

DESIGN APPROVAL

OLD STEESE HIGHWAY RECONSTRUCTION

PROJECT NO. Z624870000

This Design Study Report replaces the project's June 2017 Design Study Report in its entirety.

Requested by:

Russell M. Johnson, P.E. Engineering Manager Northern Region 11/30/2020

Date

Design Approval Granted:

Soupplus

Sarah E. Schacher, P.E. Preconstruction Engineer Northern Region 12/3/2020

Date

Distribution: NR Design Directive 20-01 Distribution

DESIGN STUDY REPORT FOR

OLD STEESE HIGHWAY RECONSTRUCTION

PROJECT NO. Z624870000

PREPARED BY: Gary L. Jenkins II, P.E.

ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES NORTHERN REGION DESIGN AND ENGINEERING SERVICES NOVEMBER 2020

OLD STEESE HIGHWAY RECONSTRUCTION PROJECT NO. Z624870000

Table of Contents

LIST	OF ACRONYMS	. iii
1.0	INTRODUCTION/HISTORY	1
2.0	PROJECT DESCRIPTION	2
3.0	DESIGN STANDARDS	
4.0	DESIGN EXCEPTIONS AND DESIGN WAIVERS	5
5.0	DESIGN ALTERNATIVES	
6.0	PREFERRED DESIGN ALTERNATIVE	
7.0	3R ANALYSIS	
8.0	TRAFFIC ANALYSIS	
9.0	HORIZONTAL & VERTICAL ALIGNMENT	
10.0	TYPICAL SECTION(S)	12
11.0	PAVEMENT DESIGN	15
12.0	PRELIMINARY BRIDGE LAYOUT	
13.0	RIGHT-OF-WAY REQUIREMENTS	
14.0	MAINTENANCE CONSIDERATIONS	
15.0	MATERIAL SOURCES	
16.0	UTILITY RELOCATION & COORDINATION	
17.0	ACCESS CONTROL FEATURES	
18.0	PEDESTRIAN/BICYCLE (ADA) PROVISIONS	
19.0	SAFETY IMPROVEMENTS	
20.0	INTELLIGENT TRANSPORTATION SYSTEM FEATURES	20
21.0	DRAINAGE	
22.0	SOIL CONDITIONS	
23.0	EROSION AND SEDIMENT CONTROL	
24.0	ENVIRONMENTAL COMMITMENTS	
25.0	WORK ZONE TRAFFIC CONTROL	
26.0	VALUE ENGINEERING	23
27.0	COST ESTIMATE	24

LIST OF FIGURES

LOCATION PROJECT LIMITS	Figure 1
3RD/MINNIE/OLD STEESE INTERSECTION IMPROVEMENTS	
TYPICAL SECTION STAGE 1	
TYPICAL SECTION STAGE 2	

LIST OF TABLES

LOS CRITERIA FOR SIGNALIZED INTERSECTIONS	Table 1
LOS CRITERIA FOR UN-SIGNALIZED TWO-WAY STOP CONTROLLED INTERSECTION	Table 2
STAGE 1 INTERSECTION LOS AND DELAY, EXISTING ROAD GEOMETRY & CONFIGURATION	Table 3
STAGE 1 OVERALL INTERSECTION LOS AND DELAY, IMPROVED ROAD GEOMETRY & INTERSECTIONS	Table 4
STAGE 2 INTERSECTION LOS AND DELAY, EXISTING ROAD GEOMETRY & CONFIGURATION	Table 5
SUMMARY OF 5-YEAR CRASH RATES ON OLD STEESE CORRIDOR	Table 6
FREQUENCY OF CRASHES BY TYPE, 2013-2017 CRASH DATA	Table 7
PRELIMINARY ESTIMATED PROJECT COSTS	Table 8

LIST OF APPENDICES

AERIAL PROJECT CORRIDOR GRAPHICS	Appendix A
DESIGN CRITERIA	Appendix B
ENVIRONMENTAL DOCUMENT	Appendix C
PAVEMENT DESIGN	Appendix D
PROPOSED ROW ACQUISITIONS	

LIST OF ACRONYMS

AADT	Average Annual Daily Traffic	HM
AASHTO	American Association of State	HPO
	Highway and Transportation	
	Officials	HPS
AAC	Alaska Administrative Code	IRI
ACGP	Alaska Construction General	ITS
	Permit	
ACS	Alaska Communication System	LEI
ADA	Americans with Disabilities	LOS
	Act	MO
AHDM	Alaska Highway Drainage	
	Manual	mpł
APDES	Alaska Pollutant Discharge	MT
	Elimination System	
ARP	Alaska Renewable Pavement	MU
AS	Alaska Statute	
ATB	asphalt treated base	NE
ATM	Alaska Traffic Manual	NM
BMP	Best Management Practice	- 1-1-
City	City of Fairbanks	PDI
CMP	corrugated metal pipe	
CPEP	corrugated polyethylene pipe	PGI
DEC	State of Alaska Department of	1 01
220	Environmental Conservation	PIP
DOT&PF	Alaska Department of	RIR
Dorwin	Transportation and Public	RO
	Facilities	SEA
DSR	Design Study Report	SF
ESAL	Equivalent Single Axle Load	SR
ESCP	Erosion and Sediment Control	STA
2501	Plan	SW
FHWA	Federal Highway	~
	Administration	TCI
FAST	Fairbanks Area Surface	TIP
	Transportation Planning	
FNG	Fairbanks Natural Gas	TM
FNSB	Fairbanks North Star Borough	TO
GC	General Commercial	TW
GCI	General Communications, Inc.	UC
GIS	Geographic Information	USA
	System	USC
GP	General Policy Statement	
GU	General Use	vpd
GVEA	Golden Valley Electrical	· r ·
	Association	
HCM	Highway Capacity Manual	
	5 ···· , ··· , ····	

	hat min anglalt
HMA	hot mix asphalt
HPCM	Alaska Highway
LIDC	Preconstruction Manual
HPS	high pressure sodium
IRI	International Roughness Index
ITS	Intelligent Transportation
	System
LED	light emitting diode
LOS	Level of Service
MOU	Memorandum of
	Understanding
mph	miles per hour
MTP	Metropolitan Transportation
	Plan
MUTCD	Manual on Uniform Traffic
	Control Devices
NESC	National Electric Safety Code
NMTP	Non-Motorized Transportation
	Plan
PDM	Alaska Flexible Pavement
	Design Manual
PGDHS	A Policy on Geometric Design
	of Highways and Streets
PIP	Public Information Plan
RIRO	right-turn in/right-turn out
ROW	right-of-way
SEA	Systems Engineering Analysis
SF	square foot
SR	Short Range
STA	Station
SWPPP	Storm Water Pollution
5,0111	Prevention Plan
ТСР	Traffic Control Plan
TIP	Transportation Improvement
111	Program
TMP	Traffic Management Plan
TOP	Traffic Operations Plan
TWLTL	Two-Way Left-Turn Lane
	-
UCR	Utility Conflict Report
USA	Utility Services of Alaska
USGS	United States Geological
1	Survey
vpd	vehicles per day

1.0 INTRODUCTION/HISTORY

This Design Study Report (DSR) is an update and replaces the previously approved June 2017 Design Study Report (DSR). Reductions in project funding have recently driven management decisions to modify and reduce the project's previous scope and design. The current design has been developed using a systematic process that considered the needs of the project while striving to minimize impacts to private/business properties. This DSR documents the current preferred design.

The State of Alaska Department of Transportation and Public Facilities (DOT&PF), Northern Region, is proposing a project to reconstruct Old Steese Highway between Minnie/3rd Street intersection and the Johansen Expressway in Fairbanks, Alaska. Figure 1 illustrates the project limits.

Over the past 20 years, the project area has experienced rapid commercial and residential development that has increased traffic volumes and raised capacity and safety concerns. This development is illustrated in Figure 1 which shows the project area in 1996 (left) and 2017 (right). As a result of the development, the Old Steese Highway experiences heavy congestion, poor intersection performance during peak traffic periods, and crash rates at some intersections that exceed statewide averages. Traffic growth is expected to continue due to availability of vacant commercial property in the project vicinity.

Figure 1: Location Project Limits – 1996 (left) and 2017 (right)

DOT&PF, in coordination with Fairbanks Area Surface Transportation Planning (FAST), included Old Steese Highway as a short-term priority in the 2015-2040 Metropolitan Transportation Plan (MTP) Update, published in January of 2015. The MTP recommended two projects to address growing concerns along Old Steese Highway:

- Short Range (SR) -1, Old Steese Highway Wendell Bridge to Trainor Gate Road; and
- SR-43, Old Steese Highway Upgrade (included upgrades from Trainor Gate Road to Johansen Expressway).

In March of 2016, SR-1 and SR-43 were combined to form the Old Steese Highway Reconstruction project, which was approved in Administrative Modification #2 of the FAST 2015-2018 Transportation Improvement Program (TIP). The combined project addresses congestion, safety, pedestrian/bicycle, and maintenance issues along the Old Steese Highway corridor.

2.0 PROJECT DESCRIPTION

2.1 Location

Old Steese Highway is a secondary north-south corridor to the Steese Expressway in northeast Fairbanks, Alaska. The project corridor is approximately one mile long. It is located within Sections 2 and 11, Township 001 S, Range 001 W, Fairbanks Meridian on United States Geological Survey's (USGS) Quad Map Fairbanks D-2 SE. The approximate center-of-project coordinates are Latitude 64° 51' 04" N, Longitude -147° 41' 37" W in the Fairbanks North Star Borough (FNSB).

2.2 Existing Facilities

2.2.1 Existing Roadway Facilities

Old Steese Highway is identified by DOT&PF as Coordinated Data System (CDS) route number 150110. It is classified as an urban minor arterial, according to the DOT&PF Statewide Functional Classification Geographic Information System (GIS) Map. The function of an arterial is to provide mobility so traffic can move from one place to another quickly and safely. While arterials typically have a low degree of access to promote through traffic, minor arterials usually have greater access than major arterials. Old Steese Highway serves primarily industrial and commercial land uses by providing direct access to businesses adjacent to the highway and directing traffic to and from collector streets that serve the greater commercial district, nearby businesses, and residential communities.

Three typical roadway configurations exist along Old Steese Highway:

- <u>3rd Street to Kutter Road.</u> A five-lane road consisting of two 12-foot lanes in the northbound and southbound directions and a center 12-foot Two-Way Left-Turn Lane (TWLTL) with concrete curb and gutter along the entire segment. There are no existing shoulders in this segment.
- <u>Kutter Road to Helmericks Avenue/Seekins Ford Drive.</u> One lane in each direction is dropped approaching the Trainor Gate Road intersection from the south, resulting in a three-lane road consisting of one 12-foot lane in each direction and a center 12-foot TWLTL. The curb and gutter from the southern end of the project corridor ends at the Trainor Gate Road intersection and transitions into 8-foot wide paved shoulders.

• <u>Helmericks Avenue/Seekins Ford Drive to Johansen Expressway.</u> North of the Helmericks Avenue/Seekins Ford Drive intersection, the center TWLTL along Old Steese Highway becomes a dedicated left turn bay alternating between northbound and southbound traffic. Traffic is separated by a raised asphalt median between 2 and 4 feet wide with concrete curb and gutter. The existing paved shoulders are between 4 and 6 feet wide.

Thirteen intersections are located within the project corridor: seven are stop-controlled, five are traffic signals, and one is an at-grade signalized railroad crossing. The signalized intersections are:

- Old Steese Highway and 3rd Street/Minnie Street;
- Old Steese Highway and College Road;
- Old Steese Highway and Bentley Trust Road;
- Old Steese Highway and Railroad Crossing (at Trainor Gate Road);
- Old Steese Highway and Helmericks Avenue/Seekins Ford Drive; and
- Old Steese Highway and Johansen Expressway.

2.2.2 Existing Pedestrian and Bicycle Facilities

From 3rd Street to Trainor Gate Road pedestrian facilities include six-foot wide concrete sidewalks on each side of the Old Steese Highway. This section lacks shoulders resulting in bicyclists sharing the sidewalks with pedestrians or the road with vehicles.

North of Trainor Gate Road, 8-foot wide paved shoulders accommodate bicyclists. There are no dedicated pedestrian facilities (sidewalks) which forces pedestrians to use the road shoulders. All signalized intersections within the project area have pedestrian crosswalks.

2.2.3 Existing Illumination

Old Steese Highway is currently illuminated along its entire length. Lighting consists of a combination of stand-alone poles, mast arms attached to power poles, and luminaires integrated into intersection signal poles. All lighting is spaced between 130 and 150 feet apart. South of Trainor Gate Road, the luminaires are staggered on the east and west sides of the highway. From Bentley Trust Road to Johansen Expressway, the luminaires are consistent along the west side of Old Steese Highway and are located sporadically along the east side of the highway. DOT&PF owns the illumination system, but the City operates, maintains, and pays the electric cost.

2.3 Purpose and Need

The purpose of this project is to improve operations, capacity (reduce delay), and safety for motorists, pedestrians, and bicyclists traveling through the Old Steese Highway corridor. Project needs are:

 <u>Improve the Level of Service (LOS)</u> – Based on traffic data collected in 2014 and projected to 2016 (with the exception of the Old Steese Highway/Chase Drive intersection, which was collected in 2016), the intersections of Old Steese Highway with Trainor Gate Road, Fred Meyer Drive/Blair Road, Helmericks Avenue/Seekins Ford Drive, and Johansen Expressway have at least one approach that operates at LOS D or worse. Several other intersections, including 3rd Street/Minnie Street, College Road, Chase Drive, and Sadlers Way, operate at LOS C. DOT&PF targets a design year LOS of C or better for stop-controlled and signal-controlled intersections. If capacity is not increased, intersection performance will deteriorate to below DOT&PF standards prior to the design year.

- <u>Improve Intersection Safety</u> According to the traffic crash data from 2006 to 2010 (north of Trainor Gate Road) and 2008 to 2012 (south of Trainor Gate Road), the intersections at College Road, Trainor Gate Road, Helmericks Avenue/Seekins Ford Drive, and Johansen Expressway exceed the five-year statewide average crash rates. The Trainor Gate Road intersection exceeds the statewide average by over four times. Left unaddressed, increased traffic volumes and congestion will likely contribute to worsening safety conditions along the project corridor.
- <u>Improve Bicycle Accommodations and Pedestrian Facilities</u> North of Trainor Gate Road lacks dedicated pedestrian facilities. South of Trainor Gate Road has sidewalks and intersection crosswalks but lacks bicycle accommodations. Missing and discontinuous dedicated pedestrian and bicycle accommodations discourage use and limit continued growth and economic development in the project vicinity. It also pushes non-motorized traffic onto the roadway and/or shoulders.

2.4 Proposed Design & Improvements

The project has been separated into two segments (identified as Stages in this report) as depicted in Appendix A.

<u>Stage 1</u>: Full roadway reconstruction between Kutter Road and the Johansen Expressway. Project improvements include:

- a. Widening the roadway by the addition of one northbound and one southbound through lane north of Kutter Road.
- b. 4-foot wide paved shoulders.
- c. Adding 7-foot wide sidewalks to both sides of the road.
- d. Installing a new traffic signal at the Fred Meyer Drive/Blair Road intersection.
- e. Signal upgrades at the Helmericks Avenue/Seekins Drive and Johansen Expressway intersections.
- f. Upgrade the street lighting to meet current design standards.
- g. Drainage and storm drain improvements.
- h. New signs.
- i. Re-paving the road.
- Stage 2: Pulverize and re-pave the road between 3rd Street and Kutter Road. Existing sidewalks and curb and gutter will remain (not be replaced). Project improvements include:
 - a. New signs.
 - b. Re-paving the road.
 - c. Re-striping the road to add 4-foot wide paved shoulders.

3.0 DESIGN STANDARDS

Design standards and guidelines that apply to the Old Steese Highway Reconstruction project are contained in the following publications:

Standards:

- <u>Americans with Disabilities (ADA) Standards for Transportation Facilities</u>, United States Department of Transportation, 2006.
- <u>Americans with Disabilities Act (ADA) Standards for Accessible Design</u>, United States Department of Justice, September 15, 2010.
- <u>A Policy on Geometric Design of Highways and Streets</u> (PGDHS or "Green Book"), American Association of State Highway and Transportation Officials (AASHTO), 2011.
- <u>Alaska Flexible Pavement Design Manual</u> (PDM), DOT&PF, 2004.
- Alaska Highway Drainage Manual (AHDM), DOT&PF, 2006.
- <u>Alaska Highway Preconstruction Manual</u> (HPCM), DOT&PF.
- <u>Alaska Traffic Manual</u> (ATM), consisting of the <u>Manual on Uniform Traffic Control</u> <u>Devices</u> (MUTCD), U.S. Department of Transportation, Federal Highway Administration (FHWA), 2009 as amended, and the <u>Alaska Traffic Manual Supplement</u>, State of Alaska, DOT&PF, 2016.
- Alaska Utilities Manual, DOT&PF, 2014
- Guide for the Planning, Design, and Operation of Pedestrian Facilities, AASHTO, 2004.
- <u>IES Recommended Practice for Roadway Lighting (RP-8-14)</u>, Illuminating Engineering Society (IES), 2014.
- <u>Roadside Design Guide</u>, 4th Edition, AASHTO, 2011.

Guidelines:

• <u>Proposed Accessibility Standards for Pedestrian Facilities in the Public Right of Way</u>, United States Access Board, July 26, 2011.

See Appendix B for the project's design criteria.

4.0 DESIGN EXCEPTIONS AND DESIGN WAIVERS

None.

5.0 DESIGN ALTERNATIVES

There are no design alternatives. The typical roadway section and design features have been set, eliminating design alternatives. They include:

- Intersection configurations and geometry
- Widths for vehicle lanes, shoulders and sidewalks.
- Keeping existing utilities overhead. The current design will not convert overhead utilities to underground.
- Roadway drainage design is a combination of underground storm drain systems in coordination with above ground ditches and infiltration basins.
- LED street illumination.

6.0 PREFERRED DESIGN ALTERNATIVE

See Section 2.4 Proposed Design & Improvements.

7.0 **3R ANALYSIS**

This Section does not apply to this project.

8.0 TRAFFIC ANALYSIS

A Traffic and Safety Analysis (TSA) has been conducted and was used to assist DOT&PF in selecting the preferred alternative. Using existing and projected traffic volumes the analysis developed and evaluated alternatives to improve traffic operations (reduce congestion and delay experienced by motorists traveling through the project corridor) and improve safety. The analysis compared the existing roadway configuration against potential alternatives.

Recent population growth combined with several big box retail stores attracting consumers has significantly increased traffic congestion along the project corridor.

The greatest congestion and travel delays along the project corridor occur at intersections. Intersection performance is analyzed using the Level of Service (LOS) rating system, which is based on vehicle delays during peak traffic hours. DOT&PF targets LOS C or better. When LOS C cannot cost effectively be achieved, a LOS D is determined to be acceptable.

LOS criteria are defined in Tables 1 and 2 for signalized and un-signalized intersections.

Level of Service (LOS)	Average Delay (sec/veh)	General Description
А	<u><</u> 10	Free Flow
В	> 10-20	Stable Flow (slight delays)
С	> 20-35	Stable Flow (acceptable delays)
D	> 35-55	Approaching unstable flow (tolerable delay, occasionally wait through more than one signal cycle before proceeding)
E	> 55-80	Unstable flow (intolerable delay)
F	> 80	Forced flow (jammed)

Table 1: LOS Criteria for Signalized Intersections (Average of All Movements)

Table 2: LOS Criteria for Un-signalized Two-Way Stop Controlled Intersection	Table 2: LOS	Criteria for	Un-signalized	Two-Way St	top Controlled	Intersection
--	--------------	--------------	---------------	------------	----------------	--------------

Level of	Worst	
Service	Approach	General Description
(LOS)	Delay (sec/veh)	
А	<u>< 10</u>	Free Flow
В	> 10-15	Stable Flow (slight delays)
С	> 15-25	Stable Flow (acceptable delays)
D	> 25-35	Approaching unstable flow (tolerable delay, occasionally wait through more than one signal cycle before proceeding)
Е	> 35-50	Unstable flow (intolerable delay)
F	> 50	Forced flow (jammed)

In addition to Level of Service, crash rates were compared to the statewide average at intersections and segments of similar configurations. Crashes were also sorted by crash type to identify any trends and/or abnormalities that indicate possible existing geometric configuration(s) that may be contributing to the number/type of crashes.

<u>Stage 1 Existing Road Geometry & Configuration</u>: Properties along and around the Old Steese Highway, north of Trainer Gate Road have experienced rapid development of major trip generators consisting of several big box retail stores, surrounded by active commercial/retail businesses with scattered industrial use. Results of analyzing the existing road geometry and configuration:

- Using existing traffic volumes, four intersections (Trainor Gate Road, Sadler Way, Helmericks Avenue/Seekins Drive, & Home Depot/Walmart Entrances) meet the minimum LOS C delay threshold. The Blair Road/Fred Meyer Entrance and northbound approach to the Johansen Expressway operate below LOS C (see Table 3).
- In the design year 2040, five intersections (Trainer Gate Road, Blair Road/Fred Meyer Entrance, northbound approach to the Johansen Expressway, Helmericks Avenue/Seekins Drive, and Sadler Way) are anticipated to operate below the minimum LOS C delay threshold (see Table 3).
- Crash rates at Trainor Gate Road, Johansen Expressway, and Helmericks Avenue/Seekins Drive intersections (see Section 19.0 Safety Improvements, Tables 6 and 7) exceeded statewide averages:
 - The Trainor Gate Road Intersection has the highest crash rate along the corridor. Many of the crashes are attributed to failure to yield or improper merging. Contributing factors include driver confusion, congestion and unique intersection geometry.
 - The northbound approach to the Johansen Expressway intersection had the second highest crash rate with 42% of the crashes being angle crashes. Most of these crashes involved conflict between left-turning and thru traffic movements with failure to yield identified as a common contributing factor.
 - At the Helmericks Avenue/Seeking Drive intersection northbound and southbound rear end crashes on the Old Steese Highway are the most common with icy roads being a primary contributing factor. Angle crashes mostly involved conflicts between left turning and through traffic movements.

Intersection Worst							
	Design	Overall		Approach			
Intersection	Year	Delay	LOS	Арр	Delay	LOS	
	2016	-	-	WB	70.3	F	
Old Steese Highway & Trainor Gate Road	2030	-	-	WB	277.2	F	
	2040	-	-	WB	>300\$	F	
	2016	-	-	WB	72.0	F	
Old Steese Highway & Blair Road/Fred Meyer Driveway	2030	-	-	WB	>300\$	F	
	2040	-	-	WB	>300\$	F	
	2016	-	-	WB	20.9	С	
Old Steese Highway & Sadler Way	2030	-	-	WB	30.9	D	
	2040	-	-	WB	44.6	E	
	2016	68.7	E	EB	171.3	F	
Old Steese Highway & Helmericks Avenue/Seekins Drive	2030	121.6	F	EB	>300\$	F	
Dire		158.9	F	EB	>300\$	F	
	2016	-	-	WB	11.7	В	
Old Steese Highway & Home Depot/Walmart Entrance	2030	-	-	WB	13.7	В	
		-	-	WB	15.3	С	
	2016	26.2	С	NB	46.7	D	
Old Steese Highway/Northside Boulevard & Johansen Expressway	2030	35.9	D	SB	51.6	D	
Lapressway	2040	54.5	D	SB	116.8	F	

Table 3: Stage 1 Intersection LOS and Delay, Existing Road Geometry & Configuration

Note: Two-way stop-controlled intersections LOS were determined based on the worst approach delay.

