Appendix A: Transit Level of Service Descriptions

Appendix A

Most of the material in this appendix is adapted from the Transit Capacity and Quality of Service Manual, First Edition, published by the Transportation Research Board.

Level-of-Service Concept

Level-of-service (LOS) is a concept originally developed to quantify the degree of comfort experienced by motorists while traveling through different elements of a roadway system. Given the widespread acceptance of this system for roadways, a similar concept was developed for transit in the Transit Capacity and Quality of Service Manual.

Transit quality of service reflects the overall measured or perceived performance of transit service, from the passenger's point-of-view. Levels-of-service are used to quantify the passenger point-of-view. There are two main aspects to transit quality of service: the availability of transit service, and the comfort and convenience of transit service.

Transit availability assesses an aspect of quality of service that is not considered for highway analysis, for if one has a car available, the road infrastructure exists universally. Transit users, on the other hand, can only travel to the locations that are served by transit, and only at the times that transit service is offered. As a result, if transit service is not available where and when one wants to travel, transit is not a mode choice option for that trip. Availability is measured by three factors: service frequency (how often service is offered), hours of service (how long service is offered), and service coverage (where service is offered).

Assuming that transit service is an option for a particular trip, other factors relating to passenger comfort and convenience are also considered. These include on-vehicle passenger loads, service reliability, and travel time relative to the automobile.

The quality of service framework shown in Table A1 summarizes these factors.

Transit Quality of Service Framework

Category	Service \& Performance Measures		
	Transit Stop	Route Segment	System
Availability	FREQUENCY accessibility passenger loads	HOURS OF SERVICE accessibility	SERVICE COVERAGE \% person-minutes served indexes
Quality	PASSENGER LOADS amenities reliability	RELIABILITY travel speed transit/auto travel time	TRANSIT/AUTO TRAVEL TIME travel time safety

Measures of Availability

Service Frequency

For urban scheduled transit service, service frequency LOS is measured by the headway between vehicles going to a particular destination, as given in Table A2.

Service Frequency LOS

LOS	Headway $(\mathbf{m i n})$	Veh/h	Comments
A	<10	>6	Passengers don't need schedules
B	$10-14$	$5-6$	Frequent service, passengers consult schedules
C	$15-20$	$3-4$	Maximum desirable time to wait if bus/train missed
D	$21-30$	2	Service unattractive to choice riders
E	$31-60$	1	Service available during hour
F	>60	<1	Service unattractive to all riders

At the service frequencies of LOS "A", passengers are assured that a transit vehicle will arrive soon after they arrive at a stop. The delay experienced if one misses a vehicle is low. At LOS "B", service is still relatively frequent, but passengers will consult schedules to minimize their wait time at the transit stop. Service frequencies at LOS "C" still provide a reasonable choice of travel times, but the wait involved if a bus or train is missed becomes long. At LOS "D", service is only available about twice an hour and requires passengers to adjust their routines to fit the transit service provided. The threshold between LOS " E " and " F " is service once an hour; this corresponds to the typical analysis period and to the minimum service frequency applied when determining hours of service LOS. Service at frequencies greater than one hour entails highly creative planning or considerable wasted time on the part of passengers.

Hours of Service

Table A3 provides levels-of-service for the number of hours during the day when service is offered at least once an hour.

Hours of Service LOS

LOS	Hours per Day	Comments
A	$19-24$	Night or owl service provided
B	$17-18$	Late evening service provided
C	$14-16$	Early evening service provided
D	$12-13$	Daytime service provided
E	$4-11$	Peak hour service/limited midday service
F	$0-3$	Very limited or no service

At LOS "A", service is available for most or all of the day. Workers who do not work traditional $8-5$ jobs receive service and all riders are assured that they will not be stranded until the next morning if a late-evening transit vehicle is missed. At LOS "B", service is available late into the evening, which allows a range of trip purposes other than commute trips to be served. Transit runs only into the early evening at LOS "C" levels, but still provides some flexibility in one's choice of time for the return trip home. Service at LOS "D" levels meets the needs of commuters who do not need to stay late, and still provides service during the middle of the day for others. At LOS "E", midday service is limited or non-existent and commuters have a limited choice of travel times. Finally, at LOS "F", transit service is offered only a few hours a day or not at all.

Appendix B: Traffic Volume Tables

Weekday AM Peak Hour Volumes

Intersection		Day	Month	Year Time	EBRT	EBTH	EBLT	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	TOTAL
Egan Drive	Vintage	Thursday	August	2000 7:00	19	87	0	10	0	0	16	84	12	0	0	4	232
				7:15	38	88	0	15	0	0	12	85	24	7	0	8	277
				7:30	38	110	0	15	0	0	15	76	10	6	0	7	277
				7:45	29	103	0	18	0	0	10	113	12	4	0	23	312
				7:00-8:00	124	388	0	58	0	0	53	358	58	17	0	42	1098
			June	2000 7:00-8:00	132	414	0	62	0	0	57	382	62	18	0	45	1173
			June	2001 7:00-8:00	135	430	0	64	0	0	59	397	64	19	0	46	1212
Mendenhall Loop	James	Tuesday	September	2000 7:00	17		0	5	231						45	5	303
				7:15	16		0	3	220						43	2	284
				7:30	24		1	0	353						70	1	449
				7:45	20		1	10	275						88	7	401
				7:00-8:00	77	0	2	18	1079	0	0	0	0	0	246	15	1437
			June	2000 7:00-8:00	87	0	2	20	1224	0	0	0	0	0	279	17	1630
			June	2001 7:00-8:00	89	0	2	21	1277	0	0	0	0	0	291	17	1697
Mendenhall Loop	Mendenhall Mall	Tuesday	June	2000 7:00-8:00	138	1	50	144	1184	4	1	1	20	5	178	44	1543
				2001 7:00-8:00	140	1	51	147	1224	4	1	1	20	5	184	45	1822
Riverside Drive	Vintage \& Mall	Thursday	June	2000 7:00	21	10	24	19	161	34	15	17	17	23	24	20	385
				7:30	30	12	11	34	231	34	11	35	46	18	29	23	514
				7:00-8:00	51	22	35	53	392	68	26	52	63	41	53	43	899
			June	2001 7:00-8:00	52	22	35	54	396	68	26	53	64	41	53	44	908

