by the specimen is greater than 2% then paraffin coated specimens must be used to verify the mechanical compactor with the manual compactor. See AASHTO T275 or ASTM D1188.

- 3. Calculate the average specific gravity values for the mechanically compacted and the manually compacted specimens independently.
- 4. Calculate *W*, the percentage difference between the average specific gravity values for the two compaction methods. Calculation:

```
W = \% Difference = | (manual method avg. sp. G. - mechanical method avg. Sp. G.) |*100 / (manual method avg. Sp. G.)
```

If the absolute value of the difference between the results of the mechanical vs. the manual compaction method is 2.0% or less, the mechanical compaction hammer is ready for use.

5. If the difference is greater than 2.0%, adjust the weight or of the mechanical hammer and repeat the procedure until the mean value of the mechanical compaction hammer data varies from the mean value of the manual hammer data by 2.0% or less.

8. Procedure for Calibration of Dynamic Characteristics of Soils

- 1. Obtain at least 30 kg (66 lb) of soil classified as CL in accordance with Unified Soil Classification (ASTM D 2487) with liquid limit less than 50 and PI greater than 7. (ARML soil compaction samples typically meet this classification.)
- 2. Assure all the soil passes a #4 sieve and is at less than 3% moisture. Dry at 60° C or less, if needed. Pass material through splitter to assure uniform mixing.
- 3. Split out 5 portions of approximately 6500g each. Batch 5 moisture points, cover with plastic wrap and allow points to sit overnight to assure complete hydration of material. Using approximately 3, 5, 7, 9, 11% moisture typically works well for AMRL compaction sample material (Review the AMRL

- summary report and adjust moisture range as required for the reported proctor result. Use the reported optimum moisture and maximum density to double check the calibration specimen values.)
- 4. Using soil, as prepared above, determine the optimal moisture and maximum dry unit weight by the method appropriate for the mechanical compactor being calibrated. Pound each moisture point with both the mechanical and manual hammer, passing the sample through the #4 sieve before recompacting. Be careful to minimize drying of sample while re-sieving material.
- 5. Plot data points and determine the moisture/density curve for the manual and mechanical hammers.

9. Calibration Comparison and Adjustment for Soils

- 1. If *W*, the absolute value of the difference between the two maximum dry unit weights is less than 2.0%, the mechanical hammer is satisfactory for immediate use. If the difference *W* is greater than 2.0%, then obtain **TWO** additional sets of data, reusing the previously used soil. Determine *W* for the average of the three data sets for mechanical and manual hammer. If *W* is less than 2.0%, the mechanical hammer is satisfactory for use.
- 2. If W exceeds 2.0%, then add weight to or reduce the drop height of the mechanical hammer until 3 data sets are obtained with W less than 2.0%. If addition of greater than 10% of the mechanical hammer weight is needed, the mechanical compactor needs to be adjusted or rebuilt. If weight needs to be removed from the mechanical hammer, recheck and verify all hammer weight and drop height calibrations. If weight removal is STILL indicated, then reduce drop height to obtain W less than 2.0%.

10. Report

- 1. Calibrate all compaction hammers every 12 months or prior to use if the existing calibration is more than one (1) year old.
- 2. File original calibration certificate and test data with the calibrating laboratory.
- 3. Keep a copy of the calibration certificate with the Compaction Hammer

Γhis page intentionally left blank.		

Reserved for WAQTC Discipline Policy SP 3			

This page intentionally left blank.		

Random Sampling SP 4

1. Significance

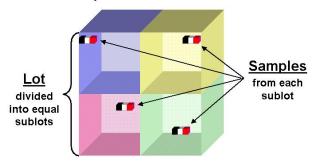
Sampling and testing are two of the most important functions in quality assurance (QA). Data from the tests are the tools with which the quality of product is controlled. For this reason, great care must be used in following standardized sampling and testing procedures. This practice is useful for determining the location or time, or both, to take a sample in order to minimize any unintentional bias on the part of the person taking the sample.

The selection procedures and examples in this standard provide a practical approach for ensuring that construction material samples are obtained in a random manner. Additional details concerning the number of sample increments, the number of samples, the quantities of material in each, and the procedures for extracting sample increments or samples from the construction lot or process are contained in the Materials Samples and Testing Frequency tables and the individual test procedures. This standard contains examples using road and paving materials. The concepts outlined here are applicable to the random sampling of any construction material.

2. Scope

The procedure presented here eliminates bias in sampling materials when followed carefully. Randomly selecting a set of numbers from a table or calculator will eliminate the possibility for bias. Random numbers are used to identify sampling times and/or locations within a lot or sublot. This method does not cover how to sample, but rather how to determine sampling times and/or locations.

3. Sampling Concepts


A lot is the quantity of material evaluated by QA procedures. A lot is a preselected quantity that may represent hours of production, a quantity or number of loads of material, or an interval of time. A lot may be comprised of several portions that are called sublots or units. The number of sublots comprising a lot will be determined by DOT&PF's specifications

Stratified Random Sampling: Stratified random sampling divides the lot into a specified number of sublots or units and then determines each sample location within a distinct sublot.

All random sampling shall be stratified random sampling unless otherwise directed.

Stratified Random Sampling

The lot is divided into two or more equal sublots. Samples are taken from each sublot

4. Instructions for Using the Three-Digit Table of Random Numbers

Table 1 consists of 1,000 numbers from 0.000 to 0.999. Each number appears only once in the Table of 100 rows by 10 columns. The Table is most effectively used when a row and column are randomly selected and the

entered value from the Table is then used for sample selection. Several methods of selection of row and column are available including:

Use of the RANDOM function in pocket calculators (if available) to select row and column. For example, for selection of row: the RANDOM function generates 0.620. Then the row to be used is $0.620 \times$ the number of rows = 0.620(100) = 62.0 or 62. Likewise for the column, the RANDOM function generates 0.958 and the column is 0.958(10) = 9.58 or 10. The random number to be used for the sample is in row 62, column 10 = 0.460.

Similarly, if Microsoft Excel is available, the RAND function can be used to generate random numbers for selection of row and column. This can be accomplished by selecting an open cell in Excel entering: =RAND() or: =rand(). Do this once for a row and a second for column, multiplying as explained above.

Start a digital stop watch and stop it several seconds later, using the decimal part of the seconds as multipliers to determine your Row/Column number(s).

Table 1

Row\										
Column	1	2	3	4	5	6	7	8	9	10
1	0.910	0.921	0.889	0.985	0.697	0.562	0.701	0.284	0.534	0.519
2	0.769	0.814	0.210	0.758	0.846	0.113	0.312	0.716	0.975	0.729
3	0.722	0.220	0.726	0.942	0.825	0.177	0.120	0.558	0.979	0.451
4	0.872	0.772	0.338	0.374	0.000	0.387	0.491	0.647	0.445	0.053
5	0.850	0.836	0.145	0.216	0.270	0.109	0.590	0.882	0.740	0.434
6	0.291	0.780	0.782	0.306	0.470	0.712	0.252	0.630	0.231	0.694
7	0.295	0.502	0.615	0.541	0.765	0.092	0.376	0.523	0.551	0.733
8	0.761	0.370	0.278	0.288	0.256	0.352	0.064	0.195	0.334	0.652
9	0.790	0.750	0.402	0.182	0.577	0.391	0.214	0.481	0.680	0.348
10	0.547	0.011	0.355	0.587	0.359	0.310	0.192	0.545	0.487	0.925
11	0.868	0.049	0.505	0.139	0.705	0.007	0.633	0.754	0.124	0.280
12	0.384	0.968	0.483	0.203	0.513	0.583	0.637	0.477	0.957	0.515
13	0.996	0.665	0.658	0.412	0.149	0.673	0.103	0.344	0.619	0.263
14	0.804	0.242	0.662	0.135	0.248	0.173	0.398	0.459	0.744	0.156
15	0.440	0.331	0.128	0.737	0.529	0.313	0.683	0.839	0.636	0.245
16	0.042	0.027	0.337	0.142	0.196	0.036	0.516	0.074	0.666	0.277
17	0.497	0.903	0.444	0.822	0.886	0.230	0.463	0.234	0.185	0.068
18	0.508	0.999	0.469	0.480	0.448	0.544	0.121	0.260	0.843	0.078
19	0.672	0.871	0.540	0.025	0.548	0.978	0.495	0.138	0.202	0.281
20	0.031	0.059	0.241	0.431	0.897	0.198	0.559	0.946	0.206	0.003
21	0.775	0.668	0.441	0.993	0.644	0.634	0.591	0.604	0.341	0.865
22	0.174	0.100	0.324	0.651	0.935	0.110	0.292	0.747	0.213	0.249
23	0.465	0.309	0.961	0.006	0.401	0.950	0.038	0.305	0.907	0.166
24	0.369	0.046	0.484	0.170	0.377	0.416	0.640	0.967	0.399	0.608
25	0.597	0.864	0.063	0.725	0.146	0.687	0.330	0.394	0.693	0.928
26	0.052	0.629	0.351	0.586	0.896	0.020	0.860	0.490	0.881	0.913
27	0.892	0.922	0.360	0.253	0.127	0.067	0.189	0.815	0.084	0.018
28	0.832	0.159	0.178	0.618	0.800	0.255	0.890	0.456	0.757	0.383
29	0.095	0.349	0.157	0.426	0.554	0.992	0.413	0.885	0.924	0.148

30	0.778	0.981	0.237	0.906	0.703	0.970	0.874	0.810	0.949	0.472
31	0.917	0.767	0.002	0.714	0.899	0.867	0.824	0.326	0.621	0.561
32	0.760	0.593	0.589	0.696	0.835	0.600	0.856	0.682	0.415	0.518
33	0.180	0.625	0.550	0.447	0.817	0.689	0.614	0.582	0.678	0.646
34	0.301	0.532	0.329	0.500	0.436	0.575	0.536	0.564	0.671	0.372
35	0.397	0.258	0.653	0.290	0.557	0.418	0.358	0.386	0.888	0.322
36	0.080	0.347	0.244	0.251	0.176	0.187	0.443	0.212	0.315	0.977
37	0.379	0.155	0.411	0.507	0.009	0.041	0.308	0.169	0.137	0.066
38	0.062	0.201	0.831	0.297	0.098	0.998	0.265	0.105	0.094	0.927
39	0.863	0.884	0.916	0.183	0.895	0.130	0.948	0.087	0.920	0.215
40	0.717	0.781	0.984	0.037	0.909	0.706	0.973	0.304	0.877	0.802
41	0.635	0.667	0.934	0.795	0.763	0.592	0.158	0.699	0.838	0.656
42	0.624	0.891	0.731	0.806	0.692	0.617	0.585	0.681	0.980	0.649
43	0.012	0.660	0.457	0.482	0.724	0.553	0.745	0.820	0.503	0.439
44	0.364	0.546	0.514	0.343	0.571	0.407	0.610	0.866	0.336	0.535
45	0.400	0.720	0.261	0.293	0.560	0.421	0.389	0.425	0.218	0.325
46	0.179	0.446	0.279	0.318	0.777	0.243	0.211	0.307	0.222	0.275
47	0.133	0.140	0.969	0.076	0.033	0.631	0.236	0.161	0.396	0.129
48	0.311	0.172	0.663	0.752	0.930	0.154	0.122	0.197	0.485	0.983
49	0.015	0.250	0.517	0.951	0.090	0.855	0.165	0.880	0.805	0.816
50	0.869	0.837	0.848	0.741	0.773	0.008	0.784	0.040	0.912	0.709
51	0.926	0.627	0.958	0.894	0.734	0.723	0.638	0.670	0.937	0.798
52	0.314	0.791	0.047	0.727	0.556	0.823	0.282	0.620	0.588	0.492
53	0.378	0.645	0.136	0.403	0.474	0.346	0.410	0.613	0.435	0.264
54	0.257	0.531	0.499	0.150	0.385	0.289	0.086	0.111	0.353	0.079
55	0.698	0.004	0.175	0.143	0.972	0.997	0.029	0.061	0.965	0.093
56	0.940	0.730	0.794	0.762	0.826	0.858	0.648	0.616	0.787	0.584
57	0.829	0.900	0.953	0.793	0.274	0.566	0.423	0.117	0.809	0.254
58	0.466	0.989	0.419	0.395	0.936	0.579	0.914	0.643	0.286	0.083
59	0.299	0.224	0.449	0.776	0.060	0.473	0.235	0.417	0.898	0.097
60	0.227	0.238	0.205	0.302	0.748	0.878	0.017	0.601	0.186	0.987
61	0.085	0.131	0.526	0.075	0.163	0.430	0.363	0.032	0.104	0.019
62	0.039	0.537	0.043	0.259	0.141	0.494	0.171	0.609	0.428	0.460
63	0.188	0.088	0.654	0.690	0.316	0.438	0.808	0.964	0.193	0.549
64	0.167	0.152	0.462	0.267	0.320	0.160	0.641	0.199	0.677	0.901
65	0.342	0.096	0.099	0.622	0.786	0.028	0.569	0.947	0.755	0.990
66	0.611	0.818	0.932	0.857	0.081	0.408	0.427	0.840	0.207	0.168
67	0.077	0.686	0.594	0.605	0.573	0.669	0.380	0.246	0.908	0.876
68	0.107	0.801	0.718	0.498	0.893	0.707	0.530	0.797	0.453	0.350
69	0.598	0.327	0.406	0.904	0.675	0.626	0.509	0.861	0.382	0.414
70	0.184	0.366	0.555	0.455	0.021	0.323	0.684	0.071	0.268	0.108
71	0.153	0.164	0.132	0.228	0.939	0.070	0.209	0.527	0.887	0.919
72	0.057	0.452	0.266	0.089	0.356	0.217	0.971	0.974	0.051	0.574

73	0.420	0.807	0.732	0.303	0.715	0.743	0.014	0.580	0.873	0.830
74	0.388	0.512	0.833	0.982	0.676	0.373	0.768	0.405	0.659	0.862
75	0.779	0.501	0.736	0.679	0.538	0.010	0.273	0.335	0.581	0.371
76	0.612	0.796	0.764	0.572	0.437	0.576	0.409	0.704	0.467	0.232
77	0.294	0.271	0.811	0.602	0.700	0.995	0.433	0.854	0.239	0.933
78	0.875	0.262	0.367	0.929	0.102	0.623	0.476	0.711	0.819	0.915
79	0.655	0.181	0.345	0.506	0.106	0.570	0.918	0.134	0.528	0.496
80	0.963	0.285	0.650	0.024	0.317	0.520	0.565	0.960	0.542	0.147
81	0.050	0.223	0.986	0.522	0.125	0.751	0.988	0.956	0.300	0.001
82	0.114	0.783	0.533	0.056	0.221	0.381	0.789	0.287	0.058	0.026
83	0.911	0.392	0.847	0.849	0.319	0.298	0.943	0.362	0.944	0.606
84	0.828	0.719	0.954	0.708	0.552	0.458	0.424	0.853	0.905	0.691
85	0.116	0.821	0.191	0.082	0.879	0.488	0.661	0.035	0.595	0.702
86	0.739	0.938	0.045	0.746	0.013	0.504	0.842	0.735	0.759	0.442
87	0.728	0.803	0.771	0.091	0.632	0.664	0.931	0.792	0.225	0.328
88	0.753	0.710	0.475	0.945	0.785	0.657	0.454	0.721	0.118	0.200
89	0.486	0.543	0.034	0.511	0.340	0.404	0.799	0.607	0.883	0.022
90	0.639	0.479	0.269	0.468	0.354	0.365	0.333	0.429	0.464	0.229
91	0.461	0.226	0.123	0.390	0.525	0.493	0.568	0.283	0.115	0.044
92	0.422	0.240	0.208	0.219	0.272	0.112	0.742	0.144	0.065	0.204
93	0.966	0.073	0.030	0.233	0.361	0.596	0.126	0.276	0.994	0.962
94	0.151	0.119	0.194	0.450	0.991	0.959	0.055	0.023	0.072	0.841
95	0.852	0.685	0.162	0.774	0.845	0.738	0.770	0.005	0.339	0.976
96	0.813	0.952	0.069	0.539	0.941	0.048	0.749	0.016	0.766	0.695
97	0.603	0.859	0.628	0.902	0.870	0.827	0.393	0.923	0.812	0.524
98	0.489	0.510	0.521	0.756	0.713	0.478	0.788	0.247	0.296	0.563
99	0.578	0.101	0.567	0.674	0.834	0.375	0.642	0.471	0.321	0.844
00	0.332	0.599	0.955	0.688	0.190	0.357	0.368	0.432	0.054	0.851

5. Alternate Procedures for Random Number Selection

Random numbers may be generated using the RANDOM function in pocket calculators and spreadsheets. For example, the RANDOM function generates 0.620. The number 0.620 should be entered as the random number and multiplied by the quantity under consideration to determine the sample location.

Similarly, if Microsoft Excel is available, the RAND function can be used to generate random numbers for selection of the sample location.

6. Random Number Sampling Procedures

Determine the number of random numbers necessary for each sample location from Table 2.

Table 2

	# of Random Numbers
Sample Type or WAQTC Method	Required
Oil from plant or truck	1
T 2/T 168 from Belt	1
T 2/T 168 from Truck	1
T 2/T 168 from Roadway	2
T 2/T 168 from Windrow	1
TM 11 Core	2
TM 2 Plastic Concrete	1
TP 83 Grout	1

Multiply the random number by the unit quantity in each sublot to determine sample location. When a sample is taken from a discrete location such as a truck load, and the sample method treats the load as a unit, sample per the procedure from the truck that contains the determined location.

Sample locations are for that sample only and are not reused for other samples. This would apply for samples of in place soil, aggregate, hot mix asphalt or cores. Each would require a separate set of random numbers. When two random numbers are used, such as in hot mix asphalt, the first random number would be multiplied by the length to determine where the sample would be taken along the project. The second would be multiplied by the width to determine where, widthwise, the sample would be taken.

When a test procedure does not allow tests from a portion of the lot being considered, those areas may be deleted from consideration. As an example, paving is 14 feet wide but testing does not allow tests within one foot of the edge. Testing must be done only in the 12 foot section in the middle of the width.

Two random numbers Example:

Given: Sublot length = 3,342 feet (when the 1 foot edge removed, we consider just 3340 feet)

Sublot width = 14 feet (when the 1 foot edge removed, we consider just 12 feet)

Random numbers for Row = 0.0262 and 0.3687 Random numbers for Column = 0.1696 and 0.3410

Find: length and width locations of sample

Solution: First Row number is: 100(0.0262) = 2.62 or Row 3

First Column number is: 10(0.1696) = 1.696 or Column 2

From Table 1, Row 3, Column 2, the random number for Length is: 0.220

So the sample location for length is: $0.220(3,340^{\circ}) = 734.8$ or 735° from beginning

If sampling material requiring only 1 random number this sample is located.

Second Row number is: 100(0.3687) = 36.87 or Row 37 Second Column number is: 10(0.3410) = 3.41 or Column 3

From Table 1, Row 37, Column 3, the random number for width is: 0.411

So the sample location for width is: 12(0.411) = 5' from the left edge of the sublot

When developing a sampling plan, determine a new set of random numbers for each sample required. For example, if the testing frequency specified indicates there will be twenty samples from a material, determine twenty different random number identified locations for the plan.

Additional examples are available in the Random Number section of all WAQTC modules and in ASTM D3665.

Γhis page intentionally left blank.		

ACI 301 Reference SP 5

1. Scope

This standard practice provides a table of equivalents when using ACI Concrete design methods. Since ACI uses ASTM exclusively, this table provides a reference to determine appropriate methods that are standard with DOT&PF.

ASTM	Title	WAQTC/AASHTO
A184	Standard Specification for Welded Deformed Steel Bar Mats for Concrete Reinforcement	M 54
A 185	Standard Specification for Steel Welded Wire Reinforcement, Plain, for Concrete	M 55
A 416	Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete	M 203
A 421	Standard Specification for Uncoated Stress-Relieved Steel Wire for Prestressed Concrete	M 204
A 496	Standard Specification for Steel Wire, Deformed, for Concrete Reinforcement	M 225
A 497	Standard Specification for Steel Welded Wire Reinforcement, Deformed, for Concrete	M 221
A 615	Standard Specification for Deformed and Plain Carbon- Steel Bars for Concrete Reinforcement	M 31
A 722	Standard Specification for Uncoated High-Strength Steel Bars for Prestressing Concrete	M 275
A 775	Standard Specification for Epoxy-Coated Steel Reinforcing Bars	M 284
A 82	Standard Specification for Steel Wire, Plain, for Concrete Reinforcement	M 32
A 996	Standard Specification for Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement	M 322
C 1064	Standard Test Method for Temperature of Freshly Mixed Hydraulic-Cement Concrete	WAQTC FOP for T 309
C 1107	Standard Specification for Packaged Dry, Hydraulic- Cement Grout (Nonshrink)	TP 83
C 1240	Standard Specification for Silica Fume Used in Cementitious Mixtures	M 307
C 138	Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete	WAQTC FOP for T 121
C 143	Standard Test Method for Slump of Hydraulic-Cement Concrete	WAQTC FOP for T 119
C 150	Standard Specification for Portland Cement	M 85
C 171	Standard Specification for Sheet Materials for Curing Concrete	M 171
C 172	Standard Practice for Sampling Freshly Mixed Concrete	WAQTC TM 2
C 192	Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory	R 39

ASTM	Title	WAQTC/AASHTO
C 231	Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method	WAQTC FOP for T 152
C 260	Standard Specification for Air-Entraining Admixtures for Concrete	M 154
C 309	Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete	M 148
C 31	Standard Practice for Making and Curing Concrete Test Specimens in the Field	WAQTC FOP for T 23
C 33	Standard Specification for Concrete Aggregates	M 6/M 80
C 330	Standard Specification for Lightweight Aggregates for Structural Concrete	M 195
C 39	Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens	T 22
C 494	Standard Specification for Chemical Admixtures for Concrete	M 194
C 595	Standard Specification for Blended Hydraulic Cements	M 240
C 618 REV A	Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete	M 295
C 685	Standard Specification for Concrete Made by Volumetric Batching and Continuous Mixing	M 241
C 881	Standard Specification for Epoxy-Resin-Base Bonding Systems for Concrete	M 235
C 989	Standard Specification for Slag Cement for Use in Concrete and Mortars	M 302
D1557	Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft ³ (2,700 kN-m/m ³))	WAQTC FOP for T 99/ T 180
D 1751	Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types)	M 212
D 1752	Standard Specification for Preformed Sponge Rubber Cork and Recycled PVC Expansion Joint Fillers for Concrete Paving and Structural Construction	M 153
D 698	Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft³ (600 kN-m/m³))	WAQTC FOP for T 99/ T 180
D 98	Standard Specification for Calcium Chloride	M 144
M 994	Standard Specification for Preformed Expansion Joint Filler for Concrete (Bituminous Type)	M 33

Rounding and Precision in Materials Test Reporting SP 6

1. Scope

This standard practice provides a procedure for rounding off numbers generated during the process of calculating materials testing results when a specific test method does not specify rounding procedures.

2. Calculation Procedures

All test results should be reported to a significant, practical, and accurate value. This can be achieved using the following procedures:

- 1. If the first digit to the right of the place to which the calculation is to be reported ends in 0, 1, 2, 3, or 4, the value of that place is not changed. If the rounded number ends in 0, the 0 should be written down. For example, if the result of a calculation is to be rounded to the tenth then 5.6489 rounds to 5.6.
- 2. If the first digit to the right of the place to which the calculation is to be reported ends in 5, 6, 7, 8, or 9, the value of that place is increased by one. For example, if the result of a calculation is to be rounded to the tenth, then 5.6543 rounds to 5.7; 7.9722 rounds to 8.0; 0.054 rounds to 0.1.
- 3. As far as practicable using the calculating device or forms supplied, carry out calculations with the observed values exactly and round only the final result.

Γhis page intentionally left blank.		
This page interiorating for examin		

Determination of Outlier Test Results SP 7

1. Scope

This standard practice provides a mechanism for rejecting individual test values that may misrepresent the physical properties of a material lot. The method statistically identifies a non-representative "outlier" and justifies its removal from the remaining test data for the lot.

2. General

- 1. When a test result is clearly a result of a gross deviation from prescribed sampling or testing procedure, the test result should be discarded, without further analysis. When no direct evidence of sampling and/or testing errors exists, the lot data will be statistically evaluated for the presence of an outlier.
- 2. An outlying test result will be assumed to be non-characteristic of the overall quality of the material tested. Outlying test results will be excluded from the price adjustment calculation, by either documental evidence or through statistical analysis.

3. Basis of Statistical Criteria For Outliers

All test results in a lot are included in the calculation of the numerical value of a sample criterion (or statistic), which is then compared with a critical value based on the theory of random sampling from a normal distribution to determine whether the doubtful test result is to be retained or rejected. The critical value is that value of the sample criterion that would be exceeded by chance with 5% total probability. This 5% probability is the risk of erroneously rejecting a good observation and is the Department's defined outlier threshold limit.

4. Procedure

1. Calculate the arithmetic mean [x] of all test results for the lot using the following formula:

$$\frac{1}{x} - \frac{\sum X}{n}$$

Where:

 $\sum =$ summation of

X = individual test value to xn n = total number of test values

And where: x is rounded to the nearest 0.1 percent for density and all sieve sizes except the 0.075 mm (No. 200) sieve.

2. Calculate sample standard deviation (s) of all test results for the lot using the following formula:

$$s = \sqrt{\frac{n\sum(x^2) - (\sum x)^2}{n(n-1)}}$$

Where:

s = standard deviation of the lot

 $\sum (x^2)$ summation of the squares of individual test values.

x is rounded to the nearest 0.01 percent for asphalt content and the 0.075 mm (No. 200) sieve.