<u>Stage 1 Proposed Design</u>: Projected increases in traffic and intersection crash rates support the need to upgrade the corridor to accommodate traffic volumes, reduce congestion/delay, and improve safety. Table 4 shows the operational improvement in LOS of intersections resulting from the upgrades. The following summarizes the proposed improvements:

- Intersections are forecast to operate at LOS C or better, except two will be at LOS D:
 - With the 5-lane upgrade, the Sadler Way intersection improves to LOS D in 2040. To achieve LOS C, it would need to be signalized. Adding a new signal here is too close to the new signal at Blair Road / Fred Meyer driveway.
 - The Johansen Expressway intersection is improved by this project but will still be at LOS D in 2030 and 2040. The higher volume of vehicles on eastbound and westbound Johansen Expressway cause the north and southbound movements to have longer delays. No changes can be made under this project to further improve upon this.
- The chosen and preferred design alternative for Stage 1 consists of two northbound and two southbound lanes with a center TWLTL, shoulders, sidewalks and signalized intersections. See Section 10 for the Stage 1 Typical Section and Appendix A for graphics depicting the preferred and chosen design.
- A new signal system will be constructed at the Fred Meyer Driveway/Blair Road intersection to improve intersection performance and safety.

- Eastbound and southbound auxiliary right-turn lanes will be constructed at the Old Steese/Helmericks Avenue intersection.
- Adjust the lane configuration at the Trainor Gate Road intersection to provide westbound right-turning traffic with an exclusive receiving lane on Old Steese Highway. The northbound right lane on Old Steese Highway will remain a dedicated right turn lane at the intersection. This adjustment will reduce delay for westbound traffic and prevent long queues on Trainor Gate Road that impact the Steese Expressway intersection. A tradeoff will be weaving on Old Steese Highway north of Trainor Gate Road.
- Optimize and coordinate signal traffic phasing to decrease delays and allow for vehicle platoons that create gaps needed for non-signalized access points along the corridor.

	Design	Existing (No Build)		Preferred Alternative (5-Lane + TWLTL)		
Intersection	Year	Delay	LOS	Delay	LOS	
	2016	70.3	F	9.8	А	
Old Steese Highway & Trainor Gate Road	2030	277.2	F	14.1	В	
	2040	>300	F	19.2	С	
	2016	72.0	F	9.9	А	
Old Steese Highway & Blair Road/Fred Meyer Entrance	2030	>300	F	13.0	В	
	2040	>300	F	22.0	С	
	2016	20.9	C	16.5	С	
Old Steese Highway & Sadler Way	2030	30.9	D	21.9	С	
	2040	44.6	E	27.8	D	
	2016	68.7	E	25.4	С	
Old Steese Highway & Helmericks Avenue/Seekins Drive	2030	121.6	F	28.0	С	
	2040	158.9	F	31.4	С	
	2016	11.7	В	10.0	В	
Old Steese Highway & Home Depot/Walmart Entrance	2030	13.7	В	10.9	В	
Liutaitee	2040	15.3	C	11.45	В	
	2016	26.2	С	30.3	С	
Old Steese Highway/Northside Boulevard & Johansen Expressway	2030	35.9	D	37.9	D	
Johansen Expressway	2040	54.5	D	47.0	D	

Table 4: Stage 1 Overall Intersection LOS and Delay, Improved Road Geometry & Intersections

Note: Stop-controlled intersections LOS were determined based on the worst approach delay. Signalized intersections LOS were determined based on the average delay for all vehicles

Stage 2 Existing Road Geometry & Configuration: Properties along and around the Old Steese Highway, south of Trainer Gate Road consist primarily of commercial/retail businesses industrial land use. Results of analyzing the existing road geometry and configuration:

• Using existing traffic volumes, three intersections (3rd Street, College Road, & Bentley Trust Road) meet the minimum LOS C delay threshold. One intersection (Chase Drive) operated at LOS D.

- In the design year 2040, two intersections (College Road and Chase Drive) are anticipated to operate below the minimum LOS C delay threshold.
 - College Road is close to LOS C and is worsened by adding a second northbound and southbound left-turn lane. Maintaining the existing lane configuration is the preferred alternative.
 - Chase Drive is a minor side street with lower traffic volumes. No change is recommended.
- The Bentley Trust Road intersection is expected to operate at LOS B.
- Crash rates along the corridor were close to or below the statewide average, so there are no recommendations for improvements based on the crash analysis.

		Intersection Overall		Worst Approach			
Intersection	Design Year	Delay(s)	LOS	Approach	Delay(s)	LOS	
	2017	20.3	С	-	-	-	
Old Steese Highway & 3rd Street*	2030	19.7	В	-	-	-	
	2040	20.8	С	-	-	-	
	2015	22.1	C	-	-	-	
Old Steese Highway & College Road	2030	31.8	С	-	-	-	
	2040	38.1	D	-	-	-	
	-	-	-	EB	31.3	D	
Old Steese Highway & Chase Drive	2030	-	-	EB	154.4	F	
	2040	-	-	EB	>300	F	
	2015	7.5	А	-	-	-	
Old Steese Highway & Bentley Trust	2030	6.3	А	-	-	-	
	2040	10.1	В	-	-	-	

Table 5: Stage 2 Intersection LOS and Delay, Existing Road Geometry & Configuration

*LOS Data from 3rd Street Widening capacity analysis (July 2015).

Note: Two-way stop-controlled intersections LOS were determined based on the worst approach delay

The traffic and safety analysis did not identify significant congestion or safety concerns for Stage 2 (see Table 5). Therefore, no geometry or signalized intersection changes are proposed under this project. To improve safety for pedestrians and bicyclists, the existing vehicle lanes will be restriped to provide a paved shoulder. See the Stage 2 Typical Section in Section 10.

Currently DOT&PF has two separate projects that will modify and improve the LOS of the 3rd Street/Minnie Street/ Old Steese Highway intersection (see Figure 2).

1. Wendell Avenue Bridge (# NFHWY00511) – this project is currently being constructed and is scheduled to be completed the fall of 2021. On the Old Steese highway, the project will eliminate the dual southbound thru lanes by converting the outer right-hand lane to an exclusive right only turn lane onto Minnie Street.

- 2. 3rd Street Widening (# Z625410000) currently preparing the project to advertise for construction bids during the winter of 2020/2021. This anticipated 1-year construction project is scheduled to begin the spring of 2021. 3rd Street will be converted to a 4-lane facility having 2 west bound and 2 east bound lanes between the Old Steese Highway and Steese Highway. Along 3rd Street the project will:
 - a. Add an additional eastbound thru lane on Minnie Street and create dual eastbound lanes along 3rd Street
 - b. Add an exclusive westbound right only turn lane on 3rd Street

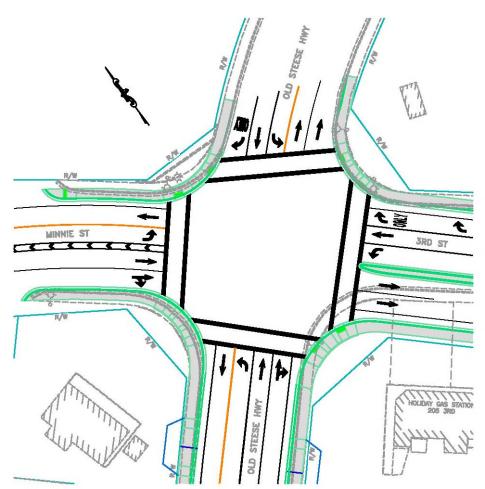


Figure 2: 3rd Street/Minnie Street/Old Steese Hwy Intersection Improvements

9.0 HORIZONTAL & VERTICAL ALIGNMENT

The Old Steese Highway is a low-speed (35 mph design speed) urban road, so a normal 2 percent crown is acceptable and will be used. A normal crown is preferable in urban areas to facilitate drainage.

The proposed horizontal alignment generally follows the existing alignment with only minor adjustments. The corridor contains 10 horizontal curves with all curves exceeding the minimum curve radius of 510 feet. The low design speed and curve radii meet standards for driver comfort and safety.

The existing vertical alignment is flat with grades ranging from 0.30 to 1.91 percent. The proposed vertical alignment generally follows existing, with minor modifications to ensure positive drainage and minimize ROW and utility impacts. All vertical grades meet or exceed the minimum 0.3 percent grade.

10.0 TYPICAL SECTION(S)

The typical sections generally consist of five lanes, including two northbound, two southbound, and a middle turn lane. They will have paved shoulders, curb and gutter, and sidewalks. See Figures 3 and 4 for the Stage 1 and Stage 2 typical section, respectively.

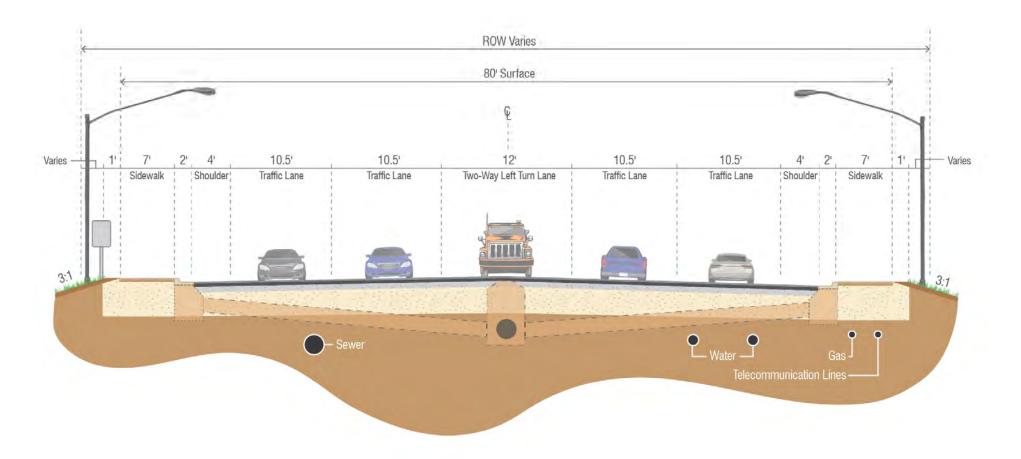


Figure 3: Typical Section Stage 1

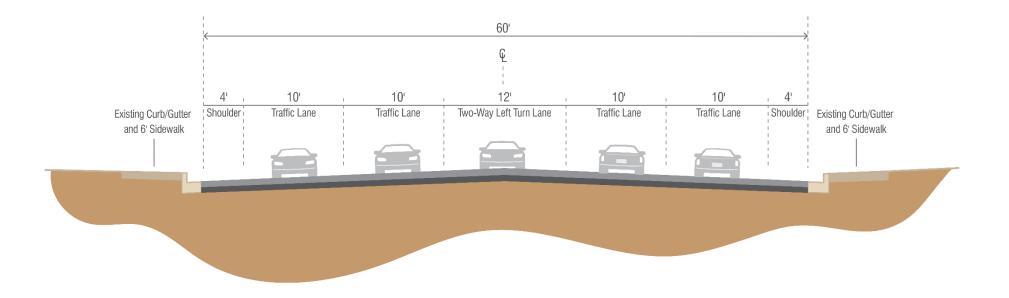


Figure 4: Typical Section Stage 2

11.0 PAVEMENT DESIGN

As-builts indicate the existing asphalt ranges from 3 to 4 inches thick on the Old Steese Highway depending on location. The base course generally consists of 6 inches of crushed aggregate and the subbase is 18 to 24 inches of Type A Selected Material. See Section 22.0 for information on subgrade soils.

11.1 Proposed Flexible Pavement Design

The proposed pavement design for Old Steese Highway is based on as-builts, future trafficloading and limited geotechnical data. Boring logs north of Trainor Gate Road indicate that areas outside of the existing shoulders contain frost-susceptible silt.

The proposed pavement design for Stage 1 is the following:

- Two (2) inches of hot mix asphalt (HMA); over
- Three (3) inches of Asphalt Treated Base; over
- Four (4) inches aggregate base course, grading D-1; over
- Twelve (12) inches minimum of existing Selected Material, Type A in currently paved areas, or providing twenty-four (24) inches of Subbase, Grading F in existing un-paved areas.

The proposed pavement design for Stage 2 is the following:

- Three (3) inches of HMA; over
- Three (3) inches of crushed asphalt base course

See Appendix D for the pavement design analysis.

11.2 Proposed Rigid Pavement Design

Within Stage 1, the new sidewalks, curb, and gutter are underlain by frost-susceptible silty soils. These soils will be removed to a depth consistent with the roadway. The sidewalks, curb, and gutter rigid pavement structure will be Portland Cement Concrete over aggregate base course and subbase.

12.0 PRELIMINARY BRIDGE LAYOUT

The project corridor does not contain any bridges.

13.0 RIGHT-OF-WAY REQUIREMENTS

General Obligation (GO) Bond funding will be used to acquire Right-of-Way (ROW), including Stage 2 in anticipation of a future build out (widening) design that matches the Stage 1 roadway width(s) (lane, shoulder and sidewalk widths). Future Stage 2 roadway widening will not be designed or constructed under this project because the costs exceed the project's budget.

All ROW acquisitions will be from commercial properties. Temporary construction easements and/or permits are required throughout the project. In general, parcels north of College Road are zoned General Use (GU-1) and south of College Road are zoned General Commercial (GC). Final ROW acquisition limits are subject to change as the detailed design progresses. See Appendix E for proposed ROW acquisition drawings and summaries.

- **Stage 1.** Approximately 1.30 acres (56,546 SF) of permanent partial-lot ROW acquisition is needed from 13 parcels to widen the roadway, develop surface storm water retention/drainage areas, relocate utilities, and provide legal access to one property.
- **<u>Stage 2</u>** Approximately 0.03 acres (1,505 SF) of permanent partial-lot ROW acquisition is needed from 4 parcels in preparation of a future widening project. A future widening project would create a consistent and uniform roadway width (lane, shoulder and sidewalks) between the 3rd Street and Johansen Expressway intersections.

14.0 MAINTENANCE CONSIDERATIONS

In general, the City of Fairbanks is responsible for maintaining all elements of the Old Steese Highway from 3rd Street to the Johansen Expressway. Under separate reimbursable agreements, DOT&PF maintains the traffic signal controllers and emergency services system for the signals at 3rd Street, College Road, Bentley Trust Road, and Helmericks Avenue. DOT&PF is responsible for maintenance of the Johansen Expressway intersection. The City's primary obligations of roadway maintenance include snow removal, pavement management, and street sweeping.

The reconstructed roadway is anticipated to result in the following changes to maintenance responsibilities:

- <u>Roadway:</u> The City maintains approximately 2.6 lane-miles of roadway in the Stage 1 segment and approximately 2.1 lane-miles in the Stage 2 segment. Stage 1 will add an additional 1.2 lane-miles of roadway. Stage 2 will add no new lane-miles.
- <u>Sidewalks:</u> The City maintains approximately 5,400 linear feet of 6-foot sidewalk within the project corridor. Stage 1 will construct an additional 5,600 linear feet of 7-foot sidewalk. Stage 2 will add no new sidewalk.
- <u>Storm Drain</u>: The installation of curb and gutter for Stage 1 will reduce ditch cleaning and mowing and weed prevention efforts. Maintenance will be needed for the new surface retention ponds and piped storm drain system north of Trainor Gate Road. Maintenance for the piped storm drain system south of Trainor Gate Road will remain the same.
- <u>Street Lighting:</u> The number of streetlights along Old Steese Highway will increase to provide uniform lighting on both sides of the highway per current design standards. The City pays for illumination power and will maintain and operate the lights. There is an increased number of lights; however, due to energy efficient LED fixtures and longer fixture life, overall life cycle costs are lower. The City has agreed to maintain the illumination per the new MOA.
- <u>Traffic Signals:</u> Old Steese Highway currently has four four-way traffic signals and one three-way traffic signal. This project proposes to add one additional four-way traffic signal at the Fred Meyer Drive/Blair Road intersection and additional signal heads at other signals to meet current traffic standards, resulting in about a 20 percent increase in the City's required signal maintenance. The DOT&PF maintains the traffic signal controller at Helmericks Avenue and the complete Johansen Expressway intersection.
- <u>Shoulders:</u> The addition of 4-foot wide shoulders along Stage 2 will reduce wintertime maintenance by providing room for temporary snow storage.

15.0 MATERIAL SOURCES

All material sources will be Contractor-furnished. Materials of appropriate quality are available in sufficient quantities from private and commercial sources in the project vicinity.

16.0 UTILITY RELOCATION & COORDINATION

16.1 Existing Utilities

Numerous utilities run parallel to and/or cross the Old Steese Highway corridor. These utilities include:

- Alaska Railroad Corporation (ARRC);
- Golden Valley Electrical Association (GVEA), electric power;
- MTA-Communications, fiber optic telecommunications;
- General Communications, Inc. (GCI), fiber optic and cable telecommunications;
- Alaska Communications Systems (ACS), telephone and fiber optic telecommunications;
- AT&T, telephone communications
- Utility Services of Alaska (USA), wastewater and water utilities; and
- Fairbanks Natural Gas (FNG), gas lines.

The existing utility information is based on as-builts, utility system maps, field-surveyed locates, and information provided by utility companies. Additional utilities may be located within the project area that are unknown and/or have been installed since the initial utility information was received in January of 2014.

16.2 Utility Conflicts

Standards for determining adequate cover, vertical and horizontal clearance, horizontal placement, and relocation eligibility of existing utilities within the project corridor will follow requirements found in Alaska Statute (AS) 19.25.010-270 and 17 Alaska Administrative Code (AAC) 15, the HPCM, the National Electric Safety Code (NESC), and the Utility Permit if applicable.

The following utility impacts are anticipated for Stage 1 and will be addressed in the design phase of this project:

- Power poles that conflict with existing and proposed sidewalks will be relocated if the clear walking distance is less than 48 inches (no guys or anchors will remain in the sidewalk);
- Telephone lines, cabling systems, and service drops will be modified as required due to relocated power poles;
- Manholes for buried communication cabling systems that conflict with roadway or sidewalk improvements will be modified or replaced.
- Buried gas lines will be protected in place, and all reasonable effort will be taken to avoid impacts. Gas line relocations are expected at Blair Road and for a conflict with the new storm drain pipe;

- Water mains in conflict with the new storm drain system will be relocated at several locations;
- Fire hydrants in conflict with the new sidewalk will be relocated; and
- ARRC will design and construct a new railroad signal crossing.
- Existing manholes to remain will have their lid elevations adjusted to match finish grades.

17.0 ACCESS CONTROL FEATURES

Currently there are five signalized intersections that control access onto the corridor:

- Old Steese Highway and 3rd Street/Minnie Street;
- Old Steese Highway and College Road;
- Old Steese Highway and Bentley Trust Road;
- Old Steese Highway and Helmericks Avenue/Seekins Ford Drive; and
- Old Steese Highway and Johansen Expressway.

A new signalized intersection will be constructed at Fred Meyer Drive/Blair Road.

There are currently 53 driveways accessing parcels with frontage on Old Steese Highway. Forty of these driveways directly access Old Steese Highway and the remaining 13 are off intersecting streets. The highest density of driveways is south of Trainor Gate Road.

Consolidating and/or removing driveways will be reviewed during detailed design with the goal of limiting driveways to reduce crashes and congestion while still maintaining adequate access to adjacent properties.

18.0 PEDESTRIAN/BICYCLE (ADA) PROVISIONS

Stage 1 will construct 4-foot wide shoulders (to accommodate bicyclists) and 7-foot wide sidewalks with new ADA curb ramps along both sides of the road to accommodate pedestrians.

Stage 2 will create 4-foot wide shoulders along both sides of the road to accommodate bicyclists. The existing 6-foot wide sidewalks (with curb & gutter) will remain to accommodate pedestrians. Existing curb ramps at intersections and curb cuts at driveways that do not meet current ADA standards will be removed and replaced.

19.0 SAFETY IMPROVEMENTS

Two traffic safety analyses were conducted within the project area:

- 1. *Stage I Old Steese Highway Traffic and Safety Analysis Report* (DOWL, 2014/2016) used traffic crash data from 2006-2010
- 2. *Stage II Old Steese Highway Traffic and Safety Analysis Report* (DOWL, 2016) used traffic crash data from 2008-2012.

Four of the seven major intersections along the project corridor have five-year crash rates that exceed the statewide average for similar intersections, as shown in Table 6.

Intersection	5 – Year Crash Rate
Old Steese/College	1.02x State Average
Old Steese/Trainor Gate	4.17x State Average
Old Steese/Helmericks/Seekins	1.10x State Average
Old Steese/Johansen	1.72x State Average

Table 6: Summary of 5-Year Crash Rates on Old Steese Corridor

 Table 7: Frequency of Crashes by Type, 2013-2017 Crash Data

	Crash Type							
Old Steese Highway Intersection	Angle	Rear End	Head On	Sideswipe	Pedestrian	Fixed Object	Other	Total
3 rd Street	13	9	1	3	0	0	3	29
College Road	9	7	0	1	0	0	4	21
Chase Drive	6	0	0	0	0	0	1	7
Bentley Trust Road	8	2	1	1	0	0	4	16
Trainor Gate Road	5	13	1	4	0	0	0	23
Blair Road/Fred Meyer Entrance	3	6	0	0	0	0	1	10
Helmericks Ave./Seekins Drive	6	14	1	0	0	0	3	24
Johansen Expressway	1	6	0	0	0	0	3	10
Segments: Old Steese Corridor	0	4	1	1	0	0	4	10
Total	51	61	5	10	0	0	23	150
Percent of Total	34%	41%	3%	7%	0%	0%	15%	100%

Table 7 summarizes the crashes in the corridor by intersection and intermediate road segments. Intersections account for a majority of crashes within the project limits. There were 10 corridor crashes (not related to the intersection crashes) which resulted in 5 minor injuries with no major injuries or fatalities. The absence of major injuries and fatalities can be attributed to the slow posted speed limit (35 mph) along the project corridor.

Dedicated pedestrian and bicycle accommodations along Old Steese Highway are missing or inconsistent throughout the corridor. One vehicle/pedestrian crash occurred near Trainor Gate Road between 2006 and 2010.