Intersection		Day	Month	Year Time	EBRT	EBTH	EBLT	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	TOTAL
Glacier	Old Dairy	Wednesday	December	2001 7:00	49	5	38	49	42	46	23	3	3	12	87	18	375
				7:30	21	9	52	20	107	20	17	4	2	72	73	43	440
			December	2001 7:00-8:00	70	14	90	69	149	66	40	7	5	84	160	61	815
			June	2001 7:00-8:00	89	18	114	88	189	84	51	9	6	107	203	78	1036
Yandukin	Crest	Thursday	December	2001 7:00	2	14	3	4	5	6	4	10	0	0	0	0	48
				7:30	3	29	6	8	3	5	12	16	1	1	1	2	87
			December	20017:00-8:00	5	43	9	12	8	11	16	26	1	1	1	2	135
			June	2001 7:00-8:00	6	55	11	15	10	14	20	33	- 1	1	1	3	172
Glacier	Lemon Spur	Tuesday	December	2001 7:00	2	2	0	0	0	0	0	1	23	78	0	1	107
				7:30	3	3	0	0	0	0	0	4	430	86	0	2	128
			December	20017:00-8:00	5	5	0	0	0	0	0	5	53	164	0	3	235
			June	2001 7:00-8:00	6	6	0	0	0	0	0	6	- 67	208	0	4	299

Weekday PM Peak Hour Volumes

Intersection		Day	Month	Year		EBRT	EBTH	EBLT	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	TOTAL
Egan Drive	Mendenhall Loop Road	Wednesday	July	2000	4:30-5:00	37	226	60	29	65	189	298	183	11	21	108	79	1306
					5:00-5:30	40	233	70	22	106	222	518	351	27	20	190	101	1900
					4:30-5:30	77	459	130	51	171	411	816	534	38	41	298	180	3206
			June	2000	4:30-5:30	82	490	139	54	182	438	870	570	41	44	318	192	3420
			June	2001	4:30-5:30	85	511	144	56	187	454	900	594	42	45	325	198	3541
Egan Drive	Riverside Drive	Friday	July	2000	4:30-5:30	0	366	298	167	0	272	457	627	0	0	0	0	2187
			June	2000	4:30-5:30	0	390	318	178	0	290	487	669	0	0	0	0	2333
			June	2001	4:30-5:30	0	408	328	184	0	299	503	699	0	0	0	0	2420
Egan Drive	Yandukin	Wednesday	September	2000	4:30-5:30	8	755	221	337	0	0	110	1645	190	160	0	0	3426
			June	2000	4:30-5:30	9	856	251	382	0	0	125	1866	216	182	0	0	3886
			June	2001	4:30-5:30	9	877	260	397	0	0	129	1912	223	188	0	0	3995
Egan Drive	Glacier Hwy (McNugget)	Monday	June	2000	4:30-5:30	206	856	0	0	0	0	0	1500	506	339	0	381	3788
			June	2001	4:30-5:30	213	885	0	0	0	0	0	1551	519	348	0	394	3909
Egan Drive	Industrial	Wednesday	August	2000	4:30	7	122	0	1	0	2	2	128	41	41	0	3	347
					4:45	6	121	1	0	0	2	2	127	40	41	0	4	344
					5:00	8	87	3	0	0	0	3	124	25	35	0	4	289
					5:15	8	87	3	0	1	0	2	124	26	35	0	4	290
					4:30-5:30	29	417	7	1	1	4	9	503	132	152	0	15	1270
			June	2000	4:30-5:30	31	445	7	1	1	4	10	537	141	162	0	16	1356
			June	2001	4:30-5:30	32	457	8	1	1	4	10	551	148	170	0	17	1398