 $(\sum x)2=$ square of the summation of the individual test values. n = total number of test values

- 3. The lot standard deviation (s) is rounded to the nearest 0.01 for density and all sieve sizes except the 0.075 mm (No. 200) sieve. The lot standard deviation(s) is rounded to the nearest 0.001 for asphalt content and the 0.075 mm (No. 200) sieve.
 - **Note 1:** This is the sample standard deviation and not the population (sigma) standard deviation. Many computer spreadsheet programs have formulas for population standard deviation and not sample standard deviation.
- 4. Calculate the difference between the arithmetic mean (x) and the lowest test result (XL); and between the highest test result (XH) and the arithmetic mean x
- 5. Calculate test criterion, TL or TH, of the test result with the greatest difference from the arithmetic mean (\bar{x})
- 6. If the lowest test result (X_L) has the greatest difference from the arithmetic mean x, then T_L is calculated as follows:

$$T_L = \frac{(X_L - \bar{x})}{s}$$

7. If the highest test result (X_H) has the greatest difference from the arithmetic mean (x), then T_H is calculated as follows:

$$T_H = \frac{(X_H - \bar{x})}{s}$$

Determine critical T value from Table 1.

- 8. If T_L or T_H, whichever is larger, exceeds the critical T value from Table 1, then that test result is an outlier and will be excluded from the price adjustment calculations. If one or more additional test result(s) has the same value as the outlier, then none of the test results will be outliers and all test results will be included in the price adjustment calculations. If T_L and T_H are equal, then neither test result will be an outlier and all test results will be included in the price adjustment calculations.
 - *Note 2:* This test method will not be reapplied to identify additional "outliers" based on the new arithmetic mean and sample standard deviations calculated after the "outliers" have been excluded.

Table 1
Critical T Values for a Sample Standard Deviation

Number Of Samples, n	Critical T
3	1.155
4	1.481
5	1.715
6	1.887
7	2.020
8	2.126
9	2.215
10	2.290
11	2.355
12	2.412
13	2.462
14	2.507
15	2.549
16	2.585
17	2.620

5. Example 1

1. Consider the following test results on percent asphalt content:

2. Calculate the arithmetic mean (\bar{x}) :

$$(\bar{x}) = \underline{5.3+5.6+5.8+5.8+5.9+5.9+5.9+6.0+6.0+6.0}$$

$$(\bar{x})_{=5.82\%}$$

3. Calculate the sample standard deviation:

$$s = \sqrt{\frac{n\sum(x^2) - (\sum x)^2}{n(n-1)}}$$

Where:
$$\Sigma(x)2 = 339.16$$

 $(\Sigma x)2 = 3,387.24$
n = 10
s = 0.220

4. The difference between the arithmetic mean (\bar{x}) and the lowest test result is:

$$(5.82\% - 5.3\%) = 0.52\%$$

5. The difference between the highest test result and the arithmetic mean (\bar{x}) is:

$$(6.0\% - 5.82\%) = .18\%$$

6. Calculate T_L or T_H . Since the lowest test result (5.3%) had the greatest difference from the arithmetic mean (\bar{x}) it is evaluated to determine if it is an outlier. TL is calculated as follows:

$$T_L = (5.82\% - 5.3\%) \div 0.220$$

 $T_L = 2.364$

7. Determine Critical T. From Table 1, the critical T for 10 samples is 2.290. Since $T_L = 2.364$ is greater than 2.290, the test result of 5.3% is an outlier and is excluded from the price adjustment calculations.

6. Example 2

1. Consider the following test result on percent asphalt content:

2. Calculate arithmetic mean (\bar{x}) :

$$x = \underline{5.3+5.8+5.8+5.8+5.9+5.9+6.0+6.0+6.0+6.5}$$

$$x = 5.90\%$$

3. Calculate sample standard deviation:

$$s = \sqrt{\frac{n\sum(x^2) - (\sum x)^2}{n(n-1)}}$$

Where:

$$\Sigma(x)2 = 348.88$$

 $(\Sigma x)2 = 3,481.00$
n = 10
s = 0.294

4. The difference between the arithmetic mean x and the lowest test result is:

$$(5.90\% - 5.3\%) = 0.6\%$$

5. The difference between the highest test result and the arithmetic mean (x) is:

$$(6.5\% - 5.90\%) = 0.6\%$$

6. Calculate T_L or T_H . Since the lowest test result (5.3%) and the highest test result (6.5%) have the same difference from the arithmetic mean (\bar{x}) , both T_L and T_H are calculated.

$$T_L = (5.90\% - 5.3\%) \div 0.294$$

 $T_H = (6.5\% - 5.90\%) \div 0.294$

$$T_L = T_H = 2.041$$

7.	Since T_L and T_H are equal, neither test result is considered to be an outlier and all test results are included in the price adjustment calculation.					

This page intentionally left blank.							

Standard Practice for Standardization of Pressure Type Air Meter SP 8

1. Scope

This practice covers the standardization of pressure type air meters used to determine the air content of freshly mixed concrete. Standardization procedures are developed to meet AASHTO T 152.

Note: This practice is equipment specific for two models of air meters currently in use by regional/field laboratories.

2. Apparatus

- Press-Ur-Meter (Charles R. Watts Company and Gilson)
- Appropriate standardization vessels for the air meters listed. Standardization vessels will have either be a
 vessel with an internal volume equal to 5 percent of the volume of the measuring bowl, or a vessel to
 place into the measuring bowl conforming to Note 1 in AASHTO T 152 and also equal to 5 percent.
 Regardless of type, the effective volume of the vessel should be checked.

3. Standardization Procedure for the Press-Ur-Meter:

- 1. Fill the measuring bowl with water.
- 2. Screw the straight tube into the threaded petcock hole on the underside of the cover. Clamp the cover assembly onto the measuring bowl with the tube extending down into the water.
- 3. With both petcocks open, add water through the petcock having the tubing extension, until all air is forced out the opposite petcock. Leave both petcocks open.
- 4. Pump air pressure to 0 percent or to the previous Initial Pressure line. Wait a few seconds for the compressed air to cool to ambient temperature, then stabilize the gauge needle at the assumed initial pressure by pumping up or bleeding off air, as necessary.
- 5. Close both petcocks and immediately press down on the air release lever exhausting the air into the measuring bowl. Wait a few seconds until the gauge needle is stabilized, tapping lightly on the gauge to keep gauge needle from sticking. If all the air was eliminated and the assumed Initial Pressure line was correct, the gauge should read 0 percent. If two or more tests show a consistent variation from 0 percent in the result, then change the Initial Pressure line to compensate for the variation, or remove the gauge glass and reset the gauge needle to 0 percent by turning the gauge's standardization screw. Use the newly established "Initial Pressure" line for subsequent tests.
- 6. Screw the curved tube into the outer end of the petcock with the straight tube below and, by pressing on the air release lever and controlling the flow with the petcock lever, fill the 5 percent calibrating vessel (345 ml) level full of water from the measuring bowl.
- 7. Release the air pressure at the free petcock. Open the other petcock and let the water in the curved pipe run back into the measuring bowl. There is now 5 percent air in the measuring bowl.
- 8. Pump air pressure to the Initial Pressure as determined in Step 5. Wait a few seconds for the compressed air to cool to ambient temperature and then stabilize the gauge needle at the assumed zero point by pumping up or bleeding off air, as necessary.
- 9. Close both petcocks and immediately press down on the air release lever exhausting the air into the measuring bowl. Wait a few seconds until the gauge needle is stabilized, tapping lightly on the gauge to keep gauge needle from sticking. If all the air was eliminated and the assumed Initial Pressure line was correct, the gauge should read 5 percent.

- 10. If two or more consistent tests show that the gauge at 5 percent air reads incorrectly in excess of 0.2 percent, then remove the gauge glass and reset the gauge needle to 5 percent by adjusting the gauge's standardization screw.
- 11. When the gauge reads correctly at 5 percent, additional water may be withdrawn in the same manner to check results at 10 percent.

4. Standardization Using Internal Standardization Vessel

- 1. Fill the measuring bowl with water.
- 2. Clamp the cover assembly onto the measuring bowl.
- 3. With both petcocks open, add water through one petcock, until all air is forced out the opposite petcock. Leave both petcocks open.
- 4. Pump air pressure to 0 percent or to the previous Initial Pressure Line. Wait a few seconds for the compressed air to cool to ambient temperature, then stabilize the gauge needle at the assumed zero point by pumping up or bleeding off air, as necessary.
- 5. Close both petcocks and immediately press down on the air release lever exhausting the air into the measuring bowl. Wait a few seconds until the gauge needle is stabilized, tapping lightly on the gauge to keep gauge needle from sticking. If all the air was eliminated and the assumed Initial Pressure line was correct, the gauge should read 0 percent. If two or more tests show a consistent variation from 0 percent in the result, then change the Initial Pressure line to compensate for the variation, or remove the gauge glass and reset the gauge needle to 0 percent by turning the gauge's standardization screw. Use the newly established "Initial Pressure" line for subsequent tests.
- 6. Release the pressure and remove the cover assembly.
- 7. Place the Internal Standardization Vessel into the measuring bowl, replace the cover assembly and refill as in step 3.
- 8. Pump the air pressure to the Initial Pressure Line allowing a few seconds for the gauge needle to stabilize.
- 9. Verify there is water standing in both petcocks and then close them.
- 10. Release to air into the measuring bowl by pressing down on the air release lever. Tap the gauge lightly and when stable, the meter should read 5 percent. If two or more consistent tests show that the gauge at 5 percent air reads incorrectly in excess of 0.2 percent, then remove the gauge glass and reset the gauge needle to 5 percent by adjusting the gauge's standardization screw and re-check.

5. Report

- 1. Report the results of the standardization as well as noting any adjustments or repairs made.
- 2. Label the meter with a sticker noting the month and year of the standardization.

This page intentionally left blank.								

Worksheets with Examples SP 10

1. Scope

This standard practice includes copies of all the standard forms developed for use on DOT&PF projects. Examples have been included to help clarify their use.

Calculation

Constant Mass for Aggregates:

Calculate constant mass using the following formula:

$$\frac{M_p - M_n}{M_p} \times 100 = \% \text{ Change}$$

Where: $M_p = previous mass measurement$

 M_n = new mass measurement

Example:

Mass of container: 1232.1 g

Mass of container& sample after first drying cycle: 2637.2 g

Mass, M_p , of possibly dry sample: 2637.2 g - 1232.1 g = 1405.1 g

Mass of container and dry sample after second drying cycle: 2634.1 g

Mass, M_n , of dry sample: 2634.1 g - 1232.1 g = 1402.0 g

$$\frac{1405.1 \ g - 1402.0 \ g}{1405.1 \ g} \times 100 = 0.22\%$$

0.22 percent is not less than 0.10 percent, so continue drying

Mass of container and dry sample after third drying cycle: 2633.0 g

Mass, M_n , of dry sample: 2633.0 g - 1232.1 g = 1400.9 g

$$\frac{1402.0g - 1400.9g}{1402.0g} \times 100 = 0.08\%$$

0.08 percent is less than 0.10 percent, so constant mass has been reached for an aggregate, but continue drying for soil.

Moisture Content Aggregate and Soils:

Calculate the moisture content, as a percent, using the following formula:

$$w = \frac{M_W - M_D}{M_D} \times 100$$

Where:

w = moisture content, percent

 $M_W = wet mass$

$$M_D = dry mass$$

Example:

Mass of container: 1232.1 g

Mass of container and wet sample: 2764.7 g

Mass, M_W , of wet sample: 2764.7 g - 1232.1 g = 1532.6 g Mass of container and dry sample (COOLED): 2633.0 g Mass, M_D , of dry sample: 2633.0 g - 1232.1 g = 1400.9 g

$$w = \frac{1532.6g - 1400.9g}{1400.9g} \times 100 = \frac{131.7g}{1400.9g} \times 100 = 9.39\% \ report 9.4\%$$

Example Calculations ATM 204

Calculate the liquid limit according to Method B as follows:

$$LL = (W_N)(N/25)^{0.121}$$

N	$(N/25)^{0.121}$	N	$(N/25)^{0.121}$
22	0.985	26	1.005
23	0.990	27	1.009
24	0.995	28	1.014
25	1.000		
	$LL = (W_N)(N$	$(/25)^{0.121}$	

where

LL = liquid limit

 W_N = moisture content of sample at N blows

N = number of blows

Example:

$$W_N = 16.0 \%$$
 and $N = 23$

$$LL = (16.0)(23/25)^{0.121} = 15.8$$
, say 16%

The moisture content is the Plastic Limit (PL). It is advisable to run several trials on the same material to ensure a proper determination of the Plastic Limit of the soil.

The Plasticity Index (PI) of the soil is equal to the difference between the Liquid Limit (LL) and the Plastic Limit (PL).

Example Calculation

Container	Container Mass, g	Container and Wet Soil Mass, g	Wet Soil Mass, g	Container and Dry Soil Mass, g	Dry Soil Mass, g
1	14.44	22.65	8.21	21.45	7.01
2	14.18	23.69	9.51	22.81	8.63

Water Mass, g	Moisture Content	Plastic Limit
1.20	17.1	17
0.88	10.2	10

$$PI = LL - PL$$

Examples: #

#1

$$LL = 34$$
 and $PL = 17$

PI = 34 - 17 = 17

#2

$$LL = 16$$
 and $PL = 10$

PI = 16 - 10 = 6

Example Calculations ATM 207

Volume

1b. Calculate the wet density, in kg/m³ (lb/ft³), by dividing the wet mass from Step 7 by the appropriate volume from Table 1 or Table 2.

Example – Methods A or C mold:

Wet mass = 1.916 kg (4.22 lb)

$$\frac{1.1916 \; kg}{0.000943 \; m^3} = 2023 kg/m^3 \; Wet \; Density^* \qquad \frac{4.22 \; lb}{0.0333 ft^3} = 126.7 lb/ft^3 \; Wet \; Density^*$$

^{*} Differences in wet density are due to rounding in the respective calculations.

Measured Volume

1c. Calculate the wet density, in kg/m³ (lb/ft³), by dividing the wet mass by the measured volume of the mold (T 19).

Example – Methods A or C mold:

39

Wet mass = 1.916 kg (4.22 lb)

Measured volume of the mold = 0.000946m³ (0.0334 ft³)

$$\frac{1.1916 \ kg}{0.000946 \ m^3} = 2025 kg/m^3 \ Wet \ Density^* \qquad \frac{4.22 \ lb}{0.0334 ft^3} = 126.3 lb/ft^3 \ Wet \ Density^*$$

2. Calculate the dry density as follows.

$$\rho_d = \left(\frac{\rho_w}{w + 100}\right) \times 100 \quad or \quad \rho_d = \frac{\rho_w}{\left(\frac{w}{100}\right) + 1}$$

Where:

 ρ_d = Dry density, kg/m³ (lb/ft³)

 $\rho_{\rm w}$ = Wet density, kg/m³ (lb/ft³)

w = Moisture content, as a percentage

Example:

 ρ_w = 2030 kg/m³ (126.6 lb/ft³) and w = 14.7%

$$\rho_d = \left(\frac{2030\,kg/m^3}{14.7 + 100}\right) \times 100 = 1770\;kg/m^3 \quad \rho_d = \left(\frac{126.6\,lb/ft^3}{14.7 + 100}\right) \times 100 = 110.4\,lb/ft^3$$

or

$$\rho_d = \left(\frac{2030\,kg/m^3}{\frac{14.7}{100} + 1}\right) = 1770\;kg/m^3\;\;\rho_d = \left(\frac{126.6\,lb/ft^3}{\frac{14.7}{100} + 1}\right) = 110.4\,lb/ft^3$$

Example Calculations ATM 207 Appendix A

Sample Calculations English:

Maximum laboratory dry density (D_f): 140.4 lb/ft³

Percent coarse particles (P_c): 27%

Percent fine particles (P_f): 73%

Mass per volume of coarse particles (k): $(2.697)(62.4) = 168.3 \text{ lb/ft}^3$

$$D_d = \frac{100 \times D_f \times k}{\left(D_f \times P_c\right) + \left(k \times P_f\right)} \qquad or \qquad D_d = \frac{100}{\frac{P_f}{D_f} + \frac{P_c}{k}}$$

$$D_d = \frac{100 \times 140.4 \, lb/ft^3 \times 168.3 \, lb/ft^3}{(140.4 \, lb/ft^3 \times 27\%) + (168.3 \, lb/ft^3 \times 73\%)}$$

$$or \ D_d = \frac{100}{\frac{73\%}{140.4 \ lb/ft^3} + \frac{27\%}{168.3 \ lb/ft^3}}$$

$$D_d = \frac{2,362,932\,lb/ft^3}{\left(3790.8\,lb/ft^3 + 12285.9\,lb/ft^3\right)} \quad or \ \ D_d = \frac{100}{0.51994\,lb/ft^3 + 0.16043\,lb/ft^3}$$

$$D_d = \frac{2,362,932\,lb/ft^3}{16,076.7\,lb/ft^3} \quad or \ D_d = \frac{100}{0.68037\,lb/ft^3}$$

$$D_d = 146.98 \, lb/ft^3$$
 report $147.0 \, lb/ft^3$

Method A Sample Calculation

Calculate percent retained on and passing each sieve on the basis of the total mass of the initial dry sample. This will include any material finer than 75 μ m (No. 200) that was washed out.

Example:

Dry mass of total sample, before washing: 5168.7 gDry mass of sample, after washing out the $75\mu\text{m}$ (No. 200) minus: 4911.3 gAmount of $75\mu\text{m}$ (No. 200) minus washed out: 5168.7 g - 4911.3 g = 257.4 g

Gradation on All Sieves

Siev	e Size	Individual Mass Retained, g	Percent	Cumulative Mass Retained, g	Cumulative Percent Retained	Percent	Reported Percent Passing*
mm	(in.)	(IMR)	(IPR)	(CMR)	(CPR)	(CPP)	(RPP)
19.0	(3/4)	0	0	0	0.0	100.0	100
12.5	(1/2)	724.7	14.0	724.7	14.0	86.0	86

Siev	re Size	Individual Mass Retained, g	Individual Percent Retained	Cumulative Mass Retained, g	Cumulative Percent Retained	Calc'd Percent Passing	Reported Percent Passing*
mm	(in.)	(IMR)	(IPR)	(CMR)	(CPR)	(CPP)	(RPP)
9.5	(3/8)	619.2	12.0	1343.9	26.0	74.0	74
4.75	(No. 4)	1189.8	23.0	2533.7	49.0	51.0	51
2.36	(No. 8)	877.6	17.0	3411.3	66.0	34.0	34
1.18	(No. 16)	574.8	11.1	3986.1	77.1	22.9	23
0.600	(No. 30)	329.8	6.4	4315.9	83.5	16.5	16
0.300	(No. 50)	228.5	4.4	4544.4	87.9	12.1	12
0.150	(No. 100)	205.7	4.0	4750.1	91.9	8.1	8
0.075	(No. 200)	135.4	2.6	4885.5	94.5	5.5	5.5
P	an	20.4		4905.9			

^{*}Report 75 µm (No. 200) sieve to 0.1 percent. Report all others to 1 percent.

Check sum:

$$\frac{4911.3 g - 4905.9 g}{4911.3 g} \times 100 = 0.1\%$$

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

Percent Retained:

9.5 mm (3/8) sieve:

$$\frac{619.2 \ g}{5168.7 \ g} \times 100 = 12.0\%$$
 or $\frac{1343.9 \ g}{5168.7 \ g} \times 100 = 26.0\%$

Percent Passing (Calculated):

9.5 mm (3/8) sieve:
$$86.0\% - 12.0\% = 74.0\%$$
 or $100\% - 26.0\% = 74.0\%$

Method B Sample Calculation

Sample calculation for percent retained and percent passing each sieve in accordance with Method B when the previously washed 4.75mm (No. 4) minus material is split:

Example:

Dry mass of total sample, before washing: 3214.0 g

Dry mass of sample, after washing out the 75 μ m (No. 200) minus: 3085.1 g Amount of 75 μ m (No. 200) minus washed out: 3214.0 g – 3085.1 g = 128.9 g

Gradation on Coarse Sieves

		Individual	Individual	Cumulative	Cumulative	Calculated
Si	eve	Mass	Percent	Mass	Percent	Percent
S	ize	Retained, g	Retained	Retained, g	Retained	Passing
mm	(in.)	(IMR)	(IPR)	(CMR)	(CPR)	(CPP)
16.0	(5/8)	0	0	0	0	100

	ieve Size	Individual Mass Retained, g	Individual Percent Retained	Cumulative Mass Retained, g	Cumulative Percent Retained	Calculated Percent Passing
mm	(in.)	(IMR)	(IPR)	(CMR)	(CPR)	(CPP)
12.5	(1/2)	161.1	5.0	161.1	5.0	95.0
9.50	(3/8)	481.4	15.0	642.5	20.0	80.0
`4.75	(No. 4)	475.8	14.8	1118.3	34.8	65.2
Pan		1966.7 (M ₁)		3085.0		

Coarse check sum:
$$\frac{3085.1 \ g - 3085.0 \ g}{3085.1 \ g} \times 100 = 0.0\%$$

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

Note 5: The pan mass determined in the laboratory (M_1) and the calculated mass (3085.1 - 1118.3 = 1966.7) should be the same if no material was lost.

The pan (1966.7 g) was reduced in accordance with the FOP for AASHTO T 248, so that at least 500 g are available. In this case, the mass determined was 512.8 g. This is M_2 .

In order to account for the fact that only a portion of the minus 4.75mm (No. 4) material was sieved, the mass of material retained on the smaller sieves is adjusted by a factor equal to M_1/M_2 . The factor determined from M_1/M_2 must be carried to three decimal places. Both the individual mass retained and cumulative mass retained formulas are shown.

Individual Mass Retained:

 M_1 = total mass of the minus 4.75mm (No. 4) before reducing.

 M_2 = mass before sieving from the reduced portion of the minus 4.75 mm (No. 4).

$$\frac{M_1}{M_2} = \frac{1,966 \, g}{512.8 \, g} = 3.835$$

Each "individual mass retained" on the fine sieves must be multiplied by this adjustment factor.

For example, the overall mass retained on the 2.00mm (No. 10) sieve is:

 3.835×207.1 g = 794.2 g, as shown in the following table:

Final Gradation on All Sieves

Calculation by Individual Mass

Siev	e Size	Individual Mass Retained, g	Adjusted Individual Mass Retained	Individual Percent Retained	Calc'd Percent Passing	Reported Percent Passing*
mm	(in.)	(IMR)	(AIMR)	(IPR)	(CPP)	(RPP)
16.0	(5/8)	0	0	0.0	100.0	100
12.5	(1/2)	161.1	161.1	5.0	95.0	95
9.5	(3/8)	481.4	481.4	15.0	80.0	80
4.75	(No. 4)	475.8	475.8	14.8	65.2	65
2.0	(No. 10)	207.1 × 3.835	794.2	24.7	40.5	40

Siev	ve Size	Individual Mass Retained, g	Adjusted Individual Mass Retained	Individual Percent Retained	Calc'd Percent Passing	Reported Percent Passing*
mm	(in.)	(IMR)	(AIMR)	(IPR)	(CPP)	(RPP)
0.425	(No. 40)	187.9 × 3.835	720.6	22.4	18.1	18
0.210	(No. 80)	59.9 × 3.835	229.7	7.1	11.0	11
0.075	(No. 200)	49.1 × 3.835	188.3	5.9	5.1	5.1
Pan		7.8 × 3.835	29.9			
Dry mass	of total samp	ole, before washing: 3	214.0 g	_		

^{*}Report 75 µm (No. 200) sieve to 0.1 percent. Report all others to 1 percent.

Fine check sum:

$$\frac{512.8 \ g - 511.8 \ g}{512.8 \ g} \times 100 = 0.2\%$$

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

For Percent Passing (Calculated) see "Calculation" under Method A.

Cumulative Mass Retained:

 M_1 = mass of the minus 4.75 mm (No. 4) before split

 M_2 = mass before sieving of the split of the minus 4.75 mm (No. 4)

$$\frac{M_1}{M_2} = \frac{1,966 \, g}{512.8 \, g} = 3.835$$

Each "cumulative mass retained" on the fine sieves must be multiplied by this adjustment factor then the cumulative mass of plus 4.75 mm (No. 4) portion of sample is added to equal the adjusted cumulative mass retained.

For example, the adjusted cumulative mass retained on the 0.425 mm (No. 40) sieve is:

$$3.835 \times 395.0 g = 1514.8 g$$

1514.8 + 1118.3 g = 2633.1: "Total Cumulative Mass Retained" as shown in the following table:

Final Gradation on All Sieves

Calculation by Cumulative Mass

		Compulation	Adjusted	Total	Cumulativa	Calaid	Domontod
		Cumulative Mass	Cumulative Mass Retained,	Cumulative Mass Retnd	Cumulative Percent	Calc'd Percent	Reported Percent
Sie	eve Size	Retained, g	g	g	Retnd.	Passing	Passing*
mm	(in.)	(CMR)	(ACMR)	(TCMR)	(CPR)	(CPP)	(RPP)
16.0	(5/8)	0		0	0.0	100.0	100
12.5	(1/2)	161.1		161.1	5.0	95.0	95
9.5	(3/8)	642.5		642.5	20.0	80.0	80

Sie	ve Size	Cumulative Mass Retained, g	Adjusted Cumulative Mass Retained, g	Total Cumulative Mass Retnd., g	Cumulative Percent Retnd.	Calc'd Percent Passing	Reported Percent Passing*
mm	(in.)	(CMR)	(ACMR)	(TCMR)	(CPR)	(CPP)	(RPP)
4.75	(No. 4)	1118.3		1118.3	34.8	65.2	65
2.0	(No. 10)	207.1 × 3.835	794.2 + 1118.3	1912.5	59.5	40.5	40
0.425	(No. 40)	395.0 × 3.835	1514.8 + 1118.3	2633.1	81.9	18.1	18
0.210	(No. 80)	454.9 × 3.835	1744.5 + 1118.3	2862.8	89.1	10.9	11
0.075	(No. 200)	504.0 × 3.835	1932.8 + 1118.3	3051.1	94.9	5.1	5.1
Pan		511.8 × 3.835	1962.8 + 1118.3	3081.1			

^{*}Report 75 µm (No. 200) sieve to 0.1 percent. Report all others to 1 percent.