Safety will be improved by:

- Adding an additional through lane in each direction north of Trainor Gate Road will improve mobility which reduces delays. Long delay times tend to make drivers impatient which leads to taking bigger risks in judging acceptable gaps in traffic.
- Signalizing the Fred Meyer Drive/Blair Road intersection to improve intersection performance and protect left turns;
- Providing updated signal timings to coordinate the signals within the corridor and at adjacent high-volume intersections on the Steese Expressway;
- Adding and/or maintaining warranted designated left- and right-turn pockets at intersections to reduce the likelihood of angle and rear-end collisions;
- Adding flashing yellow arrows for left turns at all signalized intersections;
- Providing an exclusive receiving lane on Old Steese Highway for westbound right-turning traffic off Trainor Gate Road to facilitate a smoother traffic pattern and reduce the likelihood of crashes resulting from merging at a yield sign. The north bound right lane approaching Trainor Gate Road will remain right-turn only;
- Adding 7-foot concrete sidewalks north of Kutter Road on both sides of the Old Steese Highway for pedestrian safety, including pedestrian crosswalks, pedestrian phasing at signals, and ADA compliant curb ramps;
- Providing 4-foot paved shoulders on both sides of the road that can be used by bicyclists and for temporary snow storage throughout the length of the project. This will improve bicycle safety, minimize conflicts with pedestrians and vehicles, and improve maintenance operations;
- Reconstructing the road surface to create a smooth, comfortable driving surface and restriping for improved lane visibility;
- For Stage 1, upgrading street lighting on both sides of the road and at intersections to improve driver and pedestrian visibility at night.
- For Stage 1, adding curb and gutter provides a visual cue to drivers that separate the driving lane from pedestrian space.

20.0 INTELLIGENT TRANSPORTATION SYSTEM FEATURES

One new signal will be installed within the project corridor at the intersection of Old Steese Highway and Fred Meyer Drive/Blair Road. Installation will require preemption detectors, signal displays, wiring, junction boxes, signal interconnect, signal controllers, mast arm poles, and foundations. All hardware will be fully compatible with DOT&PF Northern Region traffic signalization standards.

A concurrent signal interconnect project is anticipated to be constructed as part of this project which will facilitate maximized signal timing and improve overall traffic operations.

This project is considered an ITS project according to Section 485.4 of the HPCM. However, it is non-significant because it does not interact with any other system (e.g., 511). For this reason, a Systems Engineering Analysis (SEA) is not required and will not be conducted.

21.0 DRAINAGE

21.1 Existing Drainage Conditions

21.1.1 Existing Drainage Patterns

All drainage in the project area tends to flow towards the south and west. The terrain is gently sloped, with slopes ranging from about 0.3 percent to 1.6 percent. The project area is underlain by generally well-draining soils. Groundwater was encountered at 15 feet in bore logs drilled north of Trainor Gate Road and the water table is assumed to follow the regional topographic gradient from east to west.

No wetlands, fish-bearing streams, lakes, or stream crossings are within the project area. Chena River and Noyes Slough is immediately adjacent to the southern end of the project. The project is protected from the 100-year flood by a levee system.

North of Trainor Gate Road there is a local low point between Blair Road and Sadler Way. Runoff does not appear to discharge by surface flow except during breakup or heavy or prolonged rain events. When runoff occurs, it discharges to the ditch between Trainor Gate Road and the Alaska Railroad tracks and flows west out of the project area. The downstream receiving water is Noyes Slough, located approximately 4,400 feet west of the discharge point.

South of Trainor Gate Road the project is served by a underground piped storm drain system. The system extends from 300 feet south of Trainor Gate Road to 190 feet south of 3rd Street and discharges to Noyes Slough about 120 feet west of Old Steese Highway. The drainage area of this system is approximately 18.2 acres.

21.1.2 Existing Drainage Structures

Stage 1: Existing drainage structures along Old Steese Highway north of Trainor Gate Road include roadside ditches, swales, small local piped systems, and detention areas with perched culverts. Some detention areas straddle the ROW line and receive runoff from both the road and commercial parking lots on abutting property. Two short piped storm water systems, one located along Blair Road on the east side of Old Steese Highway and one along Trainor Gate Road east of Old Steese Highway, discharge into ditches within the project area. Blair Road does not contain curb and gutter, but grated field inlets collect runoff in shallow roadside ditches and transfer water to the west side of Old Steese Highway. Trainor Gate Road has curb, gutter, and inlets that transfer water west of Old Steese Highway.

Stage 2: South of Trainor Gate Road, Old Steese Highway is served by underground piped storm water drainage systems that include curb, gutter, curb inlets, and catch basins. The integrity of the corrugated metal pipe (CMP) pipe has no reported problems.

21.2 Proposed Drainage Improvements

Stage 1: To minimize ROW impacts, curb and gutter with drop inlets and ditches/swales will be constructed to accommodate drainage:

- Between Kutter Road and Helmericks Avenue new curb and gutter with drop inlets will feed into a piped storm drainage system. This system will discharge to a proposed surface infiltration basin located northwest of the Old Steese/Trainor Gate Road intersection.
- Between Helmericks Avenue and the Johansen Expressway new curb and gutter will collect drainage that will drain into grass lined ditches/swales on each side of the road. The ditches will flow south and drain into existing and new infiltration basins located at the

Helmericks/Seekins/Old Steese intersection.

• The new storm drain system design will be submitted to the Alaska Department of Environmental Conservation (ADEC) for a "Letter-of-Nonobjection" of the permanent stormwater system.

Stage 2: There are no changes to the existing drainage patterns. The existing curb and gutter and underground storm drain system will not be replaced or modified.

22.0 SOIL CONDITIONS

The project corridor is located in the Continental Climatic Zone of Alaska. The area experiences an average of 13,917 heating degree days and 58 cooling degree days for a 65 degree base temperature.

A 2015 Geotechnical Memorandum was completed during initial scoping for the Old Steese Highway project, when the proposed corridor was limited to Stage 1 (no geotechnical investigation was performed south of Trainor Gate Road).

The test holes drilled found soils consistent with the typical sections in the 1989 and 1999 asbuilt documents. Holes in the embankment (paved areas) found 1 to 4.5 feet of poorly or wellgraded gravel with sand (fill) underlain by loose poorly or well-graded sand with silt and/or gravel, silty sand, or silty sand with gravel. Un-paved areas encountered silty soils underlain by loose to very loose poorly-graded sand with silt. Groundwater was intercepted in two holes in un-paved areas at approximately 15 feet. Wet sand in these test holes liquefied when agitated, which suggests the potential for liquefaction. Permafrost has been observed in the vicinity of the project area at depths ranging from 8 to 40 feet below the ground surface; however, none of the borings encountered ice. Seasonal frost was intercepted in one hole from approximately 5 to 6.5 feet below finished grade.

23.0 EROSION AND SEDIMENT CONTROL

The Erosion and Sediment Control Plan (ESCP) specifies environmentally sensitive areas and provides an overview of anticipated sources of sediment to be controlled during construction. The construction Contractor will prepare a Storm Water Pollution Prevention Plan (SWPPP) that conforms to the Alaska Construction General Permit (ACGP), DOT&PF's Best Management Practices (BMPs) for erosion and sediment control, and project specifications. The Contractor will submit the SWPPP to DOT&PF for approval and keep the approved SWPPP on-site at all times during construction. All construction activity will be conducted in accordance with the SWPPP, and the SWPPP will be updated throughout construction as different areas of the project are disturbed.

The area of ground disturbance for the Old Steese Highway Reconstruction project is approximately 13 acres, not including material sites or staging areas. The project corridor is located in an urban area, with ground cover being predominately concrete or asphalt pavement and very little previously undisturbed ground.

Temporary erosion control measures may include, but are not limited to:

- Preservation of existing vegetation;
- Erosion control mats;
- Velocity control BMPs, including silt fence or fiber rolls;

- Watering and/or chemical stabilization for dust control;
- Perimeter controls; and
- Good housekeeping practices.

Sediment filtration BMPs will be installed and maintained at all existing and new inlet structures and the Trainor Gate Road discharge point. Ground disturbance will be minimized as much as reasonably possible throughout the project to prevent excessive erosion and dust.

All disturbed ground will be reseeded or receive other surface treatment for permanent stabilization at the conclusion of construction activity. The site will be monitored at the frequency indicated in the ACGP until final stabilization has been achieved.

24.0 ENVIRONMENTAL COMMITMENTS

The Old Steese Highway project area is an urban area that has been previously disturbed, so construction activities are not expected to involve significant environmental impacts. A preliminary Environmental Checklist was completed according to Chapter 9 of the Alaska FHWA Program Environmental Procedures Manual. The Checklist summarizes the affected environment, anticipated impacts, proposed mitigation, and public and agency outreach/consultation. Refer to the State Project Environmental Form for further details. The signature page is located in Appendix C.

The project will require coordination with appropriate resource agencies to obtain necessary permits and minimize environmental impacts during and after construction. Necessary permits, authorizations, and/or consultations required for this project include, but are not limited to:

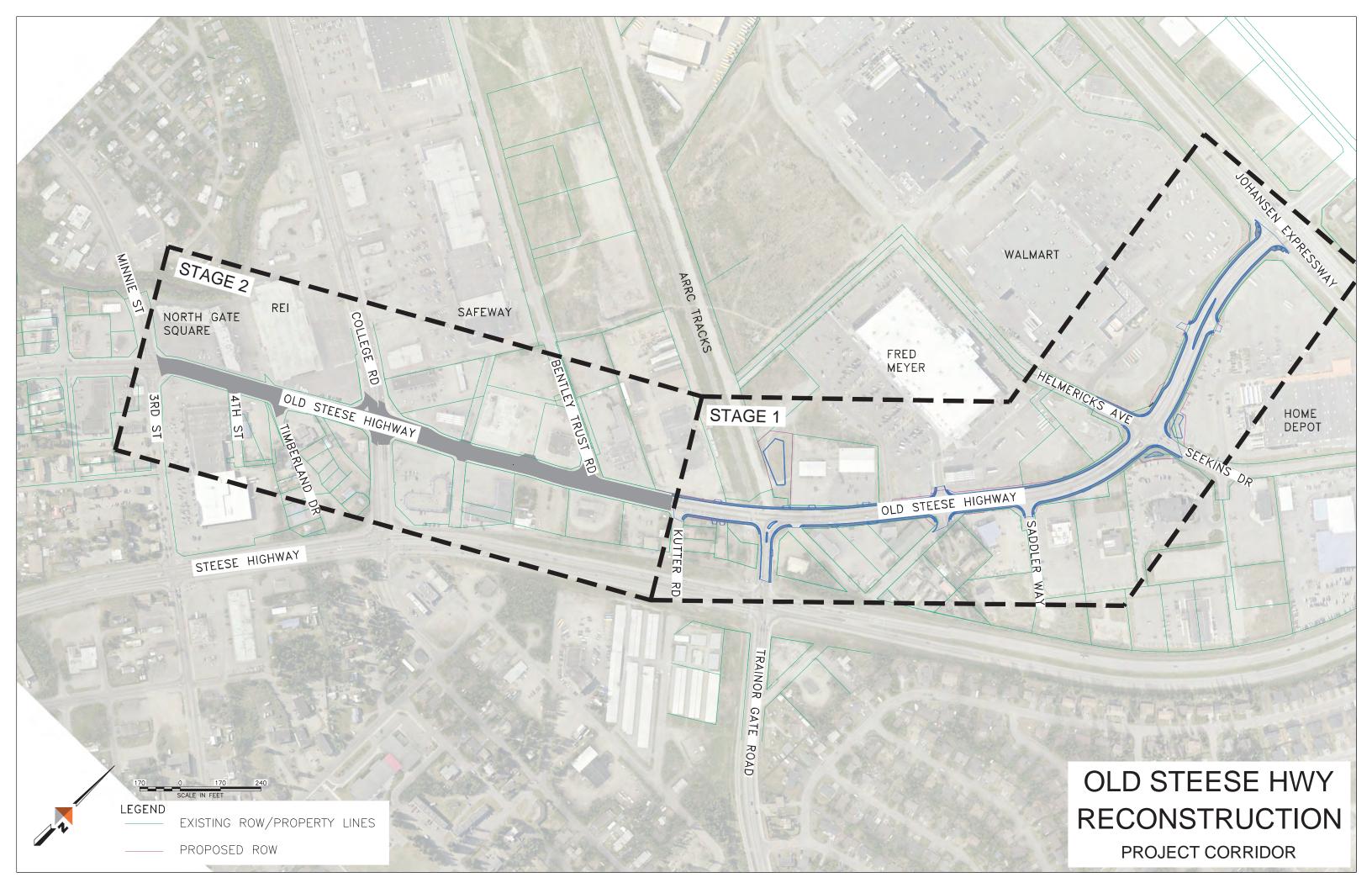
- Alaska Pollutant Discharge Elimination System (APDES) Construction General Permit (AKR10000), including a courtesy copy of the approved SWPPP sent to the City of Fairbanks;
- State of Alaska Department of Environmental Conservation (DEC) Non-Domestic Wastewater (Storm Water) Engineering Plan Review (Letter of Non-Objection);
- Piped Distribution Engineering Plan Review to DEC's Drinking Water Program for relocation of fire hydrants and water mains.

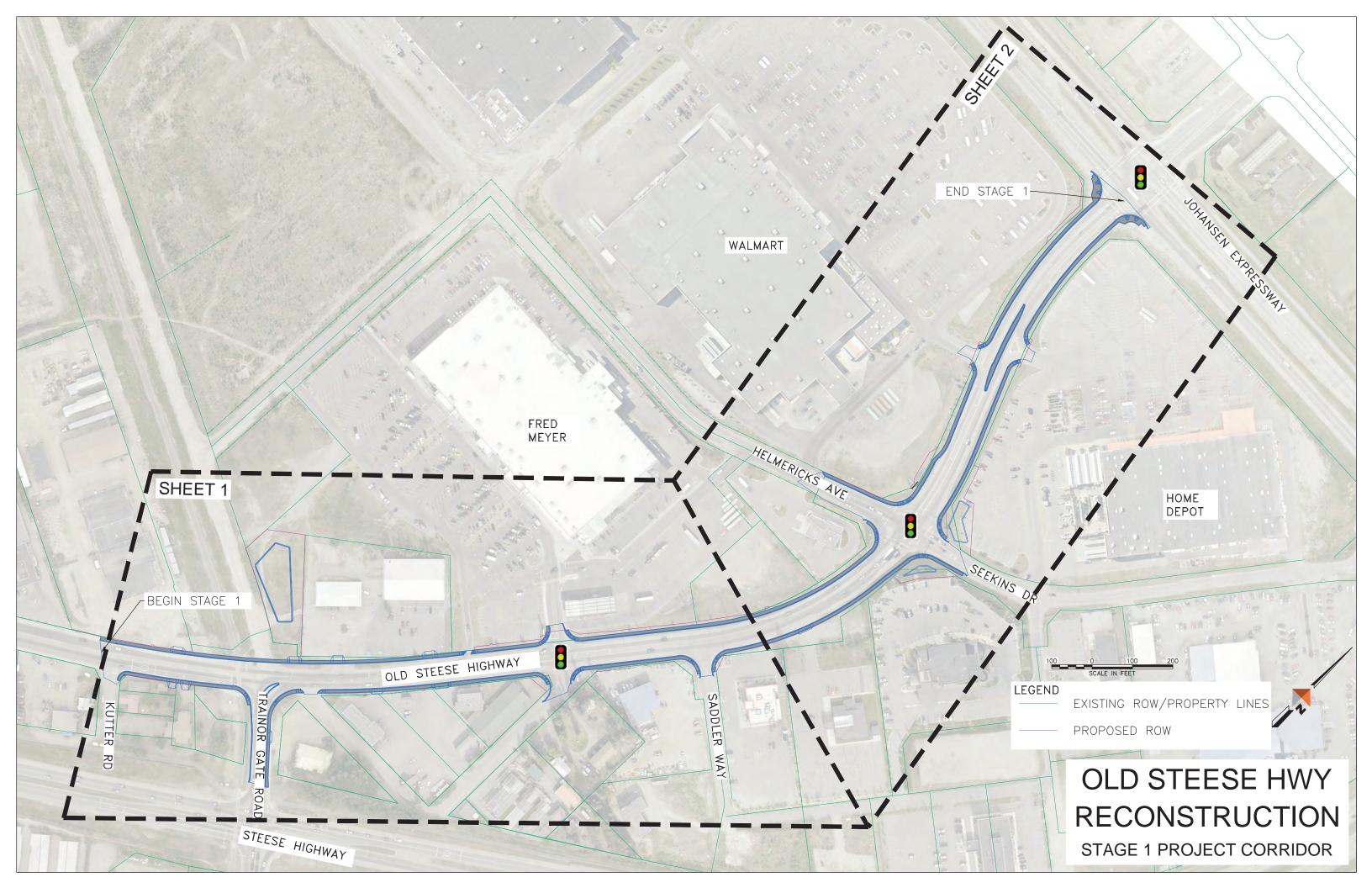
25.0 WORK ZONE TRAFFIC CONTROL

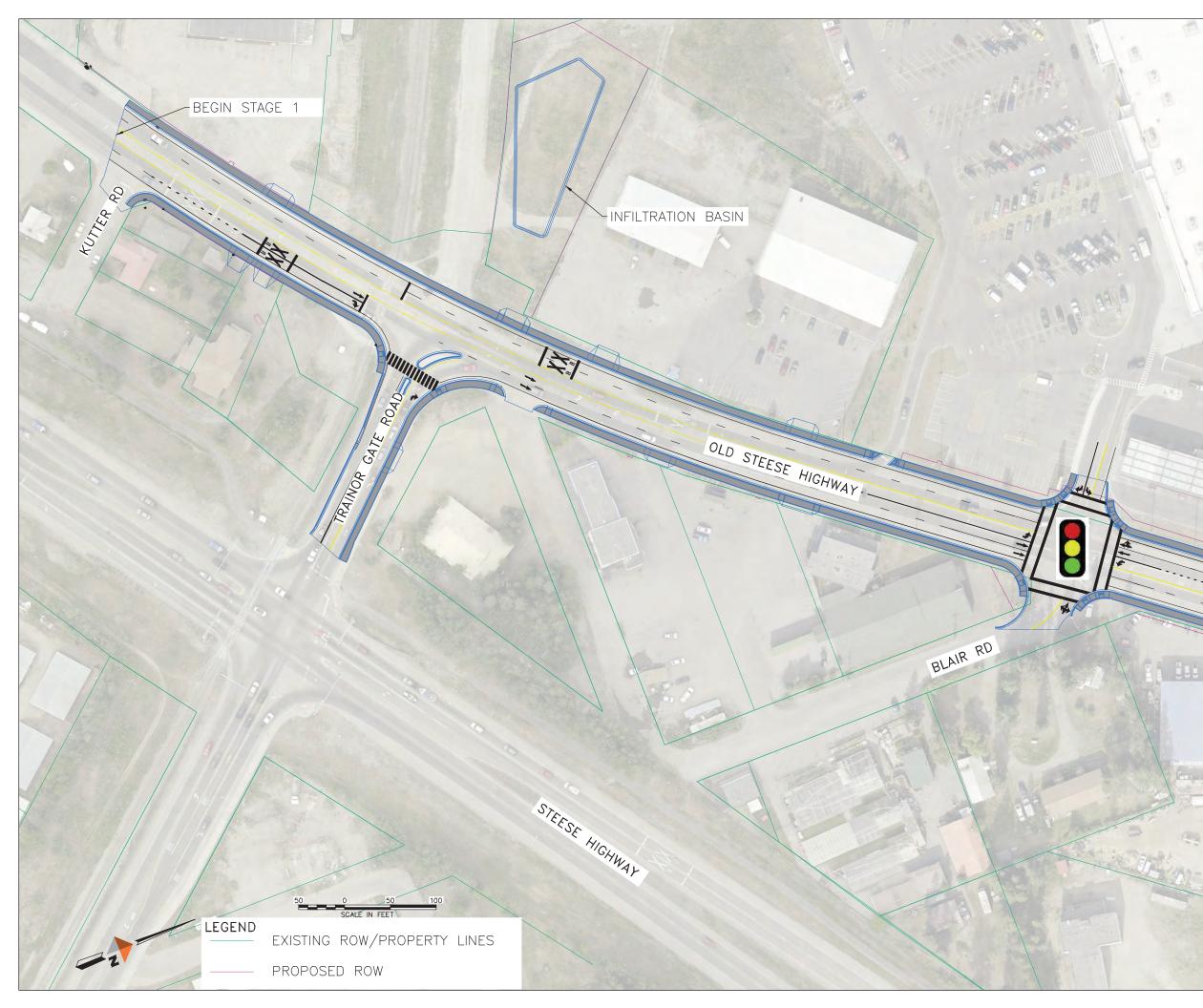
Each Stage is expected to take one summer season to construct. There will be traffic detours and alterations to intersection signal timing during construction. DOT&PF will provide general traffic control and road closure guidance. The construction Contractor will be responsible for developing the phasing and sequencing of construction activities to minimize impacts to the traveling public. Pedestrian, bicycle, and motorized access to all businesses along the project corridor will be provided and maintained during construction.

26.0 VALUE ENGINEERING

A value engineering study is not required since the total project cost will not exceed \$40 million. A study has been considered but will not be done for this project.