Intersection		Day	Month	Year		EBRT	EBTH	EBLT	SBRT	SBTH	SBL	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	TOTAL
Egan Drive	Vintage	Monday	August	2000	4:30	32	152	0	31	0	0	25	135	20	9	0	11	415
					4:45	42	152	0	42	0	0	42	132	17	18	0	30	475
					5:00	34	145	0	20	0	0	27	118	21	12	0	16	393
					5:15	36	92	0	32	0	0	35	132	18	16	0	20	381
					4:30-5:30	144	541	0	125	0	0	129	517	76	55	0	77	1664
			June	2000	4:30-5:30	154	578	0	133	0	0	138	552	81	59	0	82	1777
			June	2001	4:30-5:30	157	600	0	137	0	0	143	573	83	60	0	84	1837
Mendenhall																		
Loop	James	Monday	September	2000	4:30	10		2	6	126						204	15	363
					4:45	17		2	7	141						255	21	443
					5:00	9		1	8	103						228	10	359
					5:15	9		0	3	110						201	11	334
					4:30-5:30	45		5	24	480						888	57	1499
			June	2000	4:30-5:30	51	0	6	27	545	0	0	0	0	0	1007	65	1700
			June	2001	4:30-5:30	52	0	6	28	568	0	0	0	0	0	1051	66	
Mendenhall Loop	Mendenhall Mall	Tuesday	June	2000	4:30-5:30	185	2	215	141	498	5	2	4	11	18	1188	271	1063
			June	2001	4:30-5:30	187	2	219	144	515	5	2	4	11	18	1228	275	1090
Riverside Drive	Vintage \& Mall	Friday	June	2000	4:30	42	54	71	17	79	28	59	40	58	59	170	78	755
					5:00	39	83	81	30	116	39	72	47	64	78	219	83	951
					4:30-5:30	81	137	152	47	195	67	131	87	122	137	389	161	1706
			June	2001	4:30-5:30	83	139	154	48	197	67	131	88	123	138	393	165	1724

Intersection		Day	Month	Year		EBRT	EBTH	EBLT	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	TOTAL
Old Glacier	Glacier (Loop	Friday	October June June															
	Extension)			2000	4:30-5:30	188	6	3	9	308	22	13	2	8	15	447	112	1133
				2000	4:30-5:30	226	7	4	11	371	26	16	2	10	18	538	135	1364
				2001	4:30-5:30	230	7	4	11	378	27	16	2	10	18	549	137	1390
Glacier	Jordan	Wednesday	December	1998	4:30-5:00	69	165	8	60	4	45	10	235	30	38	4	8	676
					5:00-5:30	70	193	6	69	0	54	7	256	29	49	5	14	752
			December	1998	4:30-5:30	139	358	14	129	4	99	17	491	59	87	9	22	1428
			June	1999	4:30-5:30	177	455	18	164	5	126	22	624	75	111	11	28	1815
			June	2001	4:30-5:30	186	478	19	172	5	132	23	656	79	116	12	29	1908
Glacier	Shell	Monday																
	Simmons		July	1998	4:30-5:30	123	424	17	50	5	61	69	570	52	115	5	109	1600
			June	1998	4:30-5:30	131	452	18	53	5	65	74	608	55	123	5	116	1707
			June	2001	4:30-5:30	140	482	19	57	6	69	78	648	59	131	6	124	1819
Yandukin	Old Dairy	Friday	December	2001	4:30	1	35	1	3	2	32	1	44	1	2	2	0	124
					5:00	1	45	1	4	0	39	0	37	2	1	2	2	134
			December	2001	4:30-5:30	2	80	2	7	2	71	1	81	3	3	4	2	258
			June	2001	4:30-5:30	3	102	3	9	3	90	1	103	4	4	5	3	328
Glacier	Old Dairy	Wednesday	December	2001	4:30	65	1	25	53	208	72	89	4	9	21	222	39	808
					5:00	50	4	17	40	155	56	100	6	5	12	249	31	725
			December	2001	4:30-5:30	115	5	42	93	363	128	189	10	14	33	471	70	1533
			June	2001	4:30-5:30	146	6	53	118	461	163	240	13	18	42	599	89	1949

Intersecti		Day	Month	Year		EBRT	EBTH	EBLT	SBR	BTH	BLT	WBR	WBT	WBLT	NBRT	BT	NBL	TOTAL
Yandukin	Crest	Thursday	December	2001	4:30	1	10	8	12	3	17	22	24	3	1	3	2	106
					5:00	1	10	10	13	7	19	18	21	3	0	3	3	108
			December	2001	4:30-5:30	2	20	18	25	10	36	40	45	6	1	6	5	214
			June	2001	4:30-5:30	3	25	23	32	13	46	51	57	8	1	8	6	272
Glacier	Lemon Spur	Tuesday	December	2001	4:30	19	35	0	0	0	0	0	26	106	75	0	10	271
					5:00	35	30	0	0	0	0	0	33	89	57	0	13	257
			December	2001	4:30-5:30	54	65	0	0	0	0	0	59	195	132	0	23	528
			June	2001	4:30-5:30	69	83	0	0	0	0	0	75	248	168	0	29	671

Appendix C: Accident Diagrams

(clear filter)

(clear filter)

(clear filter)

(clear filter)

Glacier Highway/Lemon 896029 0000.135 To 0.145 2 Accidents 01/01/97-12/31/99

Industrial at Egan
 Case Id List 8 Accidents 01/01/95-12/31/99

Egan at Riverside 5 Accidents
 Case Id List 01/01/95-12/31/99

(clear filter)

Glacier/ Shell Simmons 7 Accidents
 Case Id List 01/01/95-12/31/99

(clear filter)

Glacier/Jordan 3 Accidents

 $$
\begin{array}{r} 2963310000.191 \text { To } 0.201 \\ 01 / 01 / 97-12 / 31 / 99 \\ \hline \end{array}
$$

 2963310000.191 To 0.201

 2963310000.191 To 0.201 01/01/97-12/31/99

 01/01/97-12/31/99}

(clear filter)

Glacier/ Trout/ Old dairy 7 Accidents
 Case Id List 01/01/95-12/31/99

Section 6 Final Report Chapter 3 Appendix

Appendix D: Intersection Level of Service Criteria

Appendix D

LEVEL OF SERVICE CONCEPT

Level of Service (LOS) is a concept developed by traffic engineers to gauge the overall quality of the travel experience through an intersection or roadway segment as it is perceived by the traveler. Six categories are used to denote the various levels of service, which range from A to F. ${ }^{1}$

SIGNALIZED INTERSECTIONS

At signalized intersections, level of service is defined by a single performance measure: average control delay per vehicle. Control delay is defined to include initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay. Table D1 provides a qualitative description of each LOS category as it applies to signalized intersections, and Table D2 identifies the average control delay threshold point used as the boundary for each LOS category. LOS thresholds for the specific reviewing jurisdiction(s) are described in the body of the report.