Fine check sum:

$$\frac{512.8 \ g - 511.8g}{512.8 \ g} \times 100 = 0.2\%$$

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

For Percent Passing (Calculated) see "Calculation" under Method A.

Method C Sample Calculation

Sample calculation for percent retained and percent passing each sieve in accordance with Method C when the minus 4.75mm (No. 4) material is reduced and then washed:

Dry Mass of total sample: 3304.5 g

Dry Mass of minus 4.75mm (No. 4) reduced portion before wash, M.#4: 527.6

Dry Mass of minus 4.75mm (No. 4) reduced portion after wash: 495.3

Gradation on Coarse Sieves

Sie mm	ve Size (in.)	Cumulative Mass Retained, g (CMR)	Calc'd Percent Retained (CPR)	Calc'd Percent Passing (CPP)	Reported Percent Passing* (RPP)
16.0	(5/8)	0	0.0	100.0	100
12.5	(1/2)	125.9	3.8	96.2	96
9.50	(3/8)	604.1	18.3	81.7	82
4.75	(No. 4)	1295.6	39.2	60.8	61
Pan		2008.9			
Total	Dry Sample	e = 3304.5			

Coarse check sum:

$$\frac{3304.5 g - 3304.5 g}{3304.5 g} \times 100 = 0.0\%$$

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

The pan (2008.9 g) was reduced in accordance with the FOP for AASHTO T 248, so that at least 500 g are available. In this case, the mass determined was $M_{-\#4} = 527.6$ g.

Final Gradation on All Sieves

Calculation by Cumulative Mass

Sie mm	ve Size (in.)	Cumulative Mass Retained, g (CMR _{-#4})	Cumulative Percent Retained _{-#4} (CPR _{-#4})	Calc'd Percent Passing #4 (CPP-#4)	Calc'd Percent Passing (CPP)	Reported Percent Passing* (RPP)
	(5/8)	0	` ′	(C11-#4)	100.0	100
16.0		Ů	0.0			
12.5	(1/2)	125.9	3.8		96.2	96
9.5	(3/8)	604.1	18.3		81.7	82
4.75	(No. 4)	1295.6	39.2		60.8	61
2.0	(No. 10)	194.3	36.8	63.2	38.4	38
0.425	(No. 40)	365.6	69.3	30.7	18.7	19
0.210	(No. 80)	430.8	81.7	18.3	11.1	11
0.075	(No. 200)	484.4	91.8	8.2	5.0	5.0
Pan		495.1				
D	(A f) C :	4.775 (D.T. 4)	1 1 C	1: 507.6		

Dry mass (M) of minus 4.75 mm (No. 4) sample, before washing: 527.6 g

Dry mass of minus 4.75 mm (No. 4) sample, after washing: 495.3 g

Fine check sum:

$$\frac{495.3 g - 495.1 g}{495.3 g} \times 100 = 0.04\%$$

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

Also note that for minus No. 4 material using this method that:

$$CPP = \frac{CPP_{\#4} \times (M_{-\#4} - CMR_{-\#4})}{M_{-\#4}}$$

^{*}Report 75 µm (No. 200) sieve to 0.1 percent. Report all others to 1 percent

Example:

F = 632.6 g, Q = 97.6 g, N = 352.6 g
% Q =
$$\frac{97.6 g}{632.6 g + 97.6 g + 352.6 g} \times 100 = 9.0\%$$
 %Q = 9%

Calculate the mass percentage of fractured faces to the nearest 1 percent using the following formula:

$$P = \frac{\frac{Q}{2} + F}{F + Q + N} \times 100$$

where:

P = Percent of fracture

F = Mass of fractured particles

Q = Mass of questionable or borderline particles

N = Mass of unfractured particles

Example:

$$F = 632.6 \text{ g}, Q = 97.6 \text{ g}, N = 352.6 \text{ g}$$

$$P = \frac{\frac{97.6 \ g}{2} + 632.6 \ g}{632.6 \ g + 97.6 \ g + 352.6 \ g} \times 100 \qquad P = 63\%$$

Example Calculations ATM 306

Calculate the cumulative percent retained of each size group flat and elongated (F&E) in relation to the total plus 4.75 mm (No. 4).

F&E Group CPR = (CPR
$$\div$$
 #4 CPR) \times 100

Example:

Group CPR=
$$(35\% \div 58\%) \times 100$$
 F&E Group CPR = **60%**

Calculate the individual percent retained of each group:

F&E Group Individual Percent Retained (IPR) = F&E Group CPR - Next Larger Group CPR

Example:

F&E Group CPR=100%, Next Larger Group CPR=60%

F&E Group Individual Percent Retained (IPR) = 100% - 60%, IPR=40%

Calculate the percent flat and elongated for each size group.

% F&E for Size Group = [(Mass F&E Size Group) / (Size Group Mass)] × 100

Example:

Mass F&E Size Group=3.3g, Size Group Mass=104.9g

% F&E for Size Group (B) =
$$[(104.9)/(3.3)] \times 100$$
 B=3.1%

Calculate the weighted percent for each size to 0.1%.

Example:

% F&E for Size Group=3.1%, F&E Group IPR=40%

Weighted % F&E Size Group =
$$3.1\% \times 40\%$$
) ÷ 100

Weighted % F&E Size Group=1.2%

Calculate the total percentage of FnE by determining the sum of all the weighted % F&E for Size Groups.

Total Weighted %F&E=2%

Example Calculations ATM 308

Perform calculations and determine values using the appropriate formula below. In these formulas, A = oven dry mass, B = SSD mass, and C = weight in water.

Bulk specific gravity (G_{sb})

$$G_{sb} = \frac{A}{B - C}$$

Bulk specific gravity, SSD (G_{sb} SSD)

$$G_{sb}SSD = \frac{B}{B-C}$$

Apparent specific gravity (Gsa)

$$G_{sa} = \frac{A}{A - C}$$

Absorption

Absorption =
$$\frac{B-A}{A} \times 100$$

Sample	A	В	C	В - С	A - C	B - A
1	2030.9	2044.9	1304.3	740.6	726.6	14.0
2	1820.0	1832.5	1168.1	664.4	651.9	12.5
3	2035.2	2049.4	1303.9	745.5	731.3	14.2

Sample	$G_{ m sb}$	G _{sb} SSD	Gsa	Absorption
1	2.742	2.761	2.795	0.7
2	2.739	2.758	2.792	0.7
3	2.730	2.749	2.783	0.7

These calculations demonstrate the relationship between G_{sb} , G_{sb} SSD, and G_{sa} . G_{sb} is always lowest, since the volume includes voids permeable to water. G_{sb} SSD is always intermediate. G_{sa} is always highest, since the volume does not include voids permeable to water. When running this test, check to make sure the values calculated make sense in relation to one another.

Example Calculations ATM 406

Calculate the asphalt binder content of the sample as follows:

$$P_b = \frac{M_i - M_f}{M_i} \times 100 - C_f - MC$$

where:

 P_b = the corrected asphalt binder content as a percent by mass of the HMA sample

 M_f = the final mass of aggregate remaining after ignition

 M_i = the initial mass of the HMA sample prior to ignition

 C_f = correction factor as a percent by mass of the HMA sample

MC= moisture content of the companion HMA sample, percent, as determined by the FOP for AASHTO T 329 (if the specimen was oven-dried prior to initiating the procedure, MC=0).

Example

Total Mass after First ignition + basket = 5154.4

Sample Mass after First ignition = 2222.9

Sample Mass after additional 15 min ignition = 2222.7

$$\frac{2222.9 - 2222.7}{2222.9} \times 100 = 0.009$$

$$P_b = \frac{2361.2 - 2222.7}{2361.2} \times 100 - 0.42 - 0.04 = 5.41\%$$

$$P_b = 5.41\%$$

Constant Mass:

Calculate constant mass using the following formula:

$$\%Change = \frac{M_p - M_n}{M_p} \times 100$$

Where:

 M_p = previous mass measurement M_n = new mass measurement

Example:

Mass of container: 232.6 g

Mass of container and sample after first drying cycle: 1361.8 g Mass, M_p , of possibly dry sample: 1361.8 g – 232.6 g = 1129.2 g

Mass of container and possibly dry sample after second drying cycle: 1360.4 g

Mass, M_n , of possibly dry sample: 1360.4 g – 232.6 g = 1127.8 g

$$\frac{1129.2 \ g - 1127.8 \ g}{1129.2 \ g} \times 100 = 0.12\%$$

0.12 percent is not less than 0.05 percent, so continue drying the sample.

Mass of container and possibly dry sample after third drying cycle: 1359.9 g Mass, M_n , of dry sample: 1359.9 g - 232.6 g = 1127.3 g

$$\frac{1127.8 \ g - 1127.3 \ g}{1127.8 \ g} \times 100 = 0.04\%$$

0.04 percent is less than 0.05 percent, so constant mass has been reached.

Moisture Content:

Calculate the moisture content, as a percent, using the following formula.

$$\textit{Moisture Content} = \frac{\textit{M}_i - \textit{M}_f}{\textit{M}_f} \times 100$$

Where:

 M_i = initial, moist mass M_f = final, dry mass

Example:

$$M_i = 1134.9 g$$

 $M_f = 1127.3 g$

$$Moisture\ Content = \frac{1134.9\ g - 1127.3\ g}{1127.3\ g} \times 100 = 0.674, say\ 0.67\%$$

Example Calculations ATM 408

Using the aggregate sample obtained from the FOP for AASHTO T 308, determine and record the mass of the sample to 0.1 g (M). This mass shall agree with the mass of the aggregate remaining after ignition (M_f from T 308) within 0.10 percent. If the variation exceeds 0.10 percent the results cannot be used for acceptance.

$$\frac{M_{f\,(T308)}\text{-}M_{(T30)}}{M_{f\,(T308)}}\times 100$$

Where:

$$M_{(T30)} = 2422.3 g$$

 $M_{f(T308)} = 2422.5 g$

$$\frac{2422.5 \text{ g} - 2422.3 \text{ g}}{2422.5 \text{ g}} \times 100 = 0.01\%$$

CHECK SUM

Total mass of material after sieving must agree with mass before sieving to within 0.2 percent.

$$\frac{dry \, mass \, after \, washing - total \, mass \, after \, sieving}{dry \, mass \, after \, washing} \times 100$$

PERCENT RETAINED:

Where:

IPR= Individual Percent Retained CPR= Cumulative Percent Retained

M= Total Dry Sample mass before washing

IMR= Individual Mass Retained CMR= Cumulative Mass Retained

$$IPR = \frac{IMR}{M} \times 100 \quad OR \quad CPR = \frac{CMR}{M} \times 100$$

PERCENT PASSING and REPORTED PERCENT PASSING:

Where:

PP= Calculated Percent Passing

PCP= Previous Calculated Percent Passing

RPP= Reported Percent Passing

$$PP = PCP - IPR$$
 OR $PP = 100 - CPR$

RPP = PP + Aggregate Correction Factor

Example:

Dry mass of total sample, before washing (M): 2422.3 g

Dry mass of sample, after washing out the 75 µm (No. 200) minus: 2296.2 g

Amount of 75 μ m (No. 200) minus washed out: 2422.3 g – 2296.2g = 126.1 g

Percent Retained 75 µm / No. 200:

$$\frac{63.5 \text{ g}}{2422.3 \text{ g}} \times 100 = 2.6\%$$
 or $\frac{2289.6 \text{ g}}{2422.3 \text{ g}} \times 100 = 94.5\%$

Percent Passing: 8.1% - 2.6% = 5.5% or 100% - 94.5% = 5.5%

Reported Percent Passing: 5.5% + (-0.6%) = 4.9%

Gradation on All Screens

	ve Size	Mass Retained (g)	Percent Retained	Cumulative Mass Retained (g) (CMR)	Cumulative Percent Retained	Calc'd Percent Passing	Agg. Corr. Factor from T 308	Reported Percent Passing
mm 19.0	(in.) (3/4)	(MR) 0.0	(PR)	0.0	(CPR)	(PP)	(ACF)	(RPP)
12.5	(1/2)	346.9	14.3	346.9	14.3	85.7		86
9.5	(3/8)	207.8	8.6	554.7	22.9	77.1		77
4.75	(No. 4)	625.4	25.8	1180.1	48.7	51.3		51
2.36	(No. 8)	416.2	17.2	1596.3	65.9	34.1		34
01.18	(No. 16)	274.2	11.3	1870.5	77.2	22.8		23
0.600	(No. 30)	152.1	6.3	2022.6	83.5	16.5		16
0.300	(No. 50)	107.1	4.4	2129.7	87.9	12.1		12
0.150	(No. 100)	96.4	4.0	2226.1	91.9	8.1		8
75 μm	(No. 200)	63.5	2.6	2289.6	94.5	5.5	-0.6	4.9
Pan		5.7		2295.3				

Check sum:

$$\frac{2296.2 \ g - 2295.3 \ g}{2296.2 \ g} \times 100 = 0.04\%$$

This is less than 0.2 percent therefore the results can be used for acceptance purposes.

Example Calculations ATM 409

Flask Procedure

In anoma ant 1

$$G_{mm} = \frac{A}{A+D-E} \times R$$
 or $G_{mm} = \frac{A}{A_{SSD}+D-E} \times R$

(for mixtures containing uncoated materials)

where:

A = Mass of dry sample in air, g

A_{SSD} = Mass of saturated surface-dry sample in air, g

D = Mass of flask filled with water at 25°C (77°F), g, determined during the Standardization of Flask procedure

E = Mass of flask filled with water and the test sample at test temperature, g

R = Factor from Table 2 to correct the density of water – use when a test temperature is outside 25 ± 1 °C (77 ± 2 °F)

Example (in which two increments of a large sample are averaged):

Ingrament 2

merement i	merement 2
A = 2200.3 g D = 7502.5 g E = 8812.3 g Temperature = 26.2°C	A = 1960.2 g D = 7525.5 g E = 8690.8 g Temperature = 25.0°C

$$G_{mm_1} = \frac{2200.3 \text{ g}}{2200.3 \text{ g} + 7502.5 \text{ g} - 8812.3 \text{ g}} \times 0.99968 = 2.470$$

$$G_{mm_2} = \frac{1960.2 \text{ g}}{1960.2 \text{ g} + 7525.5 \text{ g} - 8690.8 \text{ g}} \times 1.00000 = 2.466$$

Allowable variation is: 0.014

2.470 - 2.466 = 0.004, which is < 0.014, so they can be averaged.

Average

$$2.470 - 2.466 = 0.004$$
 $0.004 \div 2 = 0.002$ $0.002 + 2.466 = 2.468$

Or
$$2.470 + 2.466 = 4.936$$
 $4.936 \div 2 = 2.468$

Calculations - Method A (Suspension)

$$G_{mb} = \frac{A}{B - C}$$

where:

A = Mass of dry specimen in air, g

B = Mass of SSD specimen in air, g

C = Weight of specimen in water at 25 ± 1 °C (77 ± 1.8 °F), g

Percent Water Absorbed (by volume) =
$$\frac{B-A}{B-C} \times 100$$

Example:

$$G_{mb} = \frac{4833.6 \ g}{4842.4 \ g - 2881.3 \ g} = 2.465$$

% Water Absorbed (by volume) =
$$\frac{4842.4 \text{ g} - 4833.6 \text{ g}}{4842.4 \text{ g} - 2881.3 \text{ g}} \times 100 = 0.4\%$$

Example Calculations ATM 504

• **Density** – Calculate the net mass, M_m, of the concrete in the measure by subtracting the mass of the measure from the gross mass of the measure plus the concrete. Calculate the density, W, by dividing the net mass, M_m, by the volume, V_m, of the measure as shown below.

$$W = \frac{M_m}{V_m}$$

Example:
$$W = \frac{36.06 \, lb}{0.2494 \, ft^3} = 144.6 \, lb/ft^3$$

• **Yield** – Calculate the yield, Y, or volume of concrete produced per batch, by dividing the total mass of the batch, W₁, by the density, W, of the concrete as shown below.

$$W = \frac{W_1}{W}$$
 Example: $Y = \frac{3978lb}{27 \times 144.6lb/ft^3} = 1.02 \, yd^3$

Note 5: The total mass, W₁, includes the masses of the cement, water, and aggregates in the concrete.

Cement Content – Calculate the actual cement content, N, by dividing the mass of the cement, N_t, by the yield, Y, as shown below.

Note 6: Specifications may require Portland cement content and cementitious materials content

$$N = \frac{N_t}{Y}$$
 Example: $N = \frac{602 \ lb}{1.02 \ yd^3} = 590 \ lb/yd^3$

- Water Content Calculate the mass of water in a batch of concrete by summing the:
 - water added at batch plant
 - water added in transit
 - water added at jobsite
 - free water on coarse aggregate
 - free water on fine aggregate
 - liquid admixtures (if the agency requires this)

This information is obtained from concrete batch tickets collected from the driver. Use the following conversion factors.

To Convert From	To	Multiply By
Liters, L	Kilograms, kg	1.0
Gallons, gal	Kilograms, kg	3.785
Gallons, gal	Pounds, lb	8.34
Milliliters, mL	Kilograms, kg	0.001
Ounces, oz	Milliliters, mL	28.4
Ounces, oz	Kilograms, kg	0.0284
Ounces, oz	Pounds, lb	0.0625
Pounds, lb	Kilograms, kg	0.4536

Calculate the mass of free water on aggregate as follows:

$$Free\ Water\ Mass = Total\ Aggregate\ Mass - \frac{Total\ Aggregate\ Mass}{1 + (Free\ Water\ Percentage/100)}$$

Example:

Total Aggregate Mass = 7804 lb Free Water Percentage = 1.7*

* To determine Free Water percentage:

Total moisture content of the aggregates – absorbed moisture = Free Water

Free Water Mass =
$$7804 lb - \frac{7804 lb}{1 + (1.7\%/100)}$$

Example for actual water content:

Water added at batch plant = 79 gal Water added in transit =

Coarse aggregate: 7804 lbs @ 1.7% free water Fine aggregate: 5489 lb @ 5.9% free water

CA Free Water =
$$7804 lb - \frac{7804 lb}{1 + (1.7\%/100)} = 130 lb$$

FA Free Water =
$$5489 lb - \frac{5489 lb}{1 + (5.9\%/100)} = 306 lb$$

Mass of water in batch =

751 lb + 130 lb + 306 lb = 1187 lb

Water/Cement Ratio – Calculate the water/cement ratio by dividing the mass of water in a batch of concrete by the mass of cementitious material in the batch. The masses of the cementitious materials are obtained from concrete batch tickets collected from the driver.

Example:

Cement: 2094 lb Fly Ash: 397 lb Water: 1187 lb

$$W/C = \frac{1187 \ lb}{2094 \ lb + 397 \ lb} = 0.476$$

Report 0.48

									_					
	STATE OF ALA	ASKA	Accepta	nce [Verifica	tion 🔲 Info	. 🗌 IA	□ Q	C Sa	mp	le No	o:		
	DOT & PF	P	roject Nar	ne:										
FOF	P for T 180 Modified Pr	octor F	ederal No								AKS	SAS	No:	
	FIELD WORKSHEET	M	faterial:					Sourc	ce:					
_		t	em No:					Locat	tion:					
Sample	ed by / Qualification No:			Date:				Q	uantity	Repr	esen	ited:		
	Standard Density	— Modified	Proctor	— v	VAQTC F	OP for T	180		ME	THO	D: D)	Gradation	ı, % Pass
co	MPACTION TEST	1	2		3		4		5		6		3"775mm	
Α	Mass of Mold												2"750mm	
В	Mass of Mold + Wet Soil												1⁄37.5mm	
	ass of Wet Sample B - A												1" / 25mm	
	MOISTURE CONTEN	T — WAQT	C FOP to	r T 2	55 / T 26	55	*W = [(Mw -	MD) /	MD] X 1	00	3/4" / 19mm	
С	Container					_							1/2" / 12.5mn	
D 0	Container + Moist Sample Moist sample D - C									-			3/8" / 9.5mm #4 / 4.75mm	
E	Container + Dry Sample												#474.75mm #872.36mm	
MD	Dry Sample E - C												#16 / 1.18mm	
*W	Moisture Content, %					_				+			307.600mr	
Pw	Wet Density									+			507.300mr	
Pd	Dry Density												100 / .150mr	
		4.00	43703		-IS	A	ad Caa		T.OF)			\neg	2007.075m	
ZAV C	Curve Calculations:	$Ws = \frac{(62)}{}$.4) (GSa)	- (Y)	x 100 م	Assum	ea osa	ii (irn	10 1 05)				1	2
We 9	Ws % Water Content for complete saturation **Dry Density (Yd) Input for ZAV Curve: Content for Complete Saturation Content for Canal Curve C													
,	1 2	ompiete 3e	itaration		[DRY D	ENSI	TY vs	. MC	DIST	URE	CONTENT	
					İ									
v	Mold Volume =											-		
Dw V	Vet Density = (M ÷ V)													
rw v	ver Density - (IVI + V)													
				~										
Pd	Dry Density = Pw / [1	+ (W / 100)]	l	or kg/m³)				₩		+	#			
				٥٠										
SPEC	CIFIC GRAVITY — WAG	QTC FOP for	T 85	(Ib/ft³										
b	SSD Aggrega	ate Mass		Ξ,										
С	Aggregate Weight	in Water		ISI										
a	Dry Aggrega			DRY DENSITY, (IS										
\vdash	LK Specific Gravity = a			₽				#		+				
\vdash														
S	SD Specific Gravity = b	/ (b - c)												
Gsa	parent Specific Gravity = a	/ (a - c)								+				
	Absorption = [(b - a) /	a] x 100												
LAAVIA	MUM DENSITY (0.1 lb/ft)	or 1 kg/m									<u> </u>			
WAXIN														
⊢—	IUM MOISTURE (0.19	6)			<u> </u>	7.	_	<u>, </u>	-,	<u>.</u>	_	7.	7.	<u> </u>
ортім	IUM MOISTURE (0.19	6)			× –	7.			URE C		ENT.			×
⊢—	IUM MOISTURE (0.19	6)				% Tested by	M			ONT				×

			Accer	ntance l	Verificat	on I In	fo. l	τα Ι	٥٥ -				
Œ	STATE OF ALA DOT & PF	3KG							30		_	C-SD-1	
6	DOLAPE	_			Alaska Hi		P 1267	7-1314	Rehabi				
F	OP for T 180 Modified Pro	Ctor	ederal N		HHE-0A4							No: 63485	
	FIELD WORKSHEET		vlaterial:		e Course,	D-1			rce: MS				
	alada da da aka ba	_	tem No:	301		Data oz	04400		_		•	a Highway	
Sam	pled by / Qualification No:	J. Groves				Date: 07/						Source	
	Standard Density -		_			OP for T				THOE		 	n, % Pass
⊢ـ	OMPACTION TEST	1		2	3		4		5		6	3" / 75mm	
Α	Mass of Mold	12.67	12.		12.67	_	2.67	_	2.67			2"/50mm	
В	Mass of Mold + Wet Soil	23.26	23.		23.68		3.65		3.64			1/37.5mn	
М	Mass of Wet Sample B - A	10.59	10.		11.01).98		0.97	<u> </u>		1" / 25mm	100
_	MOISTURE CONTENT								- MD) /	MD]:	x 100	3/4" / 19mm	95
С	Container	1620.5	170		1670.:	_	26.0	_	392.3	₩		1/2" / 12.5mn	72
D	Container + Moist Sample	2636.0	271		2692.3	_	38.7		703.5			3/8" / 9.5mm	59
Mw	Moist sample D - C	1015.5	_	0.0	1022.1	_	12.7		011.2			#4/4.75mm	35
E	Container + Dry Sample	2604.3	267		2651.9		92.0	_	50.0			#8 / 2.36mm	23
MD	Dry Sample E - C	983.8	97		981.3		6.0	+	56.9			#16 / 1.18mm	15
*W	Moisture Content, %	3.2	3.		4.2		1.8	_	5.7	┼		307.600mr	12
Pw Pd	Wet Density	141.0 136.6	14-		146.6 140.7		16.2 39.5		46.1 38.2	-		507.300mr	9
Pa	Dry Density	130.0	13:	9.2	140.7	1 1	9.0		30.2			100 / . 150mr 200 / . 075m	
781	Cum a Calaulatiana	$Ws = \frac{(62)}{}$	2.4) (Gs	a) - (Y	d) v 100	Assun	ied Gs	sa: (if i	no T 85)				
ZAV	Curve Calculations:	442	(Yd) ((Gsa)	— x 100	n,	v Nana	(V.4	Innut f	. 76U	Curve:	1 136.6	140.7
Ws	% Water Content for co	aturatio	n	_		y Della	ity (1 ti	, input i)1 ZNT	Guire.	130.0	140.1	
	1 11.2 2	9.8			. [DRY	DENS	ITY vs	MO	STURE	CONTENT	
.,	Malal Calous a	0.0754							-				
V	Mold Volume =	0.0751											
					ŀ					+			
Pw	Wet Density = (M ÷ V)												
_	1		_	Ę.									
Pd	Dry Density = Pw / [1 +	F (W / 100)]	or kg/m³)									
				ا ريا									
SP	ECIFIC GRAVITY — WAQ	TC FOP for	T 85	T									
b	SSD Aggregat	te Mass 2	784.3	≚			+++						
С	Aggregate Weight i	n Water 1	810.7	ISN									
a	Dry Aggregat	te Mass 2	765.0	DRY DENSITY, (IL) R									
Gsb	ULK Specific Gravity = a	/ (b - c)	2.840	DR.									
	SSD Specific Gravity = b		2.860										
Gsa	Apparent Specific Gravity = a	/ (a - c) 2	2.897										
	Absorption = [(b - a) / a				⊪							 	
	~n201hti0(1 = [(n - a) / s	17 × 100	0.7										
MA)	CIMUM DENSITY (0.1 lb/ft²	or 1 kg/m											
ОРТ	IMUM MOISTURE (0.1%)			7.	7.		7.	-	<u></u>	~	<u> </u>	<u> </u>
Rem	arks:				MOISTURE CONTENT, (%)								
						Tested by	/Date	:					
						Checked I							

