

ALASKA Department of Transportation and Public Facilities Statewide Geotechnical Services

FOUNDATION GEOLOGY REPORT

Parks Highway Milepost 237

Riley Creek Bridge Replacement No. 0695

June 2014

FOUNDATION GEOLOGY REPORT

Riley Creek Bridge Replacement No. 0695

Parks Highway MP 237 Project No. 63763

June 2014

Field Geology by:

Steve Evans Foundation Engineering Geologist

Approved By:

Mike San Angelo P.E. Statewide Materials Engineer

State of Alaska Department of Transportation and Public Facilities Statewide Design and Engineering Services Materials Section

TABLE OF CONTENTS

VICINITY MAP	iii
INTRODUCTION	1
Purpose and Scope of Work	1 1
Subsequent Investigations	1 1
Dravious Investigations	າ1
Trevious investigations	2
REGIONAL SETTING	2
Location & Climate	2
Topography, Drainage, & Vegetation	3
Geology	3
METHODS AND DEOCEDUDES	1
Drilling Mashingry and Taaling	+4 ۱
Drining Machinery and Tooling	44 ح
Penetration Tests	
Recovered Samples	
Laboratory Testing	6
Other In-Situ Measurements	6
GEOTECHNICAL CONDITIONS	6
Site Geology	6
Soils and Bedrock	6
Hines Creek Fault	0 7
Dermafrast	/۷ و
Fermanost	0 0
South Abutment	00 0
Dian 1 (2 Span Alternative)	ð
Pier I (2-Span Alternative)	9
Center Pier (2-Span Alternative)	9
Pier 3 (3-Span Alternative)	10
North Abutment	
North Approach	12
SELECTED REFERENCES	13
SEELE TED KEI EKEIVEES	13
APPENDICES	
Appendix A – Explanations and Terminology	
Appendix B – Test Hole and Penetrometer Logs	
Appendix C – Soil Sample Summary	
Appendix D – Historical Test Hole Logs	
ATTACHMENTS	
Geophysical Fault Mapping – Riley Creek Bridge Replacement Project	
Investigation Targeting the Active Fault Characteristics of the Hines Creek Fault	
Riley Creek In-Situ Sample Test Report	
· · · ·	

INTRODUCTION

The Department of Transportation and Public Facilities (ADOT&PF) plans to construct a new bridge crossing Riley Creek at approximately milepost 237 on the Parks Highway. This two or three span structure will have an overall length of about 249 feet with an overall width of about 55 feet. The proposed replacement bridge centerline is offset approximately 45 feet right (NE) of the existing bridge location to accommodate the new alignment. This report represents the conditions observed during the geotechnical foundation investigation of the site.

Purpose and Scope of Work

ADOT & PF Statewide Geotechnical Services conducted this two phase geotechnical investigation utilizing DOT & PF personnel and equipment (CME 850 tracked rig) from June, 2012 to April, 2014. The initial investigation consisted of six test holes drilled to depths of up to 143 feet and five penetrometers driven to refusal. A second mobilization was conducted in April of 2014 to better characterize cohesive soils at two alternative pier locations and north abutment structure locations. The second phase consisted of advancing three test holes to acquire Shelby tube samples and collect additional standard penetration test (SPT) data. Drill sites for the second phase were selected by CH2M HILL (a project consultant) based on the proposed structure alternatives and approach embankment locations. At the time of the initial investigation a three-span structure was proposed.

The purpose of this investigation was to document subsurface geotechnical conditions and provides data to assist in the design of the proposed bridge structure foundations and associated structures. This document provides analyses and interpretation of anticipated site conditions and establishes a geotechnical baseline. This report is intended for use by the project design engineering staff, construction personnel, bidders, and contractors.

Geologic logs are presented here as preliminary in gINT graphical format. Final drafted logs are included in the project plans and specifications.

Subsequent Investigations

At the time of the initial field effort a US Park Service geologist provided ADOT with a recent LIDAR image indicating relatively recent tectonic activity along the Hines Creek Fault which intersects the project site, existing bridge, and proposed bridge location. At the behest of

ADOT&PF, two additional investigations were conducted to better delineate the fault, estimate the recurrence interval, and estimate potential deformation during future seismic events. The *Geophysical Fault Mapping* report prepared by Zonge International Inc. and Active Fault *Characteristics of the Hines Creek Fault* report prepared by University of Kentucky Department of Earth Sciences have been included as an attachment to this report.

Previous Investigations

• <u>Alaska Department of Highways Foundation Section: Foundation Report – Riley Creek</u> <u>Bridge, August 1966</u>

Test hole logs from this investigation are included in Appendix D.

<u>ADOT Materials Section: Foundation Report - Repair of Riley Creek Bridge Pier 3, June</u>
 <u>1986</u>

The test hole log from this investigation is included in Appendix D.

 <u>ADOT Northern Region Geotechnical Report: Parks Hwy MP 237 Riley Creek Bridge</u> <u>Replacement, February 2014</u>

This centerline investigation report is available by request.

REGIONAL SETTING

Location & Climate

Riley Creek, a tributary of the Nenana River, is located at approximately mile 237 of the Parks Highway, immediately south of Denali Park Road. Riley Creek lies roughly 12 miles south of Healy in the Nenana River valley at approximately 63.7275 N latitude, 148.8885 W longitude.

The project lies within the continental climatic zone of Alaska, characterized by relatively wide variations in seasonal temperatures and low precipitation and humidity. January temperatures average -22 to -2 °F, but temperatures below -50 °F have been recorded. July temperatures range from 50 to 72 °F. Average annual precipitation is approximately 11.3 inches. The following figure provided by the Western Region Climate Center shows daily temperature averages and extremes for the most recent period of record in Healy, Alaska.

Ave. Max. is the average of all daily maximum temperatures recorded for the day of the year.
 Ave. Min. is the average of all daily minimum temperatures recorded for the day of the year.

Extreme Min. is the minimum of all daily minimum temperatures recorded for the day of the year.

Figure 2

Topography, Drainage, & Vegetation

The project site lies in the Western Alaska Range foothills, a relatively broad and forested alluvial terrace which abruptly ends at the confluence of Riley Creek and the Nenana River approximately 600 feet to the east. The Riley Creek floodplain is roughly 200 feet wide and is littered with boulders, cobbles, and woody debris. The local topographic high is a glacial terrace rising roughly 300 feet in elevation immediately west to southwest of the project site.

The upper terraces are typically thickly covered by black spruce, birch, and alder while the stream banks of Riley Creek are generally populated by alder willows, shrubs, and grasses.

Geology

The stratigraphy and upper terrace development in the lower Nenana River Valley were formed by rapidly changing erosional and deposition environments during the Healy Ice Advance. The most recent major advance in this area was the Riley Creek event which consisted of up to four separate advances occurring between 25,000 and 9,500 YBP (Ten Brink & Waythomas). The ice limit during the peak Riley event is located in the vicinity of the project site. Immediately north of the project, a rapidly formed glacial lake (Lake Moody) about 9 miles long and 1/3 mile wide extended up the Nenana River gorge from Riley Creek from about 12,000 to 15,000 YBP. The result of this dramatic and relatively rapid land form development is the highly variable stratigraphy we see in the general vicinity of this project.

The tectonically active Denali Fault lies approximately 19 miles south of the project site. The Denali Fault (right lateral strike-slip) is the fastest moving and most active fault in interior Alaska, slipping at a rate of 1/4" to 1/3" per year. A magnitude 7.9 earthquake ruptured the fault in November of 2002, representing interior Alaska's largest recorded event. This seismic event involved a complex series of sub-events summarized in the figure below.

Figure 3: Denali Fault Earthquakes (Source - USGS)

METHODS AND PROCEDURES

Drilling Machinery and Tooling

- The Statewide Materials Section in Anchorage provided a track mounted CME 850 rotary drill for both phases of the drilling program.
- Test holes during the first phase were advanced using driven NW (3" nominal I.D.) casing, driven to sampling depth and cleaned out with a tri-cone bit and water circulation. Water and cuttings return are circulated through a settling tub, using no drilling fluid additives.

- During the second phase of the investigation 6.25" auger was used to accommodate a Pitcher tube assembly. A Pitcher tube assembly was utilized to improve the quality and recovery of relatively undisturbed samples.
- Open hole techniques were sometimes employed where firm soils allow the test hole to remain open without the need to install casing. Open hole drilling can be advantageous in material which refuses casing advance but can be readily penetrated by a tri-cone bit.

Penetration Tests

- <u>Penetrometer Test soundings</u> 2.5-inch diameter, flush coupled, closed-end steel rod driven with a 340 pound CME automatic hammer. Blow counts are recorded for each 12-inch interval. The test terminates when 1000 blows or more are required to advance 12 inches.
- <u>Standard Penetration Tests (SPT)</u> 1.4-inch I.D. x 2.0-inch O.D. standard split tube sampler, driven with a 140-pound CME automatic hammer with a 30-inch free-fall drop (ASTM D-1586).

SPT measurements are recorded as hammer blows required to advance the sampler each 6-inches of penetration. N-values are the sum of the second and third 6-inch intervals. They are reported as counted, uncorrected for depth or hammer efficiency.

• <u>Non-Standard Split Barrel Sampling</u> - At samples depths where coarse gravels and/or very dense conditions were anticipated a 2.5" O.D. sampler driven by a 340 lb hammer was utilized to obtain adequate sample recovery. Hammer blows were recorded for each 6 inches of penetration.

Recovered Samples

- Material samples were collected using a standard (SPT) split tube sampler or nonstandard split spoon sampler. Samples collected were packaged in double, polyethylene ZipLok® bags for transportation to the ADOT & PF Central Region Materials Lab in Anchorage.
- Recovered undisturbed samples (Shelby Tubes) were sealed in paraffin wax, capped at both ends and transported in an upright orientation to prevent degradation of the samples. Samples were maintained in an unfrozen (in-situ) state throughout transport.
- The driven casing and tri-cone method employed during this investigation introduces water which results in some collected samples not being suitable for reliable moisture analyses, particularly non-cohesive, granular samples.

• Loose or unbound in-situ material at sample depth may be mobilized by ground water and/or drilling disturbance to wash up into the pipe ("heave"), making testing unreliable. The height of rods above the casing collar ("stickup") is monitored as the sampler is placed at the bottom of the hole, to assure a clean hole or detect a heaving condition. If such a condition was observed, it has been included in the attached test hole logs.

Laboratory Testing

- Selected soil samples were submitted to the Central Region Materials Laboratory for testing. Test results are shown in the Preconstruction Sample Summary sheets (Appendix C). Field and laboratory testing procedures followed the appropriate ADOT&PF Geotechnical Procedures Manual, AASHTO or ASTM procedures.
- Undisturbed in-situ samples collected during the second phase of the investigation were transported to the University of Alaska Fairbanks (UAF) by ADOT personnel. The results of the testing program developed by CH2M HILL engineers and the Department of Civil and Environmental Engineering staff at UAF have been included as an attachment to this report.

Other In-Situ Measurements

- A one-inch I.D. PVC pipe was installed in two boreholes prior to backfilling for future thermistor readings if necessary. Thermistor tube joints are cemented and end-capped to seal against ground water.
- Elevations and locations were established using measuring tape, surveyed topographic data, and a recreational grade Garmin GPS unit.

GEOTECHNICAL CONDITIONS

Site Geology

Soils and Bedrock

Tectonic deformation and significant displacement combined with a complex erosional and depositional history have resulted in highly variable soil profile across the project site. This lack of continuity in sub-surface profile is most evident when comparing profiles across the fault zone which runs oblique to the bridge alignment and intersects the proposed north abutment (see Figure 4).

Subsurface soils observed beneath the Riley Creek floodplain are predominantly cohesive (CL, CL-ML, ML) containing variable amounts of sand and some gravel lenses. The clays and silts are capped by alluvial deposits up to 6.5 feet thick consisting of coarse, silty granular material with cobbles and boulders. Cohesive soils at the south abutment are overlain by up to 31 feet of coarse granular material containing cobbles and boulders. It should be noted that historical test holes advanced along the existing bridge alignment (project left) indicate a substantially different soil profile than those observed during this investigation, particularly ahead station from the north bank of Riley Creek. Beneath the embankment fill at the proposed north abutment the cohesive and fine granular soils observed were in excess of 100 feet deep near the right project margin at test hole TH12-11. By contrast, test hole TH12-12 along centerline indicated predominantly granular material (see below). Bedrock was not encountered during this investigation.

Hines Creek Fault

Disparate sub-surface conditions observed in closely spaced test holes advanced through the proposed north abutment provide corroborating evidence that the Hines Creek Fault passes through the proposed bridge alignment (Figure 4). The reverse fault dips 84-87 degrees to the northwest and has recently been identified as active. This fault has been characterized by pure dip/slip displacement and does not exhibit any measureable lateral component. Based on this investigation and historical boring logs, the fault obliquely intersects the proposed bridge alignment between TH12-11 and TH12-12 extending to the west beneath the existing pier 2. For further information on the characteristics of the Hines Creek fault, refer to the attached reports.

Figure 4 (fault location approximate)

Permafrost

No evidence of ice or frozen soil was observed during this investigation. Thermistor readings collected in TH12-09 one week after drilling did not indicate sub-freezing temperatures to a depth of 60 feet below ground surface. It should be noted, however, that historical logs (Appendix D) indicate the presence of "frozen silt with ice" at the existing south abutment and discontinuous permafrost may be present at this site.

South Approach

Cobbles and boulders should be expected in the upper 30 feet of gravels at this location though they were not observed during drilling (see Abutment 1 below). A layer of gravel containing cobbles and boulders was encountered from 65-73 feet below ground surface (bgs) which damaged our drill casing. The casing continued to deteriorate, preventing advancement of the test hole beyond 90 feet bgs. A penetrometer was driven from this depth to verify hard bottom below the cohesive soils. Penetrometer refusal was met at 103 feet bgs.

Description	USCS	Depth BGS	N-Value	P-200	Moisture
Gravel with Silt &	CW CM	0.27'	Non-standard	10%	
Sand		0-27	spoon	1070	
Inter-bedded Silts,	CL, CL-ML,	27 65'	21 24	21.05%	20 6 22 0%
Sands, & Clays	ML, SM	27-03	51-54	21-9370	20.0-22.9%
Gravel with Silt,			Non-standard	_	
Sand, Cobbles, &	GP-GM	65-73'	spoon	8%	
Boulders			spoon		
Silty Sand	SM	73-80'	Invalid (heave)	13%	18.7%
Silty Clay	CL-ML	80-90.1'	N/A		27.7%

Generalized Subsurface Profile (TH12-01)

South Abutment

P12-02 Location

The presence of coarse sands and gravels containing cobbles and boulders in the upper 31 feet of test hole TH12-01 prevented the collection of valid SPT data and drilling proved very difficult. A dense gravel layer was encountered at 64 feet bgs, beneath 33 feet of cohesive and fine granular soils which damaged the casing shoe to the degree that we could not continue beyond 68 feet of depth. Penetrometer P12-02 met refusal at 60 feet bgs.

Description	USCS	Depth BGS	N-Value	P-200	Moisture
Silty Sand with Gravel,	SM	0.5.0'	Non-standard	1504	
Cobbles, & Boulders	5111	0.5-9	sampler	1370	
Silty Gravel with Sand,	CM	0.21'	Non-standard	170/	
Cobbles, & Boulders	GM	9-51	sampler	1 / %	
Interhaddad Silta Sanda	CL, CL-				
R Clave	ML, ML,	31-64'	31	21-93%	18.9-24%
& Clays	SM, SP-SM				
Gravel	GP	64-68'			

Generalized Subsurface Profile (TH12-03)

Pier 1 (2-Span Alternative)

The proposed pier 1 location in the center of the creek channel and near the south bank of the creek was inaccessible, therefor; drilling for this structure was not performed.

Center Pier (2-Span Alternative)

TH12-06 Site

Soils just ahead station from the proposed center pier are primarily stiff to hard cohesive soils overlain by 5 to 7.5 feet of course alluvial material. Penetrometer P12-07 met refusal at 72 feet bgs.

Description	USCS	Depth BGS	N-Value	P-200	Moisture
Gravel with Sand, Cobbles & Boulders, Sand with Gravel, Silty Gravel	GP, GM, SP	0-7.5'			
Inter-bedded Silts, Sands, & Clays	CL, CL- ML, ML, SM	7.5-125.5'	14-47	74-99%	20.6-32.7%
Silty Sand with Gravel	SM	125.5-130'	50	28%	
Gravel with Cobbles & Boulders	GP	130-136'			
Silt with Sand	ML	136-143' (BOH)	31	82%	17.2%

Generalized Subsurface Profile (TH12-06 & TH14-01)

Pier 3 (3-Span Alternative)

P12-08 Site

Soils at this site are primarily stiff to very stiff cohesive soils overlain by 5 to 6.5 coarse alluvial material containing organics. Note that the soils observed during this investigation portrays a significantly different soil profile than is indicated by historical data collected at the existing pier location (see Appendix D). These test holes are located within the fault zone and soil conditions may vary significantly over short horizontal distances. Penetrometer P12-08 met refusal at 78 feet bgs.

Generalized Subsurface Profile (TH12-09 & TH14-02)

Description	USCS	Depth BGS	N-Value	P-200	Moisture
Silty Gravel with Sand	GM	0-6.5'			
Interbedded Silts &	CL, CL-	6.5-130'	0.45	52-	22 1 20 104
Clays	ML, ML	(BOH)	9-43	100%	22.1-29.1%

North Abutment

TH12-11 Site

The Hines Creek Fault intersects this proposed abutment structure. This is evident when comparing test hole TH12-11 with test hole TH12-12 (50 feet ahead station) and historical borings 3 and 9 beneath the existing north abutment (Appendix D). Very fine grained and cohesive soils extending to 103 feet bgs (bottom of test hole) were observed beneath the embankment material at TH12-11. In contrast, historical borings advanced beneath the existing abutment indicate coarse granular material beneath approximately 21 feet of clayey silt. The refusal depths of the two penetrometers advanced adjacent to TH12-11 may indicate that conditions at these locations correspond with soil profiles seen in TH12-12 and the historical borings 3 and 9. Penetrometer P12-10 and P12-13 met refusal at 45 and 53 feet, respectively, which roughly corresponds with denser, granular soils observed in test holes on the north side of the fault (project left).

Oeneruitzeu Subsurface Irofile (IIII2-II) & IIII4-05	Generalized	Subsurface	Profile	(TH12-11	& TH14-03
--	-------------	------------	---------	----------	-----------

Description	USCS	Depth BGS	N-Value	P-200	Moisture
Gravel with Silt, Sand, Cobbles & Boulders	GP-GM	0-12'	Refusal		
Interbedded Silts, Clays, & Sands	CL, CL-ML, ML, SC	12-103' (BOH)	11-32	22-98%	11.2-26.6%

North Approach

With the exception of a three foot layer of silty clay beneath the embankment material, soils at this location are primarily granular. This test hole is located within the fault zone and soil conditions may vary significantly over short horizontal distances. Cobbles and boulders may be present throughout the soil column.

Description	USCS	Depth BGS	N-Value	P-200	Moisture
Gravel with Silt, Sand, Cobbles & Boulders	GP-GM	0-17'	Non-Standard Sampler	7%	
Silty Clay	CL-ML	17-20'	Non-Standard Sampler		19.1%
Silty Sand	SM	20-35'	21-22		
Gravel with Silt & Sand	GP-GM	35-42'	Non Standard Sampler	9%	7.1%
Silty Sand with Gravel, Cobbles & Boulders	SM	42-59'	Non Standard Sampler	15-16%	
Gravel with Silt & Sand	GP-GM	59-67.8' (BOH)	Non Standard Sampler		

Generalized Subsurface Profile (TH12-12)

SELECTED REFERENCES

Alaska Department of Transportation and Public Facilities; *Alaska Geotechnical Procedures Manual*, Oct 2007.

Alaska Earthquake Information Center (AEIC), (web site: www.aeic.alaska.edu), Geophysical Institute, University of Alaska Fairbanks.

Bemis, S.P & Federschmidt, S., *Parks Highway MP 237 Riley Creek Bridge Replacement: Investigation Targetting the Active Fault Characteristics of the Hines Creek Fault*, Department of Earth Sciences, University of Kentucky, May 2013.

NOAA National Weather Service, Alaska - Pacific River Forecast Center, web site: <u>http://aprfc.arh.noaa.gov/</u>.

Ritter, D.F., "*Complex River Terrace Development in the Nenana Valley Near Healy, Alaska*", Geological Society of American Bulletin, Volume 93 No. 4, April 1982.

U.S. Geological Survey, National Seismic Earthquake Hazards program, Interactive Deaggregations, 1996. Web site http://eqint.cr.usgs.gov/deaggint/1996/index.php.

U.S. Geological Survey, *The Geology of North America Volume G-1: The Geology of Alaska*, 1994.

Wahrhaftig, C., "Quaternary Geology of the Nenana River Valley and Adjacent Parts of the Alaska Range", Geological Survey Professional Paper No. 293, 1958.

Wahrhaftig, C. & Black, R., "Engineering Geology Along Part of the Alaska Railroad", Geological Survey Professional Paper No. 293, 1958.

Western Region Climate Center, Reno, NV 89512-1095, website: http://www.wrcc.dri.edu

Zonge International, Inc., "Geophysical Fault Mapping – Riley Creek Bridge Replacement Project – Parks Highway MP 237, Denali, Alaska", February, 2013.

ASTM References

D1586 - Test Method for Penetration Test and Split-Barrel Sampling of Soils

D1587 - Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes

D2487 - Practice for Classification of Soils for Engineering Purposes

D2488 - Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)

D-3550 – Standard Practice for Thick Wall, Ring-Lined, Split Barrel, Drive Sampling of Soils

D3740 - Practice for Minimum Requirements for Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction

TEST HOLE & PENETROMETER LOCATION

PARKS HIGHWAY

9	26' RT	
4	5' RT	
E		
_		BRIDGE NO.