Table D1
Level of Service Definitions (Signalized Intersections)

Level of Service	Average Delay per Vehicle
A	Very low average control delay, less than 10 seconds per vehicle. This occurs when progression is extremely favorable, and most vehicles arrive during the green phase. Most vehicles do not stop at all. Short cycle lengths may also contribute to low delay.
B	Average control delay is greater than 10 seconds per vehicle and less than or equal to 20 seconds per vehicle. This generally occurs with good progression and/or short cycle lengths. More vehicles stop than for a level of service A, causing higher levels of average delay.
C	Average control delay is greater than 20 seconds per vehicle and less than or equal to 35 seconds per vehicle. These higher delays may result from fair progression and/or longer cycle lengths. Individual cycle failures may begin to appear at this level. The number of vehicles stopping is significant at this level, although many still pass through the intersection without stopping.
D	Average control delay is greater than 35 seconds per vehicle and less than or equal to 55 seconds per vehicle. The influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle length, or high volume/capacity ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.
E	Average control delay is greater than 55 seconds per vehicle and less than or equal to 80 seconds per vehicle. This is usually considered to be the limit of acceptable delay. These high delay values generally (but not always) indicate poor progression, long cycle lengths, and high volume/capacity ratios. Individual cycle failures are frequent occurrences.
F	Average control delay is in excess of 80 seconds per vehicle. This is considered to be unacceptable to most drivers. This condition often occurs with oversaturation. It may also occur at high volume/capacity ratios below 1.0 with many individual cycle failures. Poor progression and long cycle lengths may also contribute to such high delay values, even when the volume/capacity ratio is significantly below 1.0.

1 Most of the material in this appendix is adapted from the Transportation Research Board, Highway
Capacity Manual, (2000).

Table D2
Level of Service Criteria for Signalized Intersections

Level of Service	Average Control Delay per Vehicle (Seconds)
A	≤ 10
B	>10 and ≤ 20
C	>20 and ≤ 35
D	>35 and ≤ 55
E	>55 and ≤ 80
F	>80

UNSIGNALIZED INTERSECTIONS

Unsignalized intersections include two-way stop-controlled (TWSC) and all-way stop-controlled (AWSC) intersections. The 2000 Highway Capacity Manual provides models for estimating average control delay at both TWSC and AWSC intersections. Table D3 provides a qualitative description of each LOS category as it applies to unsignalized intersections, and Table D4 identifies the average control delay threshold point used as the boundary for each LOS category. LOS thresholds for the specific reviewing jurisdiction(s) are described in the body of the report.

Table D3
Level of Service Criteria for Unsignalized Intersections

Level of	Average Delay per Vehicle to Minor Street Service	- Nearly all drivers find freedom of operation with very little time spent waiting for an acceptable gap. A
- Very seldom is there more than one vehicle in queue.		

Table D4
Level of Service Criteria for Unsignalized Intersections

Level of Service	Average Control Delay per Vehicle (Seconds)
A	≤ 10
B	>10 and ≤ 15
C	>15 and ≤ 25
D	>25 and ≤ 35
E	>35 and ≤ 50
F	>50

It should be noted that the level of service criteria for unsignalized intersections are somewhat different than the criteria used for signalized intersections. The primary reason for this difference is that drivers expect different levels of performance from different kinds of transportation facilities. The expectation is that a signalized intersection is designed to carry higher traffic volumes than an unsignalized intersection. Additionally, there are a number of driver behavior considerations that combine to make delays at signalized intersections less onerous than at unsignalized intersections. For example, drivers at signalized intersections are able to relax during the red interval, while drivers on the minor street approaches to TWSC intersections must remain attentive to the task of identifying acceptable gaps and vehicle conflicts. Also, there is often much more variability in the amount of delay experienced by individual drivers at unsignalized intersections than signalized intersections. For these reasons, the control delay threshold for any given level of service has been set to be less for an unsignalized intersection than for a signalized intersection. While overall intersection level of service is calculated for AWSC intersections, level of service is only calculated for the minor approaches and the major street left turn movements at TWSC intersections. No delay is assumed to the major street through movements. For TWSC intersections, the overall intersection level of service remains undefined: level-of-service is only calculated for each minor street lane.

In the performance evaluation of unsignalized intersections, it is important to consider other measures of effectiveness (MOE's) in addition to delay, such as v / c ratios for individual movements, average queue lengths, and $95^{\text {th }}$-percentile queue lengths. By focusing on a single MOE for the worst movement only, such as delay for the minor-street left turn, users may make inappropriate traffic control decisions.

Appendix E: Operational Analysis Worksheets

These have been provided in electronic form on s separate CD.