(ave)	STATE OF ALA DOT & PF		roject Nam		ptance 🔲 V	erification	Info. 🗌 IA	□ QC		
١,,	VAQTCFOP for T 310 (METHO	DO A) FO	ederal No:					AKSASI	No:	
	FIELD DENSITY WORKSH		laterial:				Source:			
			em No:		s	pec. (min.)	G	auge S/N:		
	FIELD DENSITY TEST NUM	IRER								
	STATION									
	C/, REFERENCE									
	-									
	GRADE REFERENCE	TOUGT NO								
	QUANTITY REP'D OR PIPE/S	SIRUCI. NO								
	DATE TESTED									
ST/	ANDARD DENSITY		WAQTCF	OP for T 180	: <u> </u>	□в□с	□□	☐ AT	M 212	
	Standard Density Lab Nur									
Df	Standard Density T 99/T 180 ((Maximum Lal								
	Optimum Moisture									
В	Specific Gravity 1 +3/4" Bu	lk∏ -#4 Apı	P							
DEI	NSITY DETERMINATION									
	Probe Depth									
			Reading#1	Reading #2	Reading#1	Reading#2	Reading#1	Reading #2	Reading#1	Reading#2
	Wet Density, (lb/ft³ or kg/m³)									
С	Average Wet Density	Gauge								
	Dry Density (gauge) 3/[1	+ (E/ 100)]								
Pd	Dry Density (actual) / [1+	+ (W / 100)]								
MO	ISTURE CONTENT		∐se WΔΩΤΩ	: FOP for T 2	55/T 265 or i	use daline m	nisture (F) if	it is within 1	⊥ % of actual n	noisture (W
	% Moisture			10. 10. 12	00,12000.				70 01 0010011	DECEMBER (FI
E	Average % Moisture	Gauge								
	Wet Mass + Container									
G	Dry Mass + Container									
	Container									
	% Moisture (actual) [(F-G).	//GN1x 100								
			ON *T.00	/T 400 N-4-	K 0/ O	(D-) I				
GR	ADATION / OVERSIZE C		□ 3/4"			IZE (HC) IS IE: □ #4		⊒uau το 5%, π □ #4	o correction i	ıs requirea. □#4
D	ATM 212 or *WAQTC FOP Wet Mass + Container	TOT 1 224	3/4	□ #4		⊔ # ⁴	□ 3/4	□ #4	3/4 L	_ #4
<u> </u>	Container									
Q	Wet Mass	В О								
		P-Q								
	Dry Mass + rMm/[1+(E / 100)] or Mi									
T	+3/4" or +#4 Mass + Conta	ainer								
V	Container									
_	+3/4" or +#4 Mass	T-V								
		/ Md) x 100								
	% Fines	100 – Pc								
T 1	80 — Corrected Std. Density (I	Od formula)								
ΑП	M 212 - Vibratory Standard (L	_ab Chart)								
% C	om paction Pd / Max. Std. De	nsity) x 100								
Dd	= (100 * Df* k) / [(Df* Pc)	+ (k * Pf)]	⇒ k = (62.4 lb/ft ³ *	B) or (1000) kg/m³ * B)	T	CTT = Too	Coarse To	Test
_	nature / Qualification No. / [Jate:				Checl	ced by/Dat	œ:		
REI	MARKS:									

			V Acces	otance Ve	erification	☑ Info. ☑ I	N L LOC		
(STATE OF ALASKA DOT & PF F	trainat Nama:						- t- D-t	Cook
\	FOR ALLEY	roject Name: ederal No:	HED-055		rngnway,	South Direct		р to Peters No: 50946	
	VAQTCFOP for T 310 (METHOD A)	Material: Sub		• •		Source:	-	om Pit/Gran	
	H	em No: 304	(1)	S	pec. (min.)	95% G	auge S/N:	33529	
.13973983	FIELD DENSITY TEST NUMBER	CD D	44						
	STATION	SB - D -						-	
	C/, REFERENCE	6'Lt.C							
	GRADE REFERENCE	Top of Sub							
	QUANTITY REP'D OR PIPE/STRUCT. NO	· ·							
	DATE TESTED	09/11/							
ST	ANDARD DENSITY	WAQTC FOR		: <u>L</u> A	∟в	Lc I	✓ D /	└── ATM 212	
	Standard Density Lab Number	SB-SD	y-1					KIIIZI	
Df	Standard Density T 99/T 180 (Maximum La								
	Optimum Moisture	7.0							
В	Specific Gravity +3/4" Bulk#4 App	2.75							
	NSITY DETERMINATION								
	Probe Depth	8*							
		Reading#1 R	teading#2	Reading#1	Reading#2	Reading#1	Reading#2	Reading#1	Reading#
	Wet Density, (lb/ft³ or kg/m³)	151.8	151.6						
С	Average Wet Density Gauge	151.7	7		•				
Pd	Dry Density (gauge) 2/[1+(E/100)]	144.8	3						
ru	Dry Density (actual) / [1 + (W / 100)]								
MO	ISTURE CONTENT	Use WAQTC FO	OP for T 29	55/T 265 or u	use gauge m	noisture (E)if	it is within 1	% of actual n	noisture (V
	% Moisture Gauge	4.7	4.8						
E	Average % Moisture	4.8							
F	Wet Mass + Container								
G	Dry Mass + Container								
J	Container								
W	% Moisture (actual) [(F-G)/(G-J)] x 100								
GR	ADATION / OVERSIZE CORRECTI							o correction	
	ATM212 or *WAQTC FOP for T 224	<u>✓</u> 3/4"	<u> </u>	<u>↓</u> 3/4 "	<u> </u> #4	<u></u> 3/4"	<u> </u> #4	<u></u> 3/4	<u> </u> #4
<u> </u>	Wet Mass + Container	16.81							
Q	Container	2.21							
	Wet Mass P-Q	14.60							
	Dry Mass : rM m/[1+(E / 100)] or M m/[1+(W / 100)]	10.50							
T	+3/4" or +#4 Mass + Container	5.76							
V	Container	2.21						-	
	+3/4" or +#4 Mass T – V % Coarse Particles (M, / Md) x 100	3.55						-	
	, nr ,								
		75						 	
	80 - Corrected Std. Density (Dd formula)	147.1	J .						
	M212 - Vibratory Standard (Lab Chart)							+	
70 C	ompaction Pd / Max . Std. Density) x 100	98		l		I		1	

Signature / Qualification No. / Date: M. Goldfarb / #538 / 9-11-10 Checked by / Date: W. Nelson / 9-12-10

REMARKS:

 $\boxed{ \textbf{Dd} = (100 * \text{Df} * k) / [(\text{Df} * \text{Pc}) + (k * \text{Pf})] \quad \Rightarrow \quad k = (62.4 \text{ lb/ft}^3 * \text{B}) \text{ or } (1000 \text{ kg/m}^3 * \text{B}) }$

TCTT = Too Coarse To Test

(A)		E OF ALAS			otance Veri					e No:		
/	OF ALSEN	DOT & PF			lame:							
S	OILS & AGGREGA	те, метно	DA	Federal N						AKSAS No):	
	FIELD WOR	KSHEET		Material:				-	rce: _			
<u> </u>				Item No:					ation:			
	./Sampled from	-					/ Qual. No:					
\mathcal{A}^{L}	& Grade Referer	ıce:			Q	uantity Rep	resented:				Date:	
	FRACTURE -	- WAQTC F	OP for T 33	5		GRAD	ATION — W	AQTC F	OP for T 27	/ T 11 - Mel	hod A	
	Single Face Do	ouble Face	All Fac	e				Cumula	five Mass	Cumulative	%Passing=	
	Fractured Mass F		Q =[Q / (F +		mm / USC	Increment 1	Increment 2		ined C	%Retained	100 -	Specs.
Qu	estionable Mass Q	* 9	%Questional	ble =						(C/M)x100	%Retained	
ι	Jufractured Mass N		Recount if >									
	% Fracture		[{F+(Q/2))/	(E+Q+N)X	*75 / 3"							
Test	t by /date:		Spec.	• •	50 / 2"							
	,		- •		*37.5 / 11/2"							
MOI	STURE CONTENT	— WAQTC	FOP for T	255 / T 265	25 / 1"							
С	Container		Constant		*19.0 / 3/4"							
Δ	oist M ass +Contain		Time	GrossMass Net Mass	12.5 / 1/2"							
					*9.5 / 3/8"							
Мж	Wet Mass A – C				6.3 / 1/4"							
	Well was A				*4.75 / #4							
R)ryMass+Containe				*2.36 / #8							
_	Jiy iii uss Soriaurio				2.00 / #10							
Ма	Dry Mass B - C				*1.18/#16							
mu	DI WESS B-C				.850 / #20							
w	Moisture, %				*.600 / #30							
W	= [(Mw – Md) / Md]	x 100 ਜ਼ਿ 60	Change =		.425 / #40							
Test	by/date:	%Change = [(Mp – Mn) /	Mp] x 100	*.300 / #50							
Mp=	Previous Mass Mea	sured / Min =	New Mass	Measured	*.150 / #100							
N II D	AND PLASTIC LII	MIT 1848	OTC FOR 6	then 00 Tax	.075 / #200							
CID	ANDI LAGIRO LII	mii — ve-	Ш	PL	Cum. Pan					← G	Check Sum	(≤0.3%)
N	Number of	Plows			Cumulat	tive Mass A F	TER Sieving			(= G	[(A - G) / A] x 100 =
C					Dry Mass AF	TER Wash BE	FORE Sieving			←A		
					<u> </u>						Test by/date:	
A	Moist Mass +	Container				Origina	d Dry Mass			← M		

	GRAD/	ATION — W	AQTC FOP for T 27	/ T 11 - Met	hod A	
mm / USC	Increment 1	Increment 2	Cumulative Mass Retained C	Cumulative %Retained (C/M)x100	%Passing = 100 – %Retained	Specs.
*75/3"						
50 / 2"						
*37.5 / 1½"						
25 / 1"						
*19.0 / 3/4"						
125/1/2"						
*9.5 / 3/8"						
6.3 / 1/4"						
*4.75 / #4						
*2.36 / #8						
2.00 / #10						
*1.18/#16						
.850 / #20						
*.600/#30						
.425 / #40						
*.300/#50						
*.150 / #100						
.075 / #200						
Cum. Pan				_	Check Surn	(≤0.3%)
Cumulat	ive Mass AF	TER Sieving		c∈ G	[(A - G) / A]	x 100 =
Dry Mass AFT	TER Wash BE	FORE Sieving		← A		
	Origina	l Dry Mass		← M	Test by/date:	

					U		CTIVICATING (=	32 0111 K B031	·9···· /
LL	Wx	(N / 25) ^{0.121}	LL Spec.	(FM=	Fineness Mo	odulus = Tota	l of % Retained	of *Sieves	/ 100)
Test by	date:	Plasticity index	P1Spec.						
		LL-PL							
Rema	arks:			-					
				- Signatur	e / Date:				

Mw

В

Md

W

Moist Mass A-C

Dry Mass + Container Dry Mass B-C

Moisture Content, %

 $[(Mw - Md) / Md] \times 100$

Checked by / Date:

FM ⇒

to

← Fineness Modulus Target (From M D)

⇐ FM Limits (±0.2 of Mix Design FM)

STATE OF ALASKA DOT & PF

SOILS & AGGREGATE, METHOD A FIELD WORKSHEET

. 🗠 Accep	tance	e Uverification U Info. U	QC Sam	ple No: FA-G	i-1
Project Na	ıme:	Haines Front Street to Park S	street		
Federal N	o :	HHE-095-6(032)		AKSAS No:	69999
Material:	Fine	e Concrete Aggregate	Source:	Glacier Northw	vest
Item No:	501	(1)	Location:	Bellevue, Was	hington

Sta. / Sampled from: Stockpile, HNS Ready Mix Sampled by / Qual. No: P. Harmon # 007

^C/_L & Grade Reference: N/A Quantity Represented: 100 CY Date: 03/24/11

FRACTURE -	— WAQTC FOP for T 335
Single Face	Double Face All Face
Fractured Mass F	%Q=[Q/(F+Q+N)]x 100
Questionable Mass Q	* %Questionable =:
Unfractured Mass N	*Recount if > 15%
% Fracture	←[(F+(Q/2))/(F+Q+N) X
Test by /date:	← Spec.

MOI	STURE CONTENT	Г — WAQ	TC FOP for	T 255 / T 265
С	Container	626.3	Consta	int Mass
A	oist M ass +Contain	1776 3	Time	GrossMass Net Mass
	o de mado	1110.0	12:00 PM	1735.9
Mw	Wet Mass A - C	1150.0		1109.6
mw	HCINESS A-C	1130.0		1735.6
В) ry M ass + Containe	1736.7	12.001 181	1109.3
ם	Jiyiwass - Oomano	11 50.1		
Md	Dry Mass B-C	11104		
W	Moisture, %	3.6		
W:	= [(Mw - Md) / Md]	x 100 ਜੁ	6 Change ±	0.03
Test	by/date: P.H 3/24/11	%Change	= [(Mp - Mi	n) / Mp] x 100
Mp=	Previous Mass Mea	asured / M	n = New M	ass Measured

QUID A	ND PLAST	IC LIMIT	T — WA	QTC FOP	for⊤89and	Cu
				LL	PL	1 👊
N	Numi	er of Blo)W S]
С	C	Container				Dry
Α	Moist M	ass+Co	ntainer			
Mw	Moist	Mass A	– C			
В	Dry Mas	ss + Cont	tainer			
Md	Dry	Mass B	- C			PL
w		re Conte Md) / Md]	,			
LL	Wx	(N / 25) ⁰	.121			LL Spec
Test by	/date:	Plasficit LL -	•			PISpec
		LL-	-YL			

	GRADA	ATION — W	AQTC FOP for T 27	/ T 11 — Mel	hod A	
mm / USC	Increment 1	Increment 2	Cumulative Mass Retained C	Cumulative %Retained (C/M)x100	%Passing= 100 – %Retained	Specs.
*75 / 3"						
50 / 2"						
*37.5 / 1½"						
25 / 1"						
*19.0 / 3/4"						
12.5 / 1/2"						
*9.5 / 3/8"			0.0	0.0	100	100
6.3 / 1/4"						
*4.75 / #4			30.9	5.4	95	95 - 100
*2.36 / #8			89.2	15.6	84	80 - 100
200/#10						
*1.18 / #16			254.4	44.4	56	50 - 85
.850/#20						
*.600 / #30			338.2	59.0	41	25 - 60
.425/#40						
*.300 / #50			441.1	77.0	23	10 - 30
*.150/#100			520.9	90.9	9	2 - 10
.075 / #200			556.8	97.2	2.8	3.0 max
Cum. Pan			557.7		Check Surr	(≤0.3%)
Cumulat	ive Mass AF	TER Sieving	331.1	⊂ G	[(A - G) / A] x 100 =
Dry Mass AF1	ER Wash BE	ORE Sieving	558.2	←A	0.1	%
	Origina	l Dry Mass	573.0	← M	Test by/date: P.H. 3/24/11	

FM ⇒	2.92	2.78	← Fineness Modulus Target (From M D)
2.58	to	2.98	← FM Limits (±02 of Mix Design FM)
(FM=	Fineness Mo	odulus = Tota	of % Retained of *Sieves / 100)

Remarks:		
	Signature / Date:	Patrick H. Harmon / #007 / 3-24-11
	Checked by / Date:	CJK / 3-25-11

S & Prince	STATE OF A
	GREGATE, ME D WORKSHEE
Sta. / Sample	ed from:
^C / _L & Grade F	Reference:

STATE OF A DOT &

AGGREGATE, MET IELD WORKSHEET

LASKA	☐ Accepta	ance 🔲 Ve	rification In	ifo. 🗌 🗚 🏻] oc Sample	e No:		
PF	Project Na	ım e:						
тнор в	Federal N	o :				AKSAS No	Œ	
THOU B	Material:				Source:			
	Item No:				Location:			
			Sampled by	/Qual. No:				
			Quantity Rep	resented:			Date:	
TC FOP for T	335		GRADA	ATION — W	AQTC FOP for T 27	/ / T 11 — Mel	hod B	
<u></u>	Face F +Q +N) x 100	mm / USC	Increment 1	Increment 2	Cumulative Mass	Cumulative %Retained	%Passing = 100 -	Specs.

FRACTURE	— WAQTO	FOP for T 335
Single Face	Double Fac	e All Face
Fractured Mass F		%-Q = [Q / (F +Q +N)] x 100
Questionable Mass Q		* %Questionable <u></u>
Unfractured Mass N		*Recount if > 15%
% Fracture		←[(F+(Q/2))/ (F+Q+N) X
Test by /date:		← Spec. (min.)

С	Container		Consta	int Mass
A	oist M ass +Contair		Time	GrossMas Net Mas
Ιw	Wet Mass A - C			
В) ry M ass +Containe			
Md	Dry Mass B-C			
W	Moisture, %		-	
W	= [(Mw - Md) / Md]	x 100 1r̀	6 Change <u>=</u>	
Test	t by/date:	%Change	= [(Mp - Mn	ı)/Mp]x

RUID AI	ND PLA	STIC LIMIT — WA	QTC FOP f	orT89and⊺	
			Щ	PL	
N	Nu	ımdber of Blows			
С		Container			
Α	Moist	Mass + Container			
Mw	Mo	oistMass A – C			
В	Dry N	Mass + Container			
Md	D	ry Mass B-C			PL
w		sture Content, % - Md) / Md] x 100			
LL	v	V x (N / 25) ^{0.121}			LL Spec.
Test by	/date:	Plasticity index			PISpec.

			Retained C	(C/M)x100	%Retained	
*75 / 3"						
50 / 2"						
*37.5 / 11/2"						
25 / 1"						
*19.0 / 3/4"						
12.5 / 1/2"						
*9.5 / 3/8"						
6.3 / 1/4"						
*4.75 / #4			D			
Indiv. Pan			,	←M1	CA Check Su	m (≤0.3%
mulative Mas	s AFTER Siev	ing = (D + M1)		∈ G	[(A – G) / A] x 100 =
Dry Mass AF	TER Wash BE	FORE Sieving		←A		
	Origina	l Dry Mass		← M	Test by/date:	
			← F = (M1/M2)	(0.001)		
	mm / USC	Curnulalive Mass B	Total Sample Cumulative Mass C = [F x B] +D	Cumulative %Retained (C/M)x100	%Passing = 100 – %Retained	Specs.
	*2.36 / #8		[, 30] 0			
	200/#10					

FM ⇒			←Fineness Mod	ulus Target (From M D)
	to		←FM Limits (±02	2 of Mix Design FM)
(FM =	Fineness Mo	odulus = Tota	l of % Retained o	f *Sieves / 100)

Test by /date:

← −#4 Mass Actually Sieved FA Check Sum (<0.3%)</p>

Signature / Date: Checked by / Date:

Remarks:

*1.18/#16 .850 / #20 *.600/#30 .425 / #40 *.300 / #50 *.150 / #100 .075 / #200 Cum. Pan P M2⇒

 $[(M2-P) / M2] \times 100 =$

STATE OF ALASKA DOT & PF

SOILS & AGGREGATE, METHOD B
FIELD WORKSHEET

✓ Acceptance

Sample No: BC-G-1

Project Name: Phillips Field Road Upgrades

Federal No: STP-0070(3) AKSAS No: 63481

 Material:
 Base Course, D-1
 Source:
 MS-02-001-32

 Item No:
 301(1)
 Location:
 13 Mile, Miller Road

Sta. / Sampled from: 28+50 / Roadway Sampled by / Qual. No: MK / #508

^C/_L & Grade Reference: 12 Rt. / -6" Top BC Quantity Represented: 2000 tons Date: 07/20/10

FRACTURE — WAQTC FOP for T 335				
☑ Single Face ☐ Double Face ☐ All Face				
Fractured Mass F	1113.4	%Q=[Q/(F+Q+N)]x100		
Questionable Mass Q	132.3	* %Questionable =		
Unfractured Mass N	352.6	*Recount if > 15%		
% Fracture	74	←[(F+(Q/2)) / (F+Q+N) X		
Test by /date: PH 7-21-10	70%	← Spec. (min.)		

MOISTURE CONTENT — WAQTC FOP for T 255 / T 265					
С	Container	672.1	Constant Mass		
А	o ist M ass + Contain	3783 B	Time	GrossMass Net Mass	
^	OSCW 433 · CORCALI	3700.0	1:15 PM	3681.3	
Mw	Wet Mass A - C	31117	1.101	3009.2	
m w	HCINESS A = C	3111.7	1:45 PM	3679.8	
В) ry M ass +Containe	3681 Q	1.101	3007.7	
В	Jiyiwass - Containe	3001.3			
Md	Dry Mass B - C	3009.8			
w	Moisture, %	3.4			
W	[(Mw – Md) / Md]	x 100 û	6Change <u>−</u>	0.05	
Test	by/date: PH 7-20-10	% Change	= [(Mp – Mi	n)/Mp]x 100	
Mp=	Previous Mass Mea	asurred / M	In=New M	ass Measured	

RUID AI	ND PLA	STIC LIMIT — WA	QTC FOP f	orT89and	
			Щ	PL	
N	Nu	mober of Blows	23		
С		Container	14.20	14.18	
Α	Moist	Mass + Container	34.22	23.89	
Mw	Mo	istMass A−C	20.02	9.71	
В	Dry N	Mass + Container	31.45	22.79	
Md	Di	y Mass B-C	17.25	8.61	PL
w	Moisture Content, % [(Mw – Md) / Md] x 100		16.1	12.8	13
LL	W x (N / 25) ^{0.121}		16		LL Spec.
Test by PH 7-21	-		3	6 max	PISpec.