$\int \int $				}
TEST	HOLE A		IETROMETE	R
TEST HOLE / PENETROMETER	STATION	OFFSET	REMARKS	
TH12-01	2856+96	7' RT		
P12-02	2857+45	8' LT		
TH12-03	2857+45	22' RT		
TH14-01	2858+83	2' RT		
TH12-06	2858+84	6' LT		
P12-07	2858+84	20' RT		
P12-08	2859+12	8' LT		
TH12-09	2859+12	23' RT		
TH14-02	2859+35	17' RT		
TH12-11	2859+94	26' RT		
P12-10	2859+95	16' LT		
P12-13	2859+96	8' RT		
TH14-03	2859+99	26' RT		
TH12-12	2860+44	5' RT		

1590 2861+00 862+00 ➡ TH12-12

PARKS HIGHWAY

	🔶 n	EST HOLE	
	\oplus P	PENE TROME TER	
0	• c	ONE PENETROMETER	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim$
		s	
	J.	/	
	ALCONT.		
-1500	10 0 20 BHHHHH Feet	40	
1390			$\sim$

PROJECT DESIGNATION

IM-BROA4-4(19) / 63763

LEGEND

STATE

ALASKA

SHEET TOTAL NO. SHEETS

N24

N15

YEAR

2014

## **APPENDIX A**

### **EXPLANATIONS AND TERMINOLOGY**

#### Laboratory Classification

of Soils for Engineering Purposes **Unified Soil Classification System** ASTM D2487



Figure 2: Flow Chart for Classifying Organic Fine-Grained Soil (50% or More Passes No. 200 Sieve)

	- GW	- <15% sand	Well graded gravel
		>15% sand	Well-graded gravel
	- GP	<15% sand	- Poorly graded gravel
		>15% sand	- Poorly graded gravel with sand
		<u>-15% aand</u>	
н —	GW-GW	<15% sand	- weil-graded gravel with slit
		> <u>&gt;</u> 15% sand	- Well-graded gravel with slit and sand
ML)			<ul> <li>vveil-graded gravel with clay (or slity clay)</li> </ul>
(m_)		> <u>&gt;</u> 15% sand	<ul> <li>Well-graded gravel with clay and sand (or silty clay and sand)</li> </ul>
н ——	- GP-GM	<15% sand	<ul> <li>Poorly-graded gravel with silt</li> </ul>
		<u>&gt;</u> 15% sand ——-	<ul> <li>Poorly graded gravel with silt and sand</li> </ul>
	- GP-GC	<15% sand	<ul> <li>Poorly graded gravel with clay (or silty clay)</li> </ul>
ML)		<u>&gt;</u> 15% sand ——-	<ul> <li>Poorly graded gravel with clay and sand</li> </ul>
н ——	- GM	<15% sand	<ul> <li>Silty gravel (or silty clay and sand)</li> </ul>
		>15% sand	<ul> <li>Silty gravel with sand</li> </ul>
н —	- GC \prec	<15% sand	<ul> <li>Clayey gravel</li> </ul>
		<u>≥</u> 15% sand	<ul> <li>Clayey gravel with sand</li> </ul>
	🗕 GC-GM	<15% sand	<ul> <li>Silty, clayey gravel</li> </ul>
		>15% sand	<ul> <li>Silty, clayey gravel with sand</li> </ul>
	- SW	<15% gravel	<ul> <li>Well-graded sand</li> </ul>
		>15% gravel ————————————————————————————————————	<ul> <li>Well-graded sand with gravel</li> </ul>
	SP	<15% gravel	<ul> <li>Poorly graded sand</li> </ul>
		<u>&gt;15% gravel</u>	<ul> <li>Poorly graded sand with gravel</li> </ul>
н —	- SW-SM	<15% gravel	<ul> <li>Well-graded sand with silt</li> </ul>
		>15% gravel	<ul> <li>Well-graded sand with silt and gravel</li> </ul>
	– SW-SC	<15% gravel	<ul> <li>Well-graded sand with clay (or silty clay)</li> </ul>
ML)		<u>&gt;</u> 15% gravel —	<ul> <li>Well-graded sand with clay and gravel</li> </ul>
ч	SP-SM	<15% gravel	(or silty clay and gravel)
		>15% gravel	- Poorly graded sand with silt and gravel
	- SP-SC		- Poorly graded sand with clay (or silty clay)
ML)	0, 00	>15% gravel	- Poorly graded sand with clay (of sity clay)
			(or silty clay and gravel)
н —	- SM —	<15% gravel	- Silty sand
		>15% gravel	<ul> <li>Silty sand with gravel</li> </ul>
н —	► SC —	<15% gravel	<ul> <li>Clayey sand</li> </ul>
		>15% gravel	<ul> <li>Clayey sand with gravel</li> </ul>
	- SC-SM	<15% gravel	<ul> <li>Silty, clayey sand</li> </ul>
		>15% gravel	<ul> <li>Silty, clayey sand with gravel</li> </ul>

Figure 4: Plasticity Chart



### Peat and Organic Soil Classification System

**INCREASING ORGANIC CONTENT** 

ES.	10N a	PUBLIC	2								LOG OF TEST HOLE HOLE # LEG			.E # LEGEND
					STA State Geo									
tatio ffse leva	on / et: O	Loc Offse	atio et Lo leva	on: oca atio	(Sta tior n	tation, Lat./Long.) n if applicable				Equipment Type: Hole Type: Field Crew: <i>Driller, Helper</i>		e: ler, Helper	Total Depth: <i>19.</i> Date: <i>3/12/2009</i> Geologist:	0 ft -
		S	am	ple	Da	ita				Gro	ound Water E	Data	Weather: This section is for weather r	notes
- [	g	Ę				/pe		ion	ici ici	Depth in (ft.)	15.8			
-	etho	Sour	e	r	ery	e Ty	le	ficat	raph	Time	10:00		_	
	Σ	≷	Valu	gu	S	hdm	du	SCS assit	i G	Symbol	<u> </u>		_	
	٦	ĕ	z	z	æ	Sa	Sa		s s		1		SUBSURFACE MATERIAL	
1										SOIL GRAF	PHIC AND S	OIL TYPE	EXPLANATION All graphics are generic	
1								GP	00		entations of s	soil type ar	d do not match soils as seen in-situ.	/
1								GW		GRAVEL(G	3W)			/
1								SP		SAND (SP)	,			
1								sw		SAND (SW)	)			
1								ML	1	SILT (ML)				
1								мн		SILT (MH)				
1								CL		CLAY (CL)				
1								СН		CLAY (CH)				
1								PT		ORGANICS	OR PEAT(F	PT)		
										Cobbles or	Boulder Lo	cation wi	h approximate strata contact	
1										ICE or Froz	zen Soil Inter	val		
				ber				-	$\mathbf{\mathbf{X}}$	TRANSITIO	NAL SOIL C	CHANGE		
1				Num					$\langle \dot{\langle} \dot{\langle} \dot{\rangle} \rangle$	WEATHERI	ED BEDROO	<b>CK</b> (Strengtl	n Grade, Weathering Grade)	
1				mple						BEDROCK	(Strength Gr	ade, Weat	hering Grade)	
1				= Sai				-		SAMPLE D	ATA EXPLA	NATION		
-		1 2 3	5	(09-3533)		SPT SS MC	X			Standard Pe Split Spoon Split Spoon	enetration Te า Sample 2.0 า Sample 2.5	est Split Sp " ID x 2.5" " ID x 3" O	oon Sample 1.4" ID x 2" OD with 140 lb. I OD with 340 lb. Hammer D with 340 lb. Hammer	Hammer
		4		ľ		GRAB				Grab Samp	ble	s	PT = BLOWCOUNT / ft. (TOTAL BLOWS FOR SECON	ID & THIRD 6"
) - (   	-					AUGER EB		7		Auger Cutti Excavator B	ings Grab Sa Bucket Grab	ample	CREMENT) WITH STANDARD PENETRATION TEST OD USING A CME AUTOHAMMER WITH 140 Ib. HAI REEFALL LATEST EDITION AASHTO T 206 (ASTM D	SAMPLER w/ 1.4" ID, MMER AND A 30" 1586).
1	F			ł		CORE				Rock Core		S	S = BLOW COUNT w/ 2" ID, 2.5" OD SAMPLER DRIVE JTOHAMMER w/ A 30" FREEFALL.	EN BY A 340 lb. CME
	F	_		Ī		ST				Shelby Tub	be thin wall 3	" OD	C = BLOW COUNT w/ 2.5" ID, 3" OD SAMPLER DRIV	EN BY A 340 lb. CME
						MS				Modified Sh	helby Tube (	size)		
						NR	$\bigcirc$	)		No Recove	ery	R	EFUSAL DEFINED AS 50 OR MORE BLOWS PER 6"	INCREMENT, 100
						SNT				Sample No	ot Tested or F	Retained B	.ows.	
						FLD WT	W			Field Weigh	hted Sample	A	N "X" IN THE N-VALUE COLUMN INDICATES NO VAL	LID SPT.
						UNDIST				Undisturbe	d Sample			
-	-			-		VANE	$\square$			Vane Shea Torque	r Test: Vane e=X ftlbs.,	Diameter Vane Shea	=X", Vane Height = X", Vane Shear Undis ir Remolded Torque=X ftlbs.	sturbed
Ţ										Observed C	Groundwater			
; -										SAMPLE T	EST RESUL	TS EXPLA	NATION	
1										Boulders = 3 Cobbles = 3	> 12" 3" to 12"		Plasticity Index (PI) = % or Nonplastic	(NP)
1										Gravel = #4	to 3"		Degradation = Dimensionless Number	
1										Sand = #20	0 to #4 200) = <#200	)	LA Abrasion = % Loss Sodium Sulfate (Cse or Fine) = % Loss	3
3 –										Clay = <0.0	075 Size	ot - 0/	Max. Dry Density = Pounds Per Cubic	Foot
1										Organic Cor	ntent = %	n – %	Optimum Moisture = %	
"									BOH	Notes:				
									1.5	This section	n is for drilling	g notes and	additional equipment descriptions	

### **APPENDIX B**

### **TEST HOLE AND PENETROMETER LOGS**









D USCS PEN LOG BRIDGE 695 RILEY CREEK.GPJ 2006DATATEMPLATE.GDT 7/5/12

#### STATE OF ALASKA DOT&PF

Statewide Geotechnical Services Foundation Geology

Station / Location: 2856+96 Offset: 7' Rt Elevation: 1588.0 feet

Equipment Type: CME 850 Drilling Method: Casing Size NW Field Crew: R. Wagster & B. Platt

PENETROMETER LOG

PROJECT NUMBER 63763

Total Depth: 103.0 feet Date: 6/24/2012 - 6/25/2012 Geologist: B. Benko & S. Evans


































	atATION & PU	BLICA							L	OG OF 1	EST HO	DLE	HOLE # TH14-01		
TRANSCE			<b>ST/</b> Stat	<b>ATE</b> tewid	<b>E O</b> F de M	<b>F ALA</b> ⁄lateria	<b>ASKA D</b> als	OT&PI	F PF PF	ROJECT NUI ROJECT : Pa	<b>MBER</b> :6376 rks Highway	3 93 9 MP 237.5 - Ri	ley Creek Bridge (#695)		
Sta	ation / L	ocatio Rt	Gec n: 28	ology 58+	/ Sei ·83	ction			Eq Dri Fie	uipment_Typ illing Method eld Crew: <i>R.</i>	oe: CME 850 : 6.25" ID Au Wagster & J	) Iger . Young	Total Depth: <i>39.8 feet</i> Date: <i>4/24/2014 - 4/24/2014</i> Geologist: <i>S. Evans</i>		
		Sam	ple D	ata					Gr	ound Water	Data	Weather: Si			
t	e						5	ຍ່ວ	Depth in (ft.)	0					
Fee	Typ	L	ount		Z	a)	catio	aphi	Time			Sparse shru	ıbs along river bank (flood plain)		
oth (	nple	nbe	Ú ≥	nple	SOVE	/alue	CS ssifi		Date	<b>T</b>		_			
Del	Sar	NUI	Blo	Sar	Re	ź	Cla	Soi	Gymbol	SUBSURFACE MATERIAL					
35	SPT	NS	7	$\bigtriangledown$		18			SILTY C	LAY(CL-M	L) FS-95 Sa	ample not tested	d (cont.)		
TY CREEK.GPJ 2006DATATEMPLATE.GDT 7/18/14		FS-96 N				18		BOH 39.8	FS-96 S	lee Riley Crea	ek In-Situ Sa ff ²	mple Test Rep	ort for lab results 39.0 39.8		
	- - - - - - - - - -	o Hamm	ner [	] Ci	athea	ad Rope	e Method		10 lb. hammer w	vith 30 in. drop	340 lb. har	nmer with 30 in. dro	P Sheet Number 2 of		







TATION & PUBLIC
STATE OF ALLSED

#### STATE OF ALASKA DOT&PF

Statewide Materials

Geology Section

#### LOG OF TEST HOLE

#### HOLE # TH14-03

PROJECT NUMBER :63763

PROJECT : Parks Highway MP 237.5 - Riley Creek Bridge (#695)

set: 20	26' Rt	t								Drill Fiel	ling Metho d Crew: F	od: 6.25" ID R. Wagster &	Auger & J. Young	Date: 4/22/2014 - 4/22/2014 Geologist: S. Evans
	Sa	ample	e Da	ta			_			Gro	ound Wate	er Data	Weather: Sun	iny
/pe	he		Ę				ion	ne	ic	Depth in (ft.)	15			
e T	-   1		no		Σ Δ	e	licat	Z	aph	Time				
du		Ĕ	≥	đ	3	/alu	CS Issif	zer	Ō	Symbol	T			
Sai			8	Sal	Ď	ź	US Cla	2	Soi	Cymbol				MATERIAL
											10-15%) r	resent in co	nstructed embankm	hent
											10-15%) Ţ	present in co	nstructed embankm	ent.



#### STATE OF ALASKA DOT&PF

Statewide Geotechnical Services Foundation Geology

Station / Location: 2857+45 Offset: 8' Lt Equipment Type: *Penetrometer* Drilling Method: 2.5" Closed Penetrometer

PROJECT NUMBER 63763

PENETROMETER LOG

PROJECT: Parks Highway MP 237.5 - Riley Creek Bridge (#695)

Total Depth: 60.0 feet eter Date: 6/21/2012 - 6/21/2012 Geologist: S. Evans



# D USCS PEN LOG BRIDGE 695 RILEY CREEK.GPJ 2006DATATEMPLATE.GDT 6/23/14

Sheet Number 1 of 1

#### HOLE # P12-02



#### I LIN

STATE OF ALASKA DOT&PF Statewide Geotechnical Services

Foundation Geology

Station / Location: 2858+84 Offset: 20' Rt Elevation: 1570.0 feet PENETROMETER LOG

PROJECT NUMBER 63763

PROJECT: Parks Highway MP 237.5 - Riley Creek Bridge (#695)

Equipment Type: *CME 850* Drilling Method: 2.5" *Closed Penetrometer* Field Crew: *R. Wagster & B. Platt* 

Total Depth: 72.0 feet Date: 6/13/2012 - 6/13/2012 Geologist: S. Evans



# HOLE # P12-07



### STATE OF ALASKA DOT&PF F

Statewide Geotechnical Services Foundation Geology

Station / Location: 2859+12 Offset: 8' *Lt* Elevation: 1572.0 feet PENETROMETER LOG PROJECT NUMBER 63763

PROJECT: Parks Highway MP 237.5 - Riley Creek Bridge (#695)

Equipment Type: *CME* 850 Drilling Method: 2.5" *Closed Penetrometer* Field Crew: *R. Wagster & B. Platt* 

Total Depth: 78.0 feet Date: 6/9/2012 - 6/9/2012 Geologist: S. Evans



#### HOLE # P12-08



D USCS PEN LOG BRIDGE 695 RILEY CREEK.GPJ 2006DATATEMPLATE.GDT 6/23/14

**STATE OF ALASKA DOT&PF** Statewide Geotechnical Services

Foundation Geology

Station / Location: 2859+95 Offset: 16' Lt

Offset: 16' Lt Elevation: 1591.0 feet

#### PENETROMETER LOG

#### PROJECT NUMBER 63763

PROJECT: Parks Highway MP 237.5 - Riley Creek Bridge (#695)

Equipment Type: *CME 850* Drilling Method: 2.5" *Closed Penetrometer* Field Crew: *R. Wagster & B. Platt* 

Total Depth: *45.0 feet* Date: *6/18/2012 - 6/18/2012* Geologist: *S. Evans* 





## PENETROMETER LOG

STATE OF ALASKA DOT&PF PR

Statewide Geotechnical Services Foundation Geology

Station / Location: 2859+96 Offset: 8' *Rt* Elevation: 1587.0 feet PROJECT NUMBER 63763 PROJECT: Parks Highway MP 237.5 - Riley Creek Bridge (#695)

Equipment Type: *CME* 850 Drilling Method: 2.5" *Closed Penetrometer* Field Crew: *R. Wagster & B. Platt* 

Total Depth: 53.0 feet Date: 6/18/2012 - 6/18/2012 Geologist: S. Evans



# **APPENDIX C**

# PRECONSTRUCTION SAMPLE SUMMARY FORMS

Project No.

Station							
Offset (feet) Depth (feet)							
Depth (feet)		8 0-9 5'	28 25-29 0'	33 0-34 5'	38 5-38 75'	43 0-44 5'	48-50'
Test Site ID		TH12-01	TH12-01	TH12-01	TH12-01	TH12-01	TH12-01
Field No.		FS-71	FS-73	FS-74	FS-75	FS-76	FS-77
Submitted Bv		S. Evans	S. Evans	S. Evans	S. Evans	S. Evans	S. Evans
Date Sample	d	6/24/2012	6/24/2012	6/24/2012	6/24/2012	6/25/2012	6/25/2012
Lab No.		2012A-1828	2012A-1829	2012A-1830	2012A-1831	2012A-1832	2012A-1833
3"							
	2"						
	1"	70					
3/4"		67					
Percent	1/2"	58					
Passing	3/8"	55					100
J	#4	46	100				100
Sieve	#10	37	100	100	100	100	100
0.	#40	22	95	97	89	99	90
Size #80							
	#200	10	26.2	33.3	20.6	65.1	45.7
	.02mm						
	.002mm						
FSV Class							
AASHTO / DO	OTTSD	/	A-2-4(0) /	/	/	A-4(0) /	/
Unified Class			SM			ML	
USCSD Class	S		Silty sand			Sandy silt	
Atterburg LL/	PL/PI	/ /	NV / NV / NP	11	11	NV / NV / NP	//
Sample Prep			Dry			Dry	
Nat Moist / O	rganic	/	21.5 /	/	20.6 /	22.6 /	22.5 /
% Grvl / Snd	/ Fines	54 / 36 / 10	0 / 74 / 26	0 / 67 / 33	0 / 79 / 21	0 / 35 / 65	0 / 54 / 46
Opt Mois/Max	k Dry Den	/	/	/	/	/	/
SpG Bulk Co	arse/Fine	/	/	/	/	/	/
SpG SSD Co	parse/Fine	/	/	/	/	/	/
SpG App Co	arse/Fine	/	/	/	/	/	/
Absorption Coarse/Fine /		/	/	/	/	/	/
Degradation V	Degradation Value						
LA / LA Low /	Nordic	//	/ /	/ /	//	//	/ /
Sulfate Sound	dness C/F	/	/	/	/	/	/
Comment:							

Project No.

Station							
Offset (feet)							
Depth (feet)		58-60'	65-67'	76-78'	90.0-90.25'	3.0-8.5'	23-29'
Test Site ID		TH12-01	TH12-01	TH12-01	TH12-01	TH12-03	TH12-03
Field No.		FS-78	FS-79	FS-80	FS-81	FS-62, 63	FS-64, 65
Submitted By		S. Evans	S. Evans	S. Evans	S. Evans	S. Evans	S. Evans
Date Sample	d	6/25/2012	6/25/2012	6/25/2012	6/25/2012	6/21/2012	6/21/2012
Lab No.		2012A-1834	2012A-1835	2012A-1836	2012A-1837	2012A-1821	2012A-1822
	3"						
	2"						
	1"		82	100		98	87
Porcont	3/4"		76	98		86	76
reicent	1/2"		69	97		78	66
Passing	3/8"		62	96		73	61
J	#4		49	96		62	50
Sieve	#10	100	37	95		47	40
Cine	#40		23	72		29	28
Size	#80						
	#200	94.6	8.4	13.4		15.3	16.8
	.02mm						
	.002mm						
FSV Class							
AASHTO / DO	OTTSD	A-4(2) /	/	/	/	/	/
Unified Class		CL-ML					
USCSD Class	S	Silty clay					
Atterburg LL/	PL/PI	24 / 20 / 4	//	//	34 / 19 / 15	/ /	//
Sample Prep		Dry			Dry		
Nat Moist / O	rganic	22.9 /	/	18.7 /	27.7 /	/	/
% Grvl / Snd	/ Fines	0 / 5 / 95	51 / 41 / 8	4 / 83 / 13	/ /	38 / 47 / 15	50 / 33 / 17
Opt Mois/Max	k Dry Den	/	/	/	/	/	/
SpG Bulk Co	arse/Fine	/	/	/	/	/	/
SpG SSD Co	barse/Fine	/	/	/	/	/	/
SpG App Co	SpG App Coarse/Fine		/	/	/	/	/
Absorption Coarse/Fine		/	/	/	/	/	/
Degradation V	Value						
LA / LA Low / Nordic		/ /	/ /	/ /	/ /	/ /	/ /
Sulfate Sound	dness C/F	/	/	/	/	/	/
Comment:							

Project No.

Station							
Offset (feet) Depth (feet)							
Depth (feet)		33-35'	38.5-39.5'	42-44'	48.0-49.5'	58.0-58.5'	8.0-9.25'
Test Site ID		TH12-03	TH12-03	TH12-03	TH12-03	TH12-03	TH12-06
Field No.		FS-66	FS-67	FS-68	FS-69	FS-70	FS-1
Submitted By		S. Evans	S. Evans	S. Evans	S. Evans	S. Evans	S. Evans
Date Sample	d	6/22/2012	6/22/2012	6/22/2012	6/22/2012	6/22/2012	6/10/2012
Lab No.		2012A-1823	2012A-1824	2012A-1825	2012A-1826	2012A-1827	2012A-1762
	3"						
	2"						
	1"						
Percent	3/4"						
reicent	1/2"						
Passing	3/8"						
-	#4					100	
Sieve	#10	100	100	100		100	
#40		94	89	100		98	
5ize #80							
	#200	21.1	24.2	91.5		93	
	.02mm						
	.002mm						
FSV Class							
AASHTO / DO	OTTSD	/	A-2-4(0) /	A-4(4) /	/	A-6(10) /	/
Unified Class			SM	CL-ML		CL	
USCSD Class	S		Silty sand	Silty clay		Lean clay	
Atterburg LL/	PL/PI	/ /	NV / NV / NP	24 / 18 / 6	NV / NV / NP	30 / 18 / 12	/ /
Sample Prep			Dry	Dry	Dry	Dry	
Nat Moist / O	rganic	18.9 /	19.3 /	23.9 /	21.1 /	22.3 /	21.9 /
% Grvl / Snd	/ Fines	0 / 79 / 21	0 / 76 / 24	0 / 8 / 92	/ /	0 / 7 / 93	/ /
Opt Mois/Max	k Dry Den	/	/	/	/	/	/
SpG Bulk Co	arse/Fine	/	/	/	/	/	/
SpG SSD Co	parse/Fine	/	/	/	/	/	/
SpG App Coarse/Fine /		/	/	/	/	/	/
Absorption C	Absorption Coarse/Fine /		/	/	/	/	/
Degradation Value							
LA / LA Low / Nordic /		//	/ /	//	/ /	/ /	/ /
Sulfate Sound	dness C/F	/	/	/	/	/	/
Comment:							