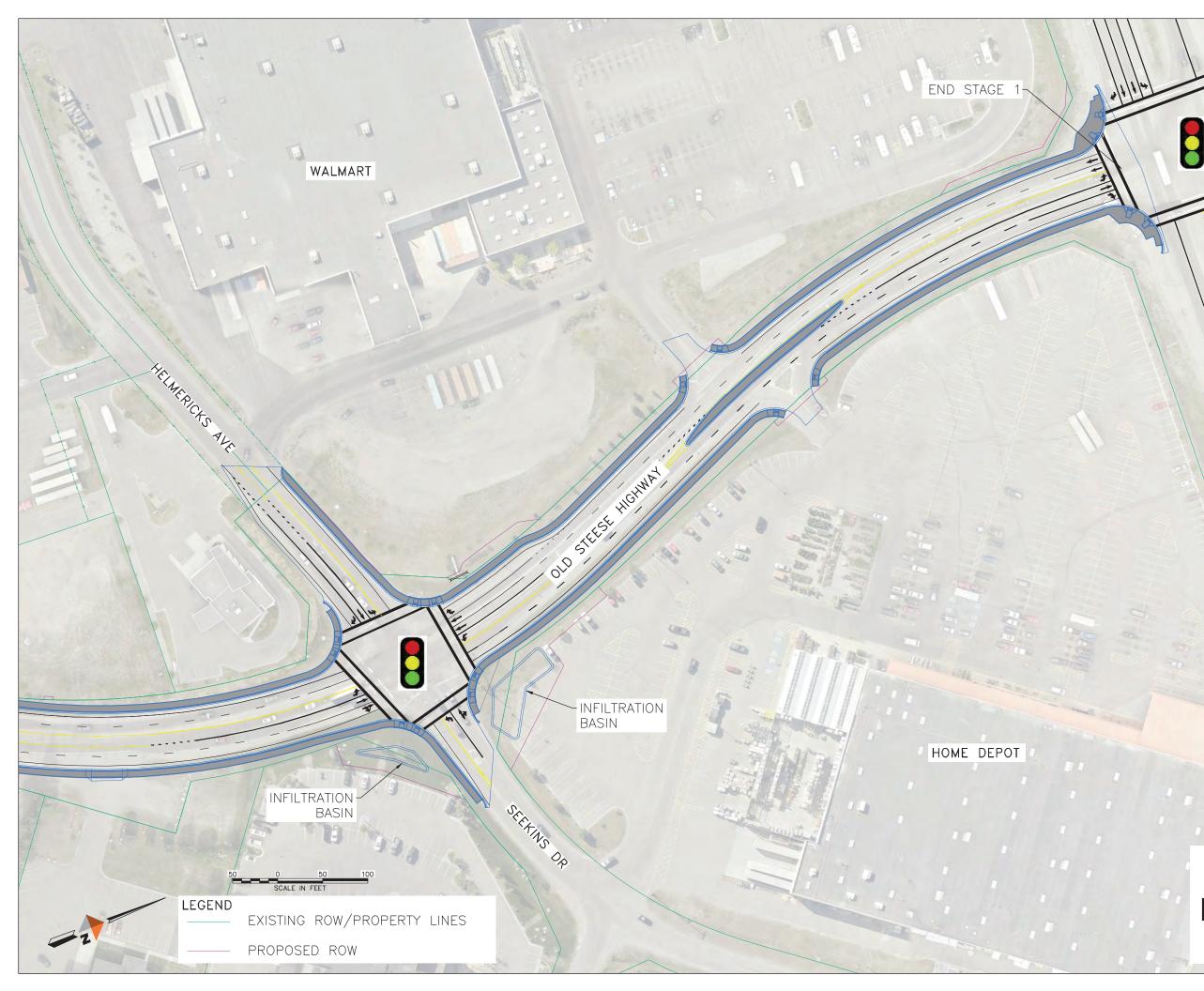

27.0 COST ESTIMATE


Category	Estimated Cost
Design	\$3,000,000
Right-of-Way	\$2,105,000
Utilities	\$2,085,000
Construction (includes 15% Construction Engineering)	\$10,400,000 (Stage 1) \$3,000,000 (Stage 2)
Total	\$20,590,000

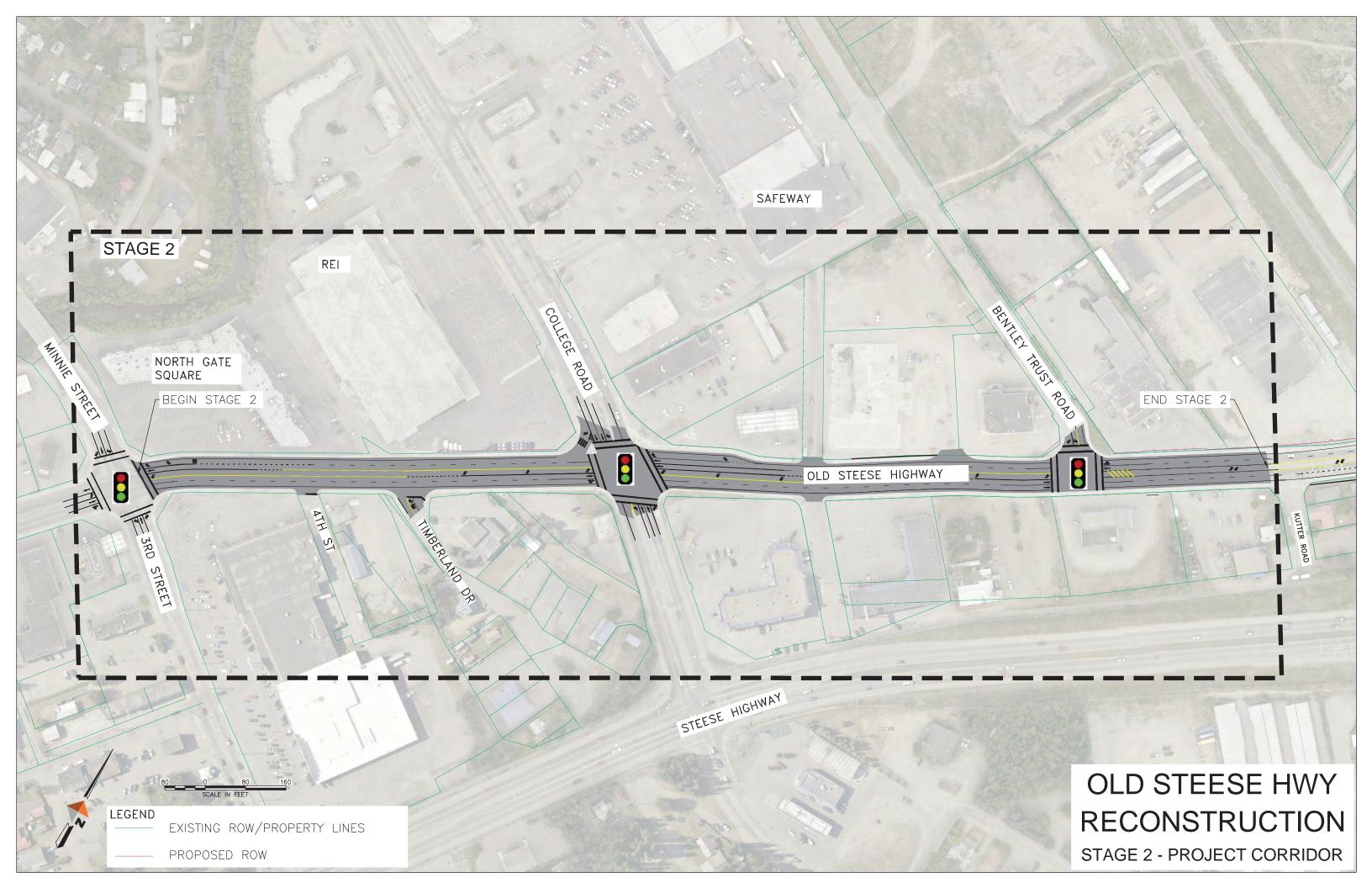

 Table 8: Preliminary Estimated Project Costs

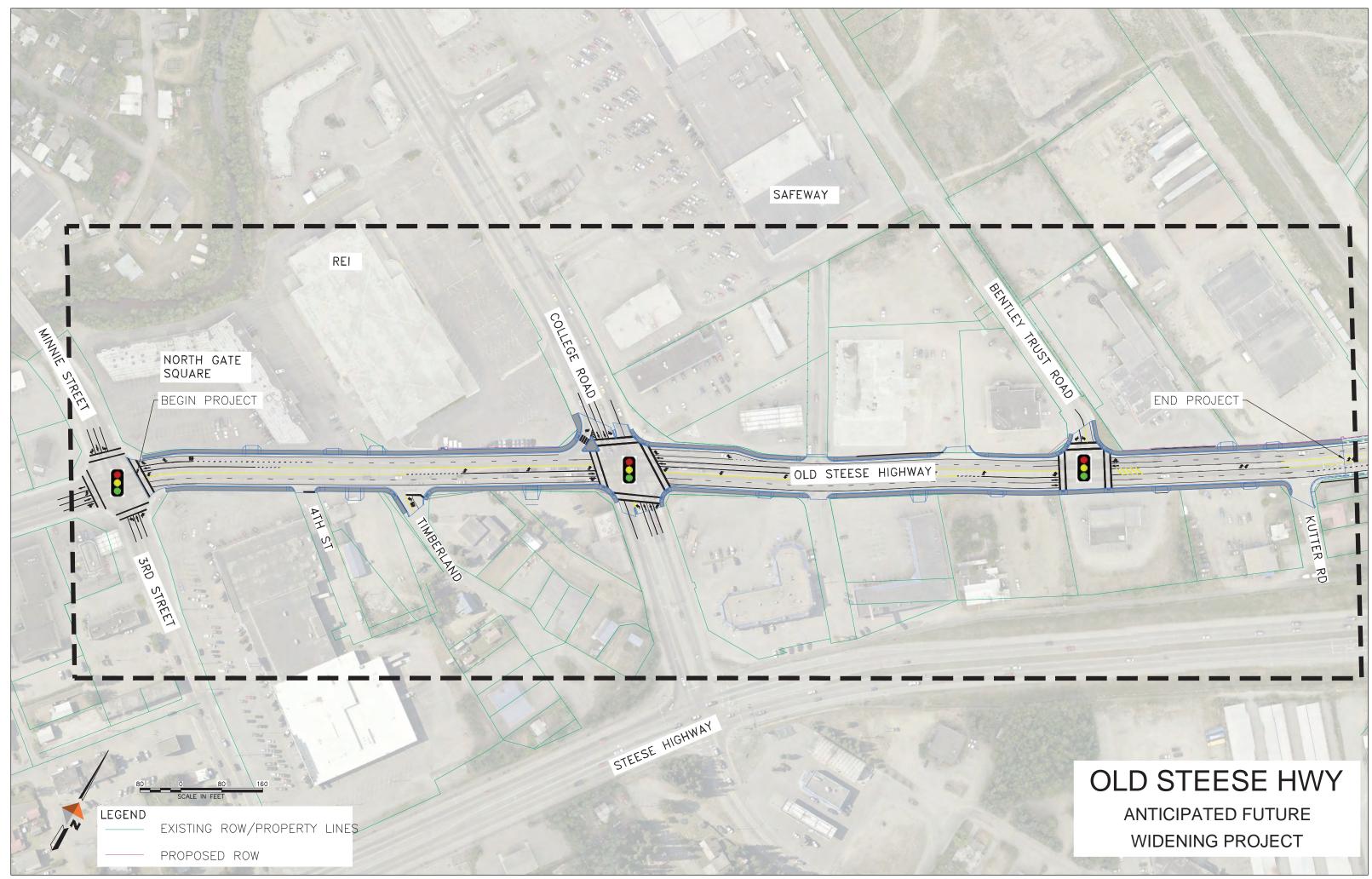
APPENDIX A

AERIAL PROJECT CORRIDOR GRAPHICS



FRED MEYER


OLD STEESE HWY RECONSTRUCTION STAGE 1 - SHEET 1


SADDLER WAY

OLD STEESE HWY RECONSTRUCTION STAGE 1 - SHEET 2

JOHANSEN EXPRESSINAY

APPENDIX B

DESIGN CRITERIA

ALASKA DOT&PF PRECONSTRUCTION MANUAL Chapter 11 - Design PROJECT DESIGN CRITERIA

Project Name:	Old Steese High	way Reconstruction		
New Construction/Reconstruction	🗌 3R	D PM Dth	ner:	
Project Number: Z624870000	- des and based			NHS Non NHS
Functional Classification:	Urban Minor Arte	erial		
Design Year:	2040	Present ADT	ſ:	15,800 (2014)
Design Year ADT:	24,400	Mid Design I	Period ADT:	21,050 (2030)
DHV:	2,810	Directional S	Split:	45-55
Percent Trucks:	11.5%	Equivalent A	xle Loading:	2,500,700
Pavement Design Year:	2040	Design Vehi	cle:	WB-67 / WB-62
Terrain:	Level	Number of R	Roadways:	One (5-lane facility)
Design Speed:	35 mph			
Width of Traveled Way:	54 feet (Kutter to	Johansen), 52 feet (3rd Stre	eet to Kutter)	
Width of Shoulders:	Outside:	4 feet to gutter lip	Inside:	N/A
Cross Slope:	2%			
Superelevation Rate:	None			
Minimum Radius of Curvature:	510 feet			
Min. K-Value for Vert. Curves:	Sag:	49	Crest:	29
Maximum Allowable Grade:	7%			
Minimum Allowable Grade:	0.3%			
Stopping Sight Distance:	250 ft			
Lateral Offset to Obstruction:	1.5 ft between in	tersections; 3 ft at intersectio	ns (behind face of curb)	
Vertical Clearance:	18.5 feet (signal	housing); 20.5 feet (overhead	d utility)	
Bridge Width:	N/A			
Bridge Structural Capacity:	N/A			
Passing Sight Distance:	N/A			
Surface Treatment:	T/W:	AC Pavement	Shoulders:	AC Pavement
Side Slope Ratios:	Foreslopes:	3H:1V or flatter	Backslopes:	2H:1V or flatter
Degree of Access Control:	Signalized Inters	ections, Stop Control, and Dr	riveways	1
Median Treatment:	TWLTL with isola	ated raised medians to preve	nt left turns from some dri	veways
Illumination:	Continous			
Curb Usage and Type:	Standard Curb &	Gutter		
Bicycle Provisions:	Shared Roadway	with Shoulder		
Pedestrian Provisions:	Sidewalk, crossw	alks, ADA ramps		
Misc. Criteria:	None			

Endorsed - Engineering Manager:

Jan Catt

Date: 5/8/2020 Date: 12/3/2020

Shaded criteria are commonly referred to as the FWHA 13 controlling criteria. For NHS routes only, these criteria must meet the minimums established in the Green Book (AASHTO A Policy on Geometric Design of Highways and Streets). For all other routes, these criteria must meet the minimums established in the Alaska Highway Preconstruction Manual. Otherwise a Design Exception must be approved.

Design Criteria marked with a " # " do not meet minimums and must have a Design Exception(s) and/or Design Waiver(s) approved. See the Design Study Report for Design Exception/Design Waiver approval(s) and approved design criteria values.

APPENDIX C

ENVIRONMENTAL DOCUMENT

The FNSB commented the project appears to be consistent with the FNSB Comprehensive Plan and they are in support of the project. They recommended DOT&PF change the functional classification/design elements of the roadway to a collector, and accommodate transit elements into the project. The project is not located within the floodplain.

Public Meeting #4 - Expanded Project Scope, Area Business Owners, March 31, 2016 Summary of issues raised:

- Concerns about utility service interruptions during construction
- Concerns regarding construction scheduling to minimize business impacts 4

Public Meeting #5 - Expanded Project Scope, Public Open House, April 7, 2016 Summary of issues raised:

- A raised median or similar is needed between College Road and Johansen to reduce left turns ٤.
- The posted speed on Old Steese Highway is too high ÷
- Positive response for bike/pedestrian facilities ÷,

See Attachment 6 - Comments and Coordination for details.

VII.	Environmental Commitments / Mitigation Measures:	N/A	YES	NO
	Environmental commitments or mitigative measures have been included in the			\boxtimes
	project.			

2. List environmental commitments or mitigative measures.

None.

VIII. Signatures an Prepared by: Environmental Impact Analyst Reviewed by: -Engineering Manager rett O Nel Approved by:

Regional Environmental Manager

Date: 07/25/2017 Date: 7/27/17

Date: 9-14-17

State Projects Environmental Form Project Name: Old Steese Highway Reconstruction Project Number: Z624870000

15

APPENDIX D

PAVEMENT DESIGN

MEMORANDUM

TO: FROM:	Albert Beck, P.E. State of Alaska Department of Transportation and Public Facilities Aaron K. Marsh, E.I., through Zaid S. Hussein, P.E.; and Gary Jenkins II, P.E. DOWL
DATE:	May 18, 2016
SUBJECT:	Old Steese Highway Upgrade, Johansen Expressway to Wendell Avenue Pavement Design
	State of Alaska Department of Transportation and Public Facilities Project No. 62487

This Pavement Design Memorandum was prepared for the Old Steese Highway Upgrade from Johansen Expressway to 2nd Street. The project is being administered by the State of Alaska Department of Transportation and Public Facilities (DOT&PF). Anticipated work will include:

- Widening the road to allow additional and/or wider lanes/shoulders,
- Constructing intersection improvements, and
- Enhancing bicycle and pedestrian facilities and connectivity.

The objective of this analysis is to determine the minimum required pavement structural section(s) for the project from a traffic-loading requirement. This design is based on the anticipated Equivalent Single Axle Loads (ESALs) for the 30-year design life (see Section 7.4.3 of the Alaska Flexible Pavement Design Manual [PDM]).

The pavement section recommendation presented in this memorandum is based on traffic loading and does not account for frost depth or other geotechnical needs (e.g., shallow water table, or reuse of existing material). A geotechnical evaluation should be completed to determine an appropriate total structural section depth, which may exceed the total section depth of 21 inches presented in this memorandum. The Selected Material within the existing pavement section may be acceptable for reuse in-place; however, this should be evaluated in the geotechnical investigation (see the as-built drawings for the DOT&PF Old Steese Highway Reconstruction project [Project F-M-0672(1)/64242]).

1.0 PAVEMENT STRUCTURAL SECTION

The selected pavement design has been generated using the PDM and associated software. ESAL computations were completed using traffic data from the project design designation summarized in Table 1. The ESAL computation worksheets are included in Attachment A.

Albert Beck, P.E. State of Alaska Department of Transportation and Public Facilities May 17, 2016 Page 2

Historical temperature data from 2005 through the present was reviewed to determine the required Performance Grade (PG) of modified oil for the Hot Mix Asphalt (HMA). The average seven-day high ambient air temperature is 26.9 °C (80.5 °F), and the average one-day low ambient air temperature is -42.1 °C (-43.8 °F), corresponding to high and low pavement temperatures of 37.5 °C and -34.5 °C, respectively. The maximum pavement design temperature was increased by 6 °C because of the lower traffic speed of 35 miles per hour (mph). As such, the lowest PG is 46-40 and the recommended PG is 58-40 (see Attachment B for a temperature data summary and the calculations).

In accordance with the 2015 DOT&PF Standard Specifications for Highway Construction, Section 306, the Asphalt Treated Base (ATB) layer includes 5-percent modified oil with PG 58-40, which is similar to the oil content in the HMA layer. This implies that the ATB layer will provide adequate resistance to fatigue failure and plastic deformation and, hence, will function as a binder layer and a base course layer.

Hard aggregate is not required for this project because the construction year Annual Average Daily Traffic (AADT) is less than 5,000 vehicles per lane. This is in accordance with the recommendations specified in the Hard Aggregate Usage Policy memorandum issued by the DOT&PF on August 2, 2013 (see Attachment C).

Data	Johansen Expressway to Helmericks Avenue (Section 1)	Helmericks Avenue to Trainor Gate Road (Section 2)	Trainor Gate Road to College Road (Section 3)	College Road to 3rd Street (Section 4)	3rd Street to Wendell Avenue (Section 5)
	` /	ovided in Design D	· · · · ·	(Section 4)	(Section 5)
2014/2015 AADT	8,000	15,800	11,300	9,500	8,450
2030 AADT	10,650	21,050	15,210	12,800	9,810
2040/2045 AADT	12,375	24,400	20,470	14,850	11,390
Growth Rate (%)		2014 to 2019 2019 to 2040	2%	2% from 2015 to 2030 1% from 2030 to 2045	1%
Truck Traffic	2.80% 0.25% 0.10	% Total o Class 5 o Class 6 Class 8 Class 9		4% Total 0.10 Class 4 2.50 Class 5 0.15 Class 6 1.20 Class 8 0.00 Class 9 0.05 Class 10	

 Table 1: Design Designation Data Summary

Data	Johansen Expressway to Helmericks Avenue (Section 1)	Helmericks Avenue to Trainor Gate Road (Section 2)	Trainor Gate Road to College Road (Section 3)	College Road to 3rd Street (Section 4)	3rd Street to Wendell Avenue (Section 5)
		For Pavement D	esign	· · · · · · ·	
Truck Traffic by Number of Axles	2.80% T 0.25% TI 0.10% F	6 Total 'wo Axles hree Axles 'our Axles 'ive Axles	0.60 0.8 0.0	4% Total 5% Two Axles 0% Three Axles 0% Four Axles 0% Five Axles 6 Six-Plus Axles	
2017 Construction Year AADT	8,615	17,015	11,760	9,880	8,620
2017 Construction Year AADT per Lane	2,370	4,680	3,230	2,720	2,370
2047 Design Year AADT	13,730	27,080	21,300	15,150	11,620
Future Design ESALs (Construction year plus 30 years)	999,059	1,973,038	2,188,445	1,747,078	1,375,916

The pavement sections presented below were selected per General Policy 7 (Section 2.1 of the PDM [DOT&PF 2004]), which states that, for projects with curb and gutter that have AADT greater than 5,000, the Alaska Renewable Pavement (ARP) design should be used. The ARP design states that the pavement section should consist of either:

- Two (2) inches minimum of wearing course (e.g., HMA), over
- Three (3) inches minimum of binder course (e.g., ATB), over
- Four (4) inches minimum of Aggregate Base Course (e.g., D-1), over
- Selected Material as required

or

- Two (2) inches minimum of wearing course (e.g., HMA), over
- Two (2) inches minimum of binder course (e.g., HMA or ATB), over
- Three (3) inches minimum of stabilized base, over
- Selected Material as required.

Albert Beck, P.E. State of Alaska Department of Transportation and Public Facilities May 17, 2016 Page 4

Stabilized base generally consists of an aggregate material or recycled asphalt material combined with a stabilizing agent such as asphalt emulsion, foamed asphalt cement, lime, portland cement, or recycled asphalt. The use of stabilized base is not considered economically feasible so sections employing a stabilized base have not been evaluated and are not recommended.

The recommended minimum pavement structural section for this project, *based on traffic loading only*, is as follows:

- Two (2) inches of HMA, Type II, Class A, with PG 58-40, over
- Three (3) inches of ATB, with PG 58-40, over
- Four (4) inches of Aggregate Base Course, Grading D-1, over
- Twelve (12) inches, minimum, of Selected Material, Type A.

Each section of the project was evaluated using the design information presented in Table 1. Although Sections 1, 4, and 5 do not require, from a traffic loading standpoint, the same structural section as Sections 2 and 3, we recommend that a single pavement structural section be used throughout the project. The Alaska Flexible Pavement Design Software inputs and outputs included in Attachment D were prepared using the recommended pavement section.