Remarks:			

	GRADA	ATION — W	AQTC FOP for T 27	/ T 11 - Mel	hod B	
mm / USC	Increment 1	Increment 2	Cumulative Mass Retained C	Cumulative %Retained (C/M)x100	%Passing = 100 – %Retained	Specs.
*75 / 3"						
50 / 2"						
*37.5 / 1½"						
25 / 1"			0.0	0.0	100	100
*19.0 / 3/4"			251.8	3.1	97	70 - 100
12.5 / 1/2"			1253.8	15.5	85	
* 9.5 / 3/8"			2222.1	27.5	73	50 - 80
6.3 / 1/4"			3291.5	40.7	59	
*4.75 / #4			4067.7 D	50.3	50	35 - 65
Indiv. Pan			4022.8	← M1	CA Check Su	um (≤0.3%)
mulalive Mass	s AFTER Sievi	ing = (D + M1)	8090.5	←G	[(A – G) / A] x 100 =
Dry Mass AFTER Wash BEFORE Sieving		8094.6	←A	0.1	%	
	Origina	l Dry Mass	8094.7	← M	Test by/date:	:
	7.5	31	← F= (M1/M2)	(0.001)	PH 7-20-10	

	•	(
mm / USC	Cumulative Mass B	Total Sample Cumulative Mass C = [F x B] +D	Cumulative %Retained (C / M) x 100	%Passing = 100 – %Retained	Specs.
*2.36/#8	153.6	5224.5	64.5	36	20 - 50
2.00/#10	181.1	5431.6	67.1	33	
*1.18/#16	238.9	5866.9	72.5	28	
.850 / #20	289.6	6248.7	77.2	23	
*.600 / #30	316.5	6451.3	79.7	20	
.425 / #40	364.9	6815.8	84.2	16	
*.300 / #50	438.1	7367.0	91.0	9	8 - 30
*.150 / #100	457.1	7510.1	92.8	7	
.075 / #200	487.8	7741.3	95.6	4.4	0 - 6
Cum. Pan P	533.1				
M2⇒	534.2	← −#4 Mass Ac	tually Sieve	FA Check Su	m (≤0.3%)
		Test by /date: PHH	7-21-10	[(M2-P) / M	12] x 100 =

FM ⇒		(=	Fineness Modulus Target (From M D)
	to	←	FM Limits (±0.2 of Mix Design FM)
(FM=	Fineness Mo	dulus = Total of	f % Retained of *Sieves / 100)

Signature / Date: Pat Harmon / #007 / 7-21-10

Checked by / Date: MK / 7-22-10

0.2%

A PURE
THE OF ALASE

STATE OF ALASKA DOT & PF

SOILS & AGGREGATE, METHOD C FIELD WORKSHEET

STATE OF ALASKA DOT & PF	Acceptance [Verification hfo. A] ^{QC} Samı	ple No:
SOILS & AGGREGATE, METHOD C FIELD WORKSHEET	Federal No: Material: Item No:		Source: Location:	AKSAS No:
Sta. / Sampled from:		Sampled by/Qual. No: Quantity Represented:	Locatoni	Date:

FRACTURE — WAQTC FOP for T 335								
☐ Single Face ☐ Double Face ☐ All Face								
Fractured Mass F		%-Q=[Q/(F+Q+N)]x100						
Questionable Mass Q		* %Questionable =						
Umfractured Mass N		"Recount if > 15%						
% Fracture		←[(F+(Q/2))/(F+Q+N)X						
Test by/date: PH 7-21-10		← Spec. (min.)						
_								

MOI	STURE CONTENT	г — W	AQ	IC FOP for	T 255 / T 263
С	Container			Consta	ant Mass
A	o ist M ass +Contair			Time	GrossMass Net Mass
Mw	Wet Mass A - C				
В	DryM ass +Containe				
Md	Dry Mass B-C				
W	Moisture, %				
W	= [(Mw - Md) / Md]	x 100 -	Û	6 Change <u>−</u>	
Test	by/date:	%Char	ıge	= [(Mp – Mi	n)/Mp]x 100

QUID A	ND PLAS	STIC LIMIT — WAG	TC FOP fo	rT 89 and T	
			Ш	PL	
N	Nur	nber of Blows			
С		Container			
Α	Moist	Mass + Container			
Mw	Moi	stMass A−C			
В	Dry M	ass + Container			
Md	Dry	/MassB−C			PL
V		ture Content, % - Md) / Md] x 100			
LL	W x (N / 25) ^{0.121}				LL Spec
Testby	//date:	Plasficity Index LL – PL			PISpec

	LL –PL]
Remarks:			
			_
			_
			_
			—

	GRAD	V — ИОПТ	AQTC FOP for T 27	7 / T 11 — Mel	hod C	
mm / USC	Increment 1	Increment 2	Cumulative Mass Retained C	Cumulative %Retained (C/M)x 100	%Passing = 100 – %Retained	Specs.
150 / 6"						
100 / 4"						
*75 / 3"					t	
50 / 2"					'	
*37.5 / 1½"						
25 / 1"						
*19.0 / 3/4"						
12.5 / 1/2"						
*9.5 / 3/8"						
6.3 / 1/4"						
*4.75/#4			D			
Indiv. Pan				←M1	CA Check Su	rn (≤0.3%)
Dry Mass A	FTER Sievin	g = (D + M1)		⊂ G	[(M – G) / M	¶ x 100 =
Original Dr	y MassB⊟	ORE Sieving		← M		
				1	Test by/date:	
					-	

mm / USC	Cumulative Mass Ret. CMR ₄₄	CPR _{#4} = (CMR _{#4} /M _{#4}) _x 100	CPP _{#4} = 100-CPR _{#4}	%Passing = (CPP _{st} × CPP _{st})/100	Specs.
*2.36 / #8					
2.00/#10					
*1.18 / #16					
.850 / #20					
*.600 / #30					
.425/#40					
*.300 / #50					
*.150 / #100					
.075 / #200				s	
Cum. Pan P		#200 on -3" = [(s	/f)x 100] =		
H⇒		← DRY Mass AF	TER Wash	FA Check Su	m (≤0.3%)
M _{#4} ⇒		← −#4 Mass BE	FORE Wash	[(H – P)/H	1] × 100 =
		Test by /date:			

FM ⇒			← Fineness Modulus Target (From M D)
	to		⇐ FM Limits (±02 of Mix Design FM)
(FM=	Fineness Mo	dulus = Total	of % Retained of *Sieves / 100)

Signature / Date: Checked by / Date:

				ī c				e						
æ	ST 🖺	ATE OF AL		ш				erification [· Salli	plε	No: EXA	1-G-1	
6		DOT & I	PF					<u>s Field Roa</u> 0070(2)	d Upgrade:	5		AVOACNI.	62401	
5	OILS & AGGR		HOD C		deral No			0070(3) xUseable	Tues 0	Source:	- E.	AKSAS No	0: 03401	
L	FIELD W	VORKSHEET			m No:			xuseable	e Type A	•				
Sta	/Sampled fr	om: 28±5	07 Boodu		IIIIVO.	200(0)						roject Limits		
	: Grade Refe				mbankı	ment				10,000 tons			Date: 07/2	20/10
<u> </u>						menc		eu an idity me p	oresented.	10,000 (0115			Date. On	20110
<u> </u>	FRACTURI				_			GRADAT	ION — W	AQTC FOP for	_			
	Single Face	ㅜ	Face	Alle	ace	 mm / t	ICC.	Increment 1	Increment 2	Cumulative	- 1	Cumulativ		Specs.
	ctured Mass		×0-[0/(F		$\overline{}$	''''''	,50	increment i	increment 2	Mass Retain C	ا09	e % Retained	= 100 - ×Rotainod	opecs.
Į.	onable Mass	·—	% Questio		1 1	150 /	6"	0.0	0.0	0.0	\dashv	100.0	100	
Unfra	ctured Mass		*Recount		—	100 /	4"	1468.8	1977.4	3446.2	\dashv	5.5	95	
<u> </u>	% Fracture		← [(F+(Ω/)		Q+N)X	*757	3"	2460.0	2866.7	5326.7	\dashv	8.5	t 92	
Test	by/date: PH 7	7-2	⇐ Spec.	(min.)		507:	2"	8975.4	11763.2	20738.6	\dashv	33.2	67	
ISTU	RE CONTE	NT — VA	QTC FOP	for T	255 / 1	*37.57	1%"	10354.2	13456.4	23810.6	\dashv	38.2	62	
С	Contain					25 /		15674.3		33118.6	\dashv	53.1	47	
			Time		Han	*19.07	3/4"		19555.3	38098.9	\dashv	61.1	39	
^	oirt Mars + Conta	ino 1534			99.7	12.5 / 1	ł2"	19541.2	20339.7	39880.9	\dashv	63.9	36	
		.	#####		7.6	*9.573	3/8"	21841.7	22437.9	44279.6	\dashv	71.0	29	
Me	/et Mass A -	- q 861.7			99.3	6.371	/4"	21041.1	22401.0	44210.0	\dashv	11.0	- 20	
\vdash			#####		7.2	*4.757	#4	22633.8	23948.6	46582.4	О	74.7	25	20 - 55
B	Ory Mars + Contai	nod 1500		- 02	1.2	Indiv. F	o an	6876.9	8918.3	15795.2	Н	← M1	<u>CA Check Su</u>	
H		 	1		\dashv	Dru Ma:	ss A	FTER Sievin		62377.6	\dashv	← G	[(M - G) / N	
Md	ryMass B -	- q 827.6			\dashv	<u> </u>		Mass BEFC		62378.8	\dashv	← M	0.0	·
V	Moisture, %	4.1	1		\dashv					02010.0	_		Tort by/dato: F	H 7-20-10
V:	[(Mw - Md) /	Md] x 100 ↔	: Chanao ≓	0.	05				Cumulativ	CPR. _M =			%Passing	
	by/date: PH 7			In) / N	1p] x 10			mm/USC	e Mass	(CMR _{av} /M	.	CPP.84 =	= (CPP.84×	Specs.
<u> </u>	vious Mass M								Ret.	14)×100	4	100-OF 11. [4	CPP14)/100	
						,		*2.36 / #8	163.9	18.3	_	81.7	21	
SOID	AND PLAS	TIC LIMIT				1		2.00 / #10			_			
<u> </u>	T			L	PL	l		*1.18 / #16	298.7	33.4	_	66.6	17	
N O		er of Blows	_	3	<u>~</u>	l		.850 / #20			_			
C		ontainer	_	20	14.18	l		*.600 / #30	427.9	47.9	_	52.2	13	
A		ass + Contair	- T	.22	23.89	ł		.425/#40			\dashv			
Mv		Mass A – C		.02	9.71	ł		*.300 / #50	566.7	63.4	\dashv	36.6	9	
B		s + Containe ass B – C		45	22.79			*.150 / #100 .075 / #200	120.0	81.1	\dashv	18.9	5	
Md		ass B – C re Content, ;	, 	25	8.61	PL			808.6	90.4	. 7/	9.6 - 40 1001	s 2.4	
٧.		re Content, 2 4d) / Md] x 10		6.1	12.8	13		Dum. Pan P H ⇒	021.0	200 on −3" = ← DRY Mass			2.6	*0 - 6
ш		N / 25) ^{0.121}		6		LLSpec		H ⇒ M. ₁₄ ⇒	827.9 894.3	← URY Mass			FACheckSu [(H-P)/H	
Test	bu/date:	Plasticity Inc	dex .	, +	0				034.3	Test bu/date:			0.0	-
	'-21-10	LL - PL		3	6 max.	MISpec.			١					
i	narks:						_	FM ⇒		¢	= Fi	ineness Mo	dulus Target	(Fram MD)
#200) determined	on minus 3	3-inch ma	ateria			_		to).2 of Mix Daziqr	
Dele	terious Free						_	(FM=		odulus = Total				
<u> </u>							_ '							
<u> </u>							_	_	_	at Harmon / #	ŧ00	7 / 07-21-1	10	
Ĺ								Checkedt	oy / Date: M	IK / 7-22-10				

STATE OF ALAS	My receptance M ver	ification 🔲 Info	. 🗆 IA 🔲 QC	Sam	nple No:	
	Project Name:				A140 A O A1	
AGGREGATE, SAND EQUIVALE FLAT & ELONGATED					AKSAS No:	
FIELD WORKSHEET	Material:			ource:		
	Item No:	S I I I		ocation:	·	
Sta. / Sampled from: ^C / _L & Grade Reference:		Sampled by:	·		D-t- 0ll-	
L & Grade Reference.		Qualification No	D		Date Sampled:	
	Sand Equivalent Sedimentation		FOP for T 17	76		
	Trial No.	1	2	3		
	<u> </u>	*	- +		\dashv	
	Sand Reading (SR)					
	Clay Reading (CR)				Average SE	
	Sand Equivalent (SE)*					
	Sedimentation Time					
	*SE = (SR ÷ CR) * 100	Т	est by/date:			
		<u></u>				
		ongated — .	ATM 306			
Size Fraction mm — in.	% Retained F&E Group (Original CPR (Rel. to Gradation) +No. 4)		Size Group Mass	Mass Size G		
-37.5 to +19.0 -1½ to +	-3/4					
-19.0 to +9.5 -3/4 to +	3/8					
$-9.5 \text{ to } +4.75 -\frac{3}{8} \text{ to } +N$	o. 4					
F&E Group CPR = (Sma	llest Sieve in Group % Retaine	d ÷ % No. 4 R	etained) x 10	00	Total Weighted %	
F&E Group IPR = F&E G	roup CPR – Next Larger Groເ	p CPR			Test by/date:	
% F&E Size Group (B) =	[(Mass F&E Size Group) ÷ (S	ize Group Mas	s)] x 100			
Weighted F&E Size Group	$o = [(B) \times F\&E Group IPR] \div$	100				
Remarks:			IPR = In		ve Percent Retained Percent Retained	
		Signature / D				
		Checked by /	Date:			

STATE OF ALAS		ptance 🗌 Verifi			Saii	ple No: HMA-D	A-11
OF ALSE	Project	Name: Atka			n & Resi		
AGGREGATE, SAND EQUIVALE			3-02-0394-00				9621
FLAT & ELONGATED FIELD WORKSHEET	Materia		oe IIB		Source:	Atka Quarry	
	ltem No					Atka, AK	
Sta. / Sampled from: Coldfee	u		Sampled by: Qualification N	J. Christens	sen	Date Sampled:	07/10/10
/L & Grade Reference.			qualification in	0. 103		_ Date Sampled.	07/10/10
	Sand	l Equivalent	- WAQTC	FOP for T 1	76	<u> </u>	
	S	edimentation T	ime	20 min.		_	
	Trial N	lo.	1	2	3		
	Sand Readi	ng (SR)	4.1	4.3	4.1		
	Clay Readir	ng (CR)	6.3	6.7	6.5	Average SE	le.
	Sand Equival	ent (SE)*	66	65	64	65	
	Sedimentati	on Time	20 min.	20 min.	20 min.		
	*SE = (SR ÷ 0	CR) * 100	Г	Test by/date: J	.C. / 7-10-	10	
	•		L			_	
		Flat and Flo		ΔTM 306		<u>-</u>	
		Flat and Eld		ATM 306			
	R	Flat and Eld	ongated —	ATM 306 ☐ 1:2]		
Size Fraction mm — in.	Retained (Original Gradation)	ratio: 🗹 1	ongated —		Mass I Size G		Weighted % F&E Size Group
	% Retained (Original Gradation)	ratio:	ongated —	☐ 1:2			F&E Size
mm — in.	% Retained (Original Gradation)	ratio:	ongated —	☐ 1:2		roup Group (B)	F&E Size
mm — in37.5 to +19.0 -1½ to +	% Retained (Original Gradation) -3/4 3/8 3/8	F&E Group CPR (Rel. to +No. 4)	is 1:3	☐ 1:2	Size G	5 1.9	F&E Size Group
mm — in. -37.5 to +19.0 -1½ to + -19.0 to +9.5 $-\frac{3}{4}$ to +	% Retained (Original Gradation) 3/4 3/8 35 0. 4 58	F&E Group CPR (Rel. to +No. 4)	F&E Group IPR	☐ 1:2 Size Group Mass 753.6 104.9	14.	5 1.9	F&E Size Group
mm — in. -37.5 to +19.0 -1½ to + -19.0 to +9.5 - $\frac{3}{4}$ to + -9.5 to +4.75 - $\frac{3}{8}$ to +N	% Retained (Original Gradation) 3/4 3/8 35 0. 4 58 Illest Sieve in Gro	ratio:	F&E Group IPR 60 40 ÷ % No. 4 F	☐ 1:2 Size Group Mass 753.6 104.9	14. 3.3	Froup Group (B) 5 1.9 3.1 Total Weighted %	F&E Size Group
mm — in. -37.5 to +19.0 $-1\frac{1}{2}$ to + -19.0 to +9.5 $-\frac{3}{4}$ to + -9.5 to +4.75 $-\frac{3}{8}$ to +N F&E Group CPR = (Sma F&E Group IPR = F&E G % F&E Size Group (B) =	% Retained (Original Gradation) 3/4 3/8 35 0. 4 58 Illest Sieve in Gro	ratio:	F&E Group IPR 60 40 ÷ % No. 4 Rep CPR ze Group Mass	☐ 1:2 Size Group Mass 753.6 104.9 Retained) x 10	14. 3.3	Froup Group (B) 5 1.9 3.1 Total Weighted %	F&E Size Group 1.1 1.2 2
mm — in. -37.5 to +19.0 $-1\frac{1}{2}$ to + -19.0 to +9.5 $-\frac{3}{4}$ to + -9.5 to +4.75 $-\frac{3}{8}$ to +N F&E Group CPR = (Sma	% Retained (Original Gradation) 3/4 3/8 35 0. 4 58 Illest Sieve in Gro	ratio:	F&E Group IPR 60 40 ÷ % No. 4 Rep CPR ze Group Mass	☐ 1:2 Size Group Mass 753.6 104.9 Retained) x 10	14. 3.3	Froup Group (B) 5 1.9 3.1 Total Weighted %	F&E Size Group 1.1 1.2 2
mm — in. -37.5 to +19.0 $-1\frac{1}{2}$ to + -19.0 to +9.5 $-\frac{3}{4}$ to + -9.5 to +4.75 $-\frac{3}{8}$ to +N F&E Group CPR = (Sma F&E Group IPR = F&E G % F&E Size Group (B) =	% Retained (Original Gradation) 3/4 3/8 35 0. 4 58 Illest Sieve in Gro	ratio:	F&E Group IPR 60 40 ÷ % No. 4 Rep CPR ze Group Mass	☐ 1:2 Size Group Mass 753.6 104.9 Retained) x 10 SS)] x 100	Size G 14. 3.3 00 umulativ	Froup Group (B) 5 1.9 3.1 Total Weighted % Test by/date: J.C.	1.1 1.2 2 77-12-10
mm — in. -37.5 to +19.0 -1½ to + -19.0 to +9.5 -¾ to + -9.5 to +4.75 -¾ to +N F&E Group CPR = (Sma F&E Group IPR = F&E G % F&E Size Group (B) = Weighted F&E Size Group	% Retained (Original Gradation) 3/4 3/8 35 0. 4 58 Illest Sieve in Gro	ratio:	F&E Group IPR 60 40 ÷ % No. 4 Rep CPR ze Group Mass	☐ 1:2 Size Group Mass 753.6 104.9 Retained) x 10 SS)] x 100	Size G 14. 3.3 00 umulativ	Froup Group (B) 5 1.9 3.1 Total Weighted % Test by/date: J.C.	1.1 1.2 2 77-12-10
mm — in. -37.5 to +19.0 -1½ to + -19.0 to +9.5 -¾ to + -9.5 to +4.75 -¾ to +N F&E Group CPR = (Sma F&E Group IPR = F&E G % F&E Size Group (B) = Weighted F&E Size Group	% Retained (Original Gradation) 3/4 3/8 35 0. 4 58 Illest Sieve in Gro	ratio:	F&E Group IPR 60 40 ÷ % No. 4 Rep CPR ze Group Mass	☐ 1:2 Size Group Mass 753.6 104.9 Retained) x 10 CPR = C IPR = Ir	Size G 14. 3.3 00 umulativ	Froup Group (B) 5 1.9 3.1 Total Weighted % Test by/date: J.C.	F&E Size Group 1.1 1.2 2 / 7-12-10