Project No. 63763 Project Name Parks MP 237.5 Riley Cr. Bridge Replacement

Station         Image: statio								
Offset (feet)         13.0-14.5'         18-20'         13.20'         23.25'         28-30'         33.35'           Test Site I         TH12-06         C10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         2012A-1763         2012A-1763         2012A-1763         2012A-1763         2012A-1763         2012A-1766         2012A-1767         2012A-1763         2012A-17	Station							
Depth (feet)         13.0-14.5"         13-20'         13-20'         23-25'         28.30'         33-35'           Test Site ID         TH12-06         TH12-01         TH12-01         TH12-06	Offset (feet) Depth (feet)							
Test Sile ID         TH12-06	Depth (feet)		13.0-14.5'	18-20'	13-20'	23-25'	28-30'	33-35'
Field No.         FS-2         FS-3         FS-2, 3         FS-4         FS-6         FS-6           Submitted By- Date Sample/         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012	Test Site ID		TH12-06	TH12-06	TH12-06	TH12-06	TH12-06	TH12-06
Submitted By         S. Evans         G/10/2012         G/10/201         G/10/201         G/10/201         G/10/201         G/10/201         G/10/201         G/10/201 <thg 10="" 201<="" th="">         G/10/201         G/10</thg>	Field No.		FS-2	FS-3	FS-2, 3	FS-4	FS-5	FS-6
Date Sample/ Lab No.         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         6/10/2012         2012A-1763         2012A-1763<	Submitted By		S. Evans	S. Evans	S. Evans	S. Evans	S. Evans	S. Evans
Lab No.         2012A-1763         2012A-1764         2012A-1765         2012A-1766         2012A-1767         2012A-1768           3"         2"	Date Sample	d	6/10/2012	6/10/2012	6/10/2012	6/10/2012	6/10/2012	6/10/2012
3°         2°         10         100         100         100         100           Percent         3/4"         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	Lab No.		2012A-1763	2012A-1764	2012A-1765	2012A-1766	2012A-1767	2012A-1768
2"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"         1"<		3"						
Instruct		2"						
Percent         3/4"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"         1/2"		1"						
1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"       1/2"	Percent	3/4"						
Passing Sieve         3/8" #4	Fercent	1/2"						
#4	Passing	3/8"						
Sieve Size         #10 #40 #80 #200 .02mm .002mm         Image of the second second .02mm         Image of the second .02mm	U U	#4						
Size         #40 #80 #200                                                   FSV Class                 AASHTO / DOTTSD         //         /         A.7-6(24) /         /             Unified Class                 USCSD Class                 Sample Prep                 VG Grv1 / Snd / Fines                 VG for V Snd Fines	Sieve	#10						
SiZe         #80 #200	o.	#40			100			
#200         .02mm         .02mm	Size	Size #80						
.02mm         .02mm         .02mm         .02mm		#200			98.5			
.002mm         Image: constraint of the second		.02mm						
FSV Class       /       /       A-7-6(24) /       /       /       /       /         AASHTO / DOTTSD       /       /       A-7-6(24) /       /       /       /       /         Unified Class       CL       CL       CL       ////////////////////////////////////		.002mm						
AASHTO / DOTTSD       /       /       A-7-6(24) /       /       /       /         Unified Class       CL       CL <td>FSV Class</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	FSV Class							
Unified Class         Image: Marcine Sector Sec	AASHTO / DO	OTTSD	/	/	A-7-6(24) /	/	/	1
USCSD Class         Image: Constraint of the symbol of	Unified Class				CL			
Atterburg LL/PL/PI       //       //       45/23/22       //       //       //       //         Sample Prep       0       0ry       0ry       0       0       0       0         Nat Moist / Organic       32.7/       29.9/       /       25.8/       22.2/       25.3/         % Grvl / Snd / Fines       //       //       0/1/99       //       //       //         Opt Mois/Max Dry Den       /       //       1/1       1/1       1/1       1/1         SpG Bulk Coarse/Fine       /       //       1/1       1/1       1/1       1/1         SpG SSD Coarse/Fine       /       //       1/1       1/1       1/1       1/1       1/1         SpG App Coarse/Fine       /       //       1/1       1/1       1/1       1/1       1/1         Absorption Coarse/Fine       /       //       1/1       1/1       1/1       1/1       1/1         LA / LA Low / Nordic       //       //       1/1       1/1       1/1       1/1       1/1         Sulfate Soundness C/F       //       //       1/1       1/1       1/1       1/1       1/1	USCSD Class	S			Lean clay			
Sample Prep         Image: Matrix Moist / Organic         32.7 /         29.9 /         /         25.8 /         22.2 /         25.3 /           % Grvl / Snd / Fines         / /         / /         0 / 1 / 99         / /         / /         / /         / /           % Grvl / Snd / Fines         / /         / /         0 / 1 / 99         / /         / /         / /         / /           Opt Mois/Max Dry Den         /         /         / /         / /         / /         / /         / /           SpG Bulk Coarse/Fine         /         /         / /         / /         / /         / /         / /         / /           SpG SSD Coarse/Fine         /         /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / / /         / / /         / / /         / / /         / /         /	Atterburg LL/I	PL/PI	//	/ /	45 / 23 / 22	11	/ /	//
Nat Moist / Organic         32.7 /         29.9 /         /         25.8 /         22.2 /         25.3 /           % Grvl / Snd / Fines         / /         / /         0 / 1 / 99         / /         / /         / /         / /           Opt Mois/Max Dry Den         /         /         /         /         / /         / /         / /         / /           SpG Bulk Coarse/Fine         /         /         /         /         / /         / /         /         /           SpG SSD Coarse/Fine         /         /         /         /         /         /         /         /           SpG App Coarse/Fine         /         /         /         /         /         /         /         /           Absorption Coarse/Fine         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /	Sample Prep				Dry			
% Grvl / Snd / Fines       //       //       0/1/99       //       //       //       //         Opt Mois/Max Dry Den       /       /       /       /       /       /       /       //         SpG Bulk Coarse/Fine       /       /       /       //       //       //       //       //       //         SpG SSD Coarse/Fine       /       //       //       //       //       //       //       //       //         SpG App Coarse/Fine       /       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       //       ///       ///       //       //       //       //       //       //       ////       ///       ///       ///       ///       ///       ///       ////       ////       ////// <td>Nat Moist / O</td> <td>rganic</td> <td>32.7 /</td> <td>29.9 /</td> <td>/</td> <td>25.8 /</td> <td>22.2 /</td> <td>25.3 /</td>	Nat Moist / O	rganic	32.7 /	29.9 /	/	25.8 /	22.2 /	25.3 /
Opt Mois/Max Dry Den         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /	% Grvl / Snd	/ Fines	/ /	/ /	0 / 1 / 99	11	/ /	11
SpG Bulk Coarse/Fine         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /	Opt Mois/Max	k Dry Den	/	1	/	/	/	/
SpG SSD Coarse/Fine         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /	SpG Bulk Co	arse/Fine	/	/	/	/	/	/
SpG App Coarse/Fine         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /         /	SpG SSD Co	barse/Fine	/	1	/	/	/	/
Absorption Coarse/Fine       /       /       /       /       /       /       /         Degradation Value       /       /       /       /       /       /       /       /         LA / LA Low / Nordic       //       //       //       //       //       //       //       //         Sulfate Soundness C/F       /       /       /       /       //       //       //	SpG App Co	arse/Fine	/	/	/	/	/	/
Degradation Value         //         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///         ///	Absorption Co	Absorption Coarse/Fine		/	/	/	/	/
LA / LA Low / Nordic         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / /         / / /         / / /         / / /         / / /         / / /         / / /         / / /         / / / / /         / / / / / /         / / / / / / / / / / / / / / / / / / /	Degradation Value							
Sulfate Soundness C/F / / / / / / /	LA / LA Low /	LA / LA Low / Nordic		/ /	/ /	//	/ /	//
	Sulfate Sound	dness C/F	/	/	/	/	/	/
Comment:	Comment:							

Project No. 63763 Project Name Parks MP 237.5 Riley Cr. Bridge Replacement

Station Offset (feet) Depth (feet) 28-35' 38-40' 43-45' 48.0-49.5' 58-60' 68-70' Test Site ID TH12-06 TH12-06 TH12-06 TH12-06 TH12-06 TH12-06 Field No. FS-5, 6 FS-7 FS-8 FS-9 FS-10 FS-11 Submitted By S. Evans S. Evans S. Evans S. Evans S. Evans S. Evans 6/10/2012 6/10/2012 6/10/2012 6/10/2012 **Date Sampled** 6/10/2012 6/10/2012 Lab No. 2012A-1769 2012A-1770 2012A-1771 2012A-1772 2012A-1773 2012A-1774 3" 2" 1" 3/4" Percent 1/2" 3/8" 100 Passing #4 100 Sieve #10 100 99 100 100 100 99 100 #40 Size #80 75.7 97.9 #200 74.2 84.6 .02mm .002mm **FSV Class** AASHTO / DOTTSD A-4(0) / / 1 / A-4(0) / A-6(10) / **Unified Class** ML ML CL USCSD Class Silt with sand Silt with sand Lean clay Atterburg LL/PL/PI NV / NV / NP 11 NV / NV / NP 25 / 22 / 3 11 30/19/11 Sample Prep Dry Dry Dry Dry Nat Moist / Organic 24.1 / 25.4/ 21.6/ 20.6/ 22.3/ 1 % Grvl / Snd / Fines 0/24/76 0/26/74 0 / 15 / 85 0/2/98 11 11 Opt Mois/Max Dry Den 1 1 1 1 1 1 SpG Bulk Coarse/Fine / / / 1 / / SpG SSD Coarse/Fine 1 1 1 1 1 1 SpG App Coarse/Fine / / / / / / Absorption Coarse/Fine 1 1 1 Degradation Value 11 11 11 11 11 LA / LA Low / Nordic 11 Sulfate Soundness C/F / / / 1 / / Comment:

Project No. 63763 Project Name Parks MP 237.5 Riley Cr. Bridge Replacement

Station							
Offset (feet) Depth (feet)							
Depth (feet)		78-80'	88-90'	98-100'	108-110'	98-110'	118-120'
Test Site ID		TH12-06	TH12-06	TH12-06	TH12-06	TH12-06	TH12-06
Field No.		FS-12	FS-13	FS-14	FS-15	FS-14, 15	FS-16
Submitted By	,	S. Evans	S. Evans	S. Evans	S. Evans	S. Evans	S. Evans
Date Sample	d	6/11/2012	6/11/2012	6/11/2012	6/11/2012	6/11/2012	6/11/2012
Lab No.		2012A-1775	2012A-1776	2012A-1777	2012A-1778	2012A-1779	2012A-1780
3"							
	2"						
	1"						
Percent	3/4"						
Fercent	1/2"						
Passing	3/8"						
Ũ	#4						
Sieve	#10		100			100	
e.	#40		100			100	
Size #80							
	#200		75			96.4	
	.02mm						
	.002mm						
FSV Class							
AASHTO / DO	OTTSD	/	/	/	/	A-4(2) /	/
Unified Class	i					CL-ML	
USCSD Clas	s					Silty clay	
Atterburg LL/	PL/PI	11	11	11	11	24 / 20 / 4	21 / 18 / 3
Sample Prep						Dry	Dry
Nat Moist / O	rganic	23.4 /	23.5 /	29 /	24.2 /	/	22.3 /
% Grvl / Snd	/ Fines	/ /	0 / 25 / 75	11	11	0/4/96	11
Opt Mois/Max	x Dry Den	/	/	/	/	/	/
SpG Bulk Co	arse/Fine	/	/	/	/	/	/
SpG SSD Co	barse/Fine	1	/	/	/	/	/
SpG App Co	arse/Fine	1	/	/	/	/	/
Absorption Coarse/Fine		/	/	/	/	/	/
Degradation Value		-	-	-			-
LA / LA Low /	LA / LA Low / Nordic		/ /	/ /	11	//	//
Sulfate Sound	dness C/F	/	/	/	/	/	/
Comment:		-					-
		1					1

Project No.

Station							
Offset (feet)							
Depth (feet)		129 120'	129 140'	8 0 8 5'	19.20'	22.25'	28 20'
Test Site ID		TL12 06	TU12 06	0.0-0.3	TH12 00	Z3-Z3	Z0-30
Field No		ES 17		FS 10	FS 20	ES 21	FS 22
Submitted Dy			C Evono	C Evono	C Evono	S Evono	S Evono
Data Sampla	d	S. EVAIIS	5. EVANS	5. EVAIIS	S. EVAIIS	S. EVAIIS	5. EVAIIS
Date Sampled	u	0/12/2012	0/12/2012	0/14/2012	0/14/2012	0/14/2012	0/14/2012
Lab NO.	2"	2012A-1701	2012A-1762	2012A-1765	2012A-1764	2012A-1765	2012A-1760
	ວ ວ"						
	<u>ک</u>	01					
	1"						
Percent	3/4 1/2"	69 87					
	1/Z 2/0"	07		100			
Passing	۵/۵ # ۸	60		100			
Sieve	#4	80	400	100			
OIC VC	#10	73	100	99	100		
Size #40		46	100	99	100		
	#80 #200		22.4	04.0	00.0		
	#200	27.6	82.4	91.6	99.6		
	.02mm						
	.002mm						
FSV Class		1	1	1	A 0(14) (	1	,
AASHTO/DO	JI15D	/	/	/	A-6(11) /	/	/
Unified Class	_				CL .		
	S In /DI				Lean clay		
Atterburg LL/I	PL/PI	11	11	//	31/20/11	//	//
Sample Prep		,			Dry		
Nat Moist / O	rganic	/	17.2 /	23.5 /	27.4 /	24.7 /	24.9 /
% Grvi / Shd /	/ Fines	20 / 52 / 28	0 / 18 / 82	0/8/92	0/0/100	//	11
Opt Mols/Max	CDry Den	1	/	1	1	1	1
SpG Bulk Co	arse/Fine	/	/	/	/	/	/
SpG SSD Co	barse/Fine	/	/	/	/	/	/
SpG App Co	arse/Fine	/	/	/	/	/	/
Absorption Co	oarse/Fine	/	/	/	/	/	/
Degradation \	Degradation Value						
LA / LA Low /	Nordic	//	//	//	//	//	//
Sulfate Sound	dness C/F	/	/	/	/	/	/
Comment:							

Project No.

Station							
Offset (feet)							
Depth (feet)		33-35'	28-35'	38-40'	43-45'	48-50'	58-60'
Test Site ID		TH12-09	TH12-09	TH12-09	TH12-09	TH12-09	TH12-09
Field No.		FS-23	FS-22 23	FS-24	FS-25	FS-26	FS-27
Submitted By	,	S. Evans	S. Evans	S. Evans	S. Evans	S. Evans	S. Evans
Date Sample	d	6/15/2012	6/15/2012	6/15/2012	6/15/2012	6/15/2012	6/15/2012
Lab No.		2012A-1787	2012A-1788	2012A-1789	2012A-1790	2012A-1791	2012A-1792
	3"						
	2"						
	1"						
Percent	3/4"						
reicent	1/2"						
Passing	3/8"						
-	#4						
Sieve	#10						
Size	#40		100				
Size #80							
	#200		98.7				
	.02mm						
	.002mm						
FSV Class							
AASHTO / DO	OTTSD	/	A-4(6) /	/	/	/	/
Unified Class			CL-ML				
USCSD Class	S		Silty clay				
Atterburg LL/	PL/PI	/ /	27 / 20 / 7	11	11	33 / 19 / 14	/ /
Sample Prep			Dry			Dry	
Nat Moist / O	rganic	25 /	/	23.4 /	69.4 /	29.1 /	62.5 /
% Grvl / Snd	/ Fines	/ /	0 / 1 / 99	/ /	/ /	/ /	/ /
Opt Mois/Max	k Dry Den	/	/	/	/	/	/
SpG Bulk Co	oarse/Fine	/	/	/	/	/	/
SpG SSD Co	parse/Fine	/	/	/	/	/	/
SpG App Co	arse/Fine	/	/	/	/	/	/
Absorption C	Absorption Coarse/Fine		/	/	/	/	/
Degradation V	Degradation Value						
LA / LA Low /	Nordic	//	/ /	/ /	//	/ /	/ /
Sulfate Sound	dness C/F	/	/	/	/	/	/
Comment:							

Project No.

Ctation							
Station Offset (feet)							
Oliset (leet)		00 70	50 701	70.001	00.001	00.400	
Depth (leet)		68-70°	58-70	78-80°	88-90	98-100 [°]	108-110 [°]
		TH12-09	TH12-09	TH12-09	TH12-09	TH12-09	TH12-09
Field No.		FS-28	FS-27, 28	FS-29	FS-30	FS-31	FS-32
Submitted By		S. Evans	S. Evans				
Date Sample	d	6/15/2012	6/15/2012	6/15/2012	6/15/2012	6/15/2012	6/15/2012
Lab No.	<b>.</b>	2012A-1793	2012A-1794	2012A-1795	2012A-1796	2012A-1797	2012A-1798
	3"						
	2"						
1"							
Percent	3/4" 1/2"						
Passing	3/8"						
rassing	#A						
Sieve	#10		100	100			
#10			100	100			
Size #80			100	100			
	#80		90.8	96.1			
	#200 02mm		50.0	50.1			
	002mm						
FSV Class	.002						
AASHTO / DO	OTTSD	/	1	A-4(7) /	/	1	1
Unified Class		,	,	CL	,	,	•
USCSD Class	s			Lean clay			
Atterburg LL/	PL/PI	11	11	28/20/8	11	11	11
Sample Prep		• •		Dry			, ,
Nat Moist / O	rganic	20.8/	1	26 /	22.2/	22.1/	25.7 /
% Grvl / Snd	/ Fines	//	0/9/91	0/4/96		//	
Opt Mois/Max	k Dry Den	1	/	/	/	1	/
SpG Bulk Co	arse/Fine	/	1	/	1	/	/
SpG SSD Co	parse/Fine	1	/	/	1	/	/
SpG App Co	arse/Fine	/	1	/	1	/	/
Absorption C	Absorption Coarse/Fine		/	/	1	1	/
Degradation '	Degradation Value		-		-	-	-
LA / LA Low /	Nordic	//	/ /	11	/ /	//	//
Sulfate Sound	dness C/F	/	/	/	/	/	/
Comment:							
Comment:							

Project No.

Station							
Offset (feet) Depth (feet)							
Depth (feet)		98-110'	118-120'	128-130'	18-20'	22.0-24.25'	13-14'
Test Site ID		TH12-09	TH12-09	TH12-09	TH12-09B	TH12-09B	TH12-11
Field No.		FS-31, 32	FS-33	FS-34	ST-1	ST-2	FS-36
Submitted By		S. Evans	S. Evans	S. Evans	S. Evans	S. Evans	S. Evans
Date Sample	d	6/15/2012	6/15/2012	6/15/2012	6/15/2012	6/15/2012	6/16/2012
Lab No.		2012A-1799	2012A-1800	2012A-1801	2012A-1802	2012A-1803	2012A-1804
	3"						
2"							
1"							
Porcont	3/4"						
reicent	1/2"						
Passing	3/8"						
J	#4		100		100		
Sieve	#10	100	100	100	100	100	
Ci- c	#40	100	98	99	96	100	
Size #80							
	#200	91.9	52.4	94.4	72.9	93.8	
	.02mm						
	.002mm						
FSV Class							
AASHTO / DO	OTTSD	A-4(4) /	/	A-4(5) /	A-6(7) /	A-4(2) /	/
Unified Class		CL-ML		CL-ML	CL	CL-ML	
USCSD Class	S	Silty clay		Silty clay	Lean clay with sand	Silty clay	
Atterburg LL/	PL/PI	26 / 20 / 6	/ /	26 / 19 / 7	30 / 18 / 12	22 / 18 / 4	/ /
Sample Prep		Dry		Dry	Dry	Dry	
Nat Moist / O	rganic	/	/	24.4 /	19.7 /	23.7 /	21.6 /
% Grvl / Snd	/ Fines	0/8/92	0 / 48 / 52	0 / 6 / 94	0 / 27 / 73	0 / 6 / 94	/ /
Opt Mois/Max	k Dry Den	/	/	/	/	/	/
SpG Bulk Co	arse/Fine	/	/	/	/	/	/
SpG SSD Co	oarse/Fine	/	/	/	/	/	/
SpG App Coarse/Fine /		/	/	/	/	/	/
Absorption Coarse/Fine /		/	/	/	/	/	/
Degradation Value							
LA / LA Low /	Nordic	//	/ /	//	/ /	/ /	//
Sulfate Sound	dness C/F	/	/	/	/	/	/
Comment:							

Project No.

Station				1			
Offset (feet)							
Depth (feet)		22 0-23 5'	13 0-23 5'	27 0-28 5'	32-39'	42-49'	52-54'
Test Site ID		TH12-11	TH12-11	TH12-11	TH12-11	TH12-11	TH12-11
Field No.		FS-37	FS-36. 37	FS-38	FS-39, 40	FS-41, 42	FS-43
Submitted By		S. Evans	S. Evans	S. Evans	S. Evans	S. Evans	S. Evans
Date Sampled		6/16/2012	6/16/2012	6/16/2012	6/16/2012	6/16/2012	6/16/2012
Lab No.		2012A-1805	2012A-1806	2012A-1807	2012A-1808	2012A-1809	2012A-1810
	3"						
	2"						
	1"						
Demonst	3/4"						
Percent	1/2"						
Passing	3/8"						
, and an ig	#4		100				
Sieve	#10		100		100	100	100
	#40		100		100	100	100
Size	#80						
	#200		98.4		86.4	74.4	87.9
	.02mm						
	.002mm						
FSV Class							
AASHTO / DO	OTTSD	/	A-6(11) /	/	/	/	A-4(1) /
Unified Class			CL				CL-ML
USCSD Class	s		Lean clay				Silty clay
Atterburg LL/PL/PI		/ /	31 / 20 / 11	//	11	//	22 / 18 / 4
Sample Prep			Dry				Dry
Nat Moist / O	rganic	26.2 /	/	24.3 /	/	/	23.9 /
% Grvl / Snd	/ Fines	/ /	0 / 2 / 98	/ /	0 / 14 / 86	0 / 26 / 74	0 / 12 / 88
Opt Mois/Max Dry Den		/	/	/	/	/	/
SpG Bulk Coarse/Fine		/	/	/	/	/	/
SpG SSD Co	parse/Fine	/	/	/	/	/	/
SpG App Coarse/Fine		/	/	/	/	/	/
Absorption Coarse/Fine		/	/	/	/	/	/
Degradation Value							
LA / LA Low / Nordic		/ /	/ /	//	//	//	//
Sulfate Soundness C/F		/	/	/	/	/	/
Comment:							

Project No.

Station							
Offset (feet)							
Depth (feet)		62-64'	72-74'	62-74'	82.0-88.5'	97-98'	8.0-12.5'
Test Site ID		TH12-11	TH12-11	TH12-11	TH12-11	TH12-11	TH12-12
Field No.		FS-44	FS-45	FS-44, 45	FS-46, 48	FS-49	FS-50, 51
Submitted By		S. Evans	S. Evans	S. Evans	S. Evans	S. Evans	S. Evans
Date Sampled		6/16/2012	6/16/2012	6/16/2012	6/17/2012	6/17/2012	6/19/2012
Lab No.		2012A-1811	2012A-1812	2012A-1813	2012A-1814	2012A-1815	2012A-1816
	3"						
	2"						100
	1"					96	77
Doroont	3/4"					94	71
Percent	1/2"					87	63
Passing	3/8"					83	58
Ũ	#4					69	46
Sieve	#10			100	100	44	33
0.	#40			100	100	29	15
Size	#80						
	#200			91.6	81.9	21.7	7.1
	.02mm						
	.002mm						
FSV Class							
AASHTO / DOTTSD		/	/	A-4(7) /	/	A-2-6(0) /	/
Unified Class				CL		SC	
USCSD Class				Lean clay		Clayey sand with gravel	
Atterburg LL/PL/PI		/ /	11	29 / 20 / 9	//	29 / 17 / 12	/ /
Sample Prep				Dry		Dry	
Nat Moist / O	rganic	26.6 /	24.2 /	/	/	11.2 /	/
% Grvl / Snd	/ Fines	/ /	/ /	0 / 8 / 92	0 / 18 / 82	31 / 47 / 22	54 / 39 / 7
Opt Mois/Max	k Dry Den	/	/	/	/	/	/
SpG Bulk Co	oarse/Fine	/	/	/	/	/	/
SpG SSD Coarse/Fine		/	/	/	/	/	/
SpG App Coarse/Fine		/	/	/	/	/	/
Absorption Coarse/Fine		/	/	/	/	/	/
Degradation Value							
LA / LA Low / Nordic		/ /	/ /	//	//	//	/ /
Sulfate Soundness C/F		/	/	/	/	/	/
Comment:							

Project No. 63763 Project Name Parks MP 237.5 Riley Cr. Bridge Replacement

Station							
Offset (feet)							
Depth (feet) 1		17.0-17.25'	32-34'	42-48'	57.0-58.5'		
Test Site ID TH12-12		TH12-12	TH12-12	TH12-12	TH12-12		
Field No.		FS-52	FS-57	FS-58, 59	FS-60		
Submitted By	,	S. Evans	S. Evans	S. Evans	S. Evans		
Date Sampled		6/19/2012	6/20/2012	6/20/2012	6/20/2012		
Lab No.		2012A-1817	2012A-1818	2012A-1819	2012A-1820		
	3"						
	2"		100				
	1"		67	96	100		
Doroont	3/4"		58	92	97		
Fercent	1/2"		51	87	90		
Passing	3/8"		46	83	85		
5	#4		37	71	72		
Sieve	#10		27	57	60		
	#40		16	30	38		
Size	#80						
	#200		8.6	15.9	14.9		
	.02mm						
	.002mm						
FSV Class							
AASHTO / DO	OTTSD	/	A-1-a(0) /	/	/	/	/
Unified Class	i		GP-GM				
USCSD Class			Poorly graded gravel with silt and sand				
Atterburg LL/	PL/PI	23 / 18 / 5	17 / 14 / 3	11	11	//	//
Sample Prep		Dry	Dry				
Nat Moist / Organic		19.1 /	7.1 /	/	/	/	/
% Grvl / Snd / Fines		/ /	63 / 28 / 9	29 / 55 / 16	28 / 57 / 15	//	/ /
Opt Mois/Max	x Dry Den	/	/	/	/	/	/
SpG Bulk Coarse/Fine		/	/	/	/	/	/
SpG SSD Coarse/Fine		/	/	/	/	/	/
SpG App Coarse/Fine		/	/	/	/	/	/
Absorption Coarse/Fine		/	/	/	/	/	/
Degradation Value							
LA / LA Low / Nordic		/ /	/ /	/ /	//	//	//
Sulfate Soundness C/F		/	/	/	/	/	/
Comment:							

# **APPENDIX D**

# HISTORICAL TEST HOLE LOGS



Designed Checked Drown By Coecked



4. *

ATTACHMENTS
# **Geophysical Fault Mapping**

# **Riley Creek Bridge Replacement Project**

# Parks Highway MP 237

# Denali, Alaska

SUBCONTRACT NO. 025-3-1-012 AKSAS Project No. 63763

Prepared For

Northern Region Alaska Department of Transportation and Public Facilities 2301 Peger Road, Fairbanks, AK 99709-5399

Prepared By:

**Zonge International, Inc.** 8366 SW Nimbus Avenue Beaverton, Oregon 97008

Zonge Project # 12180

February 2013

# **Geophysical Fault Mapping**

# Riley Creek Bridge Replacement Project

# Parks Highway MP 237

# Denali, Alaska

### TABLE OF CONTENTS

ЕХ	KEC	UTIVE SUMMARY	.1
1		INTRODUCTION	.1
2		BACKGROUND	.2
3	3.1 3.2 3.3 3.4 3.5	GEOPHYSICAL INVESTIGATION Seismic Data Acquisition Denali Park Permit Requirements Location Control Data Processing Data Interpretation	.2 2 3 3 4 5
4	4.1 4.2 4.3 4.4 4.5	RESULTS & INTERPRETATION Line SL1 Line SL2 Line SL3 Line SL4 Conclusions	.5 6 7 7 7 7
5		CLOSURE	.8
6		REFERENCES	.8

## LIST OF FIGURES

Figure 1.	Project Location Map			
Figure 2.	<ul> <li>Exploration Plan</li> <li>2a. LIDAR Hill Shade Image</li> <li>2b. LIDAR DEM Elevation Color Contours</li> <li>2c. Satellite Photo Image</li> </ul>			
Figure 3.	Interpreted Seismic Sections			
Figure 4.	Alternative Interpretations			
Figure 5.	Exploration Plan with Alternative Interpretation			
Figure 6.	Processed Seismic Sections; SL1 and SL2			
Figure 7.	Processed Seismic Sections; SL3 and SL4			

### LIST OF APPENDICES

- Appendix A Site Photographs
- Appendix B Station Coordinates
- Appendix C Seismic Reflection Technique

# **Geophysical Fault Mapping**

# **Riley Creek Bridge Replacement Project**

# Parks Highway MP 237

# Denali, Alaska

# **EXECUTIVE SUMMARY**

Zonge International, Inc. (Zonge) conducted a seismic reflection survey in support of the Riley Creek Bridge Replacement project. The site is at Mile Post 237 of the George Parks Highway. The Park Road Fault has recently been mapped from LIDAR data as passing through the proposed bridge site. Figure 2 shows the seismic line locations, the mapped fault location, the Parks Highway, and the Denali Park Road

Figure 3 shows the interpreted seismic sections. The interpretation shown was guided by the mapped fault position and published information about the fault. This data and interpretation are consistent with, and reinforces, the published data. Other more complex interpretations are also consistent with the data but cannot be unambiguously resolved.