Appendix F: $95^{\text {th }}$ Percentile Queues

TABLE 1 EXISTING AM AND PM PEAK HOUR $95^{\text {TH }}$ PERCENTILE QUEUES

		$\begin{aligned} & \text { SB } \\ & \text { LT } \end{aligned}$	$\begin{aligned} & \text { SB } \\ & \text { TH } \end{aligned}$	SB RT	WB LT	WB TH	WB RT	NB LT	$\begin{aligned} & \text { NB } \\ & \text { TH } \end{aligned}$	NB RT	$\begin{aligned} & \text { EB } \\ & \text { LT } \end{aligned}$	$\begin{aligned} & \text { EB } \\ & \text { TH } \end{aligned}$	EB RT
Glacier Highway/ Industrial Boulevard	AM	25			25	-		25	25		25	-	
	PM	50			25	-		50	100		25	-	
Egan Drive / Vintage Road / Old Glacier Hwy (North)	AM	-	-	25	25	-	-	50			-	-	-
	PM	-	-	25	25	-	-	375			-	-	-
Egan Drive / Riverside Drive	AM	250	-	25	-	50	25	-	-	-	150	100	-
	PM	175	-	50	-	75	50	-	-	-	>425	75	-
Egan Drive / Mendenhall Loop Road	AM	>825	>850	25	25	150	25	100	125	25	>125	$\begin{gathered} >55 \\ 0 \end{gathered}$	50
	PM	>425	>450	25	75	>500	25	200	$\begin{gathered} >40 \\ 0 \end{gathered}$	25	225	250	50
Egan Drive / Glacier Hwy (McNugget)	AM	-	-	-	250	75	-	50	-	25	-	525	25
	PM	-	-	-	>575	450	-	175	-	25	-	$\begin{gathered} >47 \\ 5 \end{gathered}$	75
Egan Drive / Yandukin Drive	AM	-	-	25	25	-	-	-	-	-	25	-	-
	PM	-	-	25	50	-	-	-	-	-	275	-	-
Mendenhall Mall Road / Vintage Blvd / Riverside Drive	AM	50	300	50	125	100	25	75	100	50	75	50	25
	PM	50	175	25	175	125	100	75	300	50	125	150	75
Mendenhall Mall Road / Mendenhall Loop Road	AM	25	300	25	50		25	125	100		100		75
	PM	25	225	50	25		25	250	475		>325		75
Glacier Hwy (North)/ Mendenhall Loop Road Extension	AM	25	-	-	25			25	-	-	25	50	
	PM	25	-	-	50			25	-	-	25	75	
Old Glacier Hwy (Airport)/ Shell	AM	25	25		25	-		25	25		25	-	-
Simmons Drive (unsignalized)	PM	375	150		25	-		300	50		25	-	-
Old Glacier Hwy (Airport)/ Shell	AM	50	25		50	100		50	25		25	225	25
Simmons Drive (signalized)	PM	100	50		75	275		150	75		50	275	25
Old Glacier Hwy (Airport)/ Jordan	AM	25	25		25	-	-	25		25	25	-	-
(unsignalized)	PM	275	50		25	-	-	75		25	25	-	-
Old Glacier Hwy (Airport)/ Jordan	AM	25	25		50	125	25	25		25	50	225	25
(signalized)	PM	25	25		50	125	25	25		25	50	325	50
Glacier Hwy (Airport)/ Old Dairy Road/Trout Street	AM	25	-	-	25	25		25	-	-	150	50	
	PM	25	-	-	50	125		25	-	-	150	250	

NB = Northbound, SB = Southbound, EB = Eastbound, WB = Westbound LT = Left-turn lane, TH/RT =
Through/right-turn lane
$>$ Denotes a $95^{\text {th }}$ percentile v / c ratio greater than one for the movement, queue's may be longer than reported.

TABLE 2 YEAR 2025 AM AND PM PEAK HOUR $95^{\text {TH }}$ PERCENTILE QUEUES

		SB LT	$\begin{aligned} & \text { SB } \\ & \text { TH } \end{aligned}$	SB RT	WB LT	WB TH	WB RT	NB LT	NB TH	NB RT	$\begin{aligned} & \text { EB } \\ & \text { LT } \end{aligned}$	$\begin{aligned} & \text { EB } \\ & \text { TH } \end{aligned}$	EB RT
Glacier Highway /	AM	25			50	-		150	50		25	-	
	PM	100			125	-		200	1450		25	-	
Egan Drive / Vintage Blvd / Glacier Hwy (North)	AM	-	-	25	25	-	-	150			-	-	-
	PM	-	-	50	50	-	-	800			-	-	-
Egan Drive / Riverside Drive	AM	200	-	25	-	75	25	-	-	-	175	150	-
	PM	125	-	50	-	100	300	-	-	-	>625	100	-
Egan Drive / Mendenhall Loop Road	AM	$\begin{gathered} >122 \\ 5 \end{gathered}$	>1300	25	50	200	25	125	150	50	>175	>725	50
	PM	>625	>650	25	100	>625	25	>325	>600	50	>275	>425	50
Egan Drive / Glacier Hwy (McNugget)	AM	-	-	-	>450	75	-	100	-	25	-	425	25
	PM	-	-	-	>950	>900	-	>325	-	25	-	>450	75
Egan Drive / Yandukin Drive	AM	-	-	25	50	-	-	-	-	-	50	-	-
	PM	-	-	25	175	-	-	-	-	-	775	-	-
Mendenhall Mall Road / Vintage Blvd / Riverside Drive	AM	50	475	50	125	125	50	125	125	75	100	50	75
	PM	50	300	50	>200	125	100	150	525	50	>200	150	125
Mendenhall Mall Road / Mendenhall Loop Road	AM	25	550	25	50		25	>100	100		125		75
	PM	25	325	50	25		25	250	>600		>350		75
Glacier Hwy (North)/ Mendenhall Loop Road Extension	AM	25	-	-	25			25	-	-	25	100	
	PM	25	-	-	175			25	-	-	50	250	
Glacier Hwy (Airport) /Shell	AM	75	50		75	150		100	50		50	375	25
Simmons Drive (signalized)	PM	>150	75		100	>1050		>300	75		75	500	25
Glacier Hwy (Airport) / Jordan Avenue (signalized)	AM	25	25		75	175	25	50		25	75	375	25
	PM	>225	75		100	>750	25	>175		50	50	>600	50
Glacier Hwy (Airport) / Old Dairy Road	AM	25	-	-	25	50		25	-	-	450	100	
	PM	50	-	-	-	800		25	-	-	-	275	