STATE	OF ALASKA		Acceptance	<u>.</u> ∐ v	/erificat	ion 🔲 Info	. 🔲 IA 🔲	QC Samp	le No:				
Marian Maria	OT & PF		ject Name					Camp					
			deral No:						AKS	AS No:			
HOT MIX ASPHA	, ,	- 11					Agg. S	ource:					
FIELD WORK	SHEET	- 11	n No:					Type:					
Sta. / Location:		-	San	npled b		ualification N		-					
C/L Offset:		Sample	Method:				D	ate / Time Sa	mpled	i:			
Lift: Qua	ntity Rep'd: Lo	ot:	Suble	ot:		Mix Desig	n No:		D	ate Teste	d:		
					$\overline{}$	·							
AC Content of HMA Gauge Make & Model:		ietnoa -	- AIM 400	_	_	✓ Method A		Ignition — nace No. / ID	_	FOP for 13	908 (EXI	emai Baiance)	
Gauge Serial No:				-	Ιi	Method B		nace Temp:				°F □°C	
Calib. No:	Calib.	Date:		_	В	Basket Ass					0.10	_	
Calib. No.	Calib.	Date.		_	С			t Assembly			1 ~	re Ignition	
*Sample Temperature		← '	N/A If using			Initial Sam					0.1 g	•	
Sample Pan Mass		└	3241-C	1	IVII			t + Sample			1 ~	5g of Mass (С
Calib. / Target Mass		±5g		1	n			mple Mass			1	, After Ignitio	
	16 Min. Count	Back	kground Coun	t l	\blacksquare	Final Samp					-	egate Mass	
Gauge Count				ļ I	\blacksquare) / Mi) x 100]	_		1	r Content, 0.019	%
A Uncorrected AC		Gauge, 0.	01%		\blacksquare	AC Correct		,, mi, x 100]			-	n Specific	-
W Moisture Content		T 329, 0.0	11 %	1	Α			BC - Cf			0.01		
Corrected AC A - W		0.1 %		1		Moisture C			+		-	9, 0.01%	
Test by/date:		⇔Sp	ecs.	┛		Corrected		A - W	╆		0.1 9		
Moisture of H	MA — WAQTO	FOP for T	T 329	7		by/date:			_			← Specs.	
Oven, °F: Sample, *F: Tim	ne In: Time Out:	Const	tant Mass	.		_							
Oven, °F: Sample, *F: Tim	ne In: Time Out:		tant Mass	- 1				— WAQTC F			lask M	lethod	
Oven, °F: Sample, °F: Tim C Container, 0.1 g	ne In: Time Out:	% Chang	tant M ass ge @ <0.05% In) / Mp] x 100	-	\blacksquare	Mass of Fla	ask + Lid + 1	Water @ 77°			lask M	lethod	
		% Chang [(Mp - M	ge @ <0.05% In) / Mp] x 100	=	В	Mass of Fla	ask + Lid + 1 ask + Lid, (Water @ 77° 0.1 g	F, 0.1		lask M	lethod	
C Container, 0.1 g		% Chang [(Mp - M	ge @ <0.05% In) / Mp] x 100	-	B C	Mass of Fla Mass of Fla Mass of Fla	ask + Lid + 1 ask + Lid, 1 ask + Lid + 1	Water @ 77°l 0.1 g Sample, 0.1	F, 0.1	1 g		lethod	
C Container, 0.1 g A Wet + Container		% Chang [(Mp - M	ge @ <0.05% In) / Mp] x 100	=	B C A	Mass of Fla Mass of Fla Mass of Fla Mass of Dr	ask + Lid + 1 ask + Lid, (ask + Lid + 1 y Sample in	Water @ 77°l 0.1 g Sample, 0.1 n Air	F, 0.1	1 g C	- B	lethod	
C Container, 0.1 g A Wet + Container B Dry + Container		% Chang [(Mp - M 16:	ge @ <0.05% In) / Mp] x 100	=	B C	Mass of Fla Mass of Fla Mass of Fla Mass of Dr Flask + Lid	ask + Lid + 1 ask + Lid, (ask + Lid + 1 y Sample in 1 + De-aired	Water @ 77°l 0.1 g Sample, 0.1 ı Air Water + San	g nple,	1 g C 0.1 g	- B	lethod	
C Container, 0.1 g A Wet + Container B Dry + Container Mi Moist Mass A-C Mf Dry Mass B-C Moisture Content %		% Chang [(Mp - M 16: 90 min. +30 min.	ge @ <0.05% In) / Mp] x 100	=	B C A	Mass of Fla Mass of Fla Mass of Dr Mass of Dr Flask + Lid Temperatu	ask + Lid + 1 ask + Lid, (ask + Lid + 3 y Sample in 1 + De-aired re Correction	Water @ 77°l 0.1 g Sample, 0.1 Air Water + Sam on Factor *	g nple, (Table	C 0.1 g = 2 in FOP	- B	lethod	
C Container, 0.1 g A Wet + Container B Dry + Container Mi Moist Mass A-C Mf Dry Mass B-C		% Chang [(Mp - M 16: 90 min. +30 min. +30 min.	ge @ <0.05% in) / Mp] x 100 35	=	B C A E R	Mass of Fla Mass of Fla Mass of Dr Mass of Dr Flask + Lid Temperatu	ask + Lid + 1 ask + Lid, 1 ask + Lid + 3 y Sample in + De-aired re Corrections est temperature of	Water @ 77°l 0.1 g Sample, 0.1 n Air Water + Sam on Factor * ther than 77°F is us	g nple, (Table	C 0.1 g = 2 in FOP	-В) лтғ	lethod	
C Container, 0.1 g A Wet + Container B Dry + Container Mi Moist Mass A-C Mf Dry Mass B-C W Moisture Content, %		% Chang [(Mp - M 16: 90 min. +30 min. +30 min.	ge @ <0.05% In) / Mp] x 100 35	=	B C A E R	Mass of Fla Mass of Fla Mass of Dr Flask + Lid Temperatu	ask + Lid + 1 ask + Lid, (ask + Lid + 2 ask + Lid + 3 y Sample in + De-aired re Correction st temperature or r, °F =	Water @ 77°l 0.1 g Sample, 0.1 n Air Water + Sam on Factor * ther than 77°F is us	g nple, (Table	C 0.1 g e 2 in FOP	- B		
C Container, 0.1 g A Wet + Container B Dry + Container Mi Moist Mass A-C Mf Dry Mass B-C W Moisture Content, % [[Mi-Mf]/Mf] x 100 Test byldate:	% Wet Mass 0.5% max	% Chang [(Mp - M 16: 90 min. +30 min. +30 min. +30 min. Mp = Pn Mn = 1 ← Spec	ge @ <0.05% In) / Mp] x 100 35	=) %Change	B C A E R Ter	Mass of Fla Mass of Fla Mass of Fla Mass of Dr Flask + Lid Temperatu "Use only if a te mp. of Wate by/date:	ask + Lid + 1 ask + Lid, 1 ask + Lid + 2 y Sample in + De-aired re Correction st temperature or r, °F =	Water @ 77°l 0.1 g Sample, 0.1 n Air Water + San on Factor * ther than 77°F is us MSG =	g nple, (Table sd. R= [A / (A	C 0.1 g e 2 in FOP 1 for water @ A + D - E)]	-B) 77*F x R MSG:		
C Container, 0.1 g A Wet + Container B Dry + Container Mi Moist Mass A-C Mf Dry Mass B-C W Moisture Content, % [(Mi - Mf) / Mf] x 100	% Wet Mass 0.5% max	% Chang [(Mp - M 16: 90 min. +30 min. +30 min. +30 min. Mp = Pn Mn = 1 ← Spec	ge @ <0.05% In) / Mp] x 100 35 evious Net Mass New Net Mass SS.	e S S S S S S S S S S S S S S S S S S S	B C A E R Ter	Mass of Fla Mass of Fla Mass of Dr Flask + Lid Temperatu "Use only if a te mp. of Wate	ask + Lid + 1 ask + Lid, (ask + Lid + 2 y Sample in + De-aired re Correction est temperature or r, °F = 0 OP for T 166 /	Water @ 77°l 0.1 g Sample, 0.1 n Air Water + Sam on Factor * ther than 77°F is us MSG =	g nple, (Table ed. R= [A / (A	C 0.1 g e 2 in FOP 1 for water @ A + D - E)] Design N	-B 77*F xR MSG:	stant Mass	_
C Container, 0.1 g A Wet + Container B Dry + Container Mi Moist Mass A-C Mf Dry Mass B-C W Moisture Content, % [[Mi-Mf]/Mf] x 100 Test byldate:	% Wet Mass 0.5% max	% Chang [(Mp - M 16: 90 min. +30 min. +30 min. +30 min. Mp = Ps Mn ≥ I	ge @ <0.05% In) / Mp] x 100 35 Westous Net Mass New Net Mass Sea Net Mass Sea Net Mass	fic Gra	B C A E R Test	Mass of Fla Mass of Fla Mass of Dr Flask + Lid Temperatu "Use only if a te mp. of Wate by/date: WAQTC F	ask + Lid + 1 ask + Lid, 1 ask + Lid + 2 y Sample in + De-aired re Correction st temperature or r, °F =	Water @ 77°l 0.1 g Sample, 0.1 n Air Water + San on Factor * ther than 77°F is us MSG =	g nple, (Table ed. R= [A / (A Mix %Ch Mp=P	C 0.1 g e 2 in FOP; 1 for water (a) A + D - E)] Design N	- B) 77*F x R //SG: Con % = [[Mp	stant Mass)
C Container, 0.1 g A Wet + Container B Dry + Container Mi Moist Mass A-C Mf Dry Mass B-C W Moisture Content, % [[Mi-Mf]/Mf] x 100 Test byldate:	% Wet Mass 0.5% max	% Chang [(Mp - M 16: 90 min. +30 min. +30 min. Mp = Pr Mn = ! ← Spec	ge @ <0.05% In) / Mp] x 100 35 Westous Net Mess New Net Mess Scs. Sulk Specient Weight	fic Grallethod	B C A E R Test	Mass of Fla Mass of Fla Mass of Dr Flask + Lid Temperatu "Use only if a te mp. of Wate by/date: WAQTC F	ask + Lid + 1 ask + Lid, (ask + Lid + 2 y Sample in + De-aired re Correction est temperature or r, °F = 0 OP for T 166 /	Water @ 77° 0.1 g Sample, 0.1 Air Water + Sam on Factor * ther than 77°F is us MSG =	g nple, (Table ed. R= [A / (A Mix emp: Wb=P	C 0.1 g e 2 in FOP 1 for water (a) A + D - E)] Design Number (c) 4 evicus Net Mess	- B) 77*F x R MSG: Con % = [[Mp	stant Mass)
C Container, 0.1 g A Wet + Container B Dry + Container Mi Moist Mass A-C Mf Dry Mass B-C W Moisture Content, % [[Mi-Mf]/Mf] x 100 Test byldate:	% Wet Mass 0.5% max	% Chang [(Mp - M 16: 90 min. +30 min. +30 min. +30 min. -30 min. -30 min. Bp = R Mn = 1 C B	ge @ <0.05% In) / Mp] x 100 35 evious Net Mass New Net Mass Sew Net Mass Weight Mass at	fic Gralethod	B C A E R Test	Mass of Fla Mass of Fla Mass of Fla Mass of Dr Flask + Lid Temperatu "Use only if a te mp. of Wate by/date: WAQTC F	ask + Lid + 1 ask + Lid, (ask + Lid + 2 y Sample in + De-aired re Correction est temperature or r, °F = 0 OP for T 166 /	Water @ 77° 0.1 g Sample, 0.1 Air Water + Sam on Factor * ther than 77°F is us MSG =	g nple, (Table ed. R= [A / (A Mix white white Mix Mix Mix Mix Mix Mix Mix Mix	C 0.1 g e 2 in FOP 1 for water (a) A + D - E)] Design Number (c) 4 evicus Net Mess	- B) 77°F x R MSG: Con % = Mp	stant Mass	
C Container, 0.1 g A Wet + Container B Dry + Container Mi Moist Mass A-C Mf Dry Mass B-C W Moisture Content, % [[Mi-Mf]/Mf] x 100 Test byldate:	% Wet Mass 0.5% max	% Chang [(Mp - M 16: 60 min. +30 min. +30 min. -30 min. -30 min. -30 min. Bp = Pri Mn = I B C B X	ge @ <0.05% In) / Mp] x 100 35 evious Net Mass New Net Mass Scall K Specie Weight Mass at Dry Mas	fic Gralethod	B C A E R Test	Mass of Fla Mass of Fla Mass of Fla Mass of Dr Flask + Lid Temperatu "Use only if a te mp. of Wate by/date: WAQTC F	ask + Lid + 1 ask + Lid, (ask + Lid + 2 y Sample in + De-aired re Correction est temperature or r, °F = 0 OP for T 166 /	Water @ 77° 0.1 g Sample, 0.1 Air Water + Sam on Factor * ther than 77°F is us MSG =	g nple, (Table ed. R= [A / (A Mix emp: Mass @ -2 brs. Mess @	C 0.1 g e 2 in FOP 1 for water (a) A + D - E)] Design Number (c) 4 evicus Net Mess	- B) 77"F x R MSG: Con [Mp Mel Mel	stant Mass)
C Container, 0.1 g A Wet + Container B Dry + Container Mi Moist Mass A-C Mf Dry Mass B-C W Moisture Content, % [[Mi-Mf]/Mf] x 100 Test byldate:	% Wet Mass 0.5% max	% Chang [(Mp - M 16.6 90 min. +30 min. +30 min. +30 min. Mp = Ps Mn = 3 C B X Y	ge @ <0.05% In) / Mp] x 100 35 Westous Net Mass New Net Mass See Net Mass Weight Mass at Dry Mas Pan	fic Gralethod	B C A E R Test	Mass of Fla Mass of Fla Mass of Fla Mass of Dr Flask + Lid Temperatu "Use only if a te mp. of Wate by/date: WAQTC F	ask + Lid + 1 ask + Lid, (ask + Lid + 2 y Sample in + De-aired re Correction est temperature or r, °F = 0 OP for T 166 /	Water @ 77° 0.1 g Sample, 0.1 Air Water + Sam on Factor * ther than 77°F is us MSG =	g Table ed. R = [A / (A Mix Mix Mix Mix Mix Mix Mix Mix	C 0.1 g = 2 in FOP; 1 for water (a A + D - E)] Design N ange (a < 0.05 New Net Mass	- B) 777*F x R MSG: Con % = [Mp intel intel Net Net	stant Mass)
C Container, 0.1 g A Wet + Container B Dry + Container Mi Moist Mass A-C Mf Dry Mass B-C W Moisture Content, % [[Mi-Mf]/Mf] x 100 Test byldate:	% Wet Mass 0.5% max	% Chang [(Mp - M 16. 90 min. +30 min. +30 min. +30 min. Wp = Pn Mn = 1 C B X Y A	ge @ <0.05% In) / Mp] x 100 35 evious Net Mass New Net Mass SS. Weight Mass at Dry Mas Pan Dry Mas	ffic Gralethod	B C A E R Ter Test I C / A er, 0. 0.1 g an, 0.	Mass of Fla Mass of Fla Mass of Fla Mass of Dr Flask + Lid Temperatu "Use only if a te mp. of Wate by/date: WAQTC F	ask + Lid + 1 ask + Lid, (ask + Lid + 2 y Sample in + De-aired re Correction est temperature or r, °F = 0 OP for T 166 /	Water @ 77° 0.1 g Sample, 0.1 Air Water + Sam on Factor * ther than 77°F is us MSG =	g Table Table Mix Mix Mix Mix Moss @ -2 hrs. Moss @ -2 hrs. C	C 0.1 g e 2 in FOP; 1 for water @ A + D - E)] Design Numbers @ <0.05 revious Net Mass	- B) 777*F x R MSG: Con % = [Mp intel intel Net Net	stant Mass)
C Container, 0.1 g A Wet + Container B Dry + Container Mi Moist Mass A-C Mf Dry Mass B-C W Moisture Content, % [[Mi-Mf]/Mf] x 100 Test byldate:	% Wet Mass 0.5% max	% Chang [(Mp - M 16: 90 min. +30 min. +30 min. -30 mi	ge @ <0.05% In) / Mp] x 100 35 evious Net Mass New Net Mass Sc. Gulk Speci Weight Mass at Dry Mas Pan Dry Mas Bulk Sp	fic Gralethod in Water SSD, as + Pa	B C A E R Test Test of C A D.1 gran, 0.1 gran,	Mass of Fla Mass of Fla Mass of Fla Mass of Dr Flask + Lid Temperatu "Use only if a te mp. of Wate by/date: WAQTC F 1 g 1 g (X - Y) A / (B - C)	ask + Lid + 1 ask + Lid, (ask + Lid + 2 y Sample in + De-aired re Correction est temperature or r, °F = 0 OP for T 166 /	Water @ 77° 0.1 g Sample, 0.1 Air Water + Sam on Factor * ther than 77°F is us MSG =	g Table Table Mix Mix Mix Mix Moss @ -2 hrs. Moss @ -2 hrs. C	C 0.1 g = 2 in FOP; 1 for water (a A + D - E)] Design N ange (a < 0.05 New Net Mass	- B) 77*F x R MSG: Con % = [Mp Net Net Net knes	stant Mass - Mn)/Mp] x 100)
C Container, 0.1 g A Wet + Container B Dry + Container Mi Moist Mass A-C Mf Dry Mass B-C W Moisture Content, % [[Mi-Mf]/Mf] x 100 Test byldate:	% Wet Mass 0.5% max	% Chang [(Mp - M 16: 00 min. +30 min. +30 min. -30 mi	ge @ <0.05% In) / Mp] x 100 35 evious Net Mass New Net Mass Sc. Gulk Speci Weight Mass at Dry Mas Pan Dry Mas Bulk Sp	fic Gralethod in Water SSD, as + Pa	B C A E R Test Test of C A D.1 gran, 0.1 gran,	Mass of Fla Mass of Fla Mass of Fla Mass of Dr Flask + Lid Temperatu "Use only if a te mp. of Wate by/date: WAQTC F	ask + Lid + 1 ask + Lid, (ask + Lid + 2 y Sample in + De-aired re Correction est temperature or r, °F = 0 OP for T 166 /	Water @ 77° 0.1 g Sample, 0.1 Air Water + Sam on Factor * ther than 77°F is us MSG =	g Table ed. R = [A / (A Mix Mix Mix Mix Mix Mix Mix Mix	C 0.1 g = 2 in FOP; 1 for water (a A + D - E)] Design N ange (a < 0.05 New Net Mass	- B 777*F x R MSG: Con %=[Mpr Net Net Net Net	stant Mass - Mn)/Mp] x 100)
C Container, 0.1 g A Wet + Container B Dry + Container Mi Moist Mass A-C Mf Dry Mass B-C W Moisture Content, % [[Mi-Mf]/Mf] x 100 Test byldate:	% Wet Mass 0.5% max	% Chang [(Mp - M 16.6 90 min. +30 min. +30 min. +30 min.	ge @ <0.05% In) / Mp] x 100 35 Welget Mass Weight Mass at Dry Mas Pan Dry Mas G Bulk Sp isorption, () t MSG	fic Gradethod in Water SSD, as + Pa G, 0.00	B C A E R Test Test O.1 g an, 0.1	Mass of Fla Mass of Fla Mass of Fla Mass of Dr Flask + Lid Temperatu "Use only if a te mp. of Wate by/date: WAQTC F 1 g 1 g 1 g (X - Y) A / (B - C) (B - C)] x 100	ask + Lid + 1 ask + Lid, (ask + Lid + 2 y Sample in + De-aired re Correction est temperature or r, °F = 0 OP for T 166 /	Water @ 77° 0.1 g Sample, 0.1 Air Water + Sam on Factor * ther than 77°F is us MSG =	g Table Table Mix Mix Mix Mix Moss @ -2 hrs. Moss @ -2 hrs. C	C 0.1 g = 2 in FOP; 1 for water (a A + D - E)] Design N ange (a < 0.05 New Net Mass	- B 777*F x R MSG: Con %=[Mp Net Net Net Net	stant Mass)
C Container, 0.1 g A Wet + Container B Dry + Container Mi Moist Mass A-C Mf Dry Mass B-C W Moisture Content, % [[Mi-Mf]/Mf] x 100 Test byldate:	% Wet Mass 0.5% max	% Chang [(Mp - M 16. 90 min. +30 min. +30 min. +30 min. -30 min.	ewous Net Mass New Net Mass So Bulk Special Dry Mass So Bulk Special Sorption, (fic Gradethod in Water SSD, as + Pa G, 0.00	B C A E R Terr Test I C / A Der, 0.1 gan, 0.1 G B - A) / (B B S G / I B S G / I B C A B C	Mass of Fla Mass of Fla Mass of Fla Mass of Dr Flask + Lid Temperatu "Use only if a te mp. of Wate by/date: WAQTC F 1 g 1 g (X - Y) A / (B - C)	ask + Lid + 1 ask + Lid, (ask + Lid + 2 y Sample in + De-aired re Correction est temperature or r, °F = 0 OP for T 166 /	Water @ 77° 0.1 g Sample, 0.1 Air Water + Sam on Factor * ther than 77°F is us MSG =	g Table Table Mix Mix Mix Mix Moss @ -2 hrs. Moss @ -2 hrs. C	C 0.1 g 2 2 in FOP; 1 for water @ A + D - E)] Design Manage @ <0.05 New Net Mess New Net Mess Core Thice	- B) 77*F x R MSG: Con % = [Mp Net Net Net knes	stant Mass)
C Container, 0.1 g A Wet + Container B Dry + Container Mi Moist Mass A-C Mf Dry Mass B-C W Moisture Content, % [[Mi-Mf]/Mf] x 100 Test byldate:	% Wet Mass 0.5% max	% Chang [(Mp - M 16. 90 min. +30 min. +30 min. +30 min. -30 min.	ge @ <0.05% In) / Mp] x 100 35 Westaus Net Mess New Net Mess Ses. Weight Mass at Dry Mas Pan Dry Mas Bulk Sp Bulk Sp sorption, () t MSG Impaction,	fic Gradethod in Water SSD, as + Pa G, 0.00	B C A E R Test Test O.1 g an, 0.1	Mass of Fla Mass of Fla Mass of Fla Mass of Dr Flask + Lid Temperatu "Use only if a te mp. of Wate by/date: WAQTC F 1 g 1 g (X - Y) A / (B - C) (B - C)] x 100	ask + Lid + 1 ask + Lid + 1 ask + Lid + 2 y Sample in + De-aired re Correction est temperature or r, °F = 0 Panel	Water @ 77° 0.1 g Sample, 0.1 Air Water + Sam on Factor * ther than 77°F is us MSG =	g Table Table Mix Mix Mix Mix Moss @ -2 hrs. Moss @ -2 hrs. C	C 0.1 g 2 2 in FOP; 1 for water @ A + D - E)] Design Manage @ <0.05 New Net Mess New Net Mess Core Thice	- B 777*F x R MSG: Con %=[Mp Net Net Net Net	stant Mass)

6															
										ple No: HMA-OD-11					
🔏	- Carro					Old	Old Glenn Highway: Fire Lake to South Birchwood								
	HOT MIX ASPHALT (HMA) Federal No: S												61		
FIELD WORKSHEET Type Mix: HMA						4, Ту	Type IIB Agg. Source: Premier Pit/ Pruhs Const								
Item No: 401						(1)	Asph. Cement Source / Type: Tesoro / PG 52-28								
Sta.	/ Location: 240+5	S	ampl	ed by	by / Qualification No: S. February / #557										
c/L Offset: 8' RT (right panel) Sample Method:							Plate Date / Time Sampled:				mpled:	9-22-10/ 12:48 PM			
Lift:	Lift: Top Quantity Rep'd: Lot: 1 Sublot:							Mix Design No: 2010A-2181 Date Tested: 9/22/20					10		
A(C Content of HMA	— ATM 4	1	AC Content of HMA by Ignition — WAQTC FOP for T 308 (External Bala						xtemal Balano	ce)				
Gauge Make & Model: Troxler 3241-C							✓ Method A	Fu	mace No. / ID	101188	148				
Gau	ige Serial No: 78	31						Method B	Fu	rnace Temp:	538		°F 🔽	°C	
Cali	b. No: 2010A-21	181 Calib.	Date:	6/25/201	0		В	Basket Assembly Mass 2987.8				8 0.1	0.1 g		
****	mple Temperature	NA NA	I	*NUA Propi		1	С	Sample Ma	ass + Baske	et Assembly	5366.	7 Bef	ore Ignition		
\vdash	Sample Pan Mass	562	-	*N/A if using 3241-C			Mi	Initial Sam	mple Mass C - B		2378.	9 0.1	0.1 g		
	alib. / Target Mass		± 5g	, <u> </u>				Furnace Mass: Basket + Sample			5363.	4	± 5g of Mass C		
	unio. / Target wides		1 -				D	Basket Assembly + Sample Mass			5235.	7 0.1	0.1 g, After Ignition		
1	Gauge Count	16 Min. Count 4618	T F	ackground Co	unt		Mf	Final Samp	ole Mass	D - B	2247.	9 Agg	regate Mas	55	
A	Uncorrected AC	5.43	Gause	2112			ВС	Loss, %	[((Mi - M	f) / Mi) x 100]	5.51	Bind	er Content, 0.0	01%	
w						Cf	AC Correction Factor 0.37			Ove	Oven Specific				
	orrected AC A - W	5.4	0.1%	0.01%			Α	UnCorrected AC BC - Cf 0.04				0.0	0.01 %		
	by/date: WW9-22-10	5.0 -5.8		Specs.			W	Moisture Content 5.10 T 329,					29, 0.01%		
Test	byrdate. WWW922-10	3.0 - 3.0	<u></u>	Specs.		ı	Pb	Corrected	AC	A - W	5.0 -5	.8 0.1	%		
	Moisture of H	MA — WAQTO	FOP fo	r T 329			Test	t by/date: W	M/9-22-10		5.0 - 5	.8	⊂ Spece	CS.	
_	n, °F: Sample, *F: Tim			nstant Ma			MSG of HMA Mix — WAQTC FOP for T 209 — Flask Method								
	235 180 1:15PM 3:15PM % Change @ 4					D Mass of Fi			lask + Lid + Water @ 77°F, 0.1 g			7363.8			
С	Container, 0.1 g 237.1 [(Mp - Mn) / Mp] x 100 Wet + Container 2359.5 1635				B Mass of Flask + Lid, 0.1 g 2984						.8				
A	Wet + Container	2359.5		1635	Change		С	Mass of Fla	ask + Lid +	Sample, 0.1	g		5027	7.5	
В	Dry + Container	2358.7	90 min.	2359.30			Α	Mass of Dr	y Sample ir	n Air		C - B	2042	2.7	
Mi	Moist Mass A-c	2122.4	+30 min. +30 min.	20000	0.03	l			I + De-aired Water + Sample, 0.1 g				8597	7.6	
Mf	Dry Mass B-c Moisture Content. %	2121.6 0.04	+30 min.				R	Temperatu	ure Correction Factor * (Table 2 in FOP) 1.0000					000	
w	,	0.04		= Previous Net Ma	155		To	•		other than 77°F is use			0.50		
	[(Mi - Mf) / Mf] x 100	0.5% max	_	n = New Net Mass				mp. of Wate	M 9-22-10	0.4 MSG =	[A/(A+D		2.52		
Tort	buildato: unana on an		⊂ Sp	ecs.		<u> </u>	Test	byrdate.	WI 9-22-10		MIX Desi	gn MSG:	2.51	1	
Test	by/date: WM/9-22-10				V Remarks — Gauge / Ignition Printout V Bulk Specific Gra								nstant Ma	ass	
_		nition Printout	ı.	Bulk Spe	ecific	Gra	vity -	— WAQTC F	OP for T 166	/ T 275 Oven To	emp: 230 F	Co	nstant ma	100	
_		nition Printout		Bulk Spe			vity C / A		OP for T 166 Panel	/ T 275 Oven To Joint	% Change (9 <0.05% = [[]	Mp - Mn) / Mp] x		
_		nition Printout		Bulk Spe	Met	hod	C/A					et Mass (Mass A	Ир - Mn) / Mp] х	%	
_		nition Printout			Met nt in \	hod Nate	C / A r, 0.	.1 g	Panel	Joint	% Change (g <0.05% = [(1 let Mass	Ир - Mn) / Mp] х	% Change	
_		nition Printout		C Weigh	Met ht in \ at S	hod Wate SD,	C / A r, 0. 0.1 g	1 g	Panel 1223.4	Joint	% Change (Mp = Previous I Mn = New Net	et Mass (Mass (Mas	Ир - Mn) / Mp] х	% Change	
_		nition Printout		C Weigh	Met ht in \ at S	hod Wate SD,	C / A r, 0. 0.1 g	1 g	Panel 1223.4 2098.3	Joint	% Change (Mp = Previous I Mn = New Net littel Gross Mass (B	et Mass (Aless Initel Net	Mp - Mn) / Mp] x	% Change	
_		nition Printout		C Weigh B Mass X Dry M Y Pan	Met nt in \ at SS lass	hod Wate SD, + Par	C / A r, 0. 0.1 g n, 0.	1 g	Panel 1223.4 2098.3 2327.8	Joint	% Change (Mp = Previous h Mn = New Net Vitel Gross Mass (2) +2 hrs. Mass (2) +2 hrs.	<0.05% = [()	Mp - Mn) / Mp] x		
_		nition Printout		C Weigh B Mass X Dry M Y Pan	Met nt in \ at SS lass	hod Wate SD, + Par	C / A r, 0. 0.1 g n, 0.	1 g) 1 g	Panel 1223.4 2098.3 2327.8 236.4	Joint	% Change (Mp = Previous 1 Mn = New Nel vittel Gross Mess (Mess (-2 hrs. Core	0 <0.05% = [(1) left Mess Me	Mp - Mn) / Mp] x		
_		nition Printout	- B	C Weight B Mass X Dry M Y Pan A Dry M SG Bulk S	Met nt in \ at SS lass -	Wate SD, + Par in Air 0.00	C / A r, 0. 0.1 g n, 0. , 0.1	1 g 1 1 g 1 g (X - Y)	Panel 1223.4 2098.3 2327.8 236.4 2091.4	Joint	% Change (Mp = Previous 1 Mn = New Nel vittel Gross Mess (Mess (-2 hrs. Core	0 <0.05% = [(1) left Mess Me	Mp - Mn) / Mp] x		
_		nition Printout	8	C Weight B Mass X Dry M Y Pan A Dry M SG Bulk S	Met nt in \ at SS lass -	Wate SD, + Par in Air 0.00	C / A r, 0. 0.1 g n, 0. , 0.1	1 g 1 g 1 g (X-Y) A/(B-C)	Panel 1223.4 2098.3 2327.8 236.4 2091.4 2.390	Joint	% Change (Mp = Previous 1 Mn = New Net Mn = New Net Ntel Gross Mess @ +2 hs. Core 1.7	<0.05% =	Mp - Mn) / Mp] x		
_		nition Printout	B B	C Weight B Mass X Dry M Y Pan A Dry M SG Bulk S Absorption	Met at SS lass - lass i SpG, 1, 0.1	Mate SD, + Par in Air 0.00	C / A r, 0. 0.1 g n, 0. , 0.1 1 - A) / (1 g 1 g 1 g (X-Y) A/(B-C)	Panel 1223.4 2098.3 2327.8 236.4 2091.4 2.390 0.8 2.525 94.7	Joint	% Change (i) Mp = Previous 1 Mn = New Net Nitel Gross Mess (ii)	9 < 0.05% = [[]] let Mass	ss (inches)		
_		nition Printout	B	C Weight B Mass X Dry M Y Pan A Dry M SG Bulk S Absorption Lot MSG Compactic	Met ht in \ at SS lass - lass i SpG, n, 0.1	hod Wate SD, + Par in Air 0.00 [(B	C / A r, 0. 0.1 g n, 0. ; 0.1 1 - A) / (1 g 1 g 1 g (X-Y) A / (B-C) (B-C)] x 100	Panel 1223.4 2098.3 2327.8 236.4 2091.4 2.390 0.8 2.525	Joint	% Change (i) Mp = Previous 1 Mn = New Net vittel Gross Mass (i) +2 ms. Core 1.7 2.0 2.0	9 < 0.05% = [[]	ss (inches)		