# **1 INTRODUCTION**

Zonge International, Inc. (Zonge) presents this report for Geophysical Fault Mapping near the Riley Creek Bridge, George Parks Highway MP 237 (Figure 1). Zonge acquired seismic reflection data on four lines (Figure 2) which cross the mapped trace of the Park Road Fault. This work was conducted under agreement 025-1-015 with the Northern Region, Alaska Department of Transportation and Public Facilities, in support of their project number 63763 for the Riley Creek Bridge Replacement.

Interpreted seismic sections are shown in Figure 3. Alternate interpretations for lines SL1, SL2, and SL4 are included as Figure 4 and fault traces shown on the site map, Figure 5. Appendix A contains selected site photographs. Appendix B is a list of geophone station coordinates. Appendix C is a technical note on the seismic reflection technique.

# 2 BACKGROUND

The Park Road Fault has been mapped by others as near-coincident with the existing Riley Creek Bridge alignment (Bemis et al., 2012). That mapping was based on LIDAR data (Hubbard et al, 2011) and ground mapping. Our attached Figure 2a shows the LIDAR image and the fault trace as mapped, taken from the Koehler et al., 2012. The fault is mapped as a high-angle thrust fault, with the upthrown thrust block coming from the north. Bemis has subsequently trenched the fault near our proposed seismic lines SL1 and SL3 (Figure 2; personal communications, Bemis). The fault scarps on lines SL3 and SL4 would suggest up to 15 feet of Holocene vertical displacement.

While drilling for the replacement bridge in June 2012, the Alaska Department of Transportation & Public Facilities (DOT) encountered disturbed zones and widely differing conditions in closely spaced boreholes. Borings extended up to 140 feet in alluvial sediments.

The site lies on thick Quaternary alluvial sediments of the Nenana River and Riley Creek. On the north side of the fault Wilson et al. (1998) have mapped bedrock as a Paleozoic or Pre-Cambrian pelitic and quartzose schist. To the south of the fault they have mapped sedimentary and volcanic units of the Late Cretaceous Cantwell Formation.

This report presents the results of a seismic reflection program which Zonge undertook to further characterize the Park Road Fault. Shallow seismic reflection has been used successfully by Zonge and others to map faults and geologic structure, including the Seattle Fault (Liberty & Pratt, 2008) and other faults in Alaska and the continental US.

# **3 GEOPHYSICAL INVESTIGATION**

Seismic reflection provides a two-dimensional cross-section showing depositional horizons within the shallow geologic section. Faults appear as discontinuities or offsets through those horizons.

# 3.1 Seismic Data Acquisition

Zonge collected seismic reflection data along four lines shown on Figure 2. Those lines vary in length from 710 feet to 1,190 feet, with their lengths constrained by the Parks Highway, Riley Creek, and the Nenana River.

Field work was conducted from October 18 to October 22, 2012. Zonge employed a four person crew: one senior geophysicist, two staff geophysicists, and a geophysical technician. Weather for the first two days was in the mid 20's °F with occasional light snow. For the final three days it turned crisp and clear with 4" to 6" of snow on the ground; temperatures were -5°F in the mornings, warming to +20°F during the day.

Data were collected with a Geometrics Geode seismic system using 96 to 120 channels (geophones). Geophone (station) spacing was 10 feet. A shot interval of 10 feet was used throughout the survey, shooting midway between geophones. The seismic source was 30-pound slide hammer. At each shot point, 5 separate records of one hammer blow each were obtained. Those 5 records were selectively stacked during processing to improve the signal to noise ratio.

Line SL1 followed the clearing for an 8 inch HDPE sewer outfall pipe alignment, providing easy access. The thin or absent organic mat enabled good coupling with the mineral soil. The pipeline was on the opposite side of the clearing, 15-20 feet from the seismic line, at a depth of 5 to 15 feet.

Line SL2 runs under the existing highway bridge. Some river noise from the fast flowing water in Riley Creek degraded the data to some degree, particularly where the line was closest to the river, under the bridge. Data were acquired on a Sunday, timing shots (hammer blows) to occur between crossing truck traffic.

Line SL3 is on a terrace ¹/₄ mile southwest of the Riley Creek Bridge and 200-250 feet higher in elevation. On Line SL3 there were some data quality issues due to the thick organic mat (which attenuates the seismic signal both from the source and then returning to the geophones) and the seismic noise generated by the wind blowing the spruce trees.

Line SL4 is a short (710 feet) line northeast of the bridge and between SL1 and SL2. Its length is limited by the Parks Highway on the north and the river on the south. Line SL4 was shot on a relatively calm day, with little wind noise, and ground coupling was good with thin organic soils, hence it produced the clearest image of all the lines.

## 3.2 Denali Park Permit Requirements

Beyond the 300 foot wide Parks Highway right-of-way, all the seismic lines were inside the boundary of Denali National Park and Preserve. Work was carried out under Research Permit number 940.

The research permit prohibited any clearing or brushing of the seismic lines. It also required that if the organic mat ground cover was disturbed (i.e. holes for the geophones or hammer) that the vegetation be returned to its former state. While working within the NPS permit restrictions, we were able to deploy the 120 channel seismic system with little or no impact on the vegetation, leaving minimal evidence of our geophysical operations. However, the permit requirements did limit the energy source options available to us, and hence resulted in some degradation of the data.

## 3.3 Location Control

Position and elevation information was acquired by surveyors from Design Alaska, Inc. of Fairbanks, Alaska, following the completion of the seismic data acquisition. Zonge

placed stakes at selected geophone locations and slope breaks, at an interval not more than 100 feet. Those locations were surveyed using RTK GPS equipment. Geophone and shot point locations were interpolated from those positions.

The *Exploration Plan* shown in Figure 2 uses Alaska State Plane, Zone 4, coordinates, North American Datum of 1983 (NAD83), with units of US Survey feet. State Plane coordinates, UTM coordinates, and Alaska DOT Project coordinates for each line are listed in Appendix B. DOT project coordinates differ from Alaska State Plane by less than two feet over the geophysical project area.

## 3.4 Data Processing

Data were processed using a processing flow typical for high resolution 2D data. Processing was performed by Excel Geophysical Services of Denver, Colorado. The basics of seismic processing are discussed in Appendix C or Yilmaz, 2001.

Field records were acquired in SEG-2 format with a 0.5-second record lengths, 0.5-millisecond sample rate, and no recording field filters (other than standard antialiasing filters). The shot records were converted to 2D binned common-depth-point stacks (CDP) in processing. Refraction statics were tested, but were not utilized in the final processing as they did not enhance data quality. The final seismic processing datum is 1800 feet above sea level.

The data processing sequences for this survey are listed below:

- 1. Reformat Field Data
- 2. Trace & Record Edit
- 3. Geometry Definition & Application
- 4. **Spectral Analysis & Filter Analysis to determine frequency range
- 5. **Green Mountain Refraction Program (tested, not used)
- 6. Picking of First Breaks & Refraction Solution
- 7. Gain Recovery & Spherical Divergence Correction
- 8. Deconvolution / Surface Consistent Spiking
- 9 **Spectral Whitening (tested, not used)
- 10. Long Gate Trace Balance
- 11. Elevation Statics Calculations (Datum: 1800 ft. / Vr: 6000 ft./sec.)
- 12. Statics to Floating Datum
- 13. Whole Line Velocity Analysis
- 14. Brute Stacks: Datum Statics vs. Refraction Statics
- 15. Surface Consistent Residual Autostatics
- 16. Interactive Velocity Analysis
- 18. Normal Moveout
- 19. Statics to Flat Datum
- 20. ******First Break Mute Analysis

- 21. First Break Mute Application
- 22. CDP Stack
- 23. **Filter Testing on Unfiltered Final Stack
- 24. Bandpass Filter / 30-40-120-135 Hz. 0.000 sec. to 1.000 sec.
- 26. Random Noise Attenuation
- 27. Long Gate Trace Balance
- 28. Kirchhoff Migration (40%, 60%, 80% of Stacking Velocities)
- 29. Output SEG-Y Stacks for Interpretation

<u>Note:</u> ** Indicates that processing tests were made to determine appropriate processing parameters at steps 4, 9, 20 and 23.

Since the objective of this survey was primarily for structural information, the full one half (1/2) second of the recorded data was processed.

Figures 6 and 7 show the uninterpreted final stacked and migrated time sections that were used for the interpretation. The time section is shown in color scale displays, where a peak is black and a trough is red. It is assumed that the data are normal polarity for which a peak would indicate an increase in velocity. These color displays were used for the interpretation.

## 3.5 Data Interpretation

Zonge was assisted in the interpretation process by Summit Geosciences, LLC, of Denver, Colorado. Processed seismic lines were loaded into an IHS - Kingdom seismic interpretation workstation. Geological and shallow borehole information, including the previously mapped fault position at the surface, was used to aid with the interpretation.

Two seismic reflection events (or horizons) and a single fault were interpreted on the four project lines. The position and attitude (or dip) of the fault was identified by offsets in seismic reflectors on the vertical seismic sections.

# **4 RESULTS & INTERPRETATION**

The four interpreted seismic sections are presented in Figure 3. These are presented as time sections, with the vertical axis as two-way travel time. They have not been converted to depth sections as we do not have any reliable velocity information (borehole or ground truth depth information) for the conversion. For the shallow alluvial section an approximate velocity of 6000 ft/sec is probably appropriate, as discussed below. Hence, a two-way travel time of 0.100 seconds corresponds approximately to a depth of 300 feet.

Profiles in Figure 3 show the interpreted horizons and fault on the 2D seismic time sections. The interpreted near-base of alluvium horizon (orange) is evidenced by a very strong trough that lies below a relatively reflection-less interval. This is a relatively

strong and consistent seismic event that can be picked on each line and is thought to be near the unconsolidated sediment – rock interface. The relatively reflection-less interval above the horizon is typical of unconsolidated young fluvial sediments. Below the alluvium-bedrock interface, a weak discontinuous bedrock seismic horizon was mapped (blue) to aid with fault interpretation. The bedrock horizon may not be exactly the same geologic surface from line to line, but can be used to help with fault attitude determination. Interpretation of the fault dip on Lines SL1, SL2 and SL4 is shown on Figure 3. Line SL3 also shows the general location of the fault and we have indicated a tentative position of the fault, although the data are of lower quality. The fault is interpreted as a high-angle reverse fault that dips to the northwest. The detailed interpretations of each line are described in the following sections.

Additional faulting can be interpreted on the seismic sections, but cannot be unambiguously resolved. Some possible additional fault traces are shown in Figure 4. Locations of these possible fault traces are shown on Figure 5 over the LIDAR image. Resolution of these features does not warrant any correlation between lines and are not discussed in detail.

As mentioned previously, the conversion from seismic two-way travel time to depth requires additional information about subsurface velocities. The most reliable velocity data are from direct velocity measurements (such as sonic logs, velocity surveys, vertical seismic profiles, etc.) made in boreholes that penetrate into the objective geological section. As none of this type of data is available, a direct conversion is not possible for this project. However, we can use seismic stacking velocities (see Appendix C) to very roughly estimate depths. The stacking velocities used for processing were 5,000 to 6,000 feet per second (ft/sec).

Seismic data have been shifted to a datum of 1,800 feet above mean sea level (MSL). Hence, the zero two-way travel-time of the processed seismic sections (Figures 3 through 6) corresponds to an elevation of 1,800 feet MSL. This datum shift was performed using a velocity of 6,000 ft/sec.

The approximate elevation scale shown in Figures 3 and 4 assumes a velocity of 6,000 ft/sec. This is probably a good estimate for the alluvial section ( $\pm 20\%$ ) but is too slow for the bedrock section, resulting in overestimation of depths below the base of alluvium.

### 4.1 Line SL1

On SL1 (Figure 3) the position of the shallow orange horizon is evident on the NW side of the fault. An integrated interpretation of the orange and blue horizons indicates that the NW side of the fault is upthrown and that the fault shows an apparent dip of 84 degrees to the NW, which would be a high-angle reverse fault. This dip and displacement (vertical separation) is more pronounced on lines SL2 and SL4, where the alluvial fill above the bedrock surface is clearer. The downthrown area to the SE of the fault shows some internal reflections, suggesting that area has either no river downcutting/erosion, or the stream deposits are layered.

### 4.2 Line SL2

On SL2 the position of the shallow orange event is very clear on the NW side of the fault. A section of alluvial fill above that event is well imaged. The interpretation of the orange and blue events shows that the NW side of the fault is upthrown and that the high-angle reverse fault shows an apparent dip of 87 degree to the NW. The downthrown area to the SE of the fault is relatively featureless, supporting an interpretation of river down-cutting/erosion and alluvial fill on that side of the fault.

## 4.3 Line SL3

As previously discussed, the processed seismic image for SL3 is very noisy due to local conditions at the time of data acquisition. Nonetheless, general characteristics can be identified across the section which supports the position and general high-angle reverse-fault nature of the fault seen on other lines. The orange event was identified at the top of the higher energy, semi-coherent data observed across the section. The orange event is vertically offset near the mapped surface position of the fault. The dip of the fault cannot be determined on this line due to poor quality data, but the offset is consistent with the other lines in this survey.

## 4.4 Line SL4

SL4 clearly shows the top of bedrock (orange event) across the entire section, the position of the fault, and the apparent 88 degrees north dip of the fault. The position of the fault is well defined within the bedrock by the coherent seismic horizon to the north of the fault. The relatively reflection-less interval above the orange horizon suggests a thicker deposition of fluvial sediments above the bedrock.

# 4.5 Conclusions

The 2D seismic reflection survey performed at the Riley Creek Bridge project site produced variable quality seismic data. Three of the lines (SL1, SL2, & SL4) produced seismic images that allowed mapping the position and dip of the Park Road Fault. This interpretation is consistent with the surface position of the fault mapped previously by others. The fourth line (SL3) was very noisy, but the rough position of the fault could be inferred as well as the relative vertical displacement of the bedrock/alluvium interface. One horizon, the base of alluvial fill (stream deposits), appears as a strong seismic trough on these lines. This surface was interpreted across each seismic section. The interpretation indicates that the northwest side of the fault is upthrown with better seismic imaging on that upthrown side. This may be due to chaotic unconsolidated sediment deposition on the downthrown side. The interpretation shows that the Park Road Fault is a northwest steeply dipping (84 to 87 degree) reverse fault.

Data quality and imaging of the subsurface and Park Road Fault would have been better with a stronger source such as shotgun or other impulsive source. However, permit conditions would not allow more than the slide hammer that was used on the project.

# 5 CLOSURE

Zonge International, Inc. has performed this work in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions. No warranty, express or implied, beyond exercise of reasonable care and professional diligence, is made. This report is intended for use only in accordance with the purposes of the study described within.

# 6 **REFERENCES**

- Bemis, S.P, G. A. Carver, and R. D. Koehler, 2012, *The Quaternary thrust system of the northern Alaska Range*: Geosphere, Geological Society of America, v. 8; no. 1; p. 196–205.
- Hubbard, T.D., Koehler, R.D., and Combellick, R.A., 2011, *High-resolution LIDAR* data for Alaska infrastructure corridors: Raw Data File RDF 2011-3, State of Alaska, Department of Natural Resources, Division of Geological & Geophysical Surveys, Fairbanks, AK USA. <u>http://www.dggs.alaska.gov/pubs/id/23163</u>
- Koehler, R.D., R-E. Farrell, P.A.C. Burns, and R.A Combellick, 2012, *Quaternary faults and folds in Alaska: A digital database*: Alaska Division of Geological & Geophysical Surveys, Miscellaneous Publication 141. http://www.dggs.alaska.gov/pubs/id/23944
- Liberty, L.M., & T. L. Pratt, 2008, *Structure of the Eastern Seattle Fault Zone, Washington State: New Insights from Seismic Reflection Data*: Bulletin of the Seismological Society of America, Vol. 98, No. 4, pp. 1681–1695. <u>http://faculty.washington.edu/tpratt/publications/Liberty_BSSA_08_1681.pdf</u>
- US COE, 1995, *Geophysical Exploration for Engineering Investigations*: U.S Corps of Engineers, Publication EM1110-1-1802. http://140.194.76.129/publications/eng-manuals/EM_1110-1-1802_sec/toc.htm
- Wilson, F.H., J.H. Dover, D.C. Bradley, F.R. Weber, T.K. Bundtzen, and P.J. Haeussler, 1998, *Geologic Map of Central (Interior) Alaska*: USGS Open File Report OF 98-133, USGS. <u>http://pubs.usgs.gov/of/1998/of98-133-a/</u>

Yilmaz, Özdogan, 2001, *Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data*: Investigations in Geophysics, Society of Exploration Geophysicists, 2 volumes.

FILE: Riley Creek AK Rpt04.docx Zonge Project: 12180



REVISION: A-29-NOV-12

DATE: OCTOBER 2012

FILE: Riley Creek Location.dwg

ZONGE PROJECT #: 12180

FIGURE 1

Prepared by: ZONGE INTERNATIONAL, Inc. Portland, Oregon Prepared for:

ALASKA DEPARTMENT OF TRANSPORTATION and PUBLIC FACILITIES Northern REgion, Fairbanks, Alaska

Under Agreement # 025-3-1-012; Project # 63763

### **PROJECT LOCATION MAP**

Geophysical Fault Mapping Riley Creek Bridge Replacement Project Parks Highway MP 237 Denali, Alaska















REVISION: A-25-NO

October 2012

PROFILES_BL(INTERP).dwg

NGE PROJECT #: 12180

Under Agreement # 025-3-1-012; Project # 63763



Under Agreement # 025-3-1-012; Project # 63763

013

à

FIGURE 4

### ALTERNATE INTERPRETATIONS

Geophysical Fault Mapping Riley Creek Bridge Replacement Project Parks Highway MP 237 Denali, Alaska



Under Agreement # 025-3-1-012; Project # 63763









FIGURE 6

### PROCESSED SEISMIC SECTIONS SL1 and SL2

Geophysical Fault Mapping Riley Creek Bridge Replacement Project Parks Highway MP 237 Denali, Alaska







FIGURE 7

### PROCESSED SEISMIC SECTIONS SL3 and SL4

Geophysical Fault Mapping Riley Creek Bridge Replacement Project Parks Highway MP 237 Denali, Alaska

#### PARKS HIGHWAY MP 237 RILEY CREEK BRIDGE REPLACEMENT: INVESTIGATION TARGETING THE ACTIVE FAULT CHARACTERISTICS OF THE HINES CREEK FAULT

#### FINAL REPORT

Prepared for: The State of Alaska Department of Transportation and Public Facilities

> By Dr. Sean P Bemis and Sara Federschmidt

Dept. of Earth & Environmental Sciences University of Kentucky Lexington, KY

May 2013

# PARKS HIGHWAY MP 237 RILEY CREEK BRIDGE REPLACEMENT: INVESTIGATION TARGETING THE ACTIVE FAULT CHARACTERISTICS OF THE HINES CREEK FAULT

Table of Contents

Executive Summary	1
General Report Summary	1
Introduction	2
The Hines Creek fault at the Nenana River	2
Active fault characterization studies of the Hines Creek fault at the Nenana River	4
Overview of our Assessment of Active Faulting Parameters	4
Slip Rate	4
Constraints on Paleoearthquake History	5
Project Deliverables	7
(1) Predicted fault recurrence interval	7
(2) Predicted fault magnitude potential	7
(3) Predicted rate of movement during life span of bridge	8
(4) Physical fault characteristics	8
(5) Additional site-specific seismic behavior	9
References	11
Appendix A	12
Appendix B	13

### List of Figures

Figure 1.	Excerpt from Csejtey et al. (1992) Geologic Map
Figure 2.	Additional Geologic Map Excerpts
Figure 3.	Project Location Map
Figure 4.	Oblique View of Site A
Figure 5.	Cross-Scarp Topographic Profiles
Figure 6.	Oblique View of Hines Creek Fault Scarp and Site B
Figure 7.	Fault Scarp Width and Lateral-Slip Markers

### List of Tables

|--|

### List of Appendices

Appendix A.	Radiocarbon Sample Data
Appendix B.	Paleoseismic trench observations and interpretations

#### **Executive Summary**

Dr. Sean Bemis and graduate student Sara Federschmidt, both of the University of Kentucky's Department of Earth & Environmental Sciences, conducted a geologic investigation into the prehistoric fault activity and characteristics of the Hines Creek fault in support of the Riley Creek Bridge Replacement project. The Hines Creek fault has only recently been recognized as a tectonically-active fault in this location, and trends roughly east-west, passing directly underneath the present Riley Creek bridge. This report provides an introduction to the historical discrepancies of how the Hines Creek fault has been interpreted and mapped by previous researchers (Figures 1 and 2), but highlights the fact that in the context of seismic hazards, the fault is clearly active and thus the nomenclature is somewhat irrelevant.

We introduce our studies by describing the general first-order observations that show the Hines Creek fault is tectonically active, and the basic geomorphic/neotectonic concepts and principles we apply in our active faulting assessment. The Hines Creek fault is a near-vertical reverse fault, with a north-side-up relative displacement and no evidence for lateral displacement across the fault. Our paleoearthquake data is primarily derived from a single trench, and suggests a cluster of earthquakes between ~500-1200 AD. These earthquakes, on average, produced surface displacements of less than 0.5 m. The long-term slip rate, derived from the cumulative offset of a late Pleistocene glacial outwash terrace, is ~0.6 mm/yr. Supplementing the report text is two appendices. Appendix A is simply a single table of raw and calibrated radiocarbon data with supplemental contextual information. Appendix B contains photomosaics and interpretive trench logs from each of the paleoseismic trenches, along with tables summarizing lithostratigraphic unit descriptions and the interpreted sequence of deformational events.

#### **General Project Summary**

Unpublished reconnaissance investigations by project PI Sean Bemis and Gary Carver (Carver Geologic, Inc.) along the Nenana River corridor in 2008 identified the surface trace of an active fault a short distance south of the Denali National Park & Preserve entrance. The release of airborne LiDAR (Light Distance and Ranging) data by the Alaska Division of Geological and Geophysical Surveys in 2011 provided an excellent view of the topographic scarp along this fault, illustrating both the evidence of recent fault activity and clearly defining the trace of the fault across the Parks Highway. Recognizing the regional geological significance of documenting this previously unknown Holocene and late Pleistocene fault activity, project PI Sean Bemis and graduate student Sara Federschmidt (University of Kentucky) initiated local surficial geologic mapping and began the application process for a Denali National Park & Preserve research permit to conduct paleoseismic trenching investigations on this fault during the summer of 2012. This research permit allowed us to hand-excavate a limited number of trenches across the topographic scarp formed during prehistoric earthquakes on the Hines Creek fault on either side of Riley Creek and the Parks Highway. We excavated a total of four trenches, two trenches at two different sites, and documented the stratigraphy and deformation exposed in the walls of these trenches.