$\mathrm{NB}=$ Northbound, $\mathrm{SB}=$ Southbound, $\mathrm{EB}=$ Eastbound, $\mathrm{WB}=$ Westbound $\mathrm{LT}=$ Left-turn lane, TH/RT =
Through/right-turn
$>$ Denotes a $95^{\text {th }}$ percentile v / c ratio greater than one for the movement, queue's may be longer than reported.

Section 6 Final Report Chapter 3 Appendix

Appendix G: Population and Employment Data

Employment Data

Provided by CBJ 12/2000

		Employment		
TAZ	Area	1998	2020	Annual Growth Rate
Area A				
9	Upper Valley	14	17	0.89\%
10	Middle Valley	128	158	0.96\%
1/2 of 20	Mendenhall Mall	150	185	0.96\%
22	Mid-Central Valley	30	37	0.96\%
23	Upper Central Valley	16	20	1.02\%
24	Upper Tongass	56	69	0.95\%
25	Lower Tongass	7	9	1.15\%
27	Atlin Drive	3	4	1.32\%
	Total	404	499	
Average Annual Growth Rate				1.03\%
Delta 95				

Area B			
11 Upper River	69	85	0.95\%
12 West Valley	25	31	0.98\%
1/2 of 18 Vintage Park	137.5	169.5	0.96\%
1/2 of 20 Mendenhall Mall	150	185	0.96\%
21 Mid Riverside	11	14	1.10\%
26 Lower Tongass	385	474	0.95\%
Total	777.5	958.5	
Average Annual Growth Rate			0.98\%
	Delta	181	
Area C			
1/2 of 18 Vintage Park	137.5	169.5	0.96\%
Average Annual Growth Rate			0.96\%
Delta		32	

Area D							
28 Hurlock Avenue	43	53	0.96%				
29 Upper Radcliff	23	28	0.90%				
$1 / 2$ of 30 Lower Radcliff	22	27	0.94%				
$1 / 2$ of 31	Travel Lodge	155	191				
Total					$\mathbf{2 4 3}$	$\mathbf{2 9 9}$	
Average Annual Growth Rate							
Delta							

Population Data Provided by CBJ 12/2000

		Population		
TAZ	Area	1998	2020	Annual Growth Rate
Area A				
9	Upper Valley	1029	1088	0.25\%
10	Middle Valley	1186	1462	0.96\%
1/2 of 20	Mendenhall Mall	0	0	0.00\%
22	Mid-Central Valley	884	1018	0.64\%
23	Upper Central Valley	2109	2193	0.18\%
24	Upper Tongass	768	852	0.47\%
25	Lower Tongass	706	870	0.95\%
27	Atlin Drive	43	112	4.45\%
	Total	6725	7595	
Average Annual Growth Rate				0.99\%
Delta 870				

Area B			
11 Upper River	2202	2311	0.22\%
12 West Valley	898	1107	0.96\%
$1 / 2$ of 18 Vintage Park	0	0	0.00\%
1/2 of 20 Mendenhall Mall	0	0	0.00\%
21 Mid Riverside	1026	1065	0.17\%
26 James Blvd.	569	628	0.45\%
Total	4695	5111	
Average Annual Growth Rate			0.30\%
Delta 416			

Area C			
$1 / 2$ of 18Vintage Park	0	0	0.00%
Average Annual Growth Rate	$\mathbf{0 . 0 0 \%}$		
Delta	$\mathbf{0}$		

Area D				
	Hurlock Avenue	97	120	0.97\%
29	Upper Radcliff	390	419	0.33\%
1/2 of 30	Lower Radcliff	241	271	0.54\%
1/2 of 31	Travel Lodge	120.5	132.5	0.43\%
	Total	848.5	942.5	
Average Annual Growth Rate				0.57\%

Area E							
$1 / 2$ of 30	Lower Radcliff	22	27				
$1 / 2$ of 31	Travel Lodge	155	191				
32	Airport Mall	317	391				
33	Nugget Jordan Mall	592	730				
34	Ka-See-An	101	124				
0.96%							
$1 / 2$ of 35	Crest Street	77.5	95.5				
$1 / 2$ of 36	Old Dairy	138.5	170.5				
Total					$\mathbf{1 4 0 3}$	$\mathbf{1 7 2 9}$	0.95%
Delta							

Area F							
7	Airport	352	434				
19	Glacier Fire Station	48	59				
$1 / 2$ of 35	Crest Street	77.5	0.96%				
$1 / 2$ of 36	Old Dairy	138.5	170.5				
Total					$\mathbf{6 1 6}$	$\mathbf{7 5 9}$	0.95%
Average Annual Growth Rate							
Delta					$\mathbf{1 4 3}$		