08 8 P/III	Accep	tance Verif	ication 🔲 Info. [JIA □Q0	Sample	n No:				
	OFALASKA I └──	tance								
DC	T & PF Froject N					VKSVS NO.				
HMA Extracted Aggrega		No: AKSAS No:								
FOP for T 30 - FIELD W	11101011011				ocation:					
Sta / Sampled from:			ampled by / Qua		_					
C/ _L & Grade Reference:	Qi	 uantity Repres	ented: Lot:	Suble	ot· Γ)ate / Time:				
,		admitty (topioc			<u> </u>	-	i			
FRACTURE — V	VAQTC FOP for T 335	HMA AGGREGATE GRADATION — WAQTC FOP for T 30								
Single Face Double		Cumulative Mass	Cumulative	% Passing =	***Aggregate	Reported				
Fractured Mass F	% Q = [Q / (F + Q + N)] x 100	mm/USC	Retained C	% Retained	100 – % Retained	Correction	% Passing	Specs.		
Questionable Mass Q	* % Questionable ⇒	E0 / 2"		(C/M) x 100	% Retained	Add Subtra	iCt			
Unfractured Mass N	*Recount if > 15%	50 / 2" *37.5 / 1½"					+	-		
% Fracture		25 / 1"					+			
Test by/date:	⇒ Spec. (min.)	*19.0 / 3/4"					+			
MOISTURE CONTENT —	· WAQTC FOP for T 255 / T 265	12.5 / 1/2"					+ +	_		
C Container	Constant Mass	*9.5 / 3/8"					1 1	_		
o sinamo	Gross Mass	6.3 / 1/4"					1 1	_		
A Moist Mass + Container	I IME Net Mass	*4.75 / #4					1	_		
	—	*2.36 / #8						_		
Mw Wet Mass A – C		2.00 / #10					1	_		
	—	*1.18 / #16					1 1	_		
B Dry Mass + Container		.850 / #20						-		
		*.600 / #30					1 1	-		
Md Dry Mass B - C		.425 / #40					1 1	_		
W Moisture, %		*.300 / #50					1 1	_		
$W = [(Mw - Md) / Md] \times 100$	û % Change ⇒	*.150 / #100					1 1	_		
Test by/date: %	6 Change = [(Mp – Mn) / Mp] x 100	.075 / #200			*		1 1	_		
Mp = Previous Mass Measured	d / Mn = New Mass Measured	Pan (only) ← P * #200 = {[(M				M – A) + P] / M} x 100				
Liquid and Plastia Limit W	AQTC FOP for T 89 and T 90	Cumulative Mass AFTER Sieving				← G Test by/date:				
Liquid and Flastic Limit — W	LL PL	Dry Mass A	FTER Wash BEFORE	Sieving		⇐ A				
N Number of Blow	**Dry	Sample Mass BEFOR		← M **(within 0.1% of Mf, FOP for T 308)						
C Container	<u> </u>									
A Moist Mass + Conta	niner X	□ Wetting Agent Osed						n (≤ 0.2%)		
Mw Moist Mass A -	\longrightarrow \longrightarrow \bigcirc	$[(Mf_{(T308)} - M_{(T30)}) / Mf_{(T308)}] \times 100 = [(A-G)/A] \times 100 =$								
B Dry Mass + Contain		[(-)/] x 1	nn =	(≤ 0.1%?)				
Md Dry Mass B – C				'^`		(= 0.170:)				
Moisture Content,	%	***! 0.20	ust sloves correctly for	r aggregate con	rootion vou mus	t input numbore t	rom the HMA	_		
[(Mw - Ma) / Ma] x	- - - - - - - - - - 		ust sieves correctly for In Factors Worksheet.							
LL W x (N / 25) ^{0.121}	LL Spec.	adiustme								
Plastic Inc	PI Spec	FM	⇒		← Fineness	Modulus Targ	et (From MD)			
Test by/date: LL - Pl	L Tropec.		to		← FM Limits	(± 0.2 of Mix	Design FM)			
			(FM = Fineness I	Modulus = To	tal of % Reta	nined of *Siev	res / 100)			
		-								
Remarks:			Copy to Contrac	ctor / Date:						

Tested by / Qual. #:

Signature / Date:
Checked by / Date:

	CT A	TE OF A	LACKA	☑ Acce	otance 🗌 Ver	ification Info.	□ IA□	QC Sample	e No:	нма-	-G-1			
TRANSPO	SIA	TE OF A DOT &		Project N	lame: Haines	s Highway-Ferry	Terminal t							
/:	ATE OF ALBERT	שטוע	FF	Federal I										
н	MA Extracted Age	gregate Gr	adation	Material:	HMA, Type	HMA, Type II B Source: Haines Quarry & U.S. Oil								
F	OP for T 30 - FIE	LD WOR	KSHEET	Item No:	401(1)			ocation: H	aines,	AK				
Sta	. / Sampled from	n: <u>133+0</u>	10		S	ampled by / Qua	ıl. No: Joe	Example #	110					
C/L 8	& Grade Referer	nce: 6' R	t., Top Lif	t Qı	antity Repres	ented: Lot:	1 Subl	ot: <u>1</u> [ate / T	ime: (3/24/10	9:00 AM		
					· ·			,						
	FRACTURE	— WAQTO	C FOP for T	335		HMA AGGI	REGATE GI	RADATION —			T 30			
✓ Single Face ☐ Double Face ☐		, , , , , , , , ,	mm / USC	Cumulative Mass	Cumulative % Retained	% Passing = 100 -		gregate ection	Reported	Specs.				
	Fractured Mass F			+ Q + N)] x 100	1111117 030	Retained C	(C/M) x 100	% Retained		Subtract	% Passing	specs.		
G	Questionable Mass Q		* % Questic	2	50 / 2"							_		
	Unfractured Mass N	100 /2000 D	*Recount	100000000000000000000000000000000000000	*37.5 / 11/2"							-		
× 0	% Fracture	93	*	/ (F+Q+N) X 100	25 / 1"							_		
Test	by/date: JE 3-24-10	80%	⇐ Spec. (m	nin.)	*19.0 / 3/4"	0.0	0.0	100.0	0.0	0.0	100	100 – 100		
МО	ISTURE CONTEN	IT — WAG	QTC FOP for	T 255 / T 265	12.5 / 1/2"	501.1	22.3	77.7	0.0	0.0	78	71 – 83		
С	Container	448.4	Const	ant Mass	*9.5 / 3/8"	818.0	36.4	63.6	0.0	0.0	64	56 – 68		
Α	Moist Mass + Container	2684.3	Time	Gross Mass Net Mass	6.3 / 1/4"							-		
_	Moist Mass + Container	2004.5	4:00 PM	2584.3	*4.75 / #4	1259.9	56.1	43.9	0.0	0.0	44	36 – 48		
Mw	Wet Mass A - C	2235.9	4.00 F W	2135.9	*2.36 / #8	1551.7	69.1	30.9	0.0	0.0	31	23 – 35		
17177	Worlings A S	2200.0	4:30 PM	2584.1	2.00 / #10							_		
В	Dry Mass + Container	2584.0	4.001101	2135.7	*1.18 / #16	1729.7	77.0	23.0	0.0	0.0	23	16 – 26		
		2001.0			.850 / #20							-		
Md	Dry Mass B - C	2135.6			*.600 / #30	1858.2	82.7	17.3	0.0	0.0	17	11 – 19		
		200 8 20 5 5 5			.425 / #40							_		
W	Moisture, %	4.7			*.300 / #50	1967.8	87.6	12.4	0.0	0.0	12	7 – 15		
	I = [(Mw - Md) / Md]		% Change ⇒	0.01	*.150 / #100	2052.1	91.4	8.6	0.0	0.0	9	5 - 11		
	//date: JE#110/3-24-10	V65	91000 19	n) / Mp] x 100	.075 / #200	2115.5	94.2	* 5.8	0.0	0.0	5.8	3.5 - 7.5		
M	p = Previous Mass Me	easured / Mi	n = New Mas	s Measured	Pan (only)	20.0	⇔ P	* #200 = {[(2/24/40		
- 11	IOUID AND DI ASTIC	LIMIT MALA	OTC EOD for	00 T boo 09 T	Cur	mulative Mass AFTER	Sieving	2135.5	⇔ G	116	st by/date:	3/24/10		

LIQU	JID AND PLA	ASTIC LIMIT — WA	QTCFOP	for T 89 an	d T 90
			LL	PL	
N	Numb	er of Blows	23	\times	$ \setminus / $
С	Co	ontainer	14.20	14.18	I V I
Α	Moist Ma	ss + Container	34.22	23.89	$ \Lambda $
Mw	Moist I	Mass A-C	20.02	9.71	/ \I
В	Dry Mass	s + Container	31.45	22.79	/ \
Md	Dry M	lass B-C	17.25	8.61	PL
W	000000000000000000000000000000000000000	e Content, % ld) / Md] x 100	16.1	12.8	13
LL	W x (N / 25) ^{0.121}	16		LL Spec.
Test by/ JE#110	date: / 3-25-10	Plastic Index LL - PL	3	4 Max.	PI Spec.

^9.5 / 3/8" 818.0		36.4	4	63.6	0.0	0.0	64	56 - 68			
6.3 / 1/4"								_			
*4.75 / #4	1259.9	56.1	1	43.9	0.0	0.0	44	36 – 48			
*2.36 / #8	1551.7	69.1	1	30.9	0.0	0.0	31	23 – 35			
2.00 / #10								_			
*1.18 / #16	1729.7	77.0	0	23.0	0.0	0.0	23	16 – 26			
.850 / #20								-			
*.600 / #30	1858.2	82.7	7	17.3	0.0	0.0	17	11 – 19			
.425 / #40								_			
*.300 / #50	1967.8	87.6	6	12.4	0.0	0.0	12	7 – 15			
*.150 / #100	2052.1	91.4	4	8.6	0.0	0.0	9	5 – 11			
.075 / #200	2115.5	94.2	2	* 5.8	0.0	0.0	5.8	3.5 - 7.5			
Pan (only)	20.0	⇔P	* #200 = {[(M – A) + P] / M} x 100								
Cur	mulative Mass AFTER	Sieving		2135.5	⊂ G		Test by/date:	3/24/10			
Dry Mass Af	FTER Wash BEFORE	Sieving		2135.9	⇔ A		Joe Example i	# 110			
**Dry	Sample Mass BEFOR	RE Wash		2246.4	← M **	(within	0.1% of Mf, FC)P for T 308)			
**(M) vs. ((Mf) check (≤ 0.1%	6):	V	Wetting Ag	ent Use	d	Check Su	m (≤ 0.2%)			
$[(Mf_{(T308)} - N$	$M_{(T30)}$) / $Mf_{(T308)}$] x	100 =			9)		[(A – G) /	' A] x 100 =			
[/ 2247.0	2246.4 \ \ \ 2	247.0 1	V 10	20 - 01	/- 0 10/	2)	0).0			
[(2247.9		141.8	ΧII	0.1	<u>(</u> ≥ 0.1%);)					
-											
	ust sieves correctly for In Factors Worksheet.	00 0									
CONTROL	an actors worksheet.	OSC IIIIII	is siyi	i iii subliaci con	anni. Liik	J U 111	column n no				

(FM = Fineness Modulus = Total of % Retained of *Sieves / 100)

Remarks:	Copy to Contractor / Date: 03/24/10
	Tested by / Qual. #: Joe Example / # 110
	Signature / Date:
	Checked by / Date: MK / 3-25-10
<u> </u>	

adiustment $\mathsf{FM} \Rightarrow$

= Fineness Modulus Target (From MD) ← FM Limits (± 0.2 of Mix Design FM)

ESTRIN & PUBLICA
TYE OF ALASK

HMA Correction Factors FIELD WORKSHEET

WAQTC FOP for T 308, Method:

☐ Acceptance ☐ Ve	erification Info. IA QC Sam	ple No:
Project Name:		
Federal No:		AKSAS No:
Material:	Agg. Source:	
Item No:	Location:	
Mix Design No:	Furnace No. / ID:	Date:

ASPHALT CEMENT CORRECTION — WAQTC FOP for T3					٦	AG	GREGATE CORRECTION	Sample #1	Sample #2
Mix	Design %AC #1	After Burn %AC #1	%AC Diff. #1		Correction Factors	D	Sample & Basket Assembly		
Mix Design %AC #2 After Burn %AC #2 %AC Diff. #2			orre Fac	В	Basket Assembly				
Cf	AC CORREC		١	Mf	Mass after Ignition (D – B)				

HMA AGGREGA	HIMA AGGREGATE GRADATION — WAQTC FOP for T30					AGGREGATE CORRECTION — WAQTC FOP for T 308									
	Correction F	actor Blani	Sample	Correction	Factor Sai	mple #1	Correction Factor Sample #2								
mm / USC	Cumulative Mass Retained C	% Dotained		Cumulative Mass Retained C	Cumulative %Retained (C/M)x100	100 =	Retained C	Cumulative %Retained (C/M) x 100	% Passing = 100 – % Retained						
25 / 1"															
19.0 / 3/4"															
12.5 / 1/2"															
9.5 / 3/8"															
4.75 / #4															
2.36 / #8															
1.18/#16															
.600 / #30															
.300 / #50															
.150 / #100															
.075 / #200															
Cum. Pan Mass		←c	heck Sum ?0.2		(=C	heck Sum ?0.2		¢=C	heck Sum ?0.2						
ry Mass After Wash ass Before Wash (M)			lass After Wash efore Wash (M)			s After Wash ore Wash (M)			te & Report						

mm / USC	Allow able	Blank Sample	Sample #1	Sample #2	II	nce from Sample	Av erage	*Sie	ves to A	djust		
	Difference	Difference	Difference	% Passing	% Passing	% Passing	#1	#2	Difference	Add	Subtract	*O
25 / 1"	± 5.0 %									n: Use n negative		
19.0 / 3/4"	± 5.0 %									<u>.</u>		
12.5 / 1/2"	± 5.0 %									Gradation: sign for ne column.		
9.5 / 3/8"	± 5.0 %									30 Grada us sign ict colur		
4.75 / #4	± 5.0 %									F = 5		
2.36 / #8	± 5.0 %									FOP for A; use m s In sub		
1.18 / #16	± 3.0 %											
.600 / #30	± 3.0 %									ves for F nent N/A; numbers		
.300 / #50	± 3.0 %									Adjust Sleves for FC If adjustment N/A; numbers		
.150 / #100	± 3.0 %											
.075 / #200	± 0.5 %									₽ ≝		

Remarks:	M vs. Mf Check #1 =	M vs. Mf Check #2 =	Signature / Date:	
	[(Mf - M) / Mf] x 100	[(Mf- M) / Mf] x 100	Checked by/ Date:	
			_	

HMA Correction Factors
FIELD WORKSHEET

✓ Acceptance	Verification	Info.	∐ IA	∐ QC

Sample No: HMA-CF-1

Project Name: HNS-Ferry Terminal to Union Street

Federal No: NH-095-(18) AKSAS No: 72170

Material: HMA, TYPE II, Class B Agg. Source: 4.5 Mile Quarry

Item No: 401(1) Location: Haines, Alaska

WAQTC FOP for T 308, Method: A Mix Design No: 09C-000 Furnace No. / ID: NTO-21 Date: 06/25/09

ASPHALT CEMENT CORRECTION — WAQTC FOP for T 308							NO S	AGC	GREGATE CORRECTION	Sample #1	Sample #2
Mix Design %AC	1 6.00	After Burn %AC #1	6.41	%AC Diff. #1	0.41		58	D	Sample & Basket Assembly	5417.4	5293.4
Mix Design %AC #2 6.00 After Burn %AC #2 6.33 %AC Diff. #2 0.3		0.33		ORRE	В	Basket Assembly	3342.2	3219.5			
Cf AC CORRECTION FACTOR (average of differences)					0.37		00	Mf	Mass after Ignition (D - B)	2075.2	2073.9

HIMA AGGREGATE GRADATION — WAQTC FOP for T30			AGGREGATE CORRECTION — WAQTC FOP for T 308						
	Correction F	actor Blank	Sample	Correction Factor Sample #1			Correction Factor Sample #2		
mm/USC	Cumulalive Mass Relained C	Cumulative %Retained (C/M)x100	%Passing= 100 – %Retained	Cumulalive Mass Relained C	Cumulalive %Retained (C/M)x100	%Passing= 100_ %Retained	Cumulalive Mass Relained C	Cumulative % Retained (C/M) x 100	%Passing = 100 – %Retained
25 / 1"	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	100.0
19.0 / 3/4"	0.0	0.0	100.0	0.0	0.0	100.0	0.0	0.0	100.0
12.5 / 1/2"	455.1	21.7	78.3	406.6	19.6	80.4	433.3	20.9	79.1
9.5 / 3/8"	790.6	37.7	62.3	801.1	38.6	61.4	802.3	38.7	61.3
4.75 / #4	1212.8	57.8	42.2	1212.6	58.4	41.6	1223.3	59.0	41.0
2.36 / #8	1495.1	71.3	28.7	1484.3	71.5	28.5	1490.4	71.8	28.2
1.18/#16	1655.2	78.9	21.1	1648.1	79.4	20.6	1653.3	79.7	20.3
.600 / #30	1784.0	85.1	14.9	1758.3	84.7	15.3	1765.5	85.1	14.9
.300 / #50	1866.1	89.0	11.0	1840.8	88.7	11.3	1845.2	89.0	11.0
.150 / #100	1925.8	91.8	8.2	1898.9	91.5	8.5	1903.3	91.8	8.2
.075 / #200	1980.6	94.5	5.5	1951.1	94.0	6.0	1955.5	94.3	5.7
Cum. Pan Mass	1994.3	0.0 ← cl	heck Sum ?0.2	1966.1	0.0 (∈ Cl	neck Sum ?0.2	1971.4	0.0 ⇐c	heck Sum ?0.2
ry Mass After Wash	1994.6	Dry Mass	s After Wash	1966.1	Dry Mass	After Wash	1971.7	Calculat	te & Report
ss Before Wash (M)	2096.7	Mass Befo	re Wash (M)	2074.8	Mass Befor	re Wash (M)	2074.4		ing to 0.1%

mm/USC	Allow able		Sample #1			Difference from Blank Sample		*Sieves to Adjust		
	Difference	% Passing	% Passing	% Passing	#1	#2	Difference	Add	Subtract	*0.
25 / 1"	± 5.0 %	100.0	100.0	100.0	0.0	0.0	0.0	0.0	0.0	Use"
19.0 / 3/4"	± 5.0 %	100.0	100.0	100.0	0.0	0.0	0.0	0.0	0.0	
12.5 / 1/2"	± 5.0 %	78.3	80.4	79.1	-2.1	-0.8	-1.5	0.0	0.0	Gradation: sign for ne column.
9.5 / 3/8"	± 5.0 %	62.3	61.4	61.3	0.9	1.0	0.9	0.0	0.0	9 2 8
4.75 / #4	± 5.0 %	42.2	41.6	41.0	0.6	1.2	0.9	0.0	0.0	
2.36 / #8	± 5.0 %	28.7	28.5	28.2	0.2	0.5	0.4	0.0	0.0	DP for use m In sub
1.18/#16	± 3.0 %	21.1	20.6	20.3	0.5	0.8	0.7	0.0	0.0	
.600 / #30	± 3.0 %	14.9	15.3	14.9	-0.4	0.0	-0.2	0.0	0.0	ves for Finent N/A; numbers
.300 / #50	± 3.0 %	11.0	11.3	11.0	-0.3	0.0	-0.2	0.0	0.0	ust Sleves for FC adjustment N/A; numbers
.150 / #100	± 3.0 %	8.2	8.5	8.2	-0.3	0.0	-0.2	0.0	0.0	
.075 / #200	± 0.5 %	5.5	6.0	5.7	-0.5	-0.2	-0.4	0.0	0.0	¥g

Remarks:	M vs. Mf Check #1 = 0.0	M vs. Mf Check #2 = 0.0	Signature / Date:	T.J. Hom / #000 / 6-25-09
	[(Mf - M) / Mf] x 100	[(Mf - M) / Mf] x 100	Checked by / Date:	MK / 6-26-09

& PI III	STATE OF ALASKA DOT & PF
TE OF ALASSE	

NUCLEAR DENSITY GAUGE MOISTURE OFFSET WORKSHEET

Project Name:			
Federal No:		AKSAS No:	
Material:	Source:		
Item No:	Location:		
Gauge Serial No. / Model No:			

	OVEN DRY MOISTURE		GAUGE <u>Moisture</u>			
	(0.1%)		(0.1%)			
1)		1)				
2)		2)				
3)		3)				
4)		4)				
5)		5)				
		(A)*		(B)*		
	AVERAGE		AVERAGE			

NOTE:

*Round (A), (B), & (C) to one decimal place.

**Report offset factor (k value) as a whole number.

***Remember to maintain the appropriate algebraic symbol (- or +

MOISTURE CONTENT — WAQTC FOP for T 255 / T 265							
	%M = [(a − b) / (b − c)] x 100						
	С	а	b				
Sample #.	Tare Mass	Wet Mass + Tare	Dry Mass + Tare				
1							
2							
3							
4							
5							

Remarks:		
	Signature / Qualification No. / Date:	
	Checked by / Date:	

NUCLEAR DENSITY GAUGE MOISTURE OFFSET WORKSHEET Project Name: Old Glenn Highway, South Birchwood Loop to Peters Creek

Federal No: ARA-0558(7) AKSAS No: 50946

Material: Borrow, Type A Source: Moose Horn Pit / Granite

Item No: 206(6A) Location: Chugiak, AK

Gauge Serial No. / Model No: 33402 / Troxler 3430

	OVEN DRY		GAUGE Moisture		
	(0.1%)	-		(0.1%)	-
1)	6.9		1)	7.5	
2)	4.5	_	2)	5.1	-
3)	3.7	_	3)	4.2	
4)	5.1		4)	5.8	_
5)	4.2	_	5)	4.8	-
	4.9	(A)*		5.5	(B)*
	AVERAGE	_		AVERAGE	_

$$A - B = -0.6$$
 (C)*

OFFSET FACTOR (k) =
$$\frac{C}{100 + B}$$
 x 1000 = $\frac{-6}{100 + B}$ ** / ***

NOTE:

*Round (A), (B), & (C) to one decimal place.

^{***}Remember to maintain the appropriate algebraic symbol (- or +

MOISTURE CONTENT — WAQTC FOP for T 255 / T 265						
$M = [(a - b) / (b - c)] \times 100$						
	С	a	b			
Sample #:	Tare Mass	Wet Mass + Tare	Dry Mass + Tare			
1	1.25	11.97	11.28			
2	1.12	12.02	11.55			
3	1.83	13.53	13.11			
4	1.46	12.66	12.12			
5	1.55	11.88	11.46			

Remarks:	
	Signature / Qualification No. / Date: Cleve Cooper / #002 / 3-29-11
	Checked by / Date: Tom Fisher / 3-30-11

^{**}Report offset factor (k value) as a whole number.

STATE O	OF ALASI	(A ☐ Acce	ptance 🔲 Verific	ation 🔲 Info. 🔲	A □QC Sa	mple No:	
DO	T & PF	Project I	Name:			•	
RELATIVE STANDARD DE		e Federal	No:			AKSAS No):
CONTROL STRIP MI ATM 412 - FIELD W		Material	i		Source:		
ATTITUTE THE TOTAL	OTTION E	Item No	:	Gauge M	lodel:	Gaug	e S/N:
Lane: Widt	h:	Station t	to Station:			Standard (Count:
*All readings are to be We	t Densitv	readings and tak	en in backscatte	r position (15 sec.	or 1 min.).		Date:
**Continue the compaction	_	-			•	locations for two o	consecutive passes.
Equipment:	Pass#.	*Location 1	*Location 2	*Location 3	Average	**Change	Remarks / Temp.
Drum Roller	1						
Roller Brand:	2						
	3						
Model Number:	4						
Frequency (VPM):	5						
Amplitude:	6						
, an pindade.	7						
	1						
	2						
	3						

Locations ⇒	1	2	3	4	5	6	7	8	9	10	
Reading 1 (1minute)											Relative
Reading 2 (1minute)											Standard Density
Average Wet Density											
		М	loisture d	control is	not req	uired for	HMA or	ATB.			
Reading 1 %Moisture											
Reading 2 %Moisture											Average Moisture
Average % Moisture											

Remarks:	Tested By/Qualification No:
	Signature / Date:
	Checked by / Date:

Pneumatic Roller

4

5

IIVE STANDARD DENSITY by the CONTROL STRIP METHOD

ATM 412 - FIELD WORKSHEET

✓ Acceptance	Verification Info IA	QC	Sample No:	CAB	C-SD-2	
	AMATS: Old Glenn Highway, S		-			
Federal No:	HED-0558(7)		AKSA	S No:	50946	

Material: 4" Crushed Asphalt Base Course Source: Existing

Gauge Model: 3430 Item No: 308(1) Gauge S/N: 33529 Station to Station: P/W 304+00 - 305+00 Standard Count 2402

Lane: Pathway Width: 10' Date: 08/28/10

^{**}Continue the compaction & testing cycle until there is less than 1 b/ft³ increase of the average of all three locations for two consecutive passes.

Equipment:	Pass#:	*Location 1	*Location 2	*Location 3	Average	**Change	Remarks / Temp.
Drum Roller	1	127.6	134.6	129.0	130.4		
Roller Brand:	2	132.2	138.8	128.5	133.2	2.8	
CATERPILLAR	3	135.3	140.0	135.9	137.1	3.9	
Model Number: CS 44	4	136.5	144.7	137.5	139.6	2.5	
Frequency (VPM):	5	137.2	143.4	137.8	139.5	(0.1)	
1914 Am plitude:	6	139.2	144.5	140.5	141.4	1.9	
0.066 in (High)	7	139.7	144.8	140.3	141.6	0.2	
	<i>1</i> +8	142.4	145.1	140.5	142.7	1.1	
	29	144.7	147.8	143.7	145.4	2.7	
	<i>Æ</i> 10	142.4	148.6	141.3	144.1	(1.3)	Visable cracking observed.
Pneumatic Roller	A 11	142.1	148.0	143.6	144.6	0.5	Less than 1pcf increase on 2nd consec. pass.
	<i>5</i> ₹ 12						
	√6° 13						
	X 14						

Locations ⇒	1	2	3	4	5	6	7	8	9	10	,
Reading 1 (1minute)	144.4	145.3	147.1	144.0	146.8	145.2	148.4	148.7	142.1	142.8	Relative
Reading 2 (1minute)	144.6	145.3	147.3	144.2	146.8	145.3	148.4	148.2	143.5	142.2	Standard Density
Average Wet Density	144.5	145.3	147.2	144.1	146.8	145.3	148.4	148.5	142.8	142.5	145.5
		М	oisture c	ontrol is	not requ	ired for	HMA or A	ATB.			
Reading 1 %M oisture	8.6	8.0	8.5	7.6	7.7	7.2	7.6	7.5	8.3	9.2	
Reading 2 %Moisture	8.9	8.1	8.3	7.9	7.7	7.4	7.4	7.3	8.2	8.8	Average Moisture
Average % Moisture	8.8	8.1	8.4	7.8	7.7	7.3	7.5	7.4	8.3	9.0	8.0

Remarks:	Tested By / Qualification No: M. Goldfarb / #538 / 8-28-10
	Signature / Date:
	Checked by / Date: J. Smith / 8-29-10

^{*}All readings are to be Wet Density readings and taken in backscatter position (15 sec. or 1 min.).