The purpose of this study is to utilize the geomorphic and stratigraphic record of recent fault activity on the Hines Creek fault to provide information regarding the active faulting characteristics for use by the Alaska Department of Transportation and Public Facilities in their development of the new Parks Highway bridge across Riley Creek. The current bridge spans the Hines Creek fault in addition to Riley Creek, and therefore establishing a basic understanding of the timing of past earthquakes, the long-term slip rate, possible magnitude of surface displacement during earthquakes, width of the deformed zone, and potential for interseismic deformation will inform the engineering parameters of the replacement bridge.

#### Introduction

#### The Hines Creek fault at the Nenana River

The Hines Creek fault is a major crustal fault that lies within the Alaska Range, forming a broad, north-convex arc north of the Denali fault. This fault forms a major geologic boundary between the Yukon-Tanana Composite terrace to the north and younger late Paleozoic and Mesozoic rocks to the south. It is traditionally interpreted as a former trace of the central section of the Denali fault (e.g., Grantz, 1966) with significant right lateral displacement occurring during the late Mesozoic until ~95 Ma (Wahrhaftig et al., 1975). A pluton emplaced across the Hines Creek fault at ~95 Ma precludes significant additional right-lateral displacement, but several studies document evidence for Cenozoic dip-slip displacement along different sections of this fault (Ridgway et al., 2002; Nokleberg and Bundtzen, 2009; Wahrhaftig et al., 1975). The cumulative slip across the Hines Creek fault is unknown, but the lack of correlative geologic features across the fault suggests that this slip is significant.

The published geologic mapping of the Hines Creek fault in the vicinity of the Nenana River presents a complicated range of interpretations for the trace of the fault. As the most recent published geologic map of this region, the 1:250,000 Healy quadrangle geologic map (Csejtey et al., 1992) includes the previously mapped fault traces and introduces a new interpretation of the trace of the Hines Creek fault (Figure 1). Previous geologic maps by Wahrhaftig (1958) and Sherwood and Craddock (1979) depict similar traces for the Hines Creek fault to the west of the Nenana River, but these fault traces diverge significantly to the east (Figure 2). Both Wahrhaftig (1958) and Sherwood and Craddock (1979) map the Hines Creek fault as offsetting the late Cretaceous to Paleogene Cantwell Formation, but only Wahrhaftig (1958) clearly indicates that this fault is visible within late Quaternary deposits (Figure 2).



Figure 1. Geologic map of the Hines Creek fault/Riley Creek area excerpted from Csejtey et al. (1992). The white box illustrates the map areas of Figure 2. Note that this map depicts the Hines Creek fault as concealed across the entire region and as a separate fault from those identified as the Hines Creek fault by previous studies.



Figure 2. Excerpts of geologic maps from A) Wahrhaftig (1958) and B) Sherwood and Craddock (1979). The white box on Figure 1 illustrates the location of these two maps where the Hines Creek fault crosses the Nenana River. The solitary fault on (A) is the Hines Creek fault, and is depicted as locally offsetting late Quaternary geologic units as well as juxtaposing Cretaceous against Precambrian metamorphic rocks. The Hines Creek fault to a different fault with a more southerly trace. The blue and red arrows denote Sites A and B from this study, respectively.

The inferred logic for Csejtey et al. (1992) mapping an entirely new, concealed, trace for the Hines Creek fault through the map area would appear to be an interpretation that the ~95 Ma pluton precludes any post-95 Ma activity on this fault, and thus must be concealed by any younger geologic deposits (Figure 1). An additional interpretation not presented in Figures 1 and 2 is presented by Bemis and Wallace (2007) and Bemis et al. (2012) as the interpretation of the Park Road fault. This fault was mapped based upon intermittent fault scarps observed in the field and the previously mapped Cenozoic fault traces from Wahrhaftig (1958) and Sherwood and Craddock (1979) and was interpreted to have accommodated the late Cenozoic uplift of the east-west trending ridge of metamorphic rocks immediately north of the Hines Creek fault (e.g., Figure 1). It has become apparent through the studies contributing to this report that the Park Road fault may be essentially synonymous with the tectonically active portions of the Hines Creek fault in this portion of the Alaska Range.

Regardless of the specific fault nomenclature, we have documented clear topographic evidence of an active fault along the full trace of the Hines Creek fault as mapped by Wahrhaftig (1958). The subsequent reinterpretation of the Hines Creek fault by Sherwood and Craddock (1979) may be appropriate for the older history of the Hines Creek fault, but our preferred interpretation of the Hines Creek fault in terms of Cenozoic activity is the mapped trace of Wahrhaftig (1958).

#### Active fault characterization studies of the Hines Creek fault at the Nenana River

Reconnaissance fieldwork by Bemis and Gary Carver (Carver Geologic, Inc.) during 2008 and airborne LiDAR topographic data revealed a fault scarp west of the Nenana River that cuts through late Pleistocene and Holocene fluvial terraces. The initial assessment based upon our field and LiDAR reconnaissance studies established the following observations regarding the activity and faulting style of the Hines Creek fault:

- 1. The linear trace of the fault scarp across geomorphic surfaces of different elevations indicates that it has a near-vertical dip.
- 2. The scarp is increasingly taller on older geomorphic surfaces and has down-to-the-south relative displacement.
- 3. It also projects eastward across the Nenana River into an exposed fault zone that was first mapped by Wahrhaftig (1958).
- 4. Coseismic fissures are visible on the crest of the scarp west of the Parks Highway and south of Riley Creek. These fissures exhibit no evidence of lateral shear and appear to represent extension across the crest of the scarp.
- 5. The scarps are up to ~10 m tall and thus indicate that the fault in question has experienced several ruptures across a narrow fault zone.
- 6. The surficial organic mat that covers the coseismic features has been completely regrown and mature aspen and spruce trees can be found within the fissures, which suggest that this fault has not experienced a major surface rupture for at least 200 years.

With these reconnaissance observations establishing the basic parameters regarding active faulting style and geometry, we undertook a fieldwork plan specifically targeted at extracting a record of prehistoric earthquakes for this section of the Hines Creek fault. We selected two easily accessible sites along this fault for our paleoseismic investigations, Site A on the lowest faulted terrace (north of Riley Creek and east of the Parks Highway) and Site B on the highest faulted surface (south of Riley Creek and west of the Parks Highway) (Figures 2 and 3).

#### **Overview of our Assessment of Active Faulting Parameters**

#### Slip Rate

The slip rate for a fault represents the long term average of displacement per unit time across the fault. For seismogenic faults, the actual discrete relative displacement across the fault occurs coseismically – during an earthquake. Therefore, this slip rate should ideally be averaged over numerous seismic cycles in order to reduce the influence of the time since an earthquake on the resulting slip rate. The ability to average across multiple seismic cycles is easily accomplished by recognizing older landforms that have experienced displacement during numerous earthquakes on the fault of interest.



Figure 3. Shaded-relief LiDAR-derived topography of the Hines Creek fault near the Nenana River. Site A and B are the locations of our focused paleoseismic studies.

Fluvial terraces are geomorphic surfaces that form as a result of vertical stream incision forcing the abandonment of the stream's floodplain. Because a floodplain exists parallel to the stream gradient, fluvial terraces have a well-constrained original geometry, and thus these surfaces are ideal markers for measuring the cumulative displacement across a fault since the time of surface abandonment. For the Hines Creek fault near the Nenana River, we worked on two distinct fluvial terraces that are both offset by the fault, and for which we have at least basic age control. These two surfaces represent the oldest and youngest landforms in the study area that are deformed by a well-preserved fault scarp (Figure 3). Several terraces exist at intermediate elevations, but only their relative ages are known.

#### Constraints on Paleoearthquake History

The extraction of earthquake timing and magnitude from recent, but prehistoric, geologic archives fundamentally relies upon the preservation of the ground disturbance (often the "surface rupture") that results from a prehistoric earthquake. Paleoearthquake timing is derived by identifying limiting ages of earthquake deformation – essentially recognizing the youngest feature deformed by the earthquake, and the oldest feature not deformed by the earthquake. Paleoearthquake magnitude is broadly related to the amount of offset that occurs during an earthquake, but is complicated by the fact that, for example, a 1 meter displacement could be the maximum displacement for that earthquake, or could be the "tail" end of a much larger earthquake rupture.

Our investigations into the paleoearthquake history of the Hines Creek fault near Riley Creek focused on two sites – herein referred to as Site A and Site B (Table 1; Figures 2 and 3). Site A occupies a low fluvial terrace that appears to have been abandoned sometime after ~500 AD (~1500 years ago) based upon the oldest radiocarbon sample collected from within the fluvial deposits (Appendix A - Table A1). At this site we excavated a trench across a topographic fissure (Figure 4) to target the sediment that would be trapped and deformed within the fissure and recording the most recent record of paleoearthquakes. Site B occupies the highest terrace surface in the study area and targets two of the most distinct fissures preserved on the crest of the fault scarp. Similar to Site A, this site was selected due to the interpretation that these fissures would preferentially trap fine-grained sediment and provide a high-resolution record of older paleoearthquakes.

Trench Name	Coordinates*	Fault Type	Length/Width (m)	Depth Range (m)	Paleoseismic Results		
Hines Creek Fault, Site A, T2	407,078 E, 7,068,226 N	Reverse, near vertical dip	4.3/1	1-1.75	2 complex deformation zones, 2 shear zones, secondary extensional faults, 1 event well constrained, 2 events partially constrained, several fault offsets		
Hines Creek Fault, Site B, T3	406,323 E, 7,067,831 N	Reverse, near vertical dip	4.5/0.9	1-1.25	1 fault offset, 1 event partially constrained		
Hines Creek Fault, Site B, T4	406,326 E, 7,067,843 N	Reverse, near vertical dip	4/1	0.75-1.5	1 fault offset		
*UTM zone 6, WGS 1984							

Table 1.	Basic information	on the paleoseis	mic trenches do	ocumented in	this study.

The general character of the earthquake-related stratigraphy and deformation exposed in our trenches at both Site A and B consists primarily of packages of relatively fine-grained deposits bounded by diffuse shear zones. Therefore, the primary fault evidence is derived from alternating poorly sorted reworked terrace gravel with fine grained deposits - where the reworked terrace gravel represents raveling and mass wasting that occurs immediately after an earthquake, and the fine grained deposits represent low-energy, interseismic deposition within the confined fissures. Except for a single north-dipping thrust fault trace in the north end of T2 at Site A (Appendix B - Figure B2 and B4), the near-surface expression of this faulting consists of secondary deformation above the primary fault displacement in the shallow subsurface. It appears that this discrete displacement at depth manifests as distributed deformation in the unconsolidated materials at the surface and fissures are zones of focused extension within the distributed deformation across the crest of the fault scarp. Therefore, most of the deformation exposed in our trenches is essentially the manifestation of gravitational collapse of unconsolidated deposits within the extension across the fault scarp.



Figure 4. Oblique, southwest-looking view along the Hines Creek fault and paleoseismic Site A. The location of trench 2 is illustrated by the black rectangle, at a site chosen because the deformation of the scarp surface appears to be concentrated along a single fissure. Photomosaics and interpreted trench logs are presented in Appendix B. Base data is a full resolution shaded-relief of a TIN surface constructed from the ground-classified LiDAR point cloud.

#### **Project Deliverables**

#### (1) Predicted fault recurrence interval

A quantitative evaluation of an earthquake recurrence interval for an active fault requires both the knowledge of the timing for multiple paleoearthquake events on the fault of interest and a statistical model for the earthquake recurrence behavior. Traditional conceptual earthquake recurrence models, such as the characteristic earthquake model (Schwartz and Coppersmith, 1984), are based upon elastic rebound theory (Reid, 1911) and predict essentially regular intervals between similarly sized earthquakes on a particular section of a fault. However, recent theoretical and geologic studies raise questions about the validity of these simple models (e.g., Goldfinger et al., 2013; Kagan et al., 2012; Weldon et al., 2004).

The constraints from our paleoseismic investigations on earthquake timing recognizes a potential cluster of earthquakes occurring between ~500 and 1200 AD, with no obvious evidence for surface rupturing earthquakes since that time. Temporal clustering suggests it is inappropriate to assign a recurrence interval for our current state of understanding of earthquake occurrence on this fault. However, if we assume the long-term slip rate (described in #3 below) remains constant at ~0.6 mm/yr, then we can use the slip rate derived from a tentative 1-2 m vertical offset of the ~1500 year-old fluvial terrace across Site A of 0.7-1.3 mm/yr to infer that the cluster of earthquakes released a significant amount of strain on this fault, and that at least 500 years would need to pass before the next earthquake for the strain release (slip) rate recorded by this lower terrace to match the long-term slip rate recorded by the upper terrace at Site B.

#### (2) Predicted fault magnitude potential

The nature of the secondary deformation that characterizes the coseismic surface rupture along the Hines Creek fault makes direct measurement of displacement during individual earthquakes very difficult. However, recognizing the occurrence of possibly 5 earthquakes that contributed to the 1-2 m cumulative offset of the lower terrace surface at Site A, we can infer that individual earthquakes that have occurred on this section of the fault produce vertical offsets on average less than ~0.5 m.

#### (3) Predicted rate of movement during life span of bridge

The preserved surface expression of the earthquake ruptures and stratigraphic relationships exposed in our cross-fault trenches suggests that the relative displacement across the Hines Creek fault within the study area occurs episodically during earthquakes. Therefore, the displacement rate across this fault will be 0 mm/yr during the interseismic period (the time between major fault ruptures). In terms of the life span of the bridge, the cumulative near-field displacement across the fault will be 0 mm unless there happens to be an earthquake during that time.

The long-term rate of movement across the Hines Creek fault in the study area is determined from the cumulative offset of the latest Pleistocene outwash surface (Figures 5 and 6) across the fault. This long-term slip rate averages the near-instantaneous relative motion during earthquakes with the long interseismic periods and serves as a proxy for the far-field tectonic loading rate for this fault. We did not determine any new age constraints for this surface, but based upon the close proximity to glacial moraine deposits associated with the Riley Creek glacial advance (Marine Isotope Stage 2), we can establish reasonable limits on the surface age. Surface exposure ages of the next younger glacial advance along the Nenana River valley indicate that the absolute minimum age for this surface is ~16 ka (Dortch et al., 2010), whereas the maximum age is provided by the correlation with the initiation of the global cooling trend. However, we suggest that the global maximum ice volume at ~20-22 ka is a more likely maximum age, because this upper terrace surface represents a proximal outwash surface that formed as the glaciers began to retreat from their maximum extent. With a cumulative offset of this terrace surface across the Hines Creek fault of ~12 m (Figure 5), the late Quaternary slip rate for this fault is ~0.6 mm/yr.



Figure 5. Topographic profiles across the Hines Creek fault scarp. Profile A, from the lower terrace east of the Parks Highway (Figure 7), crosses a potentially complex surface that may have experienced some deposition and erosion during the formation of the fault scarp, and thus direct measurement of vertical offset is uncertain. Profile B, from the high terrace west of the Parks Highway (Figure 7), has a clear 12 m offset of the terrace surface, and the parallel surface on either side supports our interpretation that surface offset during earthquakes is concentrated across the narrow fault scarp zone.

#### (4) Physical fault characteristics

The active trace of the Hines Creek fault, as defined in this report, is a near-vertical dip-slip fault. The verticality of the fault in the near surface is demonstrated geomorphically by the linear trace that the fault scarp maps out across topography (Figure 6) and by the Zonge International, Inc. Geophysical Report. A particular advantage of the geophysical interpretations of the fault plane at depth is that it allows the resolution that the fault has a slight dip to the north. Therefore, with the north side of the fault moving up relative to the south, and the fault hanging-wall on the north side, this is a reverse fault. The occurrence of numerous geomorphic piercing points on the oldest offset surface that show no systematic or measureable lateral displacement (Figure 7) demonstrates that the fault is characterized by pure dip-slip displacement since at least the late Pleistocene.

Coseismic deformation associated with the Hines Creek fault appears to be confined to a narrow zone along the fault scarp through this study area (Figure 7). Across the upper terrace surface, the deformation associated with the fault scarp ranges from a width of 25 to 75 m. This fault-related deformation is confined to a narrow zone of 10 to 25 m along the fault scarp on the lower terrace surface

*(5) Additional site-specific seismic behavior* Not applicable.



Figure 6. Oblique view to the southwest along the Hines Creek fault scarp. Red arrows highlight the fault trace and illustrate the linear trace of the fault across significant topographic relief, providing evidence for a nearvertical fault dip.



Figure 7. High-resolution shaded-relief topography of the Hines Creek fault scarp across the upper terrace surface west of the Parks Highway and low terraces to the east. Yellow arrows highlight some of the linear geomorphic features that project across the fault scarp without displaying lateral offset, demonstrating this fault is purely dip-slip since the late Pleistocene. The solid red lines depict the width of the primary deformed zone along the fault scarp- essentially where discrete offset is concentrated during earthquakes. Topographic profiles in Figure 5 are shown as Profile A and B, with nearby paleoseismic sites A and B shown for reference.

#### **References:**

- Bemis, S.P., Carver, G.A., and Koehler, R.D., 2012, The Quaternary thrust system of the northern Alaska Range: Geosphere, v. 8, no. 1, p. 196–205, doi: 10.1130/GES00695.1.
- Bemis, S.P., and Wallace, W.K., 2007, Neotectonic framework of the north-central Alaska Range foothills, *in* Ridgway, K.D., Trop, J.M., Glen, J.M.G., and O'Neill, J.M. eds., Tectonic Growth of a Collisional Continental Margin: Crustal Evolution of Southern Alaska, Geological Society of America Special Paper 431, p. 549–572.
- Csejtey, B., Mullen, M.W., Cox, D.P., and Stricker, G.D., 1992, Geology and geochronology of the Healy Quadrangle, south-central Alaska: U.S. Geological Survey Miscellaneous Investigations 1191, 63 p.
- Dortch, J.M., Owen, L.A., Caffee, M.W., Li, D., and Lowell, T.V., 2010, Beryllium-10 surface exposure dating of glacial successions in the Central Alaska Range: Journal of Quaternary Science, v. 25, no. 8, p. 1259–1269, doi: 10.1002/jqs.1406.
- Goldfinger, C., Ikeda, Y., Yeats, R.S., and Ren, J., 2013, Superquakes and Supercycles: Seismological Research Letters, v. 84, no. 1, p. 24–32, doi: 10.1785/0220110135.
- Grantz, A., 1966, Strike-slip faults in Alaska: U.S. Geological Survey Open-File Report 66-53, 82 p.
- Hubbard, T.D., Koehler, R.D., and Combellick, R.A., 2011, High-resolution lidar data for Alaska infrastructure corridors: Alaska Division of Geological & Geophysical Surveys Raw Data File 2011-3, 291 p.
- Kagan, Y.Y., Jackson, D.D., and Geller, R.J., 2012, Characteristic Earthquake Model, 1884–2011, R.I.P.: Seismological Research Letters, v. 83, no. 6, p. 951–953, doi: 10.1785/0220120107.
- Nokleberg, W.J., and Bundtzen, T.K., 2009, Unlocking of the Hines Creek and associated faults, eastern Alaska Range, Alaska: Evidence for Cenozoic displacement, *in* Abstracts with Programs, Portland, OR, p. 302.
- Reid, H.F., 1911, The elastic-rebound theory of earthquakes: University of California Press, Berkeley, CA.
- Ridgway, K.D., Trop, J.M., Nokleberg, W.J., Davidson, C.M., and Eastham, K.R., 2002, Mesozoic and Cenozoic tectonics of the eastern and central Alaska Range: Progressive basin development and deformation in a suture zone: Geological Society of America Bulletin, v. 114, no. 12, p. 1480–1504, doi: 10.1130/0016-7606(2002)114<1480:MACTOT>2.0.C0;2.
- Schwartz, D.P., and Coppersmith, K.J., 1984, Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas fault zones: Journal of Geophysical Research, v. 89, no. B7, p. 5681–5698.
- Sherwood, K.W., and Craddock, C., 1979, General geology of the central Alaska Range between the Nenana River and Mount Deborah: Alaska Division of Geological & Geophysical Surveys Alaska Open-File Report 116, 3 sheets, scale 1:63,360, 24 p.
- Wahrhaftig, C., 1958, Quaternary geology of the Nenana River valley and adjacent part of the Alaska Range, *in* Wahrhaftig, C. and Black, R.F. eds., Quaternary and Engineering geology in the Central Part of the Alaska Range, U.S. Geological Survey Professional Paper 293, p. 1–73.
- Wahrhaftig, C., Turner, D.L., Weber, F.R., and Smith, T.E., 1975, Nature and timing of movement on Hines Creek strand of Denali fault system, Alaska: Geology, v. 3, no. 8, p. 463–466, doi: 10.1130/0091-7613(1975)3<463:NATOMO>2.0.CO;2.
- Weldon, R.J., Scharer, K., Fumal, T., and Biasi, G., 2004, Wrightwood and the earthquake cycle: What a long recurrence record tells us about how faults work: GSA Today, v. 14, no. 9, p. 4–10, doi: 10.1130/1052-5173(2004)014<4:WATECW>2.0.CO;2.

### Appendix A: Radiocarbon Data

Lab Name	¹⁴ C Age (BP)	Calibrated age interval (cal BP)	Calibrated age interval (cal AD)	Sample Material	Sampled Unit	Relevance
T2-1	1173±26	1175-998	776-952	Charcoal	OS2	
T2-2	1110±30	1071-937	880-1014	Charcoal	OS2	
T2-3	1250±30	1274-1081	676-870	Charcoal	OS2	
T2-4	1005±27	968-800	982-1150	Charcoal	OS2	
T2-5	817±28	779-684	1171-1267	Charcoal	A1	
T2-6	1285±28	1285-1175	666-776	Wood	SCZ2	Min age of event 2, max age of event 3
T2-7	1360±28	1333-1188	617-763	Wood	A4	
T2-8	1603±25	1541-1414	410-537	Charcoal	NCZ2	Max age of event 1
T2-10	921±23	919-783	1031-1168	Charcoal	OS2	
T2-12	1475±27	1404-1309	547-641	Wood	SCZ1	Max age of event 2
T2-13	1228±24	1258-1070	692-880	Wood	OS2	
T3-1	1136±31	1169-965	782-986	Charcoal	Ba1	Possible max age of event 5/most recent event
T3-2	835±26	789-690	1161-1260	Wood	Ba1	
T3-3	1208±25	1234-1060	716-890	Wood	Ba1	Possible max age of event 5/most recent event
T4-1	902±23	910-741	1040-1210	Charcoal	Bb1	
T4-2	2188±24	2310-2127	-359176	Charcoal	Bb4	

Table A1. Results of radiocarbon analyses

Basic sample cleaning and separation was conducted by Sara Federschmidt at the University of Kentucky, with sample chemical pretreatment and AMS measurements performed by DirectAMS. Oxcal 4.1 was used to calibrate radiocarbon ages. Calibrated ages denoted as cal BP (calibrated years before 1950) and cal AD (calendar years).


#### Appendix B: Paleoseismic Trench Logs and Interpretations

Figure B1. Photomosaic of the east wall of trench 2 (Site A) across the Hines Creek fault, reversed to imitate the same orientation of the west wall (Figures B3 and B4). White labels define lithostratigraphic units (unit descriptions in Table B1) and yellow labels identify locations of dated radiocarbon samples (age data in Table A1).



Figure B2. Photomosaic and trench log of the east wall of trench 2 (Site A) across the Hines Creek fault, reversed to imitate the same orientation of the west wall (Figures B3 and B4). Transparent overlay illustrates the interpretation of geologic units and deformation preserved within the trench stratigraphy. All labels in the same position at Figure B1. Red lines indicate locations of faults and shear zones, and arrows depict relative displacement. Much of the discrete displacement in the stratigraphy appears to have occurred as distributed zones of sheared and rotated gravel.



Figure B3. Photomosaic of the west wall of trench 2 (Site A) across the Hines Creek fault. White labels define lithostratigraphic units (unit descriptions in Table B1) and yellow labels identify locations of dated radiocarbon samples (age data in Table A1).



Figure B4. Photomosaic and trench log of the west wall of trench 2 (Site A) across the Hines Creek fault. Transparent overlay illustrates the interpretation of geologic units and deformation preserved within the trench stratigraphy. All labels in the same position at Figure B3. Red lines indicate locations of faults and shear zones, and arrows depict relative displacement. Much of the discrete displacement in the stratigraphy appears to have occurred as distributed zones of sheared and rotated gravel.