Area G			
$1 / 2$ of 6 Fred Meyer	143	176	0.95%
Average Annual Growth Rate			
Delta			

Area H						
8	Engineers Cutoff	1	1			
13	Peterson Hill	395	487			
14	Fritz Cove	8	0.00%			
15	University of Alaska	105	129			
16	Tee Harbor	465	573			
17	Industrial Boulevard	1096	1351			
Total					$\mathbf{2 0 7 0}$	0.95%
Delta						
$\mathbf{2 5 5 1}$						

Area E: Glacier Highway East to Egan Drive

Area F				
7	Airport	0	0	0.00%
19	llacier Fire Station	0	0	0.00%
$1 / 2$ of 35	Crest Street	1	12	11.97%
$1 / 2$ of 36	Old Dairy	0	0	0.00%
Total				$\mathbf{1}$
Average Annual Growth Rate				
Delta				$\mathbf{1 1}$

Area G				
$1 / 2$ of 6 Fred Meyer	7.5	112		
Average Annual Growth Rate				13.09%
Delta				$\mathbf{1 0 4 . 5}$

Area H				
	Engineers Cutoff	243	407	2.37\%
13	Peterson Hill	677	1036	1.95\%
14	Fritz Cove	646	705	0.40\%
15	University of Alaska	449	961	3.52\%
16	Tee Harbor	1942	2393	0.95\%
	Industrial Boulevard	87	696	9.92\%
	Total	4044	6198	
Average Annual Growth Rate				3.19\%

Appendix H: Origin-Destination Analysis

Origin-Destination (O-D) Analysis

October 2002

Kittelson \& Associates, Inc.
in association with CH 2 M Hill.
Cogan Owens Cogan, and Southeast Strategies

Introduction

The upcoming phase of the West Egan Drive Corridor (WEDCOR) Study includes a detailed traffic operations analysis of the alternatives that are under consideration. All of these alternatives include new roads connecting different parts of the current roadway system. In order to conduct the traffic operations analysis, it is necessary to estimate the routes motorists might choose with these new connections in place. To make this estimate, an origin-destination (O-D) survey and analysis was conducted to identify existing travel patterns within the West Egan Drive Corridor.

In an origin-destination survey key travel routes within the study area are identified (e.g., southbound Mendenhall Loop Road to Glacier Highway (Lemon Spur)). For a two-hour period, the license plate digits and letters of all vehicles traveling past the designated route origin are recorded (e.g., making a southbound left turn on Mendenhall Loop Road). During the same period, the license plate digits and letters of all vehicles traveling past the route destination are recorded (e.g., making a left hand turn from Egan Drive into Glacier Highway (Lemon Spur)). The two sets of data are then compared to identify license plate matches between the two locations. The number of matches reveals the desire for travel between the two locations (e.g. Mendenhall Valley and Fred Meyer). With the most popular travel routes within the study area identified, it is possible to re-assign traffic to the new transportation networks based on quantifiable information.

Methodology

For the purposes of this survey, 23 survey locations, and 22 route pairs were identified. These represent all of the key routes in the study area along Egan Drive. Minor movements and routes off Egan Drive were not recorded. The survey locations are shown in Figure 1. The survey was conducted on August 27, 2002. Two people were assigned to each survey location. For two two-hour periods during the a.m. and p.m. peak periods (7:00 to 9:00 a.m. and 4:00 to 6:00 p.m.), surveyors recorded the last four digits or numbers of vehicles traveling past them. For example, two people were assigned to monitor the right-hand turn from Glacier Highway (North) to eastbound Egan Drive. For every vehicle that traveled past one of the locations shown in

Figure 1, one person called out the last four digits or letters of the license plate, and the second person wrote down the digits or letters. The license plates were recorded in five-minute increments. In those cases where the surveyor was unable to record the license plate number, the vehicle was counted anyway. The surveyors included members of the Juneau-Douglas High School swim team, Beta Sigma Phi, Citizens Patrol, and interns with the Alaska Department of Transportation \& Public Facilities.

The license plate data was then compiled and analyzed within a spreadsheet to determine the total number vehicles passing through each survey point and the number of vehicles that traveled between a given pair of survey points. The matching of license plates was constrained to a 10 minute interval from the time when the subject plate was first observed to the time it was observed at the second survey point. This reduces the likelihood of double counting vehicles that pass through the study area more than once during the analysis period.

Results

The results of the OD analysis are presented graphically in Figures 2A through 2F for the weekday a.m. peak period and in Figures 3A through 3F for the weekday p.m. peak period. In each figure, the path between a given pair of survey points is indicated by a solid red or dashed blue line. The total number of vehicles entering a particular path is indicated at the path origin. Conversely, at the end of each path, the number of matching license plates and the corresponding percentage of the total number of entering vehicles are listed. Table 1 summarizes the 23 survey locations that were analyzed and the figure on which they are shown.

What Does It Mean?