ATTACHMENTS

Attachment A – Equivalent Single Axle Load (ESAL) Computation Worksheets

Attachment B – Temperature Data Summary and Calculations

Attachment C – DOT&PF Hard Aggregate Usage Policy Memorandum

Attachment D – Alaska Flexible Pavement Design Software Inputs and Outputs

ATTACHMENT A

Equivalent Single Axle Load (ESAL) Computation Worksheets

Project	Number:	61487					Date:	May 1	7, 2016	
		Tra	ffic Da	ata for	Desia	n and	Histor	ic ES/	ALS	
	D	esign D			Doolg				Data Inp	ut
		n Construct		2017					tion Year:	
ŀ		ign Length		2						
			ase Year:	2014			Ba	ackcast %	per Year:	
	Bas	se Year Tot		8000						
	Grow	/th Rate %	per Year:	2.5						
[% of Ba	ise Year AA	DT for Ea	ach Lane			% of Bas	se Year A	ADT for Ea	ich Lane
[La	ane	9	6			La	ne	%	6
		1		4			1			
-		2	1				2			
ŀ		3 4	-	6 9			2			
ŀ		4 5		9)			5			
ŀ		6))			6			
		Load F	Taatar	0/ ^ ^	DT in			Lood	Footor	% AADT in
Fruck Ca	ategory	(ESALs p		% AA Truck C		Truck C	ategory		Factor ber Truck)	Truck Categor
0.4							l			
2-A: 3-A:		0. 0.8		2. 0.2			xle xle		.5 85	
4-A		1.		0.2			xle		.2	
5-A:	xle	1.5		0.			xle		55	
								_		
>=6-/		2.2		C)	>=6-			24	
		AL DES	IGN ES	-)	>=6-			24 ORIC ES	SALs:
			IGN ES	-)	>=6-				SALs:
		AL DES	IGN ES 887	-			ΤΟΤΑ	L HIST		SALS:
	ΤΟΤ	AL DES	IGN ES 887 C Desigr	ALS:	on Year % AA	ESAL Ca	ΤΟΤΑ	L HIST s actor for		tion Year
	TOT, Truck (2-4	AL DES 52,8 Category Axle	IGN ES 887 C Desigr AA 37	onstructi n Lane DT 91	on Year % AA Truck C 2.	ESAL Ca DT in ategory 8	TOTA Ilculation Load Fa Truck C	L HIST IS Actor for ategory 5	Construct ESA	tion Year ALs 372
	TOT. Truck (2-/ 3-/	AL DES 52,6 Category Axle Axle	IGN ES 887 C Desigr AA 37 37	onstructi n Lane DT 91 91	on Year % AA Truck C 2. 0.2	ESAL Ca DT in ategory 8 25	TOTA Ilculation Load Fa Truck C 0.	L HIST s actor for ategory 5 35	Construct ESA 19,3 2,9	tion Year ALs 372 40
	TOT. Truck (2-/ 3-/ 4-/	AL DES 52,8 Category Axle Axle Axle	IGN ES 887 C Desigr AA 37 37 37	onstructi n Lane DT 91 91 91	on Year % AA Truck C 2. 0.2 0.2	ESAL Ca DT in category 8 25 1	TOTA Iculation Load Fa Truck C 0. 0.1	A HIST As Actor for Ategory 5 35 2	Construct ESA 19,3 2,9 1,6	tion Year ALs 372 40 60
	TOT. Truck (2-/ 3-/ 4-/ 5-/	AL DES 52,8 Category Axle Axle Axle Axle	IGN ES 887 C Desigr AA 37 37 37 37	onstructi n Lane DT 91 91 91 91 91	on Year % AA Truck C 2. 0.2	ESAL Ca DT in category 8 25 1 1	TOTA Ilculation Load Fa Truck C 0.	A HIST As Actor for Ategory 5 35 2 2 55	Construct ESA 19,3 2,9	tion Year ALs 372 40 60 45
	TOT. Truck (2-/ 3-/ 4-/ 5-/	AL DES 52,8 Category Axle Axle Axle	IGN ES 887 C Desigr AA 37 37 37 37	onstructi n Lane DT 91 91 91	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in category 8 25 1 1 1	TOTA Ilculation Load Fa Truck C 0. 0.4 1.	L HIST actor for ategory 5 35 2 2 55 24	Construct ESA 19,3 2,9 1,6 2,1	tion Year ALs 372 40 60 45
	TOT. Truck (2-/ 3-/ 4-/ 5-/	AL DES 52,8 Category Axle Axle Axle Axle	IGN ES 887 Desigr AA 37 37 37 37 37	onstructi n Lane DT 91 91 91 91 91	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in ategory 8 25 1 1 1 0 vtal Constr	ICULATION Load Fa Truck C 0. 0.1 1. 2.: uction Yea	L HIST actor for ategory 5 35 2 24 ar ESALs:	Construct ESA 19,3 2,9 1,6 2,1 0	tion Year ALs 372 40 60 45
	TOT. Truck (2-/ 3-/ 4-/ 5-/	AL DES 52,8 Category Axle Axle Axle Axle	IGN ES 887 Desigr AA 37 37 37 37 37	onstructi n Lane DT 91 91 91 91 91	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in ategory 8 25 1 1 1 0 vtal Constr	ICULATION Load Fa Truck C 0. 0.1 1. 2.: uction Yea	L HIST actor for ategory 5 35 2 24 ar ESALs:	Construct ESA 19,3 2,9 1,6 2,1 0 26,1	tion Year ALs 372 40 60 45 0
	Truck (2-/ 3-/ 4-/ >=6	AL DES 52,8 Category Axle Axle Axle Axle Axle Axle	IGN ES 887 C Desigr AA 37 37 37 37 37 4 Histor Desigr	onstructi n Lane DT 91 91 91 91 91 91 91 91	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in Category 8 25 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	ICULATION Load Fa Truck C 0. 0.1 1. 2.: uction Yea	A HIST A S A Ctor for ategory 5 35 2 2 55 24 Ar ESALs: ations	Construct ESA 19,3 2,9 1,6 2,1 0	tion Year ALs 372 40 60 45 0 117
	Truck (2-/ 3-/ 4-/ >=6	AL DES 52,8 Category Axle Axle Axle Axle	IGN ES 887 C Desigr AA 37 37 37 37 37 4 Histor Desigr	onstructi n Lane DT 91 91 91 91 91 91 91	on Year % AA Truck C 2. 0.2 0.2 0. 0. 0. 0. 7 0. 7 0. 7 0. 7	ESAL Ca DT in Category 8 25 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	ICULATION Load Fa Truck C 0. 0.3 1. 1.3 2.3 uction Yea	A HIST A S A Ctor for ategory 5 35 2 2 2 4 ar ESALs: actor for actor for	Construct ESA 19,3 2,9 1,6 2,1 0 26,1 Histe Constr Ye	tion Year ALs 372 40 60 45 0 117 0 ric uction ar
	TOT, Truck (2-/ 3-/ 4-/ 5-/ >=6	AL DES 52,8 Category Axle Axle Axle -Axle Category	IGN ES 887 C Desigr AA 37 37 37 37 37 4 Histor Desigr	onstructi n Lane DT 91 91 91 91 91 91 91 91	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in category 8 25 1 1 0 tal Constr /ear ESA DT in category	ICUIATION Load Fa Truck C 0. 0.3 1. 2.3 uction Yea Load Fa Truck C	L HIST actor for ategory 5 35 2 2 5 5 5 2 4 ar ESALs: actor for actor for actor for actor for	Construct ESA 19,3 2,9 1,6 2,1 0 26,1 Histo Constr Ye ESA	tion Year ALs 372 40 60 45 0 117 0 ric uction ar ALs
	TOT, Truck (2-/ 3-/ 5-/ >=6 Truck (2-/	AL DES 52,8 Category Axle Axle Axle Axle Category Category Axle	IGN ES 887 C Desigr AA 37 37 37 37 37 4 Histor Desigr	onstructi n Lane DT 91 91 91 91 91 91 91 91	on Year % AA Truck C 2. 0.2 0.2 0. 0. 0. 0. 0. 0. 0. To To Tuction Y % AA Truck C	ESAL Ca DT in ategory 8 25 1 1 0 otal Constr Zear ESA DT in ategory	ICULATION Load Fa Truck C 0. 0.3 1. 2.3 uction Yea Load Fa Truck C	L HIST actor for ategory 5 35 2 2 4 ar ESALs: actor for ategory 5	Construct ESA 19,3 2,9 1,6 2,1 0 26,1 Histo Constr Ye ESA	tion Year ALs 372 40 60 45 0 117 0 117 oric uction ar ALs 0
	TOT. Truck (2-/ 3-/ 4-/ 5-/ >=6 Truck (2-/ 3-/	AL DES 52,8 Category Axle Axle Axle Axle Axle Category Category Axle Axle	IGN ES 887 C Desigr AA 37 37 37 37 37 4 Histor Desigr	onstructi n Lane DT 91 91 91 91 91 91 91 91	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in Category 8 25 1 1 0 0 0 0 0 0	ICULATION Load Fa Truck C 0.4 0.4 1. 2.3 uction Yea Load Fa Truck C 0. 0.4	L HIST As Actor for ategory 5 35 2 2 55 24 Ar ESALs: actor for ategory 5 35 24 35 24 35 24 35 24 35 24 35 35 35 35 35 35 35 35 35 35	Construct ESA 19,3 2,9 1,6 2,1 0 26,1 Histo Constr Ye ESA 0 0	tion Year ALs 372 40 60 45 0 117 0 117 0 ric uction ar ALs 0
	TOT. Truck (2-/ 3-/ 4-/ 5-/ >=6 Truck (2-/ 3-/ 4-/ 4-/ 4-/ 	AL DES 52,8 Category Axle Axle Axle Axle Category Category Axle	IGN ES 887 C Desigr AA 37 37 37 37 37 4 Histor Desigr	onstructi n Lane DT 91 91 91 91 91 91 91 91	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in category 8 25 1 1 1 0 0 0 0 0 0	ICULATION Load Fa Truck C 0. 0.3 1. 2.3 uction Yea Load Fa Truck C	L HIST actor for ategory 5 35 2 2 2 4 ar ESALs: actor for ategory 5 35 2 2 2 4 5 5 5 2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Construct ESA 19,3 2,9 1,6 2,1 0 26,1 Histo Constr Ye ESA	tion Year ALs 372 40 60 45 0 117 117 oric uction ar ALs 0 0
	TOT, Truck (2-/ 3-/ 4-/ 5-/ >=6 Truck (2-/ 3-/ 4-/ 5-/ 5-/ 5-/ 5-/ 5-/ 5-/ 5-/ 5	AL DES 52,8 Category Axle Axle Axle Axle Axle Category Category Axle Axle Axle	IGN ES 887 C Desigr AA 37 37 37 37 37 4 Histor Desigr	onstruction In Lane DT 91 91 91 91 91 91 91 91 91 91 91 91	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in category 8 25 1 1 1 0 0 0 0 0 0 0 0 0	ICULATION Load Fa Truck C 0. 0.3 1. 2.3 uction Yea Load Fa Truck C 0. 0.3 1. 1. 1. 2.1 UCULATION	L HIST actor for ategory 5 35 2 35 2 4 ar ESALs: actor for ategory 5 35 2 4 actor for ategory 5 35 2 2 35 2 2 35 2 2 35 2 2 35 2 2 35 2 2 35 2 2 35 2 2 35 2 2 35 2 2 35 2 2 35 2 2 35 2 2 35 2 2 35 2 2 35 2 35 2 35 2 2 35 35 2 35 35 2 35 35 2 35 35 35 35 35 35 35 35 35 35	Construct ESA 19,3 2,9 1,6 2,1 0 26,1 0 26,1 Hista Constr Ye ESA 0 0 0 0	tion Year ALs 372 40 60 45 0 117 117 oric uction ar ALs 0 0 0

	t Name: t Number:			/ - Johanse			Designer: Date:	AKM	8, 2016	
Tiojeot		ļ	ffic Dr	to for	Docia	nand		1 .		
					Desig	n anu	Histor			
ľ		esign D							Data Inp	ut
·		n Construct		2019			Historic	Construc	tion Year:	
	Des	ign Length		28				1 10/	V.	
	Dec	Ba se Year Tot	ase Year:	2019 9051.27			Ва	ckcast %	per Year:	
·		/th Rate %		9051.27						
		ise Year AA					% of Bas	o Voar A	ADT for Ea	ch Lane
		ane	9 8				Jo of Das		۹۵۲ IOI La %	
		1	4				1	10		0
ľ		2	1				2			
		3	3	6			3			
		4	ę				4			
		5	(5			
		6	(J			6			
Truck C	ategory	Load F (ESALs p		% AA Truck C		Truck C	ategory		Factor per Truck)	% AADT in Truck Catego
2-A	xle	0.	5	2.	8	2-A	xle	0	.5	
3-A		0.8		0.2		3-A			.o 85	
4-A	xle	1.	2	0.	1	4-A	xle	1	.2	
		1.5	55	0.	1	5-A			55	
5-A										
5-A >=6-	Axle	2.2)	>=6-			24	SALo
	Axle		IGN ES)	>=6-			24 ORIC E	SALs:
	Axle	2.2 AL DES	IGN ES 172	ALS:			ΤΟΤΑ	- HIST		SALS:
	Axle	2.2 AL DES	IGN ES 172	ALS:				- HIST		SALS:
	Axle	2.2 AL DES	IGN ES 172 C Desigr	ALS:	on Year % AA	ESAL Ca	ΤΟΤΑ	_ HIST(s ctor for		tion Year
	Axle TOT Truck (2.2 AL DES 946,	IGN ES 172 C Desigr	ALS: onstructi n Lane DT	on Year % AA	ESAL Ca DT in category	IOTA Ilculation Load Fa	s s s s s s s s s s s s s s s s s s s	Construct	tion Year ALs
	Axle TOT Truck C	2.2 AL DES 946, Category Axle Axle	IGN ES 172 C Desigr AA 39 39	onstructi n Lane DT 83 83	on Year % AA Truck C 2. 0.2	ESAL Ca DT in ategory 8 25	Load Fa Truck Ca 0.4	S S Ctor for ategory 5 5 5	Construct 20,3	tion Year ALs 353 89
	Axle TOT Truck C 2-/ 3-/ 4-/	2.2 AL DES 946, Category Axle Axle Axle	IGN ES 172 C Desigr AA 39 39 39	onstructi n Lane DT 83 83 83	on Year % AA Truck C 2. 0.2 0.2	ESAL Ca DT in ategory 8 25 1	Load Fa Truck Ca 0.4 0.8	S ctor for ategory 5 55 2	Construct ES/ 20,3 3,0 1,7	tion Year ALs 353 89 45
	Axle TOT Truck C 2-/ 3-/ 4-/ 5-/	2.2 AL DES 946, Category Axle Axle Axle Axle	IGN ES 172 C Desigr AA 39 39 39 39 39	onstructi n Lane DT 83 83 83 83	on Year % AA Truck C 2. 0.2 0.2 0.2	ESAL Ca DT in category 8 25 1 1	Load Fa Truck Ca 0.1 0.2 1.1 1.5	s ctor for ategory 5 35 2 55	Construct ES/ 20,3,0 1,7 2,2	tion Year ALs 353 89 45 53
	Axle TOT Truck C 2-/ 3-/ 4-/ 5-/	2.2 AL DES 946, Category Axle Axle Axle	IGN ES 172 C Desigr AA 39 39 39 39 39	onstructi n Lane DT 83 83 83	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in category 8 25 1 1 1	ICULATION Load Fa Truck Ca 0 0 1 1.5 2.2	s ctor for ategory 5 5 5 5 5 5 4	Construct ES/ 20,3 3,0 1,7 2,2 0	tion Year ALs 353 89 45 53
	Axle TOT Truck C 2-/ 3-/ 4-/ 5-/	2.2 AL DES 946, Category Axle Axle Axle Axle	IGN ES 172 Desigr AA 39 39 39 39 39	onstructi n Lane DT 83 83 83 83 83	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in ategory 8 25 1 1 1 0 tal Constr	ICULATION Load Fa Truck Ca 0.: 0.: 1.: 1.: 2.2 uction Yea	s ctor for ategory 5 5 2 2 5 2 4 r ESALs:	Construct ES/ 20,3,0 1,7 2,2	tion Year ALs 353 89 45 53
	Axle TOT Truck C 2-/ 3-/ 4-/ 5-/	2.2 AL DES 946, Category Axle Axle Axle Axle	IGN ES 172 Desigr AA 39 39 39 39 39	onstructi n Lane DT 83 83 83 83 83	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in ategory 8 25 1 1 1 0 tal Constr	ICULATION Load Fa Truck Ca 0 0 1 1.5 2.2	s ctor for ategory 5 5 2 2 5 2 4 r ESALs:	Construct ES/ 20,3 3,0 1,7 2,2 0	tion Year ALs 353 89 45 53 0
	Axle TOT Truck C 2-/ 3-/ 4-/ 5-/ >=6	2.2 AL DES 946, Category Axle Axle Axle Axle Axle	IGN ES 172 Desigr AA 39 39 39 39 39 39 39 39 39 39 39 39 39	ALS: onstructi n Lane DT 83 83 83 83 83 83 83 83 83 83 83 83	on Year % AA Truck C 2. 0.2 0.2 0. 0. 0. 0. 7 0. 7 0. 7 0. 7	ESAL Ca DT in sategory 8 25 1 1 1 0 stal Constr Zear ESA DT in	ICULATION Load Fa Truck Ca 0.a 0.a 1.a 1.5 2.2 uction Yea L Calcula	s ctor for ategory 5 5 5 2 2 5 5 4 r ESALs: ations	Construct ESA 20,3 3,0 1,7 2,2 0 27,4 Histe Constr	tion Year ALs 353 89 45 53 0 440 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Axle TOT Truck C 2-/ 3-/ 4-/ 5-/ >=6	2.2 AL DES 946, Category Axle Axle Axle Axle	IGN ES 172 C Desigr AA 39 39 39 39 39 39 39 39 39 39 39	ALS: onstructi n Lane DT 83 83 83 83 83 83 83 83 83 83 83 83	on Year % AA Truck C 2. 0.2 0.2 0. 0. 0. 0. 7 0. 7 0. 7 0. 7	ESAL Ca DT in ategory 8 25 1 1 1) tal Constr 'ear ESA	Load Fa Truck Ca 0.a 0.a 1.a 1.5 2.2 uction Yea	s ctor for ategory 5 5 5 2 2 5 5 4 r ESALs: ations	Construct ESA 20,3 3,0 1,7 2,2 0 27,4 Histr Constr Ye	tion Year ALs 353 89 45 53 0 440 0 440
	Axle TOT Truck C 2-/ 3-/ 4-/ 5-/ >=6	2.2 AL DES 946, Category Axle Axle Axle Axle -Axle	IGN ES 172 Desigr AA 39 39 39 39 39 39 39 39 39 39 39 39 39	ALS: onstructi n Lane DT 83 83 83 83 83 83 83 83 83 83 83 83	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in category 8 25 1 1 0 tal Constr Zear ESA DT in category	IOTA Iculation Load Fa Truck Ca 0 0.8 1 1.5 2.2 uction Yea Load Fa Truck Ca	s ctor for ategory 5 5 2 5 5 2 4 4 r ESALs: ations ctor for ategory	Construct ESA 20,3 3,0 1,7 2,2 0 27,4 Histe Constr Ye ESA	tion Year ALs 353 89 45 53 0 440 oric uction ar ALs
	Axle TOT Truck C 2-/ 3-/ 4-/ 5-/ >=6 Truck C 2-/	2.2 AL DES 946, Category Axle Axle Axle Axle Category Category Axle	IGN ES 172 Desigr AA 39 39 39 39 39 39 39 39 39 39 39 39 39	ALS: onstructi n Lane DT 83 83 83 83 83 83 83 83 83 83 83 83	on Year % AA Truck C 2. 0.2 0.2 0. 0. 0. 0. 0. 0. 0. 0. To To ruction Y % AA Truck C	ESAL Ca DT in ategory 8 25 1 1 1 0 tal Constr Zear ESA DT in ategory	IOTA Iculation Load Fa Truck Ca 0.: 0.: 1.: 2.2 uction Yea Load Fa Truck Ca 0.:	s ctor for ategory 5 5 2 2 5 2 4 r ESALs: ations ctor for ategory 5	Construct ESA 20,3 3,0 1,7 2,2 0 27,4 Histe Constr Ye ESA	tion Year ALs 353 89 45 53 0 440 440 oric uction ar ALs
	Axle TOT Truck (C 2-/ 3-/ 4-/ 5-/ >=6 Truck (C 2-/ 3-/ 3-/ 3-/	2.2 AL DES 946, Category Axle Axle Axle Axle Axle Category Category Axle Axle	IGN ES 172 Desigr AA 39 39 39 39 39 39 39 39 39 39 39 39 39	ALS: onstructi n Lane DT 83 83 83 83 83 83 83 83 83 83 83 83	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in ategory 8 25 1 1 1) tal Constr Year ESA DT in ategory	ICULATION Load Fa Truck Ca 0.a 1.a 1.5 2.2 uction Yea Load Fa Truck Ca 0.a 0.6	s ctor for ategory 5 5 5 2 2 5 5 2 4 r ESALs: ations ctor for ategory 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Construct ESA 20,3 3,0 1,7 2,2 0 27,4 Histi Constr Ye ESA 0 0	tion Year ALs 353 89 45 53 0 440 0 440 0 0 0 0 0 0 0 0 0
	Axle TOT Truck C 2-/ 3-/ 4-/ 5-/ >=6 Truck C 2-/ 3-/ 4-/ 3-/ 4-/ 3-/ 4-/ 5-/ 3-/ 4-/ 5-/ 3-/ 4-/ 5-/ 5-/ 5-/ 5-/ 5-/ 5-/ 5-/ 5	2.2 AL DES 946, Category Axle Axle Axle Axle Category Category Axle	IGN ES 172 Desigr AA 39 39 39 39 39 39 39 39 39 39 39 39 39	ALS: onstructi n Lane DT 83 83 83 83 83 83 83 83 83 83 83 83	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in sategory 8 25 1 1 1 0 stal Constr Zear ESA DT in sategory 0 0	IOTA Iculation Load Fa Truck Ca 0.: 0.: 1.: 2.2 uction Yea Load Fa Truck Ca 0.:	s ctor for ategory 5 5 5 2 2 5 5 2 5 5 2 5 5 2 5 5 2 2 5 5 2 2 5 5 2 2 5 5 2 2 5 5 2 2 5 5 2 2 5 5 5 2 2 5 5 5 2 2 5 5 5 2 2 5	Construct ESA 20,3 3,0 1,7 2,2 0 27,4 Histe Constr Ye ESA	tion Year ALs 353 89 45 53 0 440 440 oric uction ar ALs 0 0
	Axle TOT Truck (2-/ 3-/ 4-/ 5-/ >=6 Truck (2-/ 3-/ 4-/ 5-/ 5-/ 5-/ 5-/ 5-/ 5-/ 5-/ 5	2.2 AL DES 946, Oategory Axle Axle Axle Axle Axle Category Category Axle Axle Axle	IGN ES 172 Desigr AA 39 39 39 39 39 39 39 39 39 39 39 39 39	ALS: onstruction DT 83 83 83 83 83 83 83 83 83 83 83 83 83	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in category 8 25 1 1 1 0 tategory 7 Cear ESA DT in category 0 0 0	ICULATION Load Fa Truck Ca 0.a 0.a 1.a 1.5 2.2 uction Yea Load Fa Truck Ca 0.a 0.a 1.a 1.5 2.2 Uction Yea	s ctor for ategory 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5	Construct ESA 20,3 3,0 1,7 2,2 0 27,4 Histe Constr Ye ESA 0 0 0 0 0 0	tion Year ALs 353 89 45 53 0 440 0 440 0 0 0 0 0