Table B1. Unit Descriptions f	from Site A, Trench 2.
-------------------------------	------------------------

*Unit Label	Descriptive Name	Dominant Grain Size	Matrix/Clast Supported	Comments	Event Relevance	Unit Age (cal BP)
A1	Sandy silt	Silt	n/a	Fine grained sand and silt layers with small pebbly lens	n/d	~700
A2	Fluvial sands	Coarse sand	n/a	Well sorted, only seen on north side	n/d	Between 700 - 1250
A3	Fluvial sands and cobbles	Coarse sand	Matrix	Fine to coarse sand, cobbles up to 8 inches	n/d	Between 700 - 1250
A4	Bedded fluvial silts and sands	Fine sand	n/a	Interbedded silts and sands, drastically thicker on the north, organics run through silt layers	n/d	~1250
A5	Terrace gravels	Cobbles	Clast	Clear contact with above silts and sand, broken by two rupture areas	n/d	>1500
OS1	Organic-rich silt	Silt	n/a	Roots present, dark grey/black organics	n/d	< 700
OS2	Organic-rich silt	Silt	n/a	Brown to grey organics, charcoal present, strands break off into ruptured areas, white silt pockets (volcanic ash?)	n/d	700 - 1200
NCZ1	Coarse sand	Coarse sand	n/a	Noticeably more worked over than above collapse zones, scattered pebbles	n/d	
NCZ2	Pebbly sand	Fine sand	n/a	Fine sand with packets of coarse sands and scattered pebbles	Max age for event 1	~1500
NCZ3	Silty sand	Fine sand	n/a	Silty sand with packets of well-sorted silt, some cobbles	n/d	
NCZ4	Pebbly sand with silt pockets	Coarse sand	n/a	Mixed sands, silt packets up to 15cm, scattered cobbles, contact with A1 difficult to distinguish	n/d	
NC2	Sandy gravels	Cobbles	Clast	Increasingly sandy towards the bottom, mostly large pebbles, some cobbles	n/d	
NC3	Pebbly sand	Coarse sand	n/a	/a Mixed sands and gravels, less terrace gravel than older colluvial n/d wedge (NC2)		
SCZ1	Coarse sand	Coarse sand	n/a	Predominantly sands, scattered pebbles	Max age for event 2	~1350
SCZ2	Pebbly sand	Coarse sand	n/a	Mixed sand with minor organic stringers, sands are slightly darker in color than sands in younger collapse packages	Min age for event 2, max age for event 3	~1200
SCZ3	Massive silty sand	Fine sand	n/a	Bedding still noticeable, grey silt contains small pieces of charcoal	n/d	
SCZ4	Silty sand	Fine sand	n/a	Light grey sand and silt, very small amount of silt well mixed with the sand	n/d	
SC2	Sandy gravels	Coarse sand	Matrix	Predominantly coarse sand with small cobbles found throughout, shear zone present at top of layer	n/d	
SC3	Sand with cobbles	Fine sand	Matrix	Massive cobbles supported by matrix of fine sands, some organic- rich silt present	n/d	
SC4	Pebbly sand	Coarse sand	n/a	Mixed sands with packets of coarse sands	n/d	
Note: n/a *CZ in t	n= not applicable, n/d= he unit name designate	no data s a unit that has been	defined as a colla	apse zone, C in the unit name designates a unit that has been define	d as a colluvial wedge	



Figure B5. Photomosaic of the west wall of trench 3 (Site B) across a portion of the Hines Creek fault scarp. White labels define lithostratigraphic units (unit descriptions in Table B1) and yellow labels identify locations of dated radiocarbon samples (age data in Table A1). The significantly lower proportion of fine-grained deposits in this trench relative to trench 2 provides fewer stratigraphic markers for use in the interpretation of the structure and deformation.



Figure B6. Photomosaic and trench log of the west wall of trench 3 (Site B) across a portion of the Hines Creek fault scarp. White labels and transparent polygons define lithostratigraphic units (unit descriptions in Table B1) and yellow labels identify locations of dated radiocarbon samples (age data in Table A1). Red lines indicate locations of faults and shear zones, and arrows depict relative displacement. The significantly lower proportion of fine-grained deposits in this trench relative to trench 2 provides fewer stratigraphic markers for use in the interpretation of the structure and deformation.

Table B2. Unit Descriptions from Site B, French 3
---------------------------------------------------

Unit Label	Descriptive Name	Dominant Grain Size	Matrix/Clast Supported	Comments	Event Relevance	Unit Age
Ba1	Recent loess	Silt	n/a	Deformed into vertical strip in center of trench, organic strand through middle of vertical silt	Possible max age of event 5/most recent event	~1100
Ba2	Fluvial sand	Very coarse sand	n/a	Predominantly coarse sands, silt strips cut through on west side, scattered cobbles	n/d	
Ba3	Fluvial sand	Very coarse sand	n/a	Very coarse, loose sand, scattered pebbles, deformed	n/d	
Ba4	Terrace gravel	Gravel	matrix	Poorly sorted coarse sands, gravels, and cobbles	n/d	
Note: n	/a= not applicable,	n/d= no data				



Figure B7. Photomosaic of the west wall of trench 3 (Site B) across a portion of the Hines Creek fault scarp. White labels define lithostratigraphic units (unit descriptions in Table B1). The significantly lower proportion of fine-grained deposits in this trench relative to trench 2 provides fewer stratigraphic markers for use in the interpretation of the structure and deformation.



Figure B8. Photomosaic and trench log of the west wall of trench 4 (Site B) across a portion of the Hines Creek fault scarp. White labels and transparent polygons define lithostratigraphic units (unit descriptions in Table B1). Red lines indicate locations of faults and shear zones, and arrows depict relative displacement. The significantly lower proportion of fine-grained deposits in this trench relative to trench 2 provides fewer stratigraphic markers for use in the interpretation of the structure and deformation.

Table B3. Ur	nit Descriptions	from Site	B, Trench 4.
--------------	------------------	-----------	--------------

Unit Label	Descriptive Name	Dominant Grain Size	Matrix/Clast Supported	Comments	Event Relevance	Unit Age
Bb1	Recent loess	Silt	n/a	Thicker on the north, some charcoal present, scattered small cobbles, light grey to light brown	Possible max age of event 5/most recent event	~1100
Bb2	Fluvial sand	Very coarse sand	n/a	Predominantly coarse sands scattered cobbles, contact with Bb4 difficult to distinguish	n/d	
Bb3	Colluvial sands	Very coarse sand	n/a	Very coarse, loose sand, scattered pebbles	n/d	
Bb4	Pebbly sand	Fine sand	n/a	Reworked fine and coarse sands, small cobbles throughout	n/d	
Bb5	Terrace gravel	Gravel	matrix	Poorly sorted coarse sands, gravels, and cobbles	n/d	
Note: n	/a= not applicable,	, n/d= no data				

# Table B4. Constraints on the Sequence of Deformational Events

Event #	Constraining Units	Min Age (cal AD)	Max Age (cal AD)	Comments
1	NCZ2 (max)	Event 2	410-537	Difficult to constrain, no datable material in next younger or older collapse zone, possibility of at least one older event
2	SCZ2 (min), SCZ1 (max)	666-776	547-641	Well constrained with dated material and colluvial wedge/collapse zone pairs
3	SCZ2 (max)	n/d	666-776	Possibility of OS2 providing a minimum age, maximum age well constrained
4	SCZ4 (min), SCZ3 (max)	n/d	n/d	Constrained by distinct colluvial wedge and collapse zone pairs, distinct pairs suggest separate events, possibility of north and south collapse zones being correlated, suggesting both rupture zones were active during the same event
5	A1 (min), OS2 (max)	1171-1267 (?)	1031-1168	Max age constrained by the youngest age for OS2. This material is also clearly involved in the deformation. Minimum age is inferred from the Age of unit A1. This constraint is uncertain due to several small displacements terminating upwards into A1, thus we cannot directly relate the min age to indisputably undeformed A1.
Note: n/	d= no data			

## **RILEY CREEK IN-SITU SAMPLE TEST REPORT**

by

Chuang Lin., Graduate Research Assistant Department of Civil and Environmental Engineering University of Alaska Fairbanks

Lin Li., Graduate Research Assistant Department of Civil and Environmental Engineering University of Alaska Fairbanks

and

Xiong Zhang, Ph.D., P.E., Associate Professor Department of Civil and Environmental Engineering University of Alaska Fairbanks

July 2014

University of Alaska Fairbanks Fairbanks, AK 99775-5900

#### ABSTRACT

AKDOT&PF is planning to replace the existing Riley Creek Bridge with a new bridge. Site investigation indicates that there is a clay layer which is roughly 10 to 30 feet below the abutment 3 of existing Riley Creek Bridge. Previous geologic history would suggest that the clay layer should be moderately to highly overconsolidated. However, available laboratory test results do not corroborate this interpretation. Research is needed to further understand the stress-strain behavior of the clay soils. This lab test program determines the mechanical and physical properties of the soil specimens obtained from the Riley Creek Bridge project site.

## TABLE OF CONTENTS

ABSTRACT	i
TABLE OF CONTENTS	ii
LIST OF FIGURES	iii
LIST OF TABLES	iv
LIST OF APPENDIX	v
CHAPTER 1 INTRODUCTION	1
CHAPTER 2 TEST PROGRAM	1
2.1 Test Program Introduction	1
2.2 Soil Sample Demolding	1
2.3 Atterberg Limits	4
2.4 Gradation Curves	6
2.5 Specific Gravity	7
2.6 Unconsolidated Undrained Triaxial Test	
2.7 One-Dimensional Consolidation Test	
2.8 Isotropically Consolidated Undrained Triaxial Test	
CHAPTER 3 TEST RESULTS	
3.1 Atterberg Limits and Specific Gravity	14
3.2 Gradation Curves	14
3.3 Unconsolidated Undrained Strength	
3.4 One-dimensional Consolidation Test	
3.5 Isotropically Consolidated Undrained Test Results	
REFERENCE	
APPENDIX	

## LIST OF FIGURES

Figure 2.1 Soil Sample Extraction with Cutting Disc.	2
Figure 2.2 Soil Sample Extraction with Hydraulic Extruder	2
Figure 2.3 Soil sieving	4
Figure 2.4 Water Content	5
Figure 2.5 Liquid Limit	5
Figure 2.6 Plastic Limit	6
Figure 2.7 Hydrometer Tests	7
Figure 2.8 Specific Gravity	8
Figure 2.9 Sampling for Unconsolidated Undrained Test	8
Figure 2.10 Testing Sample Saturation	9
Figure 2.11 Unconsolidated Undrained Test	10
Figure 2.12 Samples after Unconsolidated Undrained Test	10
Figure 2.13 Specimen Ring and Consolidometer for Consolidation Test	. 11
Figure 2.14 Soil Samples before Isotropically Consolidated Undrained Test	. 13
Figure 2.15 Samples after Isotropically Consolidated Undrained Test	. 13
Figure 3.1 Three Unconsolidated Undrained Test Results	. 16
Figure 3.2 Void Ratio vs. Effective Stress (TH14-03 FS-83 at 22 ft)	17
Figure 3.3 Void Ratio vs. Effective Stress (TH14-03 FS-83 at 21 ft)	18
Figure 3.4 Void Ratio vs. Effective Stress (TH14-03 FS-82 at 16 ft)	. 19
Figure 3.5 Triaxial Test Results for 3 Samples from Tube FS-83 at different Depths	20
Figure 3.6 Triaxial Test Results for 4 Samples from Tube FS-82 and FS-83	21
Figure A.1 Gradation Curve (TH14-01 FS-91 at 13 ft)	. 24
Figure A.2 Gradation Curve (TH14-01 FS-92 at 19.5 ft)	24
Figure A.3 Gradation Curve (TH14-01 FS-94 at 28 ft)	25
Figure A.4 Gradation Curve (TH14-01 FS-94 at 29 ft)	25
Figure A.5 Gradation Curve (TH14-01 FS-96 at 39 ft)	26
Figure A.6 Gradation Curve (TH14-03 FS-82 at 16 ft)	26
Figure A.7 Gradation Curve (TH14-03 FS-83 at 21 ft)	27
Figure A.8 Gradation Curve (TH14-03 FS-84 at 26 ft)	. 27

## LIST OF TABLES

Table 2.1 Summarized In-situ Samples and Extraction Methods	2
Table 2.2 Loading Schedule for Consolidation Test	
Table 3.1 Summarized Atterberg limits and Specific Gravity Results	14
Table 3.2 Summarized Hydrometer Test Results	14
Table 3.3 Specimen Information before and after the Unconsolidated Triaxial Test	16
Table 3.4 Consolidation TH14-03 FS-83 at 22 ft	17
Table 3.5 Consolidation TH14 - 03 FS – 83 at 21 ft	
Table 3.6 Consolidation TH14-03 FS-82 at 16 ft	19
Table 3.7 Specimen Information before and after the Consolidated Triaxial Test	
Table B.1 Soil Sample TH14-01, FS-94 at 29 ft	
Table B.2 Soil Sample TH14-01, FS-93 at 24`	30
Table B.3 Soil sample: TH14-02, FS-86 at 12`	32
Table C.1 Soil sample: TH14-03, FS-82 at 17`	
Table C.2 Soil sample: TH14-03, FS-84 at 27`	
Table C.3 Soil sample: TH14-03, FS-83 at 22'	
Table C.4 Soil sample: TH14-03, FS-83 at 21'	40
Table C.5 Soil sample: TH14-03, FS-83 at 20'	42

## LIST OF APPENDIX

Appendix A Gradation Curves	. 24
Appendix B Unconsolidated Undrained Test Results	. 28
Appendix C Isotropically Consolidated Undrained Triaxial Test Results	. 34

#### **CHAPTER 1 INTRODUCTION**

#### **1.1 Introduction**

AKDOT&PF is planning to replace the existing Riley Creek Bridge with a new bridge. Site investigation indicates that there is a clay layer which is roughly 10 to 30 feet below the abutment 3 of existing Riley Creek Bridge. Previous geologic history would suggest that the clay layer should be moderately to highly overconsolidated. However, available laboratory test results do not corroborate this interpretation. Research is needed to further understand the stress-strain behavior of the clay soils.

#### **CHAPTER 2 TEST PROGRAM**

#### **2.1 Test Program Introduction**

The objective of the lab test program is to determine the mechanical and physical properties of the targeted soil specimens. The classification tests include specific gravity test (9 samples), moisture content test (9 samples), unit weight test (9 samples), Atterberg limits test (9 samples) and hydrometer test (9 samples). After that, one dimensional consolidation test (6 samples) is performed to determine the OCR (Over Consolidation Ratio). Then, isotropically consolidated undrained (ICU) test (3 samples) is conducted based on the preconsolidation stress obtained from the consolidation test. Finally, unconsolidated undrained (UU Test) test (3 samples) is completed to verify the test results from ICU test.

#### 2.2 Soil Sample Demolding

Two methods were used to extract the in-situ soil sample. The first method was to use the cutting disc to disintegrate the sample into small sections (7-8 inches) as shown in Figure 2.1. Then the sample was extracted by a hydraulic extruder. However, some disturbance on sample surface was observed after extraction as shown in Figure 2.1. To minimize the disturbance during cutting and extraction, as shown in Figure 2.2, hydraulic extruder in Shannon & Wilson Inc. was utilized to extract the soil samples. As shown in Figure 2.2, no obvious disturbance on sample surface was observed after extraction.



Figure 2.1 Soil Sample Extraction with Cutting Disc



Figure 2.2 Soil Sample Extraction with Hydraulic Extruder

Table 2.1 presents the in-situ identification numbers for all tubes and their extraction methods.

Test Hole	Tube ID	Depth (ft)	Extraction Method
TH14-01	FS-91	12-13.5	Cutting Disc
TH14-01	FS-92	17-19.5	Cutting Disc
TH14-01	FS-93	22-24	Cutting Disc

**Table 2.1 Summarized In-situ Samples and Extraction Methods** 

TH14-01	FS-94	27-29.2	Cutting Disc
TH14-01	FS-95	32-34.5	Cutting Disc
TH14-01	FS-96	37-39.5	Cutting Disc
TH14-02	FS-86	10-12	Cutting Disc
TH14-02	FS-87	20-21.2	Cutting Disc
TH14-02	FS-88	25-25.75	Hydraulic Extruder
TH14-02	FS-89	30-31.5	Hydraulic Extruder
TH14-02	FS-90	35-36.5	Hydraulic Extruder
TH14-03	FS-82	15-17	Hydraulic Extruder
TH14-03	FS-83	20-22	Hydraulic Extruder
TH14-03	FS-84	25-27	Hydraulic Extruder
TH14-03	FS-85	30-32.5	Hydraulic Extruder

After extraction, some fundamental tests were performed first to determine soil water content, unit weight, Atterberg limits, specific gravity, and gradation curve. Before testing, soil sample was oven-dried to a constant mass. Then, soil passed a No.40 sieve, as shown in Figure 2.3, before being used for testing. A rubber hammer was used to powdering soil clods.



Figure 2.3 Soil sieving

## 2.3 Atterberg Limits

Water content was first determined based on ASTM D 4643-00 (Determination of Water Content of Soil by the Microwave Oven Heating), as shown in Figure 1.4. The sample was first divided into 9 pieces and the middle piece was used to determine the water content. Then, Atterberg limits were determined according to ASTM D 4318-00 (Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils) as shown in Figure 2.5 for liquid limit and Figure 2.6 for plastic limit, respectively. Calibrate the liquid limit device before performing the test, the height of the drop of the cup was adjusted so that the cup was raised to a height of 10 mm. Then, several trials with different water content were conducted to adjust the samples water content until the constancy required about 25 to 35 blows of the liquid limit device to close the groove. A minimum of 3 trials were conducted and based on the regression analysis of the water content of each trial, the liquid limit of the soil sample is the water content corresponding to 25 blow counts.

Then select about 20 g of soil sample to determine the plastic limit. Mix the sample with water until a consistency at which it can be rolled without sticking to the hands. Roll the mass between the palm and the ground-glass plate with just sufficient pressure to roll the mass in to a thread of uniform diameter throughout its length. The thread shall be further deformed on each stroke so that its diameter reaches 3.2 mm (0.125 in), taking no more than 2 min. finally, measure the water content of the soil sample.



Figure 2.4 Water Content



Figure 2.5 Liquid Limit



**Figure 2.6 Plastic Limit** 

### 2.4 Gradation Curves

Since all the soil samples have passed No. 40 sieve, only hydrometer tests were conducted to determine the gradation curves for the soil samples from different tubes, as shown in Figure 2.7, according to ASTM D422-63 (Standard Test Method for Particle-Size Analysis of Soils).

First, the hydrometer reading correction was conducted. Prepare 1000 ml of liquid composed of distilled water and dispersing agent (sodium hexametaphosphate, 40 g/L) in the same proportion as will prevail in the sedimentation test. When the temperature of the liquid became constant, insert the hydrometer and record the reading. Since hydrometer 151H was used, the composite correction is the difference between this reading and one.

Second, measure 50 g of tested sample and place it in the 250 ml beaker with 125 ml of sodium hexametaphosphate solution. Stir the soil slurry until thoroughly wetted and at least 16 hours were allowed for it to soak.

After dispersion, transfer the soil slurry to the glass sedimentation cylinder and add distilled water until total volume was 1000 ml. Use the palm of the hand over the open end of the cylinder upside down for a period of 1 min to complete the agitation of the slurry. At the end of 1 min set the cylinder in a convenient located and take the hydrometer readings at the following intervals of time: 2, 5, 15, 30, 60, 250, 1440 min.



**Figure 2.7 Hydrometer Tests** 

### 2.5 Specific Gravity

Soil specific gravity of the in-situ soil sample was determined according to ASTM D 854-00 (Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer) as shown in Figure 2.8. Before conducting the test, the pycnometer was calibrated. Then determine the mass of the pycnometer, verify that the mass of pycnometer is within 0.06 g of the average calibrated mass. Measure 50 g soil sample and add water until the water level is between 1/3 and 1/2 of the depth of the main body of the pycnometer. And add water to the pycnometer to the 500 ml mark then measure the mass of the water and pycnometer. Measure 50 g of the oven dried soil sample and add distilled water. Agitate the water until slurry is formed. Rinse any soil adhering to the pycnometer into the slurry. After that, deair the water with a vacuum and the pycnometer was continually agitated under vacuum for at least 2 hours. Continually agitated means the soil solid will remain in suspension and the slurry is in constant motion. The vacuum must remain relative constant and be sufficient to cause bubbling at the beginning of the deairing process. Finally, fill the pycnometer with deaired water to the 500 ml mark. Measure and record the mass of the pycnometer calibration. Measure and record the temperature of the soil slurry to the nearest 0.1°C.



Figure 2.8 Specific Gravity

### 2.6 Unconsolidated Undrained Triaxial Test

The unconsolidated undrained triaxial test was performed according to ASTM D2166 (Standard Test Method for Unconfined Compressive Strength of Cohesive Soil). To perform the unconsolidated undrained triaxial test, in-situ soil sample as shown in Figure 2.9a was cut into 142 mm in height and 71 mm in diameter cylinder using a wire saw as shown in Figure 2.9b. The mass of the wet sample was determined right after the sampling to accurately determine its water content before testing.



(a) Sample after extraction(b) SamplingFigure 2.9 Sampling for Unconsolidated Undrained Test

Then, the sample was mounted into the triaxial cell as shown in Figure 2.10. The triaxial cell was filled up with water. Then, de-aired water was utilized to saturate he soil sample through back pressure with help of the triaxial test control panel. In this test, a back pressure of 500 kPa was applied to saturate the sample with a net confining pressure of 35 kPa (i.e., water pressure in the triaxial cell was 535 kPa ).



Figure 2.10 Testing Sample Saturation

After saturation, which could be checked by B-value (B>0.95 indicated saturation), the saturated soil sample was sheared with a loading rate of 1 mm/min as shown in Figure 2.11. During this process, the pore water pressure inside the soil sample was recorded by the pressure meter as shown in Figure 2.11. Also, the applied axial load was recorded to determine soil strength properties. Shearing was stopped when reached the 15% axial strain.



Figure 2.11 Unconsolidated Undrained Test

After shearing, triaxial cell was disassembled and soil sample was extracted for water content determination. In order to prevent water absorption, the disassembling process was performed under undrained condition. Figure 2.12 shows pictures of three soil samples after oven-dried. After oven drying, data analysis was performed to determine the corresponding shear strength of the tested soil sample. Also, comparisons were made on soil water content, void ratio, and unit weight variations before and after the unconsolidated undrained triaxial test.



Figure 2.12 Samples after Unconsolidated Undrained Test

#### 2.7 One-Dimensional Consolidation Test

The consolidation test was performed according to ASTM D2435 (Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading). In the test, a soil specimen was restrained laterally and loaded axially with total stress increments. Each stress increment was maintained until excess pore water pressures were essentially dissipated. Pore water pressure was assumed to be dissipated based on interpretation of the time deformation under constant total stress. Measurements were made of change in the specimen height and these data were used to determine the relationship between the effective axial stress and void ratio. When time deformation readings were taken throughout an increment, the rate of consolidation is evaluated with the coefficient of consolidation.

The diameter and height of the specimen ring were 2.5 in (63.5 mm) and 1.0 in (25.4 mm), as shown in Figure 2.13(a). First, determine the mass of the ring and trim the specimen and insert it into the consolidation ring. The specimen must fit tightly in the ring without any perimeter gaps. Then determine the mass of the specimen ring and wet soil sample. Assemble the ring with specimen, porous disk, filter screens in the consolidometer as shown in Figure 2.13(b). Add water into the consolidometer to keep the soil sample saturated. Then put the consolidometer on the lab bench and insert the load holding screw into the block at the channel end from the bottom so that the ball end of the screw will make contact with the bottom of the lever arm when changing to the next higher load. Attach the weight hanger with the ratio position (10:1). Attach the LVDT (with an accuracy of 0.0003 in or 0.01 mm) to the dial indicator support rod to the right of the base. Then screw the counter weight threaded rod into the rear of the lever arm about 1 in and tighten the jam nut. Figure 2.13(c) shows the final setup of the testing system.



(a) (b) (c) Figure 2.13 Specimen Ring and Consolidometer for Consolidation Test

The specimen is to be subjected to load increments of constant total axial stress. The standard loading schedule shall consist of a load increment ratio (LIR) of one which is obtained by approximately doubling the total axial stress on the soil. According to the testing plan, the

maximum pressure for the soil sample is 500 psi. The loading schedule for each test sample is shown in Table 2.2. Each load increment duration shall be approximately 24 h. record the axial deformation at time intervals of approximately 0.1, 0.25, 0.5, 1, 2, 4, 8, 15, and 30 min, and 1, 2, 4, 8 and 24 h.