Each of the observed matches will be used to assist in re-assigning the forecast no-build traffic volumes to each of the four most viable alternative transportation systems. For example, Figure 3E shows that during the p.m. peak hour three percent of the northbound left turns at the intersection of Glacier Highway (Airport)/Egan Drive subsequently turn right from Egan Drive onto Vintage Boulevard. However, under Alternative 1, this routing changes due to the elimination of a connection between Glacier Highway (Airport) and Egan Drive. Therefore, as the forecast volumes are developed for Alternative 1 three percent of the forecast no-build p.m. peak hour northbound left turns from the intersection of Glacier Highway (Airport)/Egan Drive will be re-routed from westbound Egan Drive to westbound Glacier Highway and then northbound through the Egan Drive/Vintage Boulevard interchange. This process will be applied to each of the routes for the a.m. and p.m. peak hour for all four of the most viable alternatives.

There are a few notable routes that are popular among travelers within the study area. These routes represent demand patterns that indicate a potential need for more direct routes to improve local circulation and/or the traffic performance of the system as a whole. These routes are as follows:

- Riverside Drive north of Egan Drive to Egan Drive to Mendenhall Loop south of Egan Drive, and the reverse;
- Mendenhall Loop north of Egan Drive to Egan Drive to Glacier Highway (Airport), and the reverse;
- Mendenhall Loop north of Egan Drive to Egan Drive to Glacier Highway (Fred Meyer); and the reverse; and
- Glacier Highway (Airport) to Egan Drive to Glacier Highway (Fred Meyer) and the reverse.
- Glacier Highway (North) to Egan Drive to Riverside Drive and the reverse.
- Mendenhall Loop south of Egan Drive to Egan Drive to Riverside Drive and Vintage Boulevard.
- Egan Drive westbound to northbound Mendenhall Loop Road to westbound Mendenhall Mall Road.

Next Steps

The next phase of the West Egan Drive Corridor Study will provide a traffic operations analysis of the corridor alignment alternatives. To analyze the operations of potential alignment alternatives, it is necessary to forecast the amount of traffic that will be rerouted as a function of the new street connections in each alternative. The match percentages indicated in Figures 2A through 3 F provide the information necessary to complete this re-assignment. The re-assignment and the results of the traffic operations analysis for each alternative will be documented in Working Paper \#3.

Origin-Destination (O-D) Analys is

TABLE 1 PATH FIGURE LIST

Path Origin		Path Destination		Figure Number	
Intersection	Turning Movement	Intersection	Turning Movement	AM Peak	PM Peak
Egan Dr/Vintage Blvd	EB RT	Egan Dr / Glacier Hwy (Fred Meyer)	EB LT	2 A	3 A
	EB RT	Egan Dr/Yandukin Dr	EB TH	2A	3A
	NB RT	Egan Dr / Riverside Dr	EB LT	2 C	3 C
Egan Dr/Riverside Dr	SB LT	Egan Dr / Glacier Hwy (Fred Meyer)	EB LT	2 B	3 B
	SB LT	Egan Dr / Glacier Hwy (Airport)	EB RT	2 B	3 B
	SB LT	Egan Dr/Mendenhall Loop	EB RT	2 B	3 B
	SB RT	Egan Dr / Vintage Blvd	WB LT	2 B	3 B
Egan Dr/Mendenhall Loop	SB LT	Egan Dr/Glacier Hwy (Fred Meyer)	EB LT	2 C	3 C
	SB LT	Egan Dr / Glacier Hwy (Airport)	EB RT	2 C	3 C
	NB LT	Egan Dr / Vintage Blvd	WB RT	$2 F$	3 F
	NB LT	Egan Dr / Riverside Dr	WB RT	2 F	3 F
	NB RT	Egan Dr/ Glacier Hwy (Fred Meyer)	EB LT	$2 F$	3 F
	WBRT	Mendenhall Mall / Mendenhall Loop	NB LT	2A	3A
Egan Dr / Glacier Hwy (Fred Meyer)	SB RT	Egan Dr / Vintage Blvd	WB RT	2D	3D
	SB RT	Egan Dr/Riverside Dr	WB RT	2D	3D
	SB RT	Egan Dr / M endenhall Loop	WB RT	2D	3D
	SBRT	Egan Dr / Glacier Hwy (Airport)	WB LT	2D	3D
	SB RT	Egan Dr / Vintage Blvd	WB LT	2D	3D
	W B LT	Egan Dr / Vintage Blvd	NB LT	2D	3D
Egan Dr / Glacier Hwy (Airport)	NB LT	Egan Dr / Vintage Blvd	WB RT	2 E	$3 E$
	NB LT	Egan Dr / Riverside Dr	WB RT	2 E	3 E
	NB LT	Egan Dr / M endenhall Loop	WB RT	2 E	3E
	NB RT	Egan Dr / Glacier Hwy (Fred Meyer)	EB LT	2 E	3E

Quine

LEGEND
- ORIGIN
- DESTINATION
- ROUTE 1
$=-$ - ROUTE 2

(2lilis

LEGEND - ORIGIN - DESTINATION	ROUTES OFF EGAN DRIVE ARE ESTIMATED BASED ON THE LIKELY PATH BETWEEN SURVEY POINTS.	O-D SURVEY FLOW WEEKDAY PM PEAK		
$\begin{aligned} & =\text { ROUTE } 1 \\ & =- \text { - ROUTE } 2 \end{aligned}$		WEST EGAN DRIVE CORRIDOR JUNEAU, ALASKA OCTOBER 2002	$\begin{aligned} & \text { FIGURE } \\ & 3 A \end{aligned}$	

LEGEND
- ORIGIN
- DESTINATION
- ROUTE 1
- - - ROUTE 2

OIIN

$\frac{\text { LEGEND }}{}$
- ORIGIN
- DESTINATION
- - ROUTE 1
$=-$ - ROUTE 2