1 10,000	Number:	,				-	Date:	1	7, 2016	
				ata for	Desig	n and				
	D	esign D	ata Inp	ut			Hi	storic I	Data Inp	ut
	Desigr	n Construct	tion Year:	2017			Historic	Construc	tion Year:	
	Desi	ign Length	in Years:	2						
		Ba	ase Year:	2014			Ba	ackcast %	per Year:	
		se Year Tot		15800						
	Grow	th Rate %	per Year:	2.5						
ſ	% of Ba	se Year AA	ADT for Ea	ich Lane			% of Bas	se Year A	ADT for Ea	ich Lane
	La	ane	9	6			La	ne	%	0
		1	4	4			1			
		2	1	1			2	2		
		3	3				3			
-		4	9				4			
-		5	(5			
		6	(J			6)	l	
Truck C	otogony	Load F	Factor	% AA	DT in	Truck	otogony	Load	Factor	% AADT in
	ategory	(ESALs p	er Truck)	Truck C	ategory	TTUCK C	ategory	(ESALs p	per Truck)	Truck Catego
2-A	xle	0.	5	2.	8	2-4	xle	0	.5	
3-A		0.8		0.2			xle		.0 85	
4-A	-	1.		0.			xle		.2	
5-A	xle	1.5	55	0.	1	5-A	xle	1.	55	
		0.0	24	C		<u> </u>	Axle	2	24	
>=6-/		2.2		-)	>=0-				
>=6-/		AL DES		-)	>=0-			ORIC ES	SALs:
>=6-/			IGN ES	-)	>=0.				SALs:
>=6-7		AL DES	IGN ES <mark>,452</mark>	-			ΤΟΤΑ	L HIST		SALS:
>=6-7	тот	AL DES	IGN ES ,452 C Desigr	ALS: onstructi	on Year % AA	ESAL C a DT in	TOTA	L HIST	Construct	tion Year
>=6-,	тот	AL DES 104,	IGN ES ,452 C Desigr	ALS:	on Year % AA	ESAL Ca	TOTA	L HIST		tion Year
>=6-,	TOT	AL DES 104,	IGN ES ,452 C Desigr	onstructi	on Year % AA	ESAL Ca DT in category	TOTA	L HIST	Construct	tion Year ALs
>=6-/	TOT, Truck C 2-4 3-4	AL DES 104, Category Axle Axle	IGN ES ,452 C Desigr AA 74 74	onstructi n Lane DT 87	on Year % AA Truck C 2. 0.2	ESAL Ca DT in category 8 25	TOTA Alculation Load Fa Truck C 0.1	A HIST As Actor for ategory 5 35	Construct ESA 38,2 5,8	tion Year ALs 259 07
>=6-/	TOT/ Truck C 2-/ 3-/ 4-/	AL DES 104, Category Axle Axle Axle	IGN ES 452 C Desigr AA 74 74 74	onstructi n Lane DT 87 87 87	on Year % AA Truck C 2. 0.3 0.	ESAL Ca DT in ategory 8 25 1	TOTA Alculation Load Fa Truck C 0. 0.1	A HIST actor for ategory 5 35 2	Construct ESA 38,2 5,8 3,2	tion Year ALs 259 07 79
>=6-,	TOT/ Truck C 2-4 3-4 4-4 5-4	AL DES 104, Category Axle Axle Axle Axle	IGN ES 452 Desigr AA 74 74 74 74	onstructi n Lane DT 87 87 87 87	on Year % AA Truck C 2. 0.3 0. 0.	ESAL Ca DT in rategory 8 25 1 1	TOTA Alculation Load Fa Truck C 0. 0.4 1.	A HIST actor for ategory 5 35 2 55	Construct ESA 38,2 5,8 3,2 4,2	tion Year ALs 259 07 79 36
>=6-/	TOT/ Truck C 2-4 3-4 4-4 5-4	AL DES 104, Category Axle Axle Axle	IGN ES 452 C Desigr AA 74 74 74	onstructi n Lane DT 87 87 87 87	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in category 8 25 1 1 1	TOTA Alculation Load Fa Truck C 0. 0.1 1. 1.1 2.1	L HIST actor for ategory 5 35 2 55 24	Construct ESA 38,2 5,8 3,2 4,2 0	tion Year ALs 259 07 79 36)
>=6-/	TOT/ Truck C 2-4 3-4 4-4 5-4	AL DES 104, Category Axle Axle Axle Axle	IGN ES 452 Desigr AA 74 74 74 74	onstructi n Lane DT 87 87 87 87	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in category 8 25 1 1 1	TOTA Alculation Load Fa Truck C 0. 0.4 1.	L HIST actor for ategory 5 35 2 55 24	Construct ESA 38,2 5,8 3,2 4,2	tion Year ALs 259 07 79 36)
>=6-,	TOT/ Truck C 2-4 3-4 4-4 5-4	AL DES 104, Category Axle Axle Axle Axle	IGN ES ,452 Desigr AA 74 74 74 74 74	onstructi n Lane DT 87 87 87 87 87	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in ategory 8 25 1 1 1 0 tal Constr	ICULATION Load Fa Truck C 0. 0.1 1. 2.: uction Yea	L HIST actor for ategory 5 35 2 24 ar ESALs:	Construct ESA 38,2 5,8 3,2 4,2 0	tion Year ALs 259 07 79 36)
>=6-,	TOT/ Truck C 2-4 3-4 4-4 5-4	AL DES 104, Category Axle Axle Axle Axle	IGN ES ,452 Desigr AA 74 74 74 74 74	onstructi n Lane DT 87 87 87 87	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in ategory 8 25 1 1 1 0 tal Constr	ICULATION Load Fa Truck C 0. 0.1 1. 2.: uction Yea	L HIST actor for ategory 5 35 2 24 ar ESALs:	Construct ESA 38,2 5,8 3,2 4,2 0	tion Year ALs 259 07 79 36 0
>=6-,	TOT/ Truck C 2-/ 3-/ 4-/ 5-/ >=6	AL DES 104, Category Axle Axle Axle -Axle -Axle	IGN ES 452 Desigr AA 74 74 74 74 74 74 74 74 74 74 74 74	onstructi n Lane DT 87 87 87 87 87 87 87 87 87	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in sategory 8 25 1 1 1 0 stal Constr Zear ESA DT in	ICUIATION Load Fa Truck C 0. 0.4 1. 2.3 uction Yea Load Fa	A HIST A CONFORMATION A CONF	Construct ESA 38,2 5,8 3,2 4,2 0 51,5	tion Year ALs 259 07 79 36) 581
>=6-,	TOT/ Truck C 2-/ 3-/ 4-/ 5-/ >=6	AL DES 104, Category Axle Axle Axle Axle	IGN ES 452 Desigr AA 74 74 74 74 74 74	onstructi n Lane DT 87 87 87 87 87 87 87 87 87	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in tategory 8 25 1 1 1 0 tal Constr 'ear ESA	TOTA Alculation Load Fa Truck C 0.4 1. 2.3 uction Yea	A HIST A CONFORMATION A CONF	Construct ESA 38,2 5,8 3,2 4,2 0 51,5 Histe Constr Ye	tion Year ALs 259 07 79 36 0 581 0 581
>=6-,	TOT/ Truck C 2-4 3-4 4-4 5-6 >=6	AL DES 104, Category Axle Axle Axle -Axle Category	IGN ES 452 Desigr AA 74 74 74 74 74 74 74 74 74 74 74 74	onstructi n Lane DT 87 87 87 87 87 87 87 87 87	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in category 8 25 1 1 0 tal Constr Zear ESA DT in category	ICUIATION Load Fa Truck C 0. 0.3 1. 2.3 uction Yea Load Fa Truck C	L HIST actor for ategory 5 35 2 2 35 2 4 ar ESALs: actor for ategory	Construct ESA 38,2 5,8 3,2 4,2 0 51,5 Histe Constr Ye ESA	tion Year ALs 259 07 79 36) 581 oric uction ar ALs
>=6-,	TOT/ Truck C 2-/ 3-/ 4-/ 5-/ >=6 Truck C	AL DES 104, Category Axle Axle Axle -Axle Category Axle	IGN ES 452 Desigr AA 74 74 74 74 74 74 74 74 74 74 74 74	onstructi n Lane DT 87 87 87 87 87 87 87 87 87	on Year % AA Truck C 2. 0.3 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 7 0. 7	ESAL Ca DT in ategory 8 25 1 1 0 tal Constr Zear ESA DT in ategory	ICUIATION Load Fa Truck C 0. 0.1 1. 2.1 uction Yea Load Fa Truck C	L HIST actor for ategory 5 35 2 24 ar ESALs: actor for ategory 5	Construct ESA 38,2 5,8 3,2 4,2 0 51,5 Constr Ye ESA 0	tion Year ALs 259 07 79 36 0 581 0 581
>=6-,	TOT/ Truck C 2-4 3-4 5-4 >=6 Truck C 2-4 3-4	AL DES 104, Category Axle Axle Axle -Axle Category Axle Axle	IGN ES 452 Desigr AA 74 74 74 74 74 74 74 74 74 74 74 74	onstructi n Lane DT 87 87 87 87 87 87 87 87 87	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in ategory 8 25 1 1 1) tal Constr Year ESA DT in ategory	TOTA Alculation Load Fa Truck C 0.3 1. 2.3 uction Yea Load Fa Truck C 0. 0.3 0.3 0.3 0.3 0.3 0.3 0.3	L HIST actor for ategory 5 35 2 2 55 24 ar ESALs: actor for ategory 5 35	Construct ESA 38,2 5,8 3,2 4,2 0 51,5 Histo Constr Ye ESA	tion Year ALs 259 07 79 36 0 581 0 581 0 cric uction ar ALs 0
>=6-,	TOT/ Truck C 2-4 3-4 4-4 5-4 >=6 Truck C 2-4 3-4 4-4	AL DES 104, Category Axle Axle Axle -Axle Category Category Axle Axle Axle	IGN ES 452 Desigr AA 74 74 74 74 74 74 74 74 74 74 74 74	onstructi n Lane DT 87 87 87 87 87 87 87 87 87	on Year % AA Truck C 2. 0.3 0. 0. 0. 0. 0. 0. 0. 7 0. 7 0. 7 0	ESAL Ca DT in sategory 8 25 1 1 1 0 stal Constr Zear ESA DT in sategory 0	ICUIATION Load Fa Truck C 0. 0.4 1. 2.3 uction Yea Load Fa Truck C 0. 0.4 1. 1. 2.3 UCUID	L HIST actor for ategory 5 35 2 2 2 35 2 2 4 ar ESALs: actor for ategory 5 35 2 2 2 35 2 2 2 35 2 2 2 35 2 2 2 35 2 2 35 2 2 35 2 2 2 35 2 2 2 35 2 2 35 2 2 35 2 2 35 2 2 35 35 2 2 35 35 2 2 35 35 2 2 35 35 35 35 35 35 35 35 35 35 35 35 35	Construct ESA 38,2 5,8 3,2 4,2 0 51,5 51,5 Constr Ye ESA 0 0 0 0 0 0	tion Year ALs 259 07 79 36 0 581 0 581 0 581
>=6-,	TOT, Truck C 2-4 3-4 4-4 5-4 >=6 Truck C 2-4 3-4 4-4 5-4 5-4	AL DES 104, Category Axle Axle Axle -Axle Category Axle Axle	IGN ES 452 Desigr AA 74 74 74 74 74 74 74 74 74 74 74 74	onstructi n Lane DT 87 87 87 87 87 87 87 87 87	on Year % AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	ESAL Ca DT in category 8 25 1 1 1 0 tal Constr Zear ESA DT in category 0 0	TOTA Alculation Load Fa Truck C 0.3 1. 2.3 uction Yea Load Fa Truck C 0. 0.3 0.3 0.3 0.3 0.3 0.3 0.3	L HIST actor for ategory 5 35 2 2 55 24 ar ESALs: actor for ategory 5 35 2 2 35 2 2 35 2 2 5 5 5 5 5 5 5 5	Construct ESA 38,2 5,8 3,2 4,2 0 51,5 Histo Constr Ye ESA	tion Year ALs 259 07 79 36) 581 0 581 0 581 0 581 0 581 0 581 0 0 0 0

	umber: 6	2487				Date:	May 1	8, 2016	
		Traffic D	ata for	Desig	n and	Histor	ic ES/	ALs	
	Des	ign Data In						Data Inp	ut
		onstruction Year						tion Year:	
		Length in Years			1				
		Base Yea				Ba	ckcast %	per Year:	
	Base Y	ear Total AADT							
		Rate % per Year							
%		Year AADT for E				% of Bas	e Year A	ADT for Ea	ch Lane
	Lane		%			La		%	
	1		44			1			-
	2		11			2	2		
	3		36			3	}		
	4		9			4	-		
	5		0			5			
	6		0			6	;		
		Load Factor	% AA	DT in	Truck	otocore	Load	Factor	% AADT i
Fruck Cate	(E	SALs per Truck) Truck C	ategory	TTUCK C	ategory	(ESALs p	per Truck)	Truck Categ
2-Axle	•	0.5	2.	8	2-A	xle	0	.5	
3-Axle		0.85	0.2		3-A	xle		85	
4-Axle	Э	1.2	0.	.1	4-A	xle	1	.2	
5-Axle		1.55	0.			xle		55	
>=6-Axl		2.24	0)	>=6-	Axle		24	
_		DESIGN E				IUIA			SALS:
	1,	,868,586	5				1	-	
F			Constructi	on Year	ESAL Ca	lculation	S		
Ţ	Truck Cate	Desi	<mark>Constructi</mark> gn Lane ADT	on Year % AA Truck C	DT in	l culation Load Fa Truck C	ctor for	Construct ESA	
F I	Truck Cate 2-Axle	egory Desig	gn Lane	% AA	DT in ategory	Load Fa	ctor for ategory		ALs
		egory Desig A	gn Lane ADT	% AA Truck C	DT in ategory 8	Load Fa Truck Ca	ictor for ategory 5	ESA	ALs 195
	2-Axle	egory Designed Designed A	gn Lane ADT 866	% AA Truck C 2.	DT in ategory 8 25	Load Fa Truck Ca 0.	actor for ategory 5 35	ESA 40,1	ALs 195 01
	2-Axle 3-Axle 4-Axle 5-Axle	egory Desig A P P P P P P P P P P P P P P P P P P	gn Lane ADT 866 866 866 866	% AA Truck C <u>0.2</u> 0.2 0.2	DT in ategory 8 25 1 1	Load Fa Truck C 0. 0.8 1. 1.5	actor for ategory 5 35 2 55	ESA 40,1 6,1 3,4 4,4	ALs 195 01 45 50
	2-Axle 3-Axle 4-Axle	egory Desig A P P P P P P P P P P P P P P P P P P	gn Lane ADT 866 866 866	% AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	DT in ategory 8 25 1 1 1	Load Fa Truck C 0. 0.8 1. 1.5 2.2	actor for ategory 5 35 2 2 55 24	ESA 40,1 6,1 3,4 4,4	ALS 195 01 45 50 0
	2-Axle 3-Axle 4-Axle 5-Axle	egory Desig A P P P P P P P P P P P P P P P P P P	gn Lane ADT 866 866 866 866	% AA Truck C 2. 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	DT in ategory 8 25 1 1 1	Load Fa Truck C 0. 0.8 1. 1.5	actor for ategory 5 35 2 2 55 24	ESA 40,1 6,1 3,4 4,4	ALS 195 01 45 50 0
	2-Axle 3-Axle 4-Axle 5-Axle	egory Desig A P P P P P P P P P P P P P P P P P P	gn Lane ADT 866 866 866 866 866	% AA Truck C 2. 0.2 0. 0. 0. 0. 0. 0. To	DT in ategory 8 25 1 1 1 0 tal Constr	Load Fa Truck C 0. 0. 1. 1. 2.2 uction Yea	actor for ategory 5 35 2 55 24 r ESALs:	ESA 40,1 6,1 3,4 4,4	ALS 195 01 45 50 0
	2-Axle 3-Axle 4-Axle 5-Axle	egory Desig A P P P P P P P P P P P P P P P P P P	gn Lane ADT 866 866 866 866 866 97 ic Const gn Lane	% AA Truck C 2. 0.2 0. 0. 0. 0. 0. 0. To ruction Y % AA	DT in ategory 8 25 1 1 1 0 tal Constr Zear ESA DT in	Load Fa Truck C 0. 0.8 1. 1.5 2.2 uction Yea Load Fa	actor for ategory 5 35 2 2 2 4 xr ESALs: ations	ESA 40,1 6,1 3,4 4,4 0 54,1 Histo Constr	ALS 195 01 45 50 0 191 0 ric uction
	2-Axle 3-Axle 4-Axle 5-Axle >=6-Axl	egory Desig A P P P P P P P P P P P P P P P P P P	gn Lane ADT 866 866 866 866 866 866 90 ric Const	% AA Truck C 2. 0.2 0. 0. 0. 0. To ruction Y	DT in ategory 8 25 1 1 1 0 tal Constr Zear ESA DT in	Load Fa Truck C 0. 0.8 1. 1.5 2.2 uction Yea Load Fa Truck C	actor for ategory 5 35 2 2 2 4 55 24 55 24 55 24 55 24 55 24 55 24 55 24 55 24 55 55 24 55 55 24 55 55 24 55 55 24 55 55 55 55 55 55 55 55 55 55 55 55 55	ESA 40,1 6,1 3,4 4,4 0 54,1 Histo	ALS 195 01 45 50 0 191 0 ric uction ar
	2-Axle 3-Axle 4-Axle 5-Axle >=6-Axl Truck Cate 2-Axle	egory Desig A A A A A A A A A A A A A A A	gn Lane ADT 866 866 866 866 866 97 ic Const gn Lane	% AA Truck C 2. 0.2 0. 0. 0. 0. 0 To ruction Y % AA Truck C	DT in ategory 8 25 1 1 1 0 tal Constr Year ESA DT in ategory	Load Fa Truck C 0. 1. 1. 2.2 uction Yea Load Fa Truck C	ategory 5 35 2 2 55 24 ations ategory 5	ESA 40,1 6,1 3,4 4,4 0 54,1 Histo Constr Ye ES/ 0	ALS 195 01 45 50 0 191 191 oric uction ar ALS 0
	2-Axle 3-Axle 4-Axle 5-Axle >=6-Axl Truck Cate 2-Axle 3-Axle	egory Desig A P P P P P P P P P P P P P P P P P P	gn Lane ADT 866 866 866 866 866 97 ic Const gn Lane	% AA Truck C 2. 0.2 0. 0. 0. 0. 0 To ruction Y % AA Truck C	DT in ategory 8 25 1 1 1 0 tal Constr Year ESA DT in ategory	Load Fa Truck C 0. 0.8 1. 2.2 uction Yea Load Fa Truck C 0. 0.8	actor for ategory 5 35 2 2 2 4 ations actor for ategory 5 35	ESA 40,1 6,1 3,4 4,4 0 54,1 Histo Constr Ye ESA 0 0	ALS 195 01 45 50 0 191 oric uction ar ALS 0 0
	2-Axle 3-Axle 4-Axle 5-Axle >=6-Axl Truck Cate 2-Axle 3-Axle 4-Axle	egory Desig A P P P P P P P P P P P P P P P P P P	gn Lane ADT 866 866 866 866 866 97 ic Const gn Lane	% AA Truck C 2. 0.2 0. 0. 0. 0. 0. To To ruction Y % AA Truck C 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	DT in ategory 8 25 1 1 1 0 tal Constr Zear ESA DT in ategory	Load Fa Truck C: 0. 1. 1. 2.2 uction Yea Load Fa Truck C: 0. 0. 1.	actor for ategory 5 35 2 2 2 4 35 2 4 35 2 4 35 35 2 2	ESA 40,1 6,1 3,4 4,4 0 54,1 Histe Constr Ye ESA 0 0 0 0	ALS 195 01 45 50 0 191 191 oric uction ar ALS 0 0 0
	2-Axle 3-Axle 4-Axle 5-Axle >=6-Axle 2-Axle 3-Axle 4-Axle 5-Axle	egory Desig A P P P P P P P P P P P P P P P P P P	gn Lane ADT 866 866 866 866 866 97 ic Const gn Lane	% AA Truck C 2. 0.2 0. 0. 0. 0. 0. 0. 0. 70 To 70 To 70 To 70 To 70 To 70 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	DT in ategory 8 25 1 1 1 0 tal Constr Zear ESA DT in ategory	Load Fa Truck C: 0. 0.8 1. 1. 2.2 uction Yea Load Fa Truck C: 0.8 0.8 1.	actor for ategory 5 35 2 2 2 4 35 2 4 35 2 4 35 35 35 2 2 55	ESA 40,1 6,1 3,4 4,4 0 54,1 Histe Constr Ye ESA 0 0 0 0 0 0 0 0 0 0 0	ALS 195 01 45 50 0 191 191 oric uction ar ALS 0 0 0 0
	2-Axle 3-Axle 4-Axle 5-Axle >=6-Axl Truck Cate 2-Axle 3-Axle 4-Axle	egory Desig A P P P P P P P P P P P P P P P P P P	gn Lane ADT 866 866 866 866 866 9000000000000000000	% AA Truck C 2. 0.2 0. 0. 0. 0. 0. To To To To Y AA Truck C 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	DT in ategory 8 25 1 1 1 0 tal Constr 7 ear ESA DT in ategory 0 0	Load Fa Truck C: 0. 1. 1. 2.2 uction Yea Load Fa Truck C: 0. 0. 1.	actor for ategory 5 35 2 2 2 4 35 2 4 ations ategory 5 5 35 2 2 55 2 4	ESA 40,1 6,1 3,4 4,4 0 54,1 Histe Constr Ye ESA 0 0 0 0	ALS 195 01 45 50 0 191 191 oric uction ar ALS 0 0 0 0