Test Hole	TH14-03		TH14-03		TH14-03		
Identification	FS	S-82	FS	FS-83		FS-83	
Depth (ft)		16		21	22		
Day	Stress(psi)	Stress (KPa)	Stress(psi)	Stress (KPa)	Stress(psi)	Stress (KPa)	
1	2	12	4	31	4	31	
2	4	25	9	62	9	62	
3	7	50	18	124	18	124	
4	15	100	36	248	36	248	
5	29	200	72	495	72	496	
6	15	100	36	248	36	248	
7	7	50	18	124	18	124	
8	15	100	36	248	36	248	
9	29	200	72	495	72	496	
10	58	400	144	990	144	990	
11	116	800	287	1980	287	1980	
12	232	1600	508	3500	508	3500	
13	508	3500					

**Table 2.2 Loading Schedule for Consolidation Test** 

#### 2.8 Isotropically Consolidated Undrained Triaxial Test

The isotropically consolidated undrained triaxial tests were performed according to ASTM D4767 (Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils). A total number of five isotropically consolidated undrained triaxial tests for samples from three tubes (FS-82, FS-83, and FS-84) were performed to evaluate the saturated soil behavior under undrained condition. The test setup for the isotropically consolidated undrained triaxial test. However, after saturation, the test specimen suffered an isotropically consolidation process. In this test, for samples from different tubes, the applied consolidation stress is the corresponding preconsolidated undrained triaxial tests were performed on samples from tube FS-83 to evaluate saturated soil behavior under different confining pressure levels. After consolidation, specimens were sheared to 15% axial strain under undrained condition. During this process, pore water pressure change in the specimen was recorded by a pressure meter. Specimens from different tubes before and after the triaxial tests are shown in Figure 2.14 and 2.15, respectively.

After oven drying, data analysis was performed to determine the corresponding strength properties. Also, comparisons were made on soil water content, void ratio, and unit weight variations before and after the unconsolidated undrained triaxial test.

For the specimen from tube FS-84 as shown in Figure 2.14, water was observed at the surface of the specimen. Specimen became very weak due to liquefaction during handling process. So, it's required to pay attention on this silt layer, which has great potential to liquefy under vibration, during foundation design.



Figure 2.14 Soil Samples before Isotropically Consolidated Undrained Test



Figure 2.15 Samples after Isotropically Consolidated Undrained Test

#### **CHAPTER 3 TEST RESULTS**

#### 3.1 Atterberg Limits and Specific Gravity

Atterberg limits and specific gravity tests were performed on in-situ samples from different tubes. Test results are summarized in Table 3.1.

Tuble ett Summuribea ritter seig mints and Speeme Gravity Results									
Test Hole	Tube ID	Depth (ft)	W _c (%)	Unit Weight (pcf)	PL	LL	PI	USCS Classification	Gs
TH14-02	FS-86	12	22.2	125.85	21.7	33.4	11.7	CL	2.730
TH14-01	FS-91	13	20.7		16.4	20.5	4.1	CL-ML	2.776
TH14-01	FS-92	19.5	26.7	125.85	20.2	29.8	9.6	CL	2.715
TH14-01	FS-93	24	19.6	125.85	19.6	30.7	11.1	CL	2.807
TH14-01	FS-94	29	23.7	126.48	17.6	28.2	10.4	CL	2.760
TH14-01	FS-96	39	22.7		19.4	23.4	4.0	CL-ML	2.745
TH14-03	FS-82	17	25.7	129.95	17.9	26.9	9.0	CL	2.776
TH14-03	FS-83	20-22	26.1	124.43	19.8	31.2	11.4	CL	2.76
TH14-03	FS-84	25-27	20.7	133.42	21.4	20.2	1.2	ML	2.72

Table 3.1 Summarized Atterberg limits and Specific Gravity Results

### **3.2 Gradation Curves**

In-situ sample gradation curves were determined by Hydrometer tests. Test results are summarized in Table 3.2. Gradation curves are presented in Appendix A.

	14	Die 3.2 Summ	al izeu II	yulumetel le	si nesuli	5	
TH14-01-13'		TH14-01-19.5	;'	TH14-01-29'		TH14-01-39	)'
Percent	Size (in)	Percent	Size (in)	Percent	Size (in)	Percent	Size (in)
100.00	0.016535	100.00	0.016535	100.00	0.016535	100.00	0.016535
71.91	0.001116	88.65	0.001106	84.67	0.001046	92.81	0.001055
59.40	0.000743	74.40	0.000742	75.26	0.000693	89.66	0.000679
45.33	0.000453	58.57	0.000455	62.72	0.000421	81.80	0.000406
35.95	0.000331	50.66	0.000331	54.25	0.000308	73.93	0.000296
29.70	0.000239	39.58	0.000243	47.04	0.000224	66.07	0.000216
23.45	0.000120	26.91	0.000124	31.99	0.000115	50.34	0.000112
14.07	0.000051	20.58	0.000052	20.38	0.000050	36.18	0.000049
0.00	0.000000	0.00	0.000000	0.00	0.000000	0.00	0.000000

 Table 3.2 Summarized Hydrometer Test Results

TH14-01-24'		TH14-02-12'		TH14-03-21`		TH14-03-16`	
Percent	Size (in)						
100.00	0.016535	100.00	0.016535	100.00	0.016535	100.00	0.016535
92.51	0.001002	92.51	0.001002	90.95	0.004587	87.07	0.004588
87.81	0.000650	87.81	0.000650	84.68	0.001061	66.49	0.001061
75.26	0.000400	78.40	0.000400	76.84	0.000698	56.99	0.000698
65.86	0.000295	72.13	0.000295	65.86	0.000422	39.58	0.000422
56.76	0.000216	63.97	0.000216	58.02	0.000307	33.24	0.000307
43.28	0.000111	47.04	0.000111	48.61	0.000225	26.91	0.000225
31.36	0.000048	32.93	0.000048	36.07	0.000115	15.83	0.000115
0.00	0.000004	0.00	0.000004	20.39	0.000050	3.17	0.000050

TH14-03-27'	
Percent Passing	Size (in)
100.00	0.016535
66.49	0.001061
56.99	0.000698
39.58	0.000422
33.24	0.000307
26.91	0.000225
15.83	0.000116
3.17	0.000051
0.00	0.000004

#### **3.3 Unconsolidated Undrained Strength**

Unconsolidated undrained triaxial test were performed on in-situ samples at TH14-01-29', TH14-01-24', and TH14-02-12'. Test results are summarized in Table 3.3. As shown in Table 3.2, it could be found that the shear strength of sample TH14-01-29' is approximately two times of the shear strengths of samples TH14-01-24' and TH14-02-12'. There are two possible reasons for phenomenon. Firstly, the sample is in layers as clearly shown in Figure 2.12 for sample TH14-02-12'. However, sample TH14-01-29' was quite uniform as shown in Figure 2.12. Secondly, the samples used for unconsolidated undrained triaxial tests were extracted using cutting disc and extruder which could bring disturbances to the in-situ samples. Based upon three unconsolidated undrained triaxial tests, three Mohr-Column circles were obtained as presented in Figure 3.1. Stress-strain, pore water pressure, and net confining pressure variation curves for three unconsolidated undrained triaxial tests are presented in Appendix B.

Sample ID	Unit weight (pcf)		Void ratio		Water content		Shear Strength (ngi)	
	Before	After	Before	After	Before	After	Shear Strength (psi)	
TH14-01-29'	2.026	2.02	0.699	0.704	24.6%	25.5%	10.73	
TH14-01-24'	2.016	1.99	0.773	0.792	27.3%	28.2%	4.87	
TH14-02-12'	2.016	1.97	0.722	0.758	27.1%	27.8%	5.74	

Table 3.3 Specimen Information before and after the Unconsolidated Triaxial Test



Figure 3.1 Three Unconsolidated Undrained Test Results

3.4 One-dimensional Consolidation Test

Dev	Ι	oad	S	Stress				$\sigma_{c}$
Day	(kg)	(lb)	(kPa)	(psi)	e	$(cm^2/sec)$	(in ² /sec)	(psi)
1	1	2	31	4	0.714591	0.010	0.001612	
2	2	4	62	9	0.7003	0.008	0.001268	
3	4	9	124	18	0.686485	0.011	0.001719	
4	8	18	248	36	0.672262	0.015	0.002318	
5	16	35	495	72	0.649056	0.016	0.002423	
6	8	18	248	36	0.649532	0.018	0.002857	50
7	4	9	124	18	0.654772	0.115	0.01789	50
8	8	18	248	36	0.653139	0.066	0.01024	
9	16	36	495	72	0.647355	0.046	0.007115	
10	32	72	991	144	0.607271	0.020	0.003085	
11	64	144	1982	288	0.576103	0.020	0.003117	
12	113	250	3500	508	0.554326	0.013	0.001945	

Table 3.4 Consolidation TH14-03 FS-83 at 22 ft



Figure 3.2 Void Ratio vs. Effective Stress (TH14-03 FS-83 at 22 ft)

Dav	Stre	SS		C	$\sigma_{c}$	
Day	(kPa)	(psi)	e	(cm ² /sec)	(in ² /sec)	(psi)
1	31	4	0.724125248	0.021	0.00321	
2	62	9	0.711706949	0.020	0.00315	
3	124	18	0.698707076	0.031	0.00473	
4	248	36	0.683791432	0.026	0.00398	
5	495	72	0.665044247	0.025	0.00382	
6	248	36	0.666275814	0.041	0.00633	70
7	124	18	0.66914947	0.056	0.00863	70
8	248	36	0.668321583	0.051	0.00788	
9	495	72	0.664578988	0.030	0.00467	
10	991	144	0.623807282	0.105	0.01627	
11	1982	288	0.588180788	0.022	0.00347	
12	3499	508	0.560340534	0.003	0.00041	

Table 3.5 Consolidation TH14 - 03 FS - 83 at 21 ft



Figure 3.3 Void Ratio vs. Effective Stress (TH14-03 FS-83 at 21 ft)

Derr	Stress			C	$\sigma_{c}$	
Day	(kPa)	(psi)	e	$(cm^2/sec)$	(in ² /sec)	(psi)
1	12	2	0.6764	0.015	0.00234	
2	25	4	0.6697	0.036	0.00560	
3	50	7	0.6634	0.032	0.00492	
4	100	15	0.6556	0.041	0.00628	
5	200	29	0.6477	0.033	0.00511	
6	100	15	0.6486	0.014	0.00218	
7	50	7	0.6503	0.016	0.00255	90
8	100	15	0.6502	0.002	0.00024	
9	200	29	0.6489	0.001	0.00014	
10	400	58	0.6382	0.064	0.00994	
11	800	116	0.6222	0.060	0.00925	
12	1600	232	0.5882	0.047	0.00725	
13	3500	508	0.5458	0.0578	0.00896	

Table 3.6 Consolidation TH14-03 FS-82 at 16 ft



Figure 3.4 Void Ratio vs. Effective Stress (TH14-03 FS-82 at 16 ft)
## 3.5 Isotropically Consolidated Undrained Test Results

Isotropically consolidated undrained triaxial test were performed on in-situ samples at TH14-03-17', TH14-03-22', TH14-03-21', TH14-03-20', and TH14-03-27'. Samples TH14-03-22', TH14-03-21', and TH14-03-20' are from the same tube FS-83. Triaxial test results for five isotropically consolidated undrained triaxial tests are presented in Appendix C. Based upon three isotropically consolidated undrained triaxial tests results of samples from tube FS-83 (three samples from the same tube are assumed to be identical to each other with the same soil properties), three Mohr-Column circles were obtained as presented in Figure 2.5. Then, the corresponding cohesion (1.1 psi) and internal friction angle (29.2°) of the soil from tube FS-83 are determined as shown in Figure 2.5 using a least square method. Since the properties of sample TH14-03-17' (FS-82) are very close to those of soil from tube FS-83 as shown in Table 2.1, the obtained Mohr-Column circle for sample TH14-03-17' is also plotted as shown in Figure 2.6. It's noted that the failure envelope (the straight line in Figure 2.6) is tangential to the obtained Mohr-Column circle which verified that the obtained cohesion and internal friction angle for the tested soil are accurate and can be utilized to predict soil shear strength under different stress conditions. However, as shown in Table 2.1, the soil from tube TH14-03-27' (FS-84) is classified as low plasticity silt (ML) which is different from the soil in tube FS-83 (classified as CL). Thus, the Mohr-Column circle for specimen TH14-03-27' is not plotted in Figure 2.6.



Figure 3.5 Triaxial Test Results for 3 Samples from Tube FS-83 at different Depths



Figure 3.6 Triaxial Test Results for 4 Samples from Tube FS-82 and FS-83

Sample ID Consolidation stress (psi)	Concelidation stress (noi)	Unit we	Unit weight (pcf)		Void ratio		content
	Consolidation stress (psi)	Before	After	Before	After	Before	After
FS-82 at 17'	6.4	129.98	129.98	0.668	0.668	25.7%	25.7%
FS-83 at 20'	30.7	135.34	143.44	0.612	0.521	26.7%	23.3%
FS-83 at 21'	20.3	132.53	133.19	0.625	0.617	25.0%	24.7%
FS-83 at 22'	10.2	133.03	132.79	0.604	0.607	23.8%	23.9%
FS-84 at 27'	13.1	134.1	139.05	0.571	0.515	22.2%	21.0%

 Table 3.7 Specimen Information before and after the Consolidated Triaxial Test

## REFERENCE

ASTM (2007) Designation: ASTM D 4643: "Standard Test Method for Determination of Water (Moisture) Content of Soil by Microwave Oven Heating," Annual Book of ASTM Standards.

ASTM (2007) Designation: ASTM D 4318: "Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils," Annual Book of ASTM Standards.

ASTM (2007) Designation: ASTM D 422: "Standard Test Method for Particle-Size Analysis of Soils," Annual Book of ASTM Standards.

ASTM (2007) Designation: ASTM D 854: "Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer," Annual Book of ASTM Standards.

ASTM (2007) Designation: ASTM D 2166: "Standard Test Method for Unconfined Compressive Strength of Cohesive Soil," Annual Book of ASTM Standards.

ASTM (2007) Designation: ASTM D 2435: "Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading," Annual Book of ASTM Standards.

ASTM (2007) Designation: ASTM D 2435: "Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils," Annual Book of ASTM Standards.











Figure A.2 Gradation Curve (TH14-01 FS-92 at 19.5 ft)



Figure A.4 Gradation Curve (TH14-01 FS-94 at 29 ft)



Figure A.6 Gradation Curve (TH14-03 FS-82 at 16 ft)



Figure A.7 Gradation Curve (TH14-03 FS-83 at 21 ft)



Figure A.8 Gradation Curve (TH14-03 FS-84 at 26 ft)

Table B.1 Soil Sample TH14-01, FS-94 at 29 ft										
Displacement (inch)	Load (lb)	p _c (psi)	p _w (psi)	p _{net} (psi)	$\sigma_d$ (psi)	ε _a	ε _r			
0.000	0.0	67.7	66.4	1.3	0.0	0.000	0.000			
0.012	9.0	67.7	67.0	0.7	1.4	0.002	-0.001			
0.024	13.5	67.7	67.0	0.7	2.2	0.004	-0.002			
0.035	18.0	67.7	67.0	0.7	2.9	0.006	-0.003			
0.047	20.2	67.7	67.0	0.7	3.2	0.008	-0.004			
0.059	22.5	67.7	66.8	0.9	3.6	0.010	-0.005			
0.071	27.0	67.7	66.7	1.0	4.3	0.013	-0.006			
0.083	29.2	67.7	66.4	1.3	4.6	0.015	-0.007			
0.094	33.7	67.7	66.3	1.4	5.3	0.017	-0.008			
0.106	38.2	67.7	66.3	1.4	6.0	0.019	-0.009			
0.118	42.7	67.7	66.1	1.6	6.7	0.021	-0.010			
0.130	47.2	67.7	66.1	1.6	7.4	0.023	-0.012			
0.142	51.7	67.7	66.0	1.7	8.1	0.025	-0.013			
0.154	56.2	67.7	65.8	1.9	8.8	0.027	-0.014			
0.165	60.7	67.7	65.7	2.0	9.4	0.029	-0.015			
0.177	62.9	67.7	65.5	2.2	9.8	0.031	-0.016			
0.189	67.4	67.7	65.5	2.2	10.5	0.033	-0.017			
0.201	74.2	67.7	65.4	2.3	11.5	0.036	-0.018			
0.213	80.9	67.7	65.1	2.6	12.5	0.038	-0.019			
0.224	85.4	67.7	64.8	2.9	13.2	0.040	-0.020			
0.236	89.9	67.7	64.7	3.0	13.8	0.042	-0.021			
0.252	96.7	67.7	64.4	3.3	14.8	0.045	-0.022			
0.268	103.4	67.7	64.1	3.6	15.8	0.047	-0.024			
0.283	110.2	67.7	63.8	3.9	16.8	0.050	-0.025			
0.299	116.9	67.7	63.4	4.3	17.8	0.053	-0.027			
0.315	121.4	67.7	63.1	4.6	18.4	0.056	-0.028			
0.331	128.1	67.7	62.6	5.1	19.3	0.059	-0.029			
0.346	132.6	67.7	62.1	5.6	20.0	0.061	-0.031			
0.362	134.9	67.7	61.5	6.2	20.2	0.064	-0.032			
0.378	139.4	67.7	61.0	6.7	20.9	0.067	-0.033			
0.394	143.9	67.7	60.6	7.1	21.5	0.070	-0.035			
0.413	146.1	67.7	60.0	7.7	21.7	0.073	-0.037			
0.433	148.4	67.7	59.6	8.1	22.0	0.077	-0.038			
0.453	150.6	67.7	59.3	8.4	22.2	0.080	-0.040			
0.472	150.6	67.7	59.0	8.7	22.1	0.084	-0.042			
0.492	152.9	67.7	58.6	9.1	22.4	0.087	-0.044			
0.512	152.9	67.7	58.4	9.3	22.3	0.091	-0.045			

## Appendix B Unconsolidated Undrained Test Results

28

0.531	152.9	67.7	58.3	9.4	22.2	0.094	-0.047
0.551	155.1	67.7	58.1	9.6	22.4	0.098	-0.049
0.571	159.6	67.7	57.6	10.1	23.0	0.101	-0.051
0.591	159.6	67.7	57.3	10.4	22.9	0.105	-0.052
0.610	161.9	67.7	57.3	10.4	23.2	0.108	-0.054
0.630	161.9	67.7	57.0	10.7	23.1	0.112	-0.056
0.650	164.1	67.7	56.8	10.9	23.3	0.115	-0.058
0.669	166.4	67.7	56.7	11.0	23.5	0.119	-0.059
0.689	168.6	67.7	56.4	11.3	23.7	0.122	-0.061
0.709	168.6	67.7	56.1	11.6	23.6	0.126	-0.063
0.728	170.9	67.7	56.0	11.7	23.9	0.129	-0.065
0.748	173.1	67.7	55.8	11.9	24.1	0.133	-0.066
0.768	182.1	67.7	55.8	11.9	25.2	0.136	-0.068
0.787	186.6	67.7	55.5	12.2	25.8	0.140	-0.070
0.807	186.6	67.7	55.2	12.5	25.6	0.143	-0.071
0.827	177.6	67.7	55.1	12.6	24.3	0.146	-0.073
0.846	182.1	67.7	55.0	12.7	24.8	0.150	-0.075
0.866	184.3	67.7	54.8	12.9	25.0	0.153	-0.077

Where,

 $p_c = cell pressure,$ 

 $p_w = pore water pressure,$ 

 $p_{net}$  = net confining pressure ( $\sigma_3$ ), and  $\sigma_d$  = deviatoric stress ( $\sigma_1$ -  $\sigma_3$ ).

Displacement (inch)	Load (lb)	p _c (psi)	p _w (psi)	p _{net} (psi)	$\sigma_d$ (psi)	ε _a	ε _r
0.000	0.0	81.8	78.0	3.740	0.0	0.000	0.000
0.012	11.2	81.8	79.0	2.725	1.9	0.002	-0.001
0.024	13.5	81.8	79.3	2.435	2.2	0.004	-0.002
0.035	15.7	81.8	79.5	2.290	2.6	0.006	-0.003
0.047	18.0	81.8	79.6	2.145	2.9	0.008	-0.004
0.059	20.2	81.8	79.6	2.145	3.3	0.010	-0.005
0.071	20.2	81.8	79.6	2.145	3.3	0.013	-0.006
0.083	20.2	81.8	79.6	2.145	3.3	0.015	-0.007
0.094	22.5	81.8	79.6	2.145	3.7	0.017	-0.008
0.106	24.7	81.8	79.6	2.145	4.0	0.019	-0.009
0.118	24.7	81.8	79.8	2.000	4.0	0.021	-0.010
0.130	27.0	81.8	79.8	2.000	4.4	0.023	-0.012
0.142	27.0	81.8	79.8	2.000	4.3	0.025	-0.013
0.154	27.0	81.8	79.8	2.000	4.3	0.027	-0.014
0.165	29.2	81.8	79.8	2.000	4.7	0.029	-0.015
0.177	29.2	81.8	79.8	2.000	4.7	0.031	-0.016
0.189	31.5	81.8	79.8	2.000	5.0	0.034	-0.017
0.201	31.5	81.8	79.6	2.145	5.0	0.036	-0.018
0.213	31.5	81.8	79.6	2.145	5.0	0.038	-0.019
0.224	31.5	81.8	79.6	2.145	5.0	0.040	-0.020
0.236	33.7	81.8	79.6	2.145	5.3	0.042	-0.021
0.252	33.7	81.8	79.6	2.145	5.3	0.045	-0.022
0.268	33.7	81.8	79.5	2.290	5.3	0.047	-0.024
0.283	36.0	81.8	79.5	2.290	5.6	0.050	-0.025
0.299	36.0	81.8	79.5	2.290	5.6	0.053	-0.027
0.315	36.0	81.8	79.5	2.290	5.6	0.056	-0.028
0.331	36.0	81.8	79.3	2.435	5.6	0.059	-0.029
0.346	38.2	81.8	79.3	2.435	5.9	0.061	-0.031
0.362	40.5	81.8	79.3	2.435	6.3	0.064	-0.032
0.378	40.5	81.8	79.3	2.435	6.2	0.067	-0.034
0.394	40.5	81.8	79.3	2.435	6.2	0.070	-0.035
0.413	42.7	81.8	79.2	2.580	6.5	0.073	-0.037
0.433	42.7	81.8	79.2	2.580	6.5	0.077	-0.038
0.453	42.7	81.8	78.9	2.870	6.5	0.080	-0.040
0.472	42.7	81.8	78.9	2.870	6.5	0.084	-0.042
0.492	45.0	81.8	78.7	3.015	6.8	0.087	-0.044
0.512	45.0	81.8	78.7	3.015	6.8	0.091	-0.045
0.531	47.2	81.8	78.6	3.160	7.1	0.094	-0.047
0.551	49.5	81.8	78.6	3.160	7.4	0.098	-0.049

Table B.2 Soil Sample TH14-01, FS-93 at 24`

0.571	49.5	81.8	78.4	3.305	7.3	0.101	-0.051
0.591	51.7	81.8	78.4	3.305	7.7	0.105	-0.052
0.610	51.7	81.8	78.3	3.450	7.6	0.108	-0.054
0.630	54.0	81.8	78.2	3.595	7.9	0.112	-0.056
0.650	54.0	81.8	78.0	3.740	7.9	0.115	-0.058
0.669	54.0	81.8	77.9	3.885	7.9	0.119	-0.059
0.689	56.2	81.8	77.7	4.030	8.2	0.122	-0.061
0.709	56.2	81.8	77.6	4.175	8.1	0.126	-0.063
0.728	60.7	81.8	77.4	4.320	8.7	0.129	-0.065
0.748	62.9	81.8	77.3	4.465	9.0	0.133	-0.066
0.768	62.9	81.8	77.1	4.610	9.0	0.136	-0.068
0.787	65.2	81.8	76.9	4.900	9.3	0.140	-0.070
0.807	65.2	81.8	76.6	5.190	9.2	0.143	-0.072
0.827	67.4	81.8	76.1	5.625	9.5	0.147	-0.073
0.846	67.4	81.8	76.0	5.770	9.5	0.150	-0.075
0.866	69.7	81.8	75.8	5.915	9.7	0.154	-0.077

