

AGENDA

- Safety minute
- Introductions
- PEL definition, goals, and process
- What has been completed so far?
- Corridor concepts
- What's next?
- Questions/comments

INTRODUCTIONS Project Team

DOT&PF

- Al Beck, P.E., Project Manager
- Chris Cavallo, Project Engineer

DOWL HKM

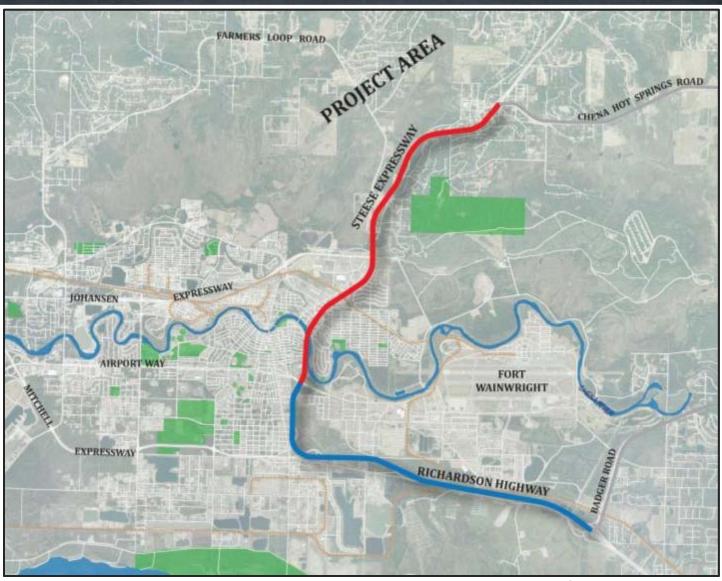
- Steve Noble, P.E., Project Manager
- Rachel Steer, Project Coordinator

WHAT IS A PEL STUDY?

- An approach to transportation decision making that:
 - Considers environmental issues early in the planning process;
 - Carries those considerations through project development, design, and construction; and
 - Tries to identify "red flags."
- A seamless decision-making process that:
 - Minimizes duplication of effort;
 - Promotes environmental stewardship; and
 - Reduces delays in project implementation.

PROCESS

Identify transportation deficiencies.


Develop project concepts that consider:

-Feasibility	-Land use
-Logical termini	-Freight movement
-Cost	-ROW impacts
-Air quality	-Environmental impacts
-Multi-modal traffic	-and more

- Identify direct, indirect, and cumulative impacts.
- Use this information and analysis in future project development.

We are here

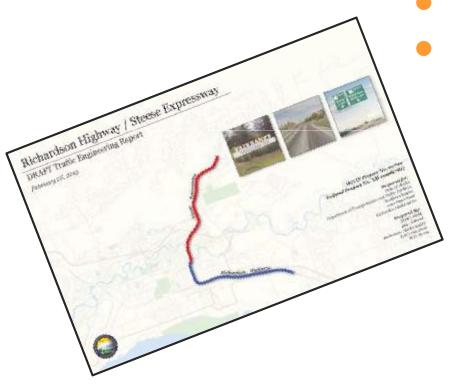
PROJECT CORRIDOR

Richardson Highway/Steese Expressway Corridor Study Planning & Environmental Linkage Open House

CORRIDOR CHARACTERISTICS

- High-volume principal arterials
- Vital links connecting North Pole and Fairbanks to the National Highway System
- Traverses some of the fastest growing areas in the FNSB

Richardson Highway/Steese Expressway Corridor Study Planning & Environmental Linkage Open House


TRAFFIC ANALYSIS

- Built on previous studies
- Created localized model

- Calibrated the model to current conditions (land use, traffic network changes, etc.)
- Non-motorized traffic (compatibility with Nonmotorized Transportation Plan)

TRAFFIC ENGINEERING REPORT

- Draft version released February 2013
- Included:
 - Traffic volume estimates for:
 - **>> 2015**
 - **>> 2030**
 - **>> 2040**
 - Intersection and segment capacity analysis
 - Deficiency identification
 - Mitigation alternatives

HOW TO DECIDE?

- Numerous options are conceivable
- Draft Purpose and Need
- Corridor Concepts
 - —High mobility, low access
 - Moderate mobility, moderate access
 - Low mobility, high access

Mobility — Emphasis on reducing travel time for through traffic.

Accessibility — Emphasis on providing direct connection to adjacent properties

DRAFT PURPOSE AND NEED

Purpose

- Identify future traffic conditions
- Develop concepts that address:
 - Safety
 - Congestion/delay
 - Access
 - Mobility
 - Minimization of impacts
- Recommend specific projects

DRAFT PURPOSE AND NEED

Need

- This is a major route serving a mix of through and local traffic
- This is a designated truck route
- Land development is driving traffic growth
- The corridor serves several special traffic generators
- There is a lack of continuity for bicycle and pedestrian facilities

CONCEPT 1—HIGH MOBILITY/LOW ACCESS

- Focuses on maximizing capacity and travel speed
- Improves Richardson Highway/Steese Expressway as freeway-type facilities
- Interchanges at major roadways
- Frontage roads provide access to adjacent roads and property

CONCEPT 1—ADVANTAGES/DISADVANTAGES

Advantages

- Highest capacity/lowest travel time
- Has capacity for additional growth
- Removes commuter traffic from adjacent roadways
- Highest predicted safety

Disadvantages

- Highest initial cost
- More right-of-way acquisition than Concepts 2 and 3
- Less direct bicycle and pedestrian connectivity
- Fewer locations of residential/commercial access

CONCEPT 2—MODERATE MOBILITY/MODERATE ACCESS

- Mix of at-grade and grade-separated intersections (interchanges)
- Attempts to balance corridor mobility and access

CONCEPT 2—ADVANTAGES/DISADVANTAGES

Advantages

- Moderate cost and right-of-way acquisition.
- Improved bicycle and pedestrian access
- Minimal change to residential/commercial access

Disadvantages

- Continued delay at at-grade intersections
- At-grade intersections have more crashes than interchanges

CONCEPT 3—LOW MOBILITY/HIGH ACCESS

- No new interchanges
- Maintain existing access
- Maximize existing at-grade intersections and develop adjacent road network

CONCEPT 3—ADVANTAGES/DISADVANTAGES

Advantages

- Moderate cost and right-of-way acquisition
- Bicycle and pedestrian connectivity accommodated in corridor

Disadvantages

- Highest travel time
- Greatest delay
- Minimal overall safety improvements
- Limited long-term capacity options

NEXT STEPS

- Refine concepts and purpose and need
- Additional environmental analysis
- Agency review
- Final concepts (December 2013)
- Public open house #3 (December 2013)

QUESTIONS/COMMENTS

Submit Your Comments

Rachel Steer, Project Coordinator 1901 Airport Way, Suite 102 Fairbanks, AK 99701

rsteer@dowlhkm.com

907-374-0275

WHAT IS LOS?

LEVEL OF SERVICE COLOR KEY

- LOS A Free Flow
- LOS B Reasonably Free Flow
- LOS C Stable Flow
- LOS D Approaching Unstable Flow
- LOS E Unstable Flow
- LOS F Breakdown Flow