	Number:	61487					Date:	May 1	7, 2016		
		Tra	ffic Da	ata for	Desia	n and	Histor	ic ES	ALs		
	D	esign D							Data Inp	ut	
		n Construct		2017					tion Year:	1999	
-	•	ign Length		30							
- F		.	ase Year:	2015			Ba	ockcast %	per Year:	2	
	Bas	se Year Tot		11300			DC		per reur.	2	
		th Rate %		2							
		se Year AA		ach Lane			% of Bas	se Year A	ADT for Ea	ch Lane	
		ane		6			La		%		
		1	4	4			1		44	4	
		2	1	1			2	2	1	1	
		3		6			3	}	3	6	
		4		9			۷		9		
⊢		5		0			5		0		
		6	(0			6		C	J	
Truck Cat	ategory	Load F		% AA		Truck C	ategory		Factor	% AAD	
	alegory	(ESALs p	er Truck)	Truck C	ategory	THUCK C	alegory	(ESALs p	per Truck)	Truck Cat	egor
2-Ax	xle	0.	5	2.	55	2-A	xle	0	.5	2.55	
3-Ax	xle	0.0	35	0.	.6	3-A	xle	0.	85	0.6	
4-Ax		1.	2	0.	.8		xle	1	.2	0.8	
5-Ax		1.5		(-		xle		55	0	
>=6-A		2.2 AL DES		0.0	05	>=6-	Axle		24	0.05	
										SALC'	
	101						ΤΟΤΑ			SALS:	
		2,188					TOTA		,743	SALS:	
		2,188	<mark>3,445</mark> C Desigr	onstructi n Lane	% AA	DT in	Ilculation	808 as actor for	,743 Construct	tion Year	
6	Truck C	2,188	8,445 C Desigr AA	onstruct i n Lane DT	% AA Truck C	DT in Category	Ilculatior Load Fa Truck C	808 actor for ategory	,743 Construct ESA	tion Year ALs	
[Truck C	2,188 Category	3,445 C Design AA 51	onstructi n Lane DT 73	% AA Truck C 2.	DT in Category	Iculation Load Fa Truck C	808 actor for ategory 5	,743 Construct ESA 24,0	tion Year ALs 074	
	Truck C 2-4 3-4	2,188 Category Axle Axle	8,445 C Desigr AA 51 51	onstructi n Lane DT 73 73	% AA Truck C 2.3	DT in Category 55 .6	Load Fa Truck C	808 actor for ategory 5 35	,743 Construct ESA 24,(9,6	tion Year ALs 30	
	Truck C 2-/ 3-/ 4-/	2,188 Category Axle Axle Axle	C Desigr AA 51 51	onstructi n Lane DT 73 73 73	% AA Truck C 2.3 0.	DT in Category 55 .6 .8	Load Fa Truck C 0. 0.3	808 actor for ategory 5 35 2	,743 Construct ESA 24,(9,6 18,1	tion Year ALs 074 30 126	
	Truck C 2-4 3-4 4-4 5-4	2,188 Category Axle Axle Axle Axle	8,445 C Design AA 51 51 51 51	onstructi n Lane DT 73 73 73 73 73	% AA Truck C 2.: 0. 0. 0.	DT in Category 55 .6 .8 D	Load Fa Truck C 0. 0.4 1.	808 actor for ategory 5 35 2 55	,743 Construct ESA 24,(9,6 18,1 0	tion Year ALs 074 30 126	
	Truck C 2-4 3-4 4-4 5-4	2,188 Category Axle Axle Axle	8,445 C Design AA 51 51 51 51	onstructi n Lane DT 73 73 73	% AA Truck C 2.: 0. 0. 0.	DT in Category 55 .6 .8 .0 0 05	Load Fa Truck C 0. 0.3	808 actor for ategory 5 35 2 2 55 24	,743 Construct ESA 24,(9,6 18,1	tion Year ALs 074 30 126 0	
	Truck C 2-4 3-4 4-4 5-4	2,188 Category Axle Axle Axle Axle	C Desigr AA 51 51 51 51	onstructi n Lane DT 73 73 73 73 73 73 73	% AA Truck C 2.: 0. 0. (0.1 Tc	DT in Category 55 .6 .8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	Load Fa Truck C 0. 0.3 1. 1.3 2.3 uction Yea	808 actor for ategory 5 35 2 24 ar ESALs:	,743 Construct ESA 24,(9,6 18,1 0 2,1	tion Year ALs 074 30 126 0	
	Truck C 2-4 3-4 4-4 5-4	2,188 Category Axle Axle Axle Axle	C Desigr AA 51 51 51 51	onstructi n Lane DT 73 73 73 73 73	% AA Truck C 2.: 0. 0. (0.1 Tc	DT in Category 55 .6 .8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	Load Fa Truck C 0. 0.3 1. 1.3 2.3 uction Yea	808 actor for ategory 5 35 2 24 ar ESALs:	,743 Construct ESA 24,(9,6 18,1 0 2,1 53,5	tion Year ALs 074 30 126 0 15 945	
	Truck C 2-/ 3-/ 4-/ 5-/ >=6	2,188 Category Axle Axle Axle -Axle	3,445 C Desigr AA 51 51 51 51 51 51	onstructi n Lane DT 73 73 73 73 73 73	% AA Truck C 0. 0. 0. 0. Tc ruction Y	DT in Category 55 .6 .8 0 05 05 05 05 05 05 05 05 05	Load Fa Truck C 0. 0.8 1. 1.9 2.2 uction Yea	808 actor for ategory 5 35 2 2 2 35 24 ar ESALs: ations	,743 Construct ESA 24,(9,6 18,1 0 2,1 53,9 Hista	tion Year ALs 074 30 126 0 15 945	
	Truck C 2-/ 3-/ 4-/ 5-/ >=6	2,188 Category Axle Axle Axle Axle	3,445 C Desigr AA 51 51 51 51 51 51 51 51 51 51 51	onstructi n Lane DT 73 73 73 73 73 73 73	% AA Truck C 2.: 0. 0. (0.1 Tc ruction Y % AA	DT in Category 55 .6 .8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	Load Fa Truck C 0. 0.3 1. 1.3 2.3 uction Yea	808 actor for ategory 5 35 2 2 35 24 ar ESALs: ations actor for	,743 Construct ESA 24,(9,6 18,1 0 2,1 53,5	tion Year ALs 074 30 126 0 15 045 0 oric uction	
	Truck C 2-/ 3-/ 4-/ 5-/ >=6	2,188 Category Axle Axle Axle -Axle	3,445 C Desigr AA 51 51 51 51 51 51 51 51 51 51 51	onstructi n Lane DT 73 73 73 73 73 73 73	% AA Truck C 2.: 0. 0. (0.1 Tc ruction Y % AA	DT in Category 55 .6 .8 0 05 05 05 05 05 05 07 (ear ESA DT in	Load Fa Truck C 0. 0.8 1. 1.3 2.3 uction Yea Load Fa	808 actor for ategory 5 35 2 2 35 24 ar ESALs: ations actor for	,743 Construct ESA 24,(9,6 18,1 0 2,1 53,9 Histe Constr	tion Year ALs 074 30 126 0 15 045 0 0 15 045	
	Truck C 2-/ 3-/ 4-/ 5-/ >=6 Truck C	2,188	C Desigr AA 51 51 51 51 51 51 51 51 51 51 51 51 51	onstruction DT 73 73 73 73 73 73 73 73 73 73 73 73 73	% AA Truck C 2.: 0. 0. (0.1 Tc ruction \ % AA Truck C	DT in Category 55 .6 .8 0 05 05 05 05 05 05 05 07 (ear ESA DT in	Load Fa Truck C 0. 0.8 1. 2.3 uction Yea Load Fa Truck C	808 actor for ategory 5 35 2 24 ar ESALs: ations actor for ategory 5	,743 Construct ESA 24,(9,6 18,1 0 2,1 53,9 4 153,9 Hista Constr Ye ESA 16,8	tion Year ALs 074 30 126 0 15 045 045 0 0 15 045 0 0 15 045 0 0 15 045 0 0 15 045 0 0 15 045 0 0 15 045 0 0 15 045 0 0 15 045 0 15 045 0 15 045 0 15 045 0 15 045 0 15 045 0 15 045 0 15 045 0 15 045 0 15 045 0 15 045 0 15 045 0 15 0 1	
	Truck C 2-4 3-4 4-4 5-4 >=6 Truck C 2-4 3-4	2,188	C Desigr AA 51 51 51 51 51 51 51 51 51 51 51 51 51	onstructi n Lane DT 73 73 73 73 73 73 73 73 73 73 73 73 73	% AA Truck C 2.: 0. 0. (0. (0. Tc ruction Y % AA Truck C 2.: 0.	DT in Category 55 .6 .8 0 05 05 05 05 05 05 05 07 in Category 55 .6	Load Fa Truck C 0. 0.3 1. 1.3 2.3 uction Yea Load Fa Truck C 0. 0.3	808 actor for ategory 5 35 2 2 55 24 ar ESALs: ations actor for ategory 5 35	,743 Construct ESA 24,(9,6 18,1 0 2,1 53,9 Histo Constr Ye ESA 16,8 6,7	tion Year ALs 074 30 126 0 15 045 0 15 045 0 0 15 045 0 0 15 045 0 0 15 045 0 15 045 0 15 045 0 126 126 126 126 126 126 126 126 126 126	
	Truck C 2-/ 3-/ 4-/ 5-/ >=6 Truck C 2-/ 3-/ 4-/	2,188	3,445 C Desigr AA 51 51 51 51 51 51 51 51 51 51	onstruction Lane DT 73 73 73 73 73 73 73 73 73 73	% AA Truck C 2.: 0. 0. (0. (0. Tc ruction Y % AA Truck C 2.: 0. 0. 0.	DT in Category 55 .6 .8 0 05 0 5 0 0 5 5 0 0 5 5 5 5 5 .6 .8	Load Fa Truck C 0. 0.8 1. 1.9 2.2 uction Yea Load Fa Truck C 0. 0.1 1.	808 actor for ategory 5 35 2 4 ar ESALs: actor for ategory 5 35 2 2 2 4 3 5 5 2 2 3 5 5 2 2 4 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 5 2 2 3 5 5 2 2 3 5 2 2 3 5 2 2 3 5 5 2 2 3 5 2 2 3 5 2 2 3 5 2 2 3 5 5 2 2 3 5 2 2 3 5 2 2 3 5 5 2 2 3 5 3 5	,743 Construct ESA 24,(9,6 18,1 0 2,1 53,9 Histr Constr Ye ESA 16,8 6,7 12,6	tion Year ALs 074 30 126 0 15 045 0 15 045 0 0 15 045 0 0 15 045 0 0 15 045 0 15 045 0 15 045 0 15 0 45 0 15 0 45 0 126 126 126 126 126 126 126 126 126 126	
	Truck C 2-/ 3-/ 4-/ 5-/ >=6 Truck C 2-/ 3-/ 4-/ 5-/	2,188	3,445 C Desigr AA 51 51 51 51 Histor Desigr AA 36 36 36 36 36 36 36 36 36	onstruction Lane DT 73 73 73 73 73 73 73 73 73 73	% AA Truck C 2.3 0, 0, 0, 0, 0, 7 0, 7 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	DT in Category 55 .6 .8 0 05 0 5 0 0 5 0 (ear ESA /ear ESA DT in Category 55 .6 .8 0	Load Fa Truck C 0. 0. 1. 1. 2. uction Yea Load Fa Truck C 0. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	808 actor for ategory 5 35 2 2 35 2 4 ar ESALs: ations actor for ategory 5 35 2 2 5 5 35 2 2 5 5 5 5 5 5 5 5 5 5	,743 Construct ESA 24,(9,6 18,1 0 2,1 53,9 Histo Constr Ye ESA 16,8 6,7 12,6 0	tion Year ALs 074 30 126 0 15 045 0 15 045 0 0 15 045 0 0 15 045 0 0 15 0 45 0 15 0 45 0 15 0 45 0 15 0 45 0 10 0 126 0 10 0 126 0 10 0 126 0 0 126 126 0 126 0 126 126 126 126 126 126 126 126 126 126	
	Truck C 2-/ 3-/ 4-/ 5-/ >=6 Truck C 2-/ 3-/ 4-/ 5-/	2,188	3,445 C Desigr AA 51 51 51 51 Histor Desigr AA 36 36 36 36 36 36 36 36 36	onstruction Lane DT 73 73 73 73 73 73 73 73 73 73	% AA Truck C 2.: 0. 0. 0. Tc ruction N % AA Truck C 2.: 0. 0. 0. 0.	DT in Category 55 .6 .8 .0 05 05 05 05 Year ESA Category 55 .6 .8 .0 0 05	Load Fa Truck C 0. 0.8 1. 1. 2.2 uction Yea Load Fa Truck C 0. 0.1	808 actor for ategory 5 35 2 2 4 ar ESALs: actor for ategory 5 35 2 2 4 35 2 2 4	,743 Construct ESA 24,(9,6 18,1 0 2,1 53,5 Constr Ye ESA 16,5 6,7 12,6 0 1,4	tion Year ALs 074 30 126 0 15 045 0 15 045 0 15 045 0 0 15 045 0 15 0 445 0 15 0 1	

TOPECLI	Number:	61487					Date:	May 1	7, 2016	
	,	Tra	ffic Da	ata for	Desig	n and	Histor	ic ES	Als	
		esign D			Desig				Data Inp	
		n Construct		2017 13			HISTORIC	Construc	tion Year:	1999
	Desi	ign Length								
_			ase Year:	2015			Ba	ackcast %	per Year:	1.5
-		se Year Tot /th Rate %		9500						
-				2 			0/ - (D			ah Lana
_		se Year AA ane					% OF Bas		ADT for Ea %	
_		1	4				La		4	
-		2	1				2		1	
_		3	3						3	
		4	ç	9			4	ļ	g)
		5	()			Ę	5	C)
	(6	()			6	3	C)
		Load F	actor	% AA	DT in			Load	Factor	% AADT in
Fruck Ca	ategory	(ESALs p		Truck C		I ruck C	ategory		per Truck)	Truck Categor
2-Ax	xle	0.	5	2.5		2-4	xle	0	.5	2.55
3-Ax		0.0		0.			xle		.5 85	0.6
4-Ax		1.		0.			xle		.2	0.8
5-Ax	xle	1.6	55	()	5-A	xle	1.	55	0
>=6-A		2.2		0.0	05	>=6-	Axle		24	0.05
	тот	AL DES		ALS:			ΤΟΤΑ	L HIST		SALS:
	тот	AL DES 665,		ALS:			ΤΟΤΑ	L HISTO	ORIC ES	SALs:
[665,	<mark>782</mark>	onstructi			alculation	IS	-	
F	Truck C	665, Category	, 782 C Desigr AA	onstructi n Lane DT	% AA Truck C	DT in ategory	Ilculatior Load Fa Truck C	IS actor for ategory	Construct ESA	tion Year ALs
	Truck C	665, Category Axle	782 C Desigr AA 43	onstructi n Lane DT 49	% AA Truck C 2.5	DT in ategory	Iculation Load Fa Truck C	IS actor for ategory 5	Construct ESA 20,2	tion Year ALs 239
	Truck C 2-4 3-4	Category	782 C Desigr AA 43 43	onstructi n Lane DT 49 49	% AA Truck C 2.(0.	DT in category 55 6	Load Fa Load Fa Truck C 0.1	ns actor for ategory 5 35	Construct ESA 20,2 8,0	tion Year ALs 239 96
	Truck C 2-4 3-4 4-4	Category Axle Axle Axle	782 C Desigr AA 43 43	onstructi n Lane DT 49 49	% AA Truck C 2.(0.	DT in category 55 6 8	Iculation Load Fa Truck C 0.1	ns actor for ategory 5 35 2	Construct ESA 20,2 8,0 15,2	tion Year ALs 239 96 239
	Truck C 2-4 3-4 4-4 5-4	Category Axle Axle Axle Axle Axle	782 C Desigr AA 43 43 43 43	onstructi DT 49 49 49 49	% AA Truck C 2.(0.	DT in category 55 6 8 0	Load Fa Load Fa Truck C 0.1	IS actor for ategory 5 35 2 55	Construct ESA 20,2 8,0 15,2 0	tion Year ALs 239 96 239
	Truck C 2-4 3-4 4-4 5-4	Category Axle Axle Axle	782 C Desigr AA 43 43 43 43	onstructi n Lane DT 49 49	% AA Truck C 2.: 0. 0. 0. 0.0	DT in category 55 6 8 0 0 05	Iculation Load Fa Truck C 0.4 1.	IS actor for ategory 5 35 2 2 55 24	Construct ESA 20,2 8,0 15,2	tion Year ALs 239 96 239 0
	Truck C 2-4 3-4 4-4 5-4	Category Axle Axle Axle Axle Axle	782 Desigr AA 43 43 43 43 43	onstruction DT 49 49 49 49 49 49	% AA Truck C 0. 0. 0. 0. 0. 7c	DT in category 55 6 8 0 0 05 05 0tal Constr	Load Fa Truck C 0. 0.1 1. 2.: uction Yea	IS actor for ategory 5 55 2 24 ar ESALs:	Construct ESA 20,2 8,0 15,2 0 1,7	tion Year ALs 239 96 239 0
	Truck C 2-4 3-4 4-4 5-4	Category Axle Axle Axle Axle Axle	782 Desigr AA 43 43 43 43 43	onstructi DT 49 49 49 49	% AA Truck C 0. 0. 0. 0. 0. 7c	DT in category 55 6 8 0 0 05 05 0tal Constr	Load Fa Truck C 0. 0.1 1. 2.: uction Yea	IS actor for ategory 5 55 2 24 ar ESALs:	Construct ESA 20,2 8,0 15,2 0 1,7 45,3	tion Year ALs 239 96 239 0 78 352
F	Truck C 2-/ 3-/ 4-/ 5-/ >=6	Category Axle Axle Axle Axle -Axle	782 Desigr AA 43 43 43 43 43 Histor	onstructi n Lane DT 49 49 49 49 49 49	% AA Truck C 2.(0. 0. 0. 70 To ruction Y	DT in category 55 6 8 0 05 05 05 05 05 05 05 05 05 07 6 ar ESA	Iculation Load Fa Truck C 0.4 1. 1.4 2.3 uction Yea	IS actor for ategory 5 35 2 2 55 24 ar ESALs: ations	Construct ESA 20,2 8,0 15,2 0 1,7 45,3 Histo	tion Year ALs 239 96 239 0 78 352
	Truck C 2-/ 3-/ 4-/ 5-/ >=6	Category Axle Axle Axle Axle Axle	782 Desigr AA 43 43 43 43 43 Histor Desigr	onstruction DT 49 49 49 49 49 49 49 49	% AA Truck C 2.(0. 0. 0. 0. To ruction Y % AA	DT in category 55 6 8 0 0 5 5 0 5 0 5 0 5 0 5 0 7 6 ar ESA DT in	Ilculation Load Fa Truck C 0. 0.3 1. 1.3 2.3 uction Yea Load Fa	IS actor for ategory 5 35 2 2 55 24 ar ESALs: ations	Construct ESA 20,2 8,0 15,2 0 1,7 45,3 Histe Constr	tion Year ALs 239 96 239 0 78 352 oric uction
	Truck C 2-/ 3-/ 4-/ 5-/ >=6	Category Axle Axle Axle Axle -Axle	782 Desigr AA 43 43 43 43 43 Histor	onstruction DT 49 49 49 49 49 49 49 49	% AA Truck C 2.(0. 0. 0. 0. To ruction Y % AA	DT in category 55 6 8 0 05 05 05 05 05 05 05 05 05 07 6 ar ESA	Iculation Load Fa Truck C 0.4 1. 1.4 2.3 uction Yea	IS actor for ategory 5 35 2 2 55 24 ar ESALs: ations	Construct ESA 20,2 8,0 15,2 0 1,7 45,3 Histo	tion Year ALs 239 96 239 0 78 352 0 78 352
	Truck C 2-4 3-4 5-4 >=6 Truck C	Category Axle Axle Axle -Axle Category Axle	782 Desigr AA 43 43 43 43 43 Histor Desigr	onstruction DT 49 49 49 49 49 49 49 49	% AA Truck C 2.(0. 0. 0. 0. To ruction Y % AA	DT in category 55 6 8 0 0 55 0 tal Constr Zear ESA DT in category	Ilculation Load Fa Truck C 0. 0.3 1. 1.3 2.3 uction Yea Load Fa	IS actor for ategory 5 35 2 2 4 ar ESALs: actor for ategory	Construct ESA 20,2 8,0 15,2 0 1,7 45,3 Histe Constr Ye	tion Year ALs 239 96 239 0 78 352 0 78 352 0 0 78 352
	Truck C 2-4 3-4 4-4 5-4 >=6 Truck C 2-4 3-4	Category Axle Axle Axle Axle -Axle Category Axle Axle	782 Desigr AA 43 43 43 43 43 Histor Desigr	onstruction DT 49 49 49 49 49 49 49 49	% AA Truck C 2.(0. 0. 0. 0. To ruction Y % AA Truck C 2.(0.	DT in category 55 6 8 0 05 05 05 05 05 05 07 Cear ESA DT in category 55 6	Load Fa Truck C 0. 0.1 1. 1.3 2.1 uction Yea Load Fa Truck C 0. 0.1	actor for ategory 5 35 2 2 55 24 ar ESALs: ations actor for ategory 5 35	Construct ESA 20,2 8,0 15,2 0 1,7 45,3 Histo Constr Ye ESA	tion Year ALs 239 96 239 96 239 0 78 352 0 78 352 0 78 352
	Truck C 2-4 3-4 4-4 5-4 >=6 Truck C 2-4 3-4 4-4	Category Axle Axle Axle Axle -Axle Category Category Axle Axle Axle	782 Desigr AA 43 43 43 43 43 Histor Desigr	onstruction DT 49 49 49 49 49 49 49 49	% AA Truck C 2.(0. 0. 0. 0. To ruction Y % AA Truck C 2.(0. 0.	DT in category 55 6 8 0 05 05 0 55 0 Cear ESA DT in category 55 6 8	Iculation Load Fa Truck C 0. 0.3 1. 1.3 2.3 uction Yea Load Fa Truck C 0. 0.3 1.	IS actor for ategory 5 35 2 2 55 24 ar ESALs: actor for ategory 5 35 2 2 2 35 2 2 35 2 2 35 2 2 35 2 2 35 2 2 35 2 35 2 35 2 2 35 2 35 2 35 2 2 35 35 2 35 35 2 35 35 35 35 35 35 35 35 35 35 35 35 35	Construct ESA 20,2 8,0 15,2 0 1,7 45,3 Histe Constr Ye ESA 0 0 0 0 0 0	tion Year ALs 239 96 239) 78 352 0 78 352 0 0 cric uction ar ALs))
	Truck C 2-4 3-4 4-4 5-4 >=6 Truck C 2-4 3-4 4-4 5-4	Category Axle Axle Axle Axle -Axle Category Category Axle Axle Axle Axle	782 Desigr AA 43 43 43 43 43 Histor Desigr	onstruction DT 49 49 49 49 49 49 49 49	% AA Truck C 2.(0. 0. 0. 0. Truck C 7 0. 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	DT in category 55 6 8 0 0 5 5 5 6 8 8 0 1 5 5 5 6 6 8 8 0	Iculation Load Fa Truck C 0. 0.3 1. 1.3 2.3 uction Yea Load Fa Truck C 0. 0.3 1. 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.	IS actor for ategory 5 35 2 2 35 2 2 4 ar ESALs: ations actor for ategory 5 35 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Construct ESA 20,2 8,0 15,2 0 1,7 45,3 Histo Constr Ye ESA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tion Year ALs 239 96 239 0 78 352 0 78 352 0 0 0 1 0
	Truck C 2-4 3-4 4-4 5-4 >=6 Truck C 2-4 3-4 4-4 5-4	Category Axle Axle Axle Axle -Axle Category Category Axle Axle Axle	782 Desigr AA 43 43 43 43 43 Histor Desigr	onstruction DT 49 49 49 49 49 49 ric Const n Lane DT	% AA Truck C 2.(0. 0. 0. 0. To ruction Y % AA Truck C 2.(0. 0.	DT in category 55 6 8 0 0 55 0 tal Constr /ear ESA DT in category 55 6 8 0 0 0 55	Load Fa Truck C 0. 0.3 1. 1.3 2.3 uction Yea Load Fa Truck C 0. 0.3 1. 1.3 2.3	IS actor for ategory 5 35 2 2 35 2 4 ar ESALs: ations actor for ategory 5 35 2 2 2 4 35 2 2 2 4	Construct ESA 20,2 8,0 15,2 0 1,7 45,3 Histe Constr Ye ESA 0 0 0 0 0 0	tion Year ALs 239 96 239 96 239 9 78 352 9 0 78 352 0 0 78 352