Displacement (inch)	Load (lb)	p _c (psi)	p _w (psi)	p _{net} (psi)	$\sigma_d$ (psi)	ε _a	ε _r
0.000	0.0	71.5	69.7	1.7	0.0	0.000	0.000
0.012	13.5	71.5	70.8	0.7	2.2	0.002	-0.001
0.024	20.2	71.5	70.9	0.6	3.3	0.004	-0.002
0.035	22.5	71.5	70.9	0.6	3.6	0.006	-0.003
0.047	27.0	71.5	70.9	0.6	4.3	0.009	-0.004
0.059	29.2	71.5	70.9	0.6	4.7	0.011	-0.005
0.071	31.5	71.5	70.9	0.6	5.0	0.013	-0.006
0.083	33.7	71.5	70.9	0.6	5.4	0.015	-0.008
0.094	38.2	71.5	70.9	0.6	6.1	0.017	-0.009
0.106	40.5	71.5	70.9	0.6	6.4	0.019	-0.010
0.118	40.5	71.5	70.9	0.6	6.4	0.022	-0.011
0.130	42.7	71.5	70.9	0.6	6.7	0.024	-0.012
0.142	45.0	71.5	70.9	0.6	7.1	0.026	-0.013
0.154	47.2	71.5	70.9	0.6	7.4	0.028	-0.014
0.165	49.5	71.5	70.9	0.6	7.8	0.030	-0.015
0.177	49.5	71.5	70.9	0.6	7.7	0.032	-0.016
0.189	51.7	71.5	71.1	0.4	8.1	0.035	-0.017
0.201	54.0	71.5	71.1	0.4	8.4	0.037	-0.018
0.213	54.0	71.5	71.1	0.4	8.4	0.039	-0.019
0.224	56.2	71.5	70.9	0.6	8.7	0.041	-0.021
0.236	58.5	71.5	70.8	0.7	9.0	0.043	-0.022
0.252	60.7	71.5	70.9	0.6	9.4	0.046	-0.023
0.268	60.7	71.5	70.8	0.7	9.3	0.049	-0.025
0.283	62.9	71.5	70.8	0.7	9.7	0.052	-0.026
0.299	65.2	71.5	70.8	0.7	10.0	0.055	-0.027
0.315	65.2	71.5	70.6	0.9	9.9	0.058	-0.029
0.331	67.4	71.5	70.6	0.9	10.3	0.061	-0.030
0.346	69.7	71.5	70.5	1.0	10.6	0.064	-0.032
0.362	69.7	71.5	70.5	1.0	10.5	0.066	-0.033
0.378	69.7	71.5	70.3	1.2	10.5	0.069	-0.035
0.394	71.9	71.5	70.3	1.2	10.8	0.072	-0.036
0.413	71.9	71.5	70.2	1.3	10.8	0.076	-0.038
0.433	74.2	71.5	70.0	1.5	11.1	0.079	-0.040
0.453	76.4	71.5	69.9	1.6	11.3	0.083	-0.042
0.472	76.4	71.5	69.7	1.7	11.3	0.087	-0.043
0.492	76.4	71.5	69.6	1.9	11.3	0.090	-0.045
0.512	76.4	71.5	69.5	2.0	11.2	0.094	-0.047
0.531	76.4	71.5	69.3	2.2	11.2	0.097	-0.049
0.551	76.4	71.5	69.2	2.3	11.1	0.101	-0.051

Table B.3 Soil sample: TH14-02, FS-86 at 12`

0.571	76.4	71.5	69.0	2.5	11.1	0.105	-0.052
0.591	76.4	71.5	68.9	2.6	11.0	0.108	-0.054
0.610	78.7	71.5	68.6	2.9	11.3	0.112	-0.056
0.630	78.7	71.5	68.4	3.0	11.3	0.115	-0.058
0.650	78.7	71.5	68.3	3.2	11.2	0.119	-0.060
0.669	80.9	71.5	68.3	3.2	11.5	0.123	-0.061
0.689	80.9	71.5	68.4	3.0	11.4	0.126	-0.063
0.709	78.7	71.5	68.6	2.9	11.1	0.130	-0.065
0.728	78.7	71.5	68.6	2.9	11.0	0.134	-0.067
0.748	78.7	71.5	68.9	2.6	11.0	0.137	-0.069
0.768	78.7	71.5	68.9	2.6	10.9	0.141	-0.070
0.787	78.7	71.5	68.9	2.6	10.9	0.144	-0.072
0.807	78.7	71.5	69.0	2.5	10.8	0.148	-0.074
0.827	78.7	71.5	69.2	2.3	10.8	0.152	-0.076
0.846	80.9	71.5	69.0	2.5	11.1	0.155	-0.078
0.866	80.9	71.5	69.0	2.5	11.0	0.159	-0.079

## Appendix C Isotropically Consolidated Undrained Triaxial Test Results

Displacement (inch)	Load (lb)	p _c (psi)	p _w (psi)	p _{net} (psi)	$\sigma_{d}  (psi)$	ε _a	ε _r
0	0	65.0	58.6	6.4	0	0	0
0.012	31.5	65.0	58.9	6.1	5.1	0.002	-0.001
0.024	45.0	65.0	59.9	5.1	7.3	0.004	-0.002
0.035	51.7	65.0	60.0	4.9	8.4	0.006	-0.003
0.047	56.2	65.0	60.2	4.8	9.1	0.008	-0.004
0.059	60.7	65.0	60.2	4.8	9.8	0.011	-0.005
0.071	65.2	65.0	60.2	4.8	10.5	0.013	-0.006
0.083	71.9	65.0	60.2	4.8	11.5	0.015	-0.007
0.094	76.4	65.0	60.0	4.9	12.2	0.017	-0.008
0.106	80.9	65.0	59.9	5.1	12.9	0.019	-0.010
0.118	85.4	65.0	59.9	5.1	13.6	0.021	-0.011
0.130	89.9	65.0	59.7	5.2	14.3	0.023	-0.012
0.142	96.7	65.0	59.5	5.5	15.3	0.025	-0.013
0.154	103.4	65.0	59.3	5.7	16.4	0.028	-0.014
0.165	107.9	65.0	59.0	5.9	17.1	0.030	-0.015
0.177	114.7	65.0	58.7	6.2	18.1	0.032	-0.016
0.189	119.1	65.0	58.6	6.4	18.8	0.034	-0.017
0.201	125.9	65.0	58.3	6.7	19.8	0.036	-0.018
0.213	130.4	65.0	58.1	6.8	20.4	0.038	-0.019
0.224	134.9	65.0	57.7	7.3	21.1	0.040	-0.020
0.236	139.4	65.0	57.6	7.4	21.7	0.042	-0.021
0.256	143.9	65.0	57.4	7.5	22.4	0.046	-0.023
0.276	148.4	65.0	56.8	8.1	23.0	0.049	-0.025
0.295	152.9	65.0	56.6	8.4	23.6	0.053	-0.027
0.315	159.6	65.0	56.1	8.8	24.5	0.057	-0.028
0.335	164.1	65.0	55.7	9.3	25.1	0.060	-0.030
0.354	170.9	65.0	55.2	9.7	26.1	0.064	-0.032
0.374	175.4	65.0	54.8	10.2	26.6	0.067	-0.034
0.394	179.8	65.0	54.2	10.7	27.2	0.071	-0.035
0.413	186.6	65.0	53.9	11.0	28.1	0.074	-0.037
0.433	191.1	65.0	53.4	11.6	28.7	0.078	-0.039
0.453	193.3	65.0	52.9	12.0	28.9	0.081	-0.041
0.472	195.6	65.0	52.6	12.3	29.2	0.085	-0.042
0.492	197.8	65.0	52.3	12.6	29.4	0.088	-0.044
0.512	200.1	65.0	52.1	12.9	29.6	0.092	-0.046
0.531	204.6	65.0	51.6	13.3	30.1	0.095	-0.048
0.551	206.8	65.0	51.3	13.6	30.4	0.099	-0.049

Table C.1 Soil sample: TH14-03, FS-82 at 17

0.571	209.1	65.0	51.0	13.9	30.6	0.102	-0.051
0.591	211.3	65.0	50.8	14.2	30.8	0.106	-0.053
0.610	213.6	65.0	50.5	14.5	31.0	0.110	-0.055
0.630	213.6	65.0	50.2	14.8	30.9	0.113	-0.057
0.650	215.8	65.0	50.0	14.9	31.1	0.117	-0.058
0.669	215.8	65.0	49.7	15.2	30.9	0.120	-0.060
0.689	215.8	65.0	49.6	15.4	30.8	0.124	-0.062
0.709	218.1	65.0	49.4	15.5	31.0	0.127	-0.064
0.728	218.1	65.0	49.4	15.5	30.9	0.131	-0.065
0.748	220.3	65.0	49.3	15.7	31.1	0.134	-0.067
0.768	222.6	65.0	49.2	15.8	31.3	0.138	-0.069
0.787	224.8	65.0	49.0	16.0	31.4	0.141	-0.071
0.807	224.8	65.0	48.9	16.1	31.3	0.145	-0.072
0.827	224.8	65.0	48.7	16.2	31.2	0.148	-0.074
0.846	224.8	65.0	48.6	16.4	31.1	0.152	-0.076
0.866	224.8	65.0	48.4	16.5	30.9	0.155	-0.078

Displacement (inch)	Load (lb)	p _c (psi)	p _w (psi)	p _{net} (psi)	$\sigma_{d}$ (psi)	ε _a	ε _r
0	0	77.4	64.4	13.1	0	0	0
0.020	56.2	77.4	69.5	8.0	9.1	0.003	-0.002
0.039	74.2	77.4	70.5	7.0	12.0	0.007	-0.003
0.059	89.9	77.4	70.6	6.8	14.5	0.010	-0.005
0.079	107.9	77.4	70.3	7.1	17.3	0.014	-0.007
0.098	128.1	77.4	69.7	7.7	20.5	0.017	-0.009
0.118	152.9	77.4	68.9	8.6	24.4	0.021	-0.010
0.138	179.8	77.4	67.9	9.6	28.6	0.024	-0.012
0.157	209.1	77.4	66.6	10.9	33.1	0.028	-0.014
0.177	245.0	77.4	65.1	12.3	38.7	0.031	-0.016
0.197	281.0	77.4	63.7	13.8	44.2	0.035	-0.017
0.217	314.7	77.4	62.2	15.2	49.3	0.038	-0.019
0.236	353.0	77.4	60.8	16.7	55.1	0.042	-0.021
0.256	395.7	77.4	59.0	18.4	61.5	0.045	-0.023
0.276	442.9	77.4	57.1	20.3	68.6	0.049	-0.024
0.295	494.6	77.4	55.1	22.3	76.3	0.052	-0.026
0.315	546.3	77.4	52.9	24.5	84.0	0.056	-0.028
0.335	598.0	77.4	50.6	26.8	91.6	0.059	-0.030
0.354	654.2	77.4	48.1	29.3	99.9	0.063	-0.031
0.374	712.6	77.4	45.7	31.8	108.4	0.066	-0.033
0.394	762.1	77.4	43.5	33.9	115.5	0.070	-0.035
0.413	818.3	77.4	41.0	36.4	123.5	0.073	-0.037
0.433	874.5	77.4	38.4	39.0	131.5	0.077	-0.038
0.453	928.5	77.4	36.3	41.2	139.1	0.080	-0.040
0.472	982.4	77.4	33.9	43.5	146.6	0.084	-0.042
0.492	1038.6	77.4	31.6	45.8	154.4	0.087	-0.044
0.512	1090.3	77.4	29.1	48.3	161.5	0.091	-0.045
0.531	1144.3	77.4	26.5	50.9	168.8	0.094	-0.047
0.551	1200.5	77.4	23.9	53.5	176.4	0.098	-0.049
0.571	1267.9	77.4	21.9	55.5	185.6	0.101	-0.051
0.591	1299.4	77.4	19.6	57.9	189.5	0.105	-0.052
0.610	1335.4	77.4	17.5	59.9	194.0	0.108	-0.054
0.630	1366.8	77.4	15.7	61.8	197.8	0.112	-0.056
0.650	1396.1	77.4	14.1	63.4	201.2	0.115	-0.058
0.669	1425.3	77.4	12.6	64.8	204.6	0.119	-0.059
0.689	1447.8	77.4	11.2	66.3	207.0	0.122	-0.061
0.709	1454.5	77.4	9.7	67.7	207.1	0.126	-0.063
0.728	1411.8	77.4	9.0	68.4	200.2	0.129	-0.065
0.748	1423.0	77.4	8.8	68.6	201.0	0.133	-0.066

Table C.2 Soil sample: TH14-03, FS-84 at 27

0.768	1423.0	77.4	8.7	68.7	200.2	0.136	-0.068
0.787	1425.3	77.4	8.4	69.0	199.7	0.140	-0.070
0.807	1434.3	77.4	8.3	69.2	200.2	0.143	-0.072
0.827	1441.0	77.4	8.0	69.5	200.3	0.147	-0.073
0.846	1450.0	77.4	7.8	69.6	200.7	0.150	-0.075
0.866	1459.0	77.4	9.1	68.3	201.1	0.154	-0.077

Displacement (inch)	Load (lb)	p _c (psi)	p _w (psi)	p _{net} (psi)	$\sigma_d$ (psi)	ε _a	ε _r
0.000	0.0	59.9	49.7	10.2	0.0	0.000	0.000
0.012	33.7	59.9	51.2	8.7	5.5	0.002	-0.001
0.024	45.0	59.9	52.3	7.5	7.3	0.004	-0.002
0.035	54.0	59.9	53.1	6.8	8.7	0.006	-0.003
0.047	60.7	59.9	53.7	6.2	9.8	0.008	-0.004
0.059	69.7	59.9	54.2	5.7	11.2	0.010	-0.005
0.071	76.4	59.9	54.8	5.1	12.3	0.012	-0.006
0.083	83.2	59.9	54.2	5.7	13.4	0.014	-0.007
0.094	89.9	59.9	53.8	6.1	14.4	0.016	-0.008
0.106	94.4	59.9	53.9	5.9	15.1	0.018	-0.009
0.118	101.2	59.9	54.1	5.8	16.1	0.021	-0.010
0.130	107.9	59.9	53.5	6.4	17.2	0.023	-0.011
0.142	116.9	59.9	53.1	6.8	18.6	0.025	-0.012
0.154	125.9	59.9	52.9	7.0	20.0	0.027	-0.013
0.165	134.9	59.9	52.6	7.3	21.3	0.029	-0.014
0.177	141.6	59.9	52.5	7.4	22.4	0.031	-0.015
0.189	150.6	59.9	52.1	7.8	23.7	0.033	-0.016
0.201	157.4	59.9	51.5	8.4	24.7	0.035	-0.017
0.213	164.1	59.9	51.2	8.7	25.8	0.037	-0.018
0.224	168.6	59.9	50.9	9.0	26.4	0.039	-0.019
0.236	175.4	59.9	50.9	9.0	27.4	0.041	-0.021
0.256	188.8	59.9	50.2	9.7	29.4	0.044	-0.022
0.276	193.3	59.9	49.4	10.4	30.0	0.048	-0.024
0.295	200.1	59.9	48.9	11.0	30.9	0.051	-0.026
0.315	211.3	59.9	48.1	11.7	32.6	0.055	-0.027
0.335	218.1	59.9	47.6	12.3	33.5	0.058	-0.029
0.354	229.3	59.9	47.0	12.9	35.1	0.062	-0.031
0.374	236.0	59.9	46.4	13.5	36.0	0.065	-0.032
0.394	245.0	59.9	45.8	14.1	37.2	0.068	-0.034
0.413	249.5	59.9	45.4	14.5	37.7	0.072	-0.036
0.433	254.0	59.9	44.8	15.1	38.3	0.075	-0.038
0.453	260.8	59.9	44.2	15.7	39.2	0.079	-0.039
0.472	263.0	59.9	43.8	16.1	39.3	0.082	-0.041
0.492	267.5	59.9	43.4	16.5	39.9	0.085	-0.043
0.512	272.0	59.9	43.1	16.8	40.4	0.089	-0.044
0.531	281.0	59.9	42.6	17.3	41.6	0.092	-0.046
0.551	285.5	59.9	41.9	18.0	42.1	0.096	-0.048
0.571	292.3	59.9	41.3	18.6	42.9	0.099	-0.050
0.591	294.5	59.9	41.0	18.9	43.1	0.103	-0.051

Table C.3 Soil sample: TH14-03, FS-83 at 22'

0.610	296.7	59.9	40.7	19.1	43.2	0.106	-0.053
0.630	299.0	59.9	40.2	19.7	43.4	0.109	-0.055
0.650	303.5	59.9	39.9	20.0	43.9	0.113	-0.056
0.669	305.7	59.9	39.7	20.2	44.0	0.116	-0.058
0.689	310.2	59.9	39.6	20.3	44.5	0.120	-0.060
0.709	317.0	59.9	39.3	20.6	45.3	0.123	-0.062
0.728	319.2	59.9	38.9	21.0	45.4	0.127	-0.063
0.748	321.5	59.9	38.6	21.3	45.6	0.130	-0.065
0.768	323.7	59.9	38.4	21.5	45.7	0.133	-0.067
0.787	323.7	59.9	38.3	21.6	45.5	0.137	-0.068
0.807	323.7	59.9	38.1	21.8	45.4	0.140	-0.070
0.827	326.0	59.9	38.0	21.9	45.5	0.144	-0.072
0.846	326.0	59.9	37.8	22.0	45.3	0.147	-0.074
0.866	326.0	59.9	37.7	22.2	45.1	0.150	-0.075

Displacement (inch)	Load (lb)	p _c (psi)	p _w (psi)	p _{net} (psi)	$\sigma_d$ (psi)	ε _a	ε _r
0.000	0.0	70.0	49.7	20.3	0.0	0.000	0.000
0.020	76.4	70.0	56.0	14.1	12.4	0.003	-0.002
0.039	101.2	70.0	57.7	12.3	16.4	0.007	-0.003
0.059	125.9	70.0	58.3	11.7	20.3	0.010	-0.005
0.079	143.9	70.0	58.4	11.6	23.1	0.014	-0.007
0.098	161.9	70.0	58.4	11.6	25.9	0.017	-0.009
0.118	175.4	70.0	58.0	12.0	28.0	0.021	-0.010
0.138	188.8	70.0	57.7	12.3	30.0	0.024	-0.012
0.157	200.1	70.0	57.3	12.8	31.7	0.028	-0.014
0.177	213.6	70.0	56.7	13.3	33.7	0.031	-0.016
0.197	227.1	70.0	56.0	14.1	35.7	0.035	-0.017
0.217	240.5	70.0	55.2	14.8	37.7	0.038	-0.019
0.236	249.5	70.0	54.7	15.4	39.0	0.042	-0.021
0.256	260.8	70.0	54.4	15.7	40.6	0.045	-0.023
0.276	269.8	70.0	53.5	16.5	41.8	0.049	-0.024
0.295	278.8	70.0	52.9	17.1	43.1	0.052	-0.026
0.315	283.3	70.0	52.3	17.7	43.6	0.056	-0.028
0.335	290.0	70.0	51.9	18.1	44.5	0.059	-0.030
0.354	296.7	70.0	51.3	18.7	45.3	0.063	-0.031
0.374	303.5	70.0	50.8	19.3	46.2	0.066	-0.033
0.394	310.2	70.0	50.0	20.0	47.0	0.070	-0.035
0.413	319.2	70.0	49.4	20.6	48.2	0.073	-0.037
0.433	323.7	70.0	49.0	21.0	48.7	0.077	-0.038
0.453	326.0	70.0	48.6	21.5	48.9	0.080	-0.040
0.472	330.5	70.0	48.3	21.8	49.3	0.084	-0.042
0.492	332.7	70.0	48.0	22.0	49.5	0.087	-0.044
0.512	337.2	70.0	47.6	22.5	50.0	0.091	-0.045
0.531	339.5	70.0	47.3	22.8	50.1	0.094	-0.047
0.551	344.0	70.0	47.0	23.1	50.6	0.098	-0.049
0.571	346.2	70.0	46.7	23.3	50.7	0.101	-0.051
0.591	350.7	70.0	46.3	23.8	51.2	0.105	-0.052
0.610	355.2	70.0	46.1	23.9	51.6	0.108	-0.054
0.630	357.4	70.0	45.8	24.2	51.8	0.111	-0.056
0.650	359.7	70.0	45.7	24.4	51.9	0.115	-0.057
0.669	361.9	70.0	45.5	24.5	52.0	0.118	-0.059
0.689	364.2	70.0	45.2	24.8	52.1	0.122	-0.061
0.709	366.4	70.0	44.8	25.2	52.2	0.125	-0.063
0.728	368.7	70.0	44.5	25.5	52.3	0.129	-0.064
0.748	370.9	70.0	44.4	25.7	52.4	0.132	-0.066

Table C.4 Soil sample: TH14-03, FS-83 at 21'

0.768	373.2	70.0	44.4	25.7	52.5	0.136	-0.068
0.787	377.7	70.0	44.2	25.8	53.0	0.139	-0.070
0.807	379.9	70.0	44.1	26.0	53.1	0.143	-0.071
0.827	382.2	70.0	43.9	26.1	53.2	0.146	-0.073
0.846	384.4	70.0	43.8	26.2	53.3	0.150	-0.075
0.866	386.7	70.0	43.6	26.4	53.3	0.153	-0.077

Displacement (inch)	Load (lb)	p _c (psi)	p _w (psi)	p _{net} (psi)	$\sigma_d$ (psi)	ε _a	ε _r
0.000	0.0	81.2	50.5	30.7	0.0	0.000	0.000
0.020	83.2	81.2	58.4	22.8	14.3	0.004	-0.002
0.039	103.4	81.2	61.8	19.4	17.7	0.007	-0.004
0.059	112.4	81.2	63.4	17.8	19.2	0.011	-0.006
0.079	121.4	81.2	64.4	16.8	20.6	0.015	-0.007
0.098	132.6	81.2	65.4	15.8	22.5	0.019	-0.009
0.118	139.4	81.2	66.0	15.2	23.5	0.022	-0.011
0.138	148.4	81.2	66.1	15.1	24.9	0.026	-0.013
0.157	157.4	81.2	66.4	14.8	26.3	0.030	-0.015
0.177	166.4	81.2	66.3	14.9	27.7	0.033	-0.017
0.197	173.1	81.2	66.1	15.1	28.8	0.037	-0.019
0.217	182.1	81.2	66.1	15.1	30.1	0.041	-0.020
0.236	186.6	81.2	66.0	15.2	30.8	0.044	-0.022
0.256	193.3	81.2	65.8	15.4	31.8	0.048	-0.024
0.276	197.8	81.2	65.7	15.5	32.4	0.052	-0.026
0.295	204.6	81.2	65.5	15.7	33.3	0.056	-0.028
0.315	211.3	81.2	65.3	16.0	34.3	0.059	-0.030
0.335	215.8	81.2	65.0	16.2	34.9	0.063	-0.031
0.354	220.3	81.2	64.7	16.5	35.5	0.067	-0.033
0.374	224.8	81.2	64.2	17.0	36.1	0.070	-0.035
0.394	231.6	81.2	63.9	17.3	37.0	0.074	-0.037
0.413	233.8	81.2	63.8	17.4	37.2	0.078	-0.039
0.433	238.3	81.2	63.4	17.8	37.8	0.081	-0.041
0.453	240.5	81.2	63.2	18.0	38.0	0.085	-0.043
0.472	242.8	81.2	63.1	18.1	38.2	0.089	-0.044
0.492	247.3	81.2	62.9	18.3	38.7	0.093	-0.046
0.512	247.3	81.2	62.8	18.4	38.6	0.096	-0.048
0.531	251.8	81.2	62.5	18.7	39.1	0.100	-0.050
0.551	256.3	81.2	62.2	19.0	39.6	0.104	-0.052
0.571	256.3	81.2	61.9	19.3	39.5	0.107	-0.054
0.591	260.8	81.2	61.9	19.3	40.0	0.111	-0.056
0.610	265.3	81.2	61.9	19.3	40.5	0.115	-0.057
0.630	265.3	81.2	61.5	19.7	40.3	0.119	-0.059
0.650	269.8	81.2	61.3	19.9	40.9	0.122	-0.061
0.669	269.8	81.2	61.3	19.9	40.7	0.126	-0.063
0.689	269.8	81.2	61.3	19.9	40.5	0.130	-0.065
0.709	272.0	81.2	61.0	20.2	40.7	0.133	-0.067
0.728	272.0	81.2	61.0	20.2	40.5	0.137	-0.069
0.748	272.0	81.2	61.0	20.2	40.3	0.141	-0.070

Table C.5 Soil sample: TH14-03, FS-83 at 20'

0.768	274.3	81.2	60.9	20.3	40.5	0.144	-0.072
0.787	274.3	81.2	60.9	20.3	40.3	0.148	-0.074
0.807	274.3	81.2	60.9	20.3	40.1	0.152	-0.076
0.827	276.5	81.2	60.8	20.4	40.3	0.156	-0.078
0.846	276.5	81.2	60.8	20.4	40.1	0.159	-0.080
0.866	276.5	81.2	60.8	20.4	39.9	0.163	-0.081