					Ī			
STATE OF ALASKA	Acceptance Veri	nification 🔲 In	fo. 🗌 🗛 🔲 QC	;				
DOT & PF	PROJECT NAME:				·	POUR No) <u>.</u>	
CONCRETE PLACEMENT REPORT	FEDERAL No:					AKSAS No		
	ITEM No:		TICKET No:			DATE:		
	TRUCK No.	NRMCA	Certified?	s 🔲 No	Mix De	sign No:		
							-	
	LE) WEIGHTS		Type of Constr	uction:				
A. Coarse Aggregate	(CA)	I	Bridge No:	S	tation(s):			
B. Intermediate Aggregate C. Fine Aggregate or Sand	(IA) (FA)		Portion of Struct	ure or Sec	tion Represe	ented:		
D. Cements* +	* + = Total:							
E. Water from batch ficket	(gallons x 8.33)		Quantity Represe	ented:	50 CY	I	1/2 Da	ys Pour
	(gallons x 8.33)				200 CY	I	Precas	t Member
F. Total Batch Weight (A+B+C	· ·		Source / Manufa	cturer of C	Concrete:			
* D2 and D3 for Fly Ash, Slag or Si	·		Brand & Type of	Cement (N	AD): _			
	URE CORRECTIONS	-						
	ONL CONNECTIONS		Class of Concret	le :		_ (A, A-A	, P. DS,	Other)
a. Moistures (decimal)	+ = (free water) 'absorption' * (fotal)	(moisture)	Mix time:					
C	. ,		Pour time:	Start:		Cini	ish:	
A b. Dry Weight [A7 (1 + total m			roui une.	SMIL			ы.	
c. SSD Weight [b*(1+abso	rption)]		Weather Condition	ons:				
d. Moistures (decimal)	+ =		Concrete Sample	ed from:				
	(free water) absorption * (total i	(moisture)						
│	ıoisture)							
			Concrete Waste					
f. SSD Weight (e * (1 + abso	rption)j		Concrete Rejecte	ed:				
g. Moistures (decimal)		.0347	Test Specimen lo	lentificatio	n: Con	npressive	Flex	ural
	(free water) [absorption] * (total)	lmoisture)	Specimens makir	na mmcedi	ius.			
A h. DryWeight [C/(1+totaln	ıoisture)	<u> </u>	Initial cure proce		_			
j. SSD Weight In * (1 + abso	rption)]	0	No. of Test Spec		sizes:			
* from Mix Design								
•	CORRECTIONS		Remarks:					
G. Free Water in CA	(A-c)							
H. Free Water in IA	(B - f)							
J. Free Water in FA	(C - j)		Admixture	MID oz/cy	oz/batch fi	rom ticket	oz/cy	% off MD
K. Total Water Weight	(E+E1+G+H+J)							
L Total Water in Gallons	(K / 8.34)							
TEST	DATA		# SPECIFICAT			MD TEST	DOSIII T	DATA II
Concrete Temperature (°F):			* SFECIFICAT	ILMS 0	•	MUIGI	RESULI	LINIA U
Air Content, % (– Agg. Corr. Fact					- -			
M. Density, (pcf)					-			_
, , ,								
	I DATA		⊕ MD Chec					
N. Sacks of Cement per Batch	(D / 94)		Cernent Fac	tor, Sacks.	/CY (MD):_			
P. Yield, CY per Batch	[(F/M)/27]							
R. Water / Cementitious Ratio, Ib	` '		W/Cm, lbs./lbs		-			_
S. % 2nd cementitious material T. % 3rd cementitious material	[D2 /(Total) x 100]		% 2nd cementitio		–			
U. % Sand	[D3 /(Total) x 100]		% 3rd cementilio		nd (MID): 			_
V. Mix Ratios 1:(c/D):(f/D):(j/	[j / (c + f + j)] x 100			70 Sau Mix Ratios	• • —	-		-
WILK (1410) 1. (C/D). (I/D). (I/	(CA) - (IA)	(FA)		IVEN I VOLUME) -	(A)	(FA)
SSD BATCH WEIGHTS REDUC		% off MD			· · ·	Batch We	ights/CY	· ·
			U SPECIFICAT			(from	MD)	
Coarse Aggregate (c / P)		 [2% of _			_
Intermediate Aggregate (f / P)					: 2% of			
Fine Aggregate (i / P)			* –	-	:2% of			

(D/P)

(K/P)

Cement Content

INSPECTOR / QUAL. No:

Effective April 20, 2021

Water

CHECKED BY:

PROJECT ENGINEER:

± 1% of

DATE

STATE OF ALASKA	Info. IA QC
DOT & PF PROJECT NAME: Glenn Hwy., M	P 109-118 Resurface, Box Culverts POUR No: 27
CONCRETE PLACEMENT REPORT FEDERAL No: M-0A1-5(27)	AKSAS No: 52095
ITEM No: 514(1)	TICKET No: 227426 DATE: 7/30/11
	CA Certified? Yes No Mix Design No: Cast5 SCC 6500
BATCH (SCALE) WEIGHTS	Type of Construction: Box Culvert Section, 14'x12'x4'
A. Coarse Aggregate (CA) 11380 B. Intermediate Aggregate (IA) 4900	Bridge No: n/a Station(s): MP 114.5
B. Intermediate Aggregate (IA) 4900 C. Fine Aggregate or Sand (FA) 16360	Portion of Structure or Section Represented: BC-2
D. Cements* 7090 + * + = Total: 7090	
E. Water from batch ticket (gallons x 8.33) 2480	Quantity Represented: 50 CY 1/2 Days Pour
E1. plus water added at site: (gallons x 8.33)	☐ 200 CY
F. Total Batch Weight (A+B+C+D+E+E1) 42210	Source / Manufacturer of Concrete: AS&G
* D2 and D3 for Fly Ash, Slag or Silica Fume	Brand & Type of Cement (MD): ABI Type III
•	
AGGREGATE MOISTURE CORRECTIONS	Class of Concrete: SCC (A, A-A, P, DS, Other)
a. Moistures (decimal) $\frac{-0.0038}{\text{(free water)}} + \frac{0.010}{\text{(absorption)}} = \frac{0.0062}{\text{(total moisture)}}$	Mix time: 12:27:00 PM
b. Dry Weight [A/(1 + total moisture)] 11310	Pour time: Start: 1:13 PM Finish:
c. SSD Weight [b*(1+absorption)]11423	Weather Conditions: Sunny 65
d. Moistures (decimal) $\frac{0.0049 + 0.010 = 0.0149}{\frac{1}{\text{(free water)}} \cdot \frac{1}{\text{absorption}} \cdot \frac{1}{\text{(total moisture)}}}$	Concrete Sampled from: Truck Chute
I e. Dry Weight [B / (1 + total moisture) 4828	
f. SSD Weight [e * (1 + absorption)] 4876	Concrete Wasted: none Concrete Rejected: none
g. Moistures (decimal) 0.0227 + 0.012 = 0.0347	Test Specimen Identification: ☑ Compressive ☐ Flexural
(free water) [absorption] * (total moisture)	Specimens making procedure: WAQTC FOR for AASHTO 123
A h. Dry Weight [C / (1 + total moisture) 15811	Specimens making procedure: WAQTC FOR for AASHTO T23 Initial cure procedure: WAQTC FOR for AASHTO T23
j. SSD Weight h * (1 + absorption)] 16001	No. of Test Specimens and sizes: 4 ea., 4"x8"
J. dob rieight pr (1 · dbbarpabh)	10. 51 101 0position and accor. 100., 17.0
* from Mix Design	
WATER WEIGHT CORRECTIONS	Remarks:
G. Free Water in CA (A-c) -43	·
H. Free Water in IA (B - f) 24	Admixture MD oz/cy oz/batch from ticket oz/cy % off MD
J. Free Water in FA (C - j) 359 K. Total Water Weight (E + E1 + G + H + J) 2820	Micro Air 6.45 60.00 5.5 -15%
L Total Water in Gallons (K / 8.34) 338.1	PS-1466 65.8 532.00 48.8 -26%
,	BASEVMA 39.4 388.00 35.6 -10%
TEST DATA	# SPECIFICATIONS # # MD TEST RESULT DATA #
Concrete Temperature (°F):67 Slump (in):27.00	30" max. Spread 11"
Air Content, % (—Agg. Corr. Factor from MD)6.0	6.0% ± 1.5% 6.0%
ML Density, (pcf) 143.2	143.8
BATCH DATA	∜ MD Checks ∜
N. Sacks of Cement per Batch (D / 94) 75.4	6.9 Cement Factor, Sacks/CY (MD):
P. Yield, CY per Batch [(F/M)/27] 10.9	
R. Water / Cementitious Ratio, lbs. / lbs. (K / D) 0.40	W/Cm, lbs./lbs.(MD) .45 max
S. % 2nd cemenfitious material [D2 /(Total) x 100] N/A	% 2nd cementitious material (MD): n/a
T. % 3rd cementitious material [D3 /(Total) x 100] N/A	% 3rd cementitious material (MD): n/a
U. % Sand [j / (c + f + j)] x 100 49.5	% Sand (MD): 40%
V. Mix Ratios 1:(c/D):(f/D):(j/D) 1.61:0.69:2.26	Mix Ratios (MD) 1: : :
(CA) (IA) (FA)	(CA) (IA) (FA)

INSPECTOR / QUAL. No: 568	CHECKED BY:	DATE
	PROJECT ENGINEER:	DATE

% off MD

0.4%

1.7%

0.1%

-1.1%

-12.3%

Coarse Aggregate

Fine Aggregate

Water

Cement Content

Intermediate Aggregate

SSD BATCH WEIGHTS REDUCED FOR 1 CY

(c / P)

(f / P)

(j / P)

(D/P)

(K/P)

1048

447

1468

650

259

I SPECIFICATIONS II

1065

449

1496

665

304

± 2% of

± 2% of

± 2% of

± 1% of

± 3% of

1023

431

1438

651

286

Batch Weights / CY (from MD)

1044

440

1467

658

(\$()\bigs_	ORKSHEE	P F M It S See taken in on when i	roject Na ederal N laterial: em No: station to backscatt practicable	o: Station: er position	. The fina	be Dry D	Model: om locatio ensity.	Source:	us (AKSAS N Gauge S/ Std. Cour Dat	nt e:
Equipment	Pass#:		ation 1		ation 2		tion 3		rage:		Remarks:
Roller #1:	1							7,40	rago.		
	2										
Roller Brand:	3										
Roller Model Number.	4										
Roller Type:	5										
	6										
Compaction Mode:	7										
☐ Vibe ☐ Static											
Roller #2:	1										
Roller Brand:	2										
	3										
Roller Model Number.	4										
Roller Type:	5										
Compaction Mode:	6										
☐ Vibe ☐ Static	7										
Locations ⇒	1	2	3	4	5	6	7	8	9	10	
Reading 1 (1minute)											Relative
Reading 2 (1minute)											Standard Density
Average Dry Density											DOI WILL
Reading 1 (%moisture)											
Reading 2 (%moisture)											Average Moisture
Average % Moisture											mosture

Remarks:

Signature / Qualification No / Date:

Checked by / Date:

(\$\langle \tag{\frac{1}{2}}	OF ALASK	(A 💆 Accepta	nce Verification	☐ Info. ☐ IA ☐	QC Sample No	o: SB - SD - 1					
DO	T & PF	63	oject Name: Goodnews Bay Airport Improvements								
KELA IIV E STANDARD DEN		Ls Federal No	o: AIP 3-02-01	07-001		AKSAS No: 51349					
by the CONTROL STRIP ATM 309 - FIELD W		Material:	Subbase Course)	Source: Upper 8	& Lower Quarry (Blend)					
ATIVI 309 - FIELD W	tem No: P-154b Gauge Model: Iroxler 3440 Gauge S/N: 33332										
Lane: N/A Wid	th: 8 fee	et Station to S	Station: $R/W 29$	+80 to 31+00		Std. Count: 2466					
*Initial (Control Strip) readii	nas shall be	e taken in backscatte	er position. The final	l (ten random locatio	n) readinas	Date: 07/13/09					
shall be done with direct	_		· ·	=	3						
		•	ū		f all three locations i	for two consecutive passes.					
Equipment	Pass #:	*Location 1	*Location 2	*Location 3	**Average:	Remarks:					
Roller#1:	1	134.9	126.2	144.5	135.2						
Roller Brand:	2	136.6	134.2	137.6	136.1						
CATEPILLAR	3	133.2	138.3	146.7	139.4						
Roller Model Number. CS 44	4	138.7	138.7	140.9	139.4						
Roller Type:	5	131.6	138.8	146.1	138.8	2nd consecutive pass w / less than 1 pcf increase.					
DRUM Compaction Mode:	6										
✓ Vibe ☐ Static	7										
Roller #2:	1										
Roller Brand:	2										
Roller Brallu.	3										
Roller Model Number.	4										
Roller Type:	5										

Locations ⇒	1	2	3	4	5	6	7	8	9	10	
Reading 1 (1minute)	135.7	150.9	142.5	132.6	131.9	130.8	138.0	140.2	139.8	134.7	Relative
Reading 2 (1minute)	138.7	151.5	141.8	133.1	135.2	131.2	138.3	140.8	138.1	134.6	Standard Density
Average Dry Density	137.2	151.2	142.2	132.9	133.6	131.0	138.2	140.5	139.0	134.7	138.0
Reading 1 (%moisture)	4.7	5.8	6.4	5.3	3.8	3.8	4.1	3.9	4.3	4.2	
Reading 2 (%moisture)	4.8	5.9	6.4	5.1	3.9	3.9	4.1	3.9	4.5	4.5	Average Moisture
Average % Moisture	4.8	5.9	6.4	5.2	3.9	3.9	4.1	3.9	4.4	4.4	4.7

Remarks:	
	Signature / Qualification No / Date: Holly DeLand / #308 / 7-13-09
	Checked by / Date: Jeanette Clugston / 7-15-09

Compaction Mode:

☐ Vibe ☐ Static

ATM 315: RIP R FIELD WO	DO AP (T & I	PF ATIO		Pro Fed Mat		:	ition Info.					
Measure (LxWxH)	W	/eight	t (lb-k	(g)	Meas	ure (LxWxH)) Weigh	it (lb-Kg)	Mea	asure (LxWxH	l)	Weight (lb-Kg)
					_								
		┡			_					⊢			
		\vdash								-			
		\vdash											
		\vdash											
					\neg								
		┡			_					<u> </u>			
		\vdash			\dashv					\vdash			
		\vdash			-								
		\vdash											
		_			_					<u> </u>			
Total Wt.		├			_		otal Wt.			<u> </u>	Total Wt.		
% of Sample		\vdash			\dashv		of Sample	_			6 of Sample		
Unit Weight = App					0	2 42 15 (23 -	- 4 000 1/-/-	_3			Total Weig	abt of	Comple
						x Unit Wei		n.		\vdash	TOTAL WEIG	grit Oi	Sample
Spec. Percentages	_	Cirol	e one	_	Can	. Weight				Tor	st Results %	_	Weights
Min. Max.	>	>/=	_	=</td <td></td> <td>. Weight</td> <td></td> <td></td> <td></td> <td>Tes</td> <td>st results /6</td> <td>+</td> <td>Weights</td>		. Weight				Tes	st results /6	+	Weights
Min. Max.	>	>/=	-	=</td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td>								+	
Min. Max.	۸	>/=	<	=</td <td>#:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	#:								
Remarks:								Signature / Checked by	_				
Rev. 01/05													

Alaska Test Methods Manual

STATE OF ALASKA ☐ Acceptance ☐ Verification ☐ Info ☐ IM ☐ CC	DOT & PF Project Name:	Federal No:	M 8 - FIELD WORKSHEET Material: Source: Source:	Item No: Specification: Quantity Represented:	Gauge Model No: Gauge Serial No: Density Standard (pcf): Standard No/ID:	r: Location and Area Represented:		FIELU DENSITY IEST NUMBER 8 9 10	NO	-ERENCE (Offset)	E REFERENCE	TITY REPRESENTED	DENSITY DETERMINATION Backscatter Mode (Reading #2 is rotated 90° from Reading #1)	Wet Density, Ibs/ft ³ Reading #1	(Difference ? 2.5 lbs/ft³) Reading #2	le Wet Density	ed Density (use *Correlation Factor)	npaction (E or F / Density Std.) x 100	CORRELATION with CORES	WAQTC FOP for AASHTO T166 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 Core 8 Core 9 Core 10	hickness (inches)	of Dry Specimen in Air	Mass of SSD Specimen in Air	Weight of Specimen in Water	pecific Gravity (0.001) A / (B-C)	Unit Weight = Bulk SpG x 62.4 (pcf)	le Wet Density (from Eabove)	Difference = Unit Weight – Average Wet Density K-E		rest by/ Qualification No:	Signature / Date:	
STATE OF A	BOT &		WAQTCTM 8 - FIELD WORKSHEET				TOTE VEHICLES	FIELD DENSILY LEST	STATION	C _L REFERENCE (Offset)	GRADE REFERENCE	QUANTITY REPRESENTED	DENSI	Wet Dens		E Average Wet Density	F Adjusted Density	G % Compaction	CORRE	WAQTC	H Core Thickness	A Mass of Dry Specimen in Air	B Mass of SSD Specime	C Weight of Specimen in	J Bulk Specific Gravity (0.001)	K Unit Weight = Bulk Sp(E Average Wet Density	L Difference = Unit Weig	Filer Material (Native Fines) used?	Remarks		

		3		-	-						
	STATE OF ALASKA	Acceptance Verication Info. In In U.		Turo.	ر ا	Sample No:	<u>N</u>	CABC-D-1	표		
	****	Project Name: POW - Craig-Klawock Highway Reconditioning)raig-Klawo	rck Highwa	y Reconditi	oning					
	44444	Federal No: HDP-0003-93	03-93				AKSAS	AKSAS No. 68744			
_	In-Place Density of Brummous Mixes WAQTCTM 8 - FIELD WORKSHEET N	Material: Crushed Asphalt Base Course	ohalt Base (Course	Sour	ce. Projec	Source: Project Grindings				
		Item No: 308(1)	Specificati	Specification: 98% min.	ı	antity Repre	Quantity Represented: 5,000 S.Y.	,000 S.Y.			
į. -	9	Gauge Model No: 3430		Sauge Seri	;;		— Pensity Stan	Density Standard (pcf): 145.5		Standard No/ID: CABC	AD: CABC
	*	*Correlation Factor: N/A		ocation ar	Location and Area Represented: Sta. 31+00 to 50+00	resented:	Sta. 31+00	to 50+00			_ Date: 0
	FIELD DENSITY TEST NUMBER		-	2	3	4	5	9	7	8	6
	STATION		31+25	36+32	41+35	46+40	49+95	20+00	48+85	44+00	39+50
	^c / _L REFERENCE (Offset)		6'Rt	4'Rt	3'Rt	8Rt	5Rt	10'Lt	4"Lt	6'Lt	3'Lt
	GRADE REFERENCE		Top CABC	Top CABC	Top CABC	Top CABC	Top CABC	Top CABC	Top CABC	Top CABC	Top CABC
	QUANTITY REPRESENTED		375	375	375	375	375	375'	375.	375'	375'
	DENSITY DETERMINATION	ATION	Back	✓ Backscatter Mode	9			(Readi	(Reading #2 is rotated 90° from Reading #1)	ed 90° from	Reading #1)
	Wet Density, lbs/ft	Reading #1	143.5	145.2	144.1	143.8	142.9	146.0	145.6	144.3	143.9
	<u></u>	Reading #2	144.2	145.3	144.6	145.0	144.4	144.7	144.9	143.9	1452
ш	Average Wet Density		143.9	145.3	144.4	144.4	143.7	145.4	145.3	144.1	144.6
ш	Adjusted Density	(use *Correlation Factor)									
9	% Compaction	(Eor F / Density Std.) x 100	6'86	6.66	99.2	99.2	98.8	6.66	6.66	0.66	99.4
	CORRELATION with CORES	CORES									
	WAQTC FOP for AASHTO T 166	OT166	Core 1	Core 2	Core 3	Core 4	Core 5	Core 6	Core 7	Core 8	Core 9
工	Core Thickness	(mches)									
×	Mass of Dry Specimen in Air										
В	Mass of SSD Specimen in Air										
ပ	Weight of Specimen in Water										
7	Bulk Specific Gravity (0.001)	A / (B-C)									
×	Unit Weight = Bulk SpG x 62.4	(bct)									
Ш	Average Wet Density	(from Eabove)									
	Difference = Unit Weight - Average Wet Density	Wet Density K-E									
>	Filler Material (Native Fines) used?							č	Average□	Average Difference:	
	i i		: H	-	-	2	9	Stand	Standard Dewation († 2.5).		
	Kemarks		lest by/	Qualimeau	lest by/ Qualification Not C.J. McKellan#999	MCKellan#	999				
	Density Strip Average = 99.4%		Signatu	Signature / Date:							
			Checked	by / Date:	Checked by / Date: NJ/6-26-10						

Core 10

100.0

10 34+75 8'Lt Top CABC 375'

146.2 144.8 145.5

STATE OF ALASKA DOT & PF	Project Name:	□ Verification □ Info. □ QC Sample No:
DOTATI	Federal No:	AKSAS No:
Sand Cone ATM 211	Material:	Source:
	Item No:	Location:
. / Sampled from:		Sampled by / Qual. No:
& Grade Reference:	ě	Quantity Represented: Date:
Determination	on of Bulk Dens	ity of Sand and Cone Correction Factor
	Bulk Density	
	Mf	Mass of filled calibration container
-	Mt	Mass of the calibration container
	V	Volume of the container in cubic feet
	Pb	Bulk Density
L		THE COLOR
	Pb =	$=\frac{mf-mt}{V}$
Γ	Cone Correction Fact	tor
L		
-	Mi	Mass of Filled Aparatus
-	Mf	Mass of Aparatus After Filling Cone
Ĺ	c	Cone Correction Factor
		mt-mf
	C = -	$\frac{mt-mf}{p_b}$
	Densi	ity Determination
	Mi	Mass of Filled Aparatus
<u>.</u>	Mf	Mass of Aparatus After Filling Hole
	Vh	Volume of Hole
	Md	Mass of Dry Material from Hole
	Pd	Dry Density
	D	Corrected Standard Density
	%C	Percent Compaction
	***	$\frac{mi - mf}{Ph} - C$
	vr =	Pb - C
	n	$d = \frac{Md}{Pb}$
	P	$a = \frac{p_b}{p_b}$
Remarks		
·		_
		_
7		
		_
		 Signature

This page intentionally left blank.	

Γhis page intentionally left blank.		

Materials Sample Identification System SP 12

Table VII, Materials Sample Identification System, also see ACM 5.4

Each materials sample taken on a construction contract project will be assigned a four part number that identifies the type of sample, the type of material, the test that will be performed on the sample and the sequential number of the test in that series on that type of material and sample. When a test sample fails to meet the specifications, the test number is circled in the Materials Testing Summary. A retest of a failing test is identified by adding the letter "A" after the test number for the first retest; a second retest adds the letter "B", and so on. Samples sent to the regional lab for testing will also be identified by this system, in addition to the project name and number, the location the sample was taken, and the name of the sampler. This sample identification system will be used on test results from the field lab and from the regional lab, and on the Materials Testing Summary form.

Types of Samples								
Acceptance	No prefix	Information	I					
Independent Assurance	IA	Quality	Q					
Types of Materials								
Aggregate Base Course	BC	Gas Line Conduit	GC					
Aggregate Surface Course	SC	Hot Mix Asphalt	HMA					
Asphalt Cement	AC	Grout	GR					
Asphalt Pathway	AP	Manhole Type (1, II, III)	MH()					
Asphalt Sidewalk	AS	Medium Cure Liquid Asphalt	MC					
Asphalt Surface Treatment	AST	Mineral Filler	MF					
Asphalt Treated Base Course	ATB	Performance Grade Liquid Asphalt	PG					
Bed Course Material	BCM	Porous Backfill	PB					
Bedding and Backfill	BB	Reclaimed Asphalt Pavement	RAP					
Borrow Material Type (A, B, C)	BM()	Rip Rap	RR					
Common Excavation	CX	Rock Excavation	RX					
Concrete Coarse Aggregate	CA	Sewer Conduit	SC					
Concrete Fine Aggregate	FA	Sidewalk	SW					
Cover Coat Grading B	CCB	Stone Mastic Asphalt	SMA					
Crushed Asphalt Base Course	CABC	Structural Backfill Material	В					
Culvert	С	Structural Plate Pipe	SPP					
Ditch Lining	DL	Subbase	SB					
Electrical Conduit	EC	Telephone Conduit	TC					
Electrical - Miscellaneous	EL	Television Conduit	TV					
Emulsified Asphalt Materials	EAM	Top Soil	TS					
Emulsified Treated Base	ETB	Type A Inlet	AI					
Field Inlet	FI	Unclassified Excavation	EX					
Filter Blanket	FB	Useable Excavation, Type (A, B, C)	EX()					
Filter Material	FM	Waste	EXW					
Fire Hydrant	FH	Water Conduit	WC					
Foundation Fill	FF	Waterline	WL					
Gabion Backfill	GB	Warm Mix Asphalt	WMA					
		Types of Tests						
Correction Factor - Ignition Ove	n CF	Mix Design	MD					
Field Density	D	Moisture	M					
Fracture Count	F	Oil Content	0					
Gradation	G	Plastic Index	PI					
Joint Density	JD	Plastic Limit	PL					
Liquid Limit	LL	Standard Density	SD					

Γhis page intentionally left blank.		