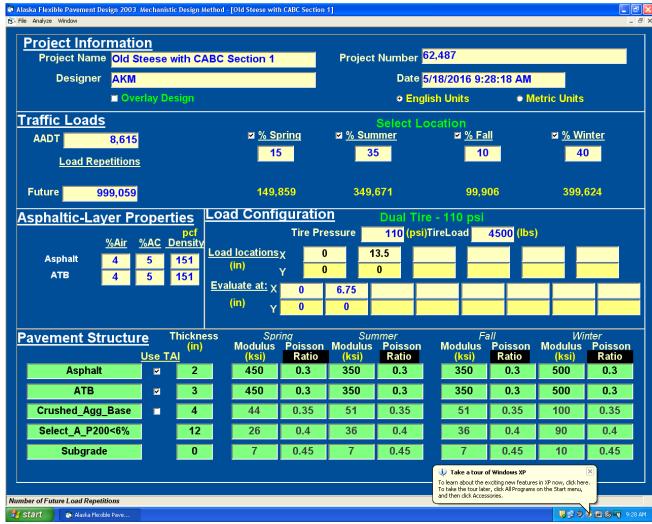
	Name:	61487	se Highway	y - College 1	to 3rd		Designer:		7, 2016	
Ploject I	Number:	1	((', D)		D		Date:	1 .		
					Desig	n and				
		esign D							Data Inp	
_		n Construct		2030			Historic	Construc	tion Year:	1999
	Desi	ign Length	in Years:	17						
_			ase Year:	2030			Ba	ckcast %	per Year:	1.5
		se Year Tot		12785.7						
Ļ		th Rate %		1						
		se Year AA							ADT for Ea	
		ane	9				La		%	
_		1	4				1		44	
-		2 3	1				2		1 ⁻ 3(
-		3 4		9			4		g	
F		5	(5		0	
F		6	()			6		C)
		Load F	actor	% AA	DT in			Lood	Factor	% AADT in
Truck Ca	ategory	(ESALs p		Truck C		Truck C	ategory		per Truck)	Truck Catego
		· ·						· ·	, i	
2-Ax		0.			55				.5	2.55
3-Ax 4-Ax		0.8 1.		0.			xle xle		85 .2	0.6
5-Ax		1.5			.0		xle		.2 55	0.0
: 1-AX										
5-AX >=6-A	Axle	2.2	24	0.	05	>=6-	Axle	- 2.	24	0.05
		2.2 AL DES			05	>=6-			ORIC ES	
			IGN ES	ALS:	05	>=6-	ΤΟΤΑ	L HIST		
		AL DES	IGN ES ,296	ALS:	o5 ion Year		ΤΟΤΑ	L HIST <mark>1,44</mark>		
	τοτ	AL DES	IGN ES ,296 C Desigr	ALS:		ESAL C a DT in	ΤΟΤΑ	L HIST 1,44 s s		SALS:
	TOT.	AL DES 1,081	IGN ES ,296 C Desigr	onstruct	ion Year % AAI	ESAL Ca DT in ategory	TOTA	L HIST 1,44 s actor for ategory	Construct	ion Year
	TOT, Truck C 2-4 3-4	AL DES 1,081 Category Axle Axle	IGN ES ,296 C Desigr AA 56 56	onstruction DT 26 26	ion Year % AAI Truck C 2.5 0.	ESAL Ca DT in ategory 55 6	TOTA Alculation Load Fa Truck C 0.	L HIST 1,44 s actor for ategory 5 35	Construct 26,1 10,2	tion Year Ls 182 173
	TOT/ Truck C 2-/ 3-/ 4-/	AL DES 1,081 Category Axle Axle Axle	IGN ES ,296 C Desigr AA 56 56 56	onstruction D Lane DT 26 26 26	ion Year % AA Truck C 2.{ 0. 0.	ESAL Ca DT in ategory 55 6 8	TOTA Alculation Load Fa Truck C 0. 0.8 1.	L HIST 1,44 s actor for ategory 5 35 2	Construct ESA 26,1 10,4 19,7	tion Year ALs 182 173 714
	TOT/ Truck C 2-4 3-4 4-4 5-4	AL DES 1,081 Category Axle Axle Axle Axle	IGN ES ,296 C Desigr AA 56 56 56 56	onstruction DT 26 26 26 26 26	ion Year % AA Truck C 2.t 0. 0. 0.	ESAL Ca DT in ategory 55 6 8	TOTA alculation Load Fa Truck C 0. 0.8 1.	L HIST 1,44 1,44 1,44 1,55 1,44 1,44 1,44 1,44	Construct ESA 26,1 10,4 19,7 0	tion Year ALs 182 473 714
	TOT/ Truck C 2-4 3-4 4-4 5-4	AL DES 1,081 Category Axle Axle Axle	IGN ES ,296 C Desigr AA 56 56 56 56	onstruction D Lane DT 26 26 26	ion Year % AAI Truck C 2.5 0. 0. 0. 0.0	ESAL Ca DT in ategory 55 6 8 0 0 55	TOTA Alculation Load Fa Truck C 0. 0.8 1. 1. 2.2	L HIST 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,4	Construct 26,1 10,2 19,7 0 2,3	tion Year ALs 182 173 714 0 00
	TOT/ Truck C 2-4 3-4 4-4 5-4	AL DES 1,081 Category Axle Axle Axle Axle	IGN ES ,296 C Desigr AA 56 56 56 56	onstruction DT 26 26 26 26 26	ion Year % AAI Truck C 2.5 0. 0. 0. 0.0	ESAL Ca DT in ategory 55 6 8 0 0 55	TOTA alculation Load Fa Truck C 0. 0.8 1.	L HIST 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,4	Construct 26,1 10,2 19,7 0 2,3	tion Year ALs 182 173 714 0 00
	TOT/ Truck C 2-4 3-4 4-4 5-4	AL DES 1,081 Category Axle Axle Axle Axle	IGN ES ,296 C Desigr AA 56 56 56 56 56	onstruction D Lane DT 26 26 26 26 26 26	ion Year % AAI Truck C 2.t 0. 0. 0. 0. To	ESAL Ca DT in ategory 55 6 8 0 55 tal Constr	ICULATION Load Fa Truck C 0. 0.8 1. 2.2 uction Yea	L HIST 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,4	Construct 26,1 10,2 19,7 0 2,3	tion Year ALs 182 173 714 0 00
	TOT. Truck C 2-/ 3-/ 4-/ 5-/ >=6	AL DES 1,081 Category Axle Axle Axle -Axle -Axle	IGN ES ,296 C Desigr AA 56 56 56 56 56 56 56 56 56	onstruction Lane DT 26 26 26 26 26 26 26 26	ion Year % AA Truck C 2.5 0. 0. 0. 0. 0. To ruction Y	ESAL Ca DT in ategory 55 6 8 0 05 tal Constr Year ESA	TOTA Alculation Load Fa Truck C 0.8 1. 1.5 2.2 uction Yea L Calcula	L HIST 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,4	ORIC EX 5,905 Construct ESA 26,1 10,4 19,7 0 2,3 58,6 Histo	tion Year ALs 182 473 714 0 00 569
	TOT. Truck C 2-/ 3-/ 4-/ 5-/ >=6	AL DES 1,081 Category Axle Axle Axle Axle	IGN ES ,296 C Desigr AA 56 56 56 56 56	onstruction Lane DT 26 26 26 26 26 26 26 26 26 26	ion Year % AAI Truck C 2.t 0. 0. 0. 0. To	ESAL Ca DT in ategory 55 6 8 0 05 tal Constr Zear ESA DT in	ICULATION Load Fa Truck C 0. 0.8 1. 2.2 uction Yea	L HIST 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,4	Construct ESA 26,1 10,2 19,7 0 2,3 58,6 Histe Constr Ye	tion Year ALs 182 473 714 0 00 569 00 569
	TOT. Truck C 2-4 3-4 4-4 5-4 >=6	AL DES 1,081 Category Axle Axle Axle -Axle -Axle	IGN ES ,296 C Desigr AA 56 56 56 56 56 56 56 56 56 56 56 56 56	onstruction Lane DT 26 26 26 26 26 26 26 26 26 26	ion Year % AA Truck C 2.5 0. 0. 0.0 0.0 To ruction Y % AA	ESAL Ca DT in ategory 55 6 8 0 55 tal Constr Zear ESA DT in ategory	ICUIATION Load Fa Truck C 0. 0.8 1. 1.9 2.2 uction Yea Load Fa	L HIST 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,4	Construct ESA 26,1 10,2 19,7 0 2,3 58,6 Histo Constr Ye ESA	SALS: ion Year ALs 182 173 714 0 00 569 00 569 00 coric uction ar ALS
	TOT. Truck C 2-/ 3-/ 4-/ 5-/ >=6 Truck C 2-/	AL DES 1,081	IGN ES ,296 C Desigr AA 56 56 56 56 56 56 56 56 56 56 56 56 56	onstruction Dane DT 26 26 26 26 26 26 26 26 26 26 26 26 26	ion Year % AAI Truck C 2.5 0. 0. 0.0 0.0 To ruction Y % AAI Truck C	ESAL Ca DT in ategory 55 6 8 0 55 tal Constr Zear ESA DT in ategory 55	ICUIATION Load Fa Truck C 0. 0.8 1. 2.2 uction Yea Load Fa Truck C	L HIST 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,4	Construct ESA 26,1 10,2 19,7 0 2,3 58,6 Histe Constr Ye	SALS: tion Year ALS 182 473 714 0 00 569 oric uction ar ALS 502
	TOT/ Truck C 2-4 3-4 4-4 5-4 >=6 Truck C 2-4 3-4	AL DES 1,081 Category Axle Axle Axle -Axle Category Axle	IGN ES ,296 C Desigr AA 56 56 56 56 56 56 56 56 56 56 56 56 56	ALS: onstruction DT 26 26 26 26 26 26 26 26 26 26 26 26 26	ion Year % AAI Truck C 2.t 0. 0. 0.0 0.0 To ruction Y % AAI Truck C 2.t	ESAL Ca DT in ategory 55 6 8 0 55 tal Constr Year ESA DT in ategory 55 6	ICULATION Load Fa Truck C 0. 0.8 1. 1.9 2.2 uction Yea Load Fa Truck C 0.	L HIST 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,4	Construct ESA 26,1 10,2 19,7 0 2,3 58,6 Histe Constr Ye ESA 16,5	tion Year ALs 182 473 714 0 00 569 00 569 00 569
	TOT/ Truck C 2-4 3-4 4-4 5-4 >=6 Truck C 2-4 3-4 4-4 5-4	AL DES 1,081 Category Axle Axle Axle Axle -Axle Category Axle Axle Axle Axle Axle	IGN ES ,296 ,296 C Desigr AA 56 56 56 56 56 56 56 56 56 56 56 56 56	onstruction n Lane DT 26 27 in Lane DT 46 46 46 46 46 46	ion Year % AAI Truck C 2.5 0. 0. 0.0 0.0 To 7 vection Y % AAI Truck C 2.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	ESAL Ca DT in ategory 55 6 8 0 55 tal Constr 7 ear ESA DT in ategory 55 6 8 0	TOTA Iculation Load Fa Truck C 0. 0.8 1. 2.2 uction Yea Load Fa Truck C 0. 0.8 1. 1.5 2.2 UCTA	L HIST 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,4	Construct ESA 26,1 10,2 19,7 0 2,3 58,6 Histr Constr Ye ESA 16,5 6,6 12,2 0	SALS: tion Year ALs 182 473 714 0 00 669 00 00 669 00 00 669 00 00 60 00 00 00 60 00 00 00
	TOT/ Truck C 2-4 3-4 4-4 5-4 >=6 Truck C 2-4 3-4 4-4 5-4	AL DES 1,081 Category Axle Axle Axle -Axle Category Axle Axle Axle Axle	IGN ES ,296 ,296 C Desigr AA 56 56 56 56 56 56 56 56 56 56 56 56 56	onstruction n Lane DT 26 27 ic Const 46 46 46 46 46 46 46 46	ion Year % AAI Truck C 2.5 0. 0. 0.0 0.0 To 7 vection Y % AAI Truck C 2.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	ESAL Ca DT in ategory 55 6 8 0 05 tal Constr Tear ESA DT in ategory 55 6 8 0 0 55	TOTA Ilculation Load Fa Truck C 0. 0. 1. 2.2 uction Yea Load Fa Truck C 0. 0. 1. 1. 2.2 UCTA	L HIST 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,4	Construct ESA 26,1 10,2 19,7 0 2,3 58,6 Histo Constr Ye ESA 16,5 6,6 12,4 0 1,4	SALS: iion Year ALs 182 173 714 0 00 502 01 425 0 50

	Name:		se Highway	- 3rd to W	endell		Designer:		7.0040		
Project	Number:	61487					Date:	1	7, 2016		
					Desig	n and					
		esign D		ut			Hi	storic I	Data Inp		
		n Construct		2017			Historic	Construc	tion Year:	1999	
	Desi	ign Length	in Years:	30							
		Ba	ase Year:	2015			Ba	ackcast %	per Year:	1	
_	Base Year Total AADT: 8450 Growth Rate % per Year: 1										
	Grow	th Rate %	1								
		se Year AA							ADT for Ea		
		ane	%				La		%		
-		1 2	44				1		4		
-		2 3	11 30				2	2 3	3		
-		3 4	9						ç		
F		5	0				Ę		C		
Ē		6	0				6		C)	
		Load F	actor	% AA	DT in			Load	Factor	% AADT ir	
Truck Ca	ategory	(ESALs p		Truck C		Truck C	ategory		per Truck)	Truck Catego	
2-Ax	vlo	0.				0.4	vlo				
2-Ax 3-Ax		0.	-	2.		2-Axle 3-Axle		0.5 0.85		2.55 0.6	
4-Ax		1.		0.		4-A			.2	0.0	
		1.5		(5-Axle		1.55		0	
				0.0		>=6-Axle		2.24 (
		2.2			05	>=6-				0.05	
		2.2 AL DES			05	>=6-			24 ORIC E		
			IGN ES		05	>=6-		L HIST			
		AL DES	IGN ES	ALS:	ion Year I	ESAL Ca	TOTA	L HIST 648	ORIC EX ,601	SALS:	
	TOT.	AL DES	IGN ES	ALS: DISTRUCT	ion Year I % AAI Truck C	ESAL Ca DT in ategory	ICUIATION Load Fa Truck C	L HIST 648 actor for ategory	Construct	SALS: tion Year ALs	
	TOTA Truck C 2-A	AL DES 1,375 Category	IGN ES	ALS: DINSTRUCT	ion Year I % AAI Truck C 2.5	ESAL Ca DT in ategory	TOTA Ilculation Load Fa Truck C	L HIST 648 ns actor for ategory 5	Construct 54 17,6	tion Year Ls	
	TOTA Truck C 2-A 3-A	AL DES 1,375 Category Axle Axle	IGN ES 5,916 Co Design AAI 379 379	ALS: DINSTRUCT	ion Year I % AAI Truck C 2.5 0.0	ESAL Ca DT in ategory 55 6	TOTA Ilculation Load Fa Truck C 0.	L HIST 648 actor for ategory 5 85	ORIC E ,601 Construct ES/ 17,6 7,0	tion Year Ls 652 61	
	TOT / Truck C 2-A 3-A 4-A	AL DES 1,375 Category Axle Axle Axle	IGN ES 5,916 Cc Design AAI 379 379 379	ALS: DISTRUCT	ion Year I % AAI Truck C: 2.5 0.1 0.3	ESAL Ca DT in ategory 55 6 8	TOTA Iculation Load Fa Truck C 0. 0.1	L HIST 648 actor for ategory 5 85 2	Construct 54 Construct 54 17,6 7,0 13,2	tion Year ALs 61 291	
	TOT / Truck C 2-A 3-A 4-A 5-A	AL DES 1,375 Category Axle Axle Axle Axle	IGN ES 5,916 Cc Design AAI 379 379 379 379	ALS: DISTRUCTION	ion Year I % AAI Truck C: 2.5 0.1 0.3	ESAL Ca DT in ategory 55 6 8	TOTA Ilculation Load Fa Truck C 0.4 0.4 1.	L HIST 648 actor for ategory 5 85 2 55	Construct 54 Construct 54 17,6 7,0 13,2 0	tion Year ALs 552 61 291	
	TOT / Truck C 2-A 3-A 4-A 5-A	AL DES 1,375 Category Axle Axle Axle	IGN ES 5,916 Cc Design AAI 379 379 379	ALS: DISTRUCTION	ion Year I % AAI Truck C 2.5 0.0 0.1 0.1 0.1	ESAL Ca DT in ategory 55 6 8	Ilculation Load Fa Truck C 0. 0.1 1. 2.1	L HIST 648 actor for ategory 5 85 2 2 55 24	Construct ESA 17,6 13,2 0 13,5	SALS: tion Year ALs 652 61 291) 51	
	TOT / Truck C 2-A 3-A 4-A 5-A	AL DES 1,375 Category Axle Axle Axle Axle	IGN ES 5,916 Co Design AAL 379 379 379 379 379	ALS: Distruction Lane DT 93 93 93 93 93 93	ion Year I % AAI Truck C 2.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1	ESAL Ca DT in ategory 55 6 8 9 5 tal Constr	ICULATION Load Fa Truck C 0. 0.1 1. 2.: uction Yea	L HIST 648 actor for ategory 5 85 2 2 4 ar ESALs:	Construct 54 Construct 54 17,6 7,0 13,2 0	SALS: tion Year ALs 652 61 291) 51	
	TOT / Truck C 2-A 3-A 4-A 5-A	AL DES 1,375 Category Axle Axle Axle Axle	IGN ES 5,916 Co Design AAL 379 379 379 379 379	ALS: Distruction Lane DT 93 93 93 93 93 93	ion Year I % AAI Truck C 2.5 0.0 0.1 0.1 0.1	ESAL Ca DT in ategory 55 6 8 9 5 tal Constr	ICULATION Load Fa Truck C 0. 0.1 1. 2.: uction Yea	L HIST 648 actor for ategory 5 85 2 2 4 ar ESALs:	ORIC EX ,601 Construct ESA 17,6 7,0 13,2 0 1,5 39,5	SALS: tion Year ALs 552 61 291 51 555	
	TOTA Truck C 2-A 3-A 4-A 5-A >=6	AL DES 1,375 Category Axle Axle Axle Axle	IGN ES	ALS: DISTRUCTING Lane DT 03 03 03 03 03 03 03 03 03 03 03 03 03	ion Year I % AAI Truck C 2.5 0.0 0.0 0.0 To ruction Y % AAI	ESAL Ca DT in ategory 55 6 8 9 5 tal Constr ear ESA DT in	ICUIATION Load Fa Truck C 0. 0.1 1. 2.1 uction Yea Load Fa	L HIST 648 actor for ategory 5 5 5 2 2 4 ar ESALs: actor for	ORIC EX ,601 Construct ESA 17,6 7,0 13,2 0 1,5 39,5 Hist Constr	tion Year ALs 652 61 291 51 555 oric uction	
	TOTA Truck C 2-A 3-A 4-A 5-A >=6	AL DES 1,375 Category Axle Axle Axle -Axle	IGN ES	ALS: DISTRUCTING Lane DT 03 03 03 03 03 03 03 03 03 03 03 03 03	ion Year I % AAI Truck C: 0.0 0.0 0.0 To ruction Y	ESAL Ca DT in ategory 55 6 8 9 5 tal Constr ear ESA DT in	ICUIATION Load Fa Truck C 0. 0.1 1. 2.1 uction Yea Load Fa	L HIST 648 actor for ategory 5 55 24 ar ESALs: ations	ORIC EX ,601 Construct ESA 17,6 7,0 13,2 0 1,5 39,5 Hista	tion Year ALs 652 61 291) 51 555 oric uction ar	
	TOTA Truck C 2-A 3-A 4-A 5-A >=6- Truck C	AL DES 1,375 Category Axle Axle Axle -Axle	IGN ES	ALS: Distruction Lane DT 23 23 23 23 23 23 23 23 23 23	ion Year I % AAI Truck C 2.5 0.0 0.0 0.0 To ruction Y % AAI	ESAL Ca DT in ategory 55 6 8 05 tal Constr fear ESA DT in ategory	ICUIATION Load Fa Truck C 0. 0.1 1. 2.1 uction Yea Load Fa	L HIST 648 actor for ategory 5 5 5 2 2 4 ar ESALs: actor for actor for ategory	ORIC EX ,601 Construct ESA 17,6 7,0 13,2 0 1,5 39,5 Hist Constr Ye	SALS: tion Year ALs 652 61 291 0 51 555 555 oric uction ar ALs	
	TOTA Truck C 2-A 3-A 4-A 5-A >=6 Truck C 2-A	AL DES 1,375	IGN ES	ALS: Distruction Lane DT 93 93 93 93 93 93 93 93 93 93	ion Year I % AAI Truck C 2.5 0.0 0.0 0.0 To 7 ruction Y % AAI Truck C	ESAL Ca DT in ategory 55 6 8 05 tal Constr cear ESA DT in ategory 55	ICUIATION Load Fa Truck C 0. 0.3 1. 2.3 uction Yea Load Fa Truck C	L HIST 648 actor for ategory 5 35 22 4 ar ESALs: actor for ategory 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ORIC EX ,601 Construct ES/ 17,6 7,0 13,2 13,2 0 13,2 0 13,2 13,2 13,2 13,2 0 13,2 13,2 13,2 13,2 13,2 13,2 13,2 13,2	SALS: tion Year ALs 652 61 291 51 555 555 oric uction ar ALs 757	
	TOTA Truck C 2-A 3-A 4-A 5-A >=6· Truck C 2-A 3-A 4-A	AL DES 1,375 Category Axle Axle Axle Axle Axle Category Axle Axle Axle Axle	IGN ES 5,916 Cc Design AAE 379 379 379 379 379 379 379 379	ALS: Distruction Lane DT 93 93 93 93 93 93 93 93 93 93 93 93 93	ion Year I % AAI Truck C 2.5 0.0 0.0 0.0 To 7 ruction Y % AAI Truck C 2.5 0.0 0.3	ESAL Ca DT in ategory 55 6 8 9 5 tal Constr Gar ESA DT in ategory 55 6 8	ICULATION Load Fa Truck C 0. 0.3 1. 2.3 uction Yea Load Fa Truck C 0. 0.3 1. 1. 1. 2.3 UCULATION	L HIST 648 actor for ategory 5 22 55 24 ar ESALs: actor for ategory 5 85 22 22 24 24 22 24 24 25 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 25 24 25 25 24 25 25 24 25 25 26 26 26 27 26 26 26 27 26 26 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26	ORIC EX ,601 Construct ES/ 17,6 7,0 13,2 0 1,5 39,6 Hist Constr Ye ES/ 14,7	tion Year ALs 552 61 291 51 555 555 oric uction ar ALs 757 03	
	TOTA Truck C 2-A 3-A 4-A 5-A >=6· Truck C 2-A 3-A 4-A 5-A 5-A	AL DES 1,375 Axle Axle Axle Axle Axle Axle Category Axle Axle Axle Axle Axle	IGN ES 5,916 Cc Design AAE 379 379 379 379 379 379 379 379	ALS: Distruction Lane DT 93 93 93 93 93 93 93 93 93 93	ion Year I % AAI Truck C 2.5 0.0 0.0 0.0 To 7 ruction Y % AAI Truck C 2.5 0.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	ESAL Ca DT in ategory 55 6 8) 5 tal Constr 'ear ESA DT in ategory 55 6 8	ICULATION Load Fa Truck C 0. 0.3 1. 1.3 2.3 uction Yea Load Fa Truck C 0. 0.3 1. 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.	L HIST 648 actor for ategory 5 5 5 5 2 4 actor for actor for actor for actor for ategory 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ORIC EX ,601 Construct ESA 17,6 7,0 13,2 0 13,2 0 13,2 0 13,2 0 13,2 0 13,2 0 13,2 0 13,2 0 11,5 39,5 11,7 0 11,7 0 0 11,7 0 0 11,7 0 0 11,7 0 11,7 0 11,5 11,5 11,5 11,5 11,5 11,5 11,5 11	SALS: tion Year ALS 61 291 51 555 07ic uction ar ALS 757 03 111 0	
	TOTA Truck C 2-A 3-A 4-A 5-A >=6· Truck C 2-A 3-A 4-A 5-A 5-A	AL DES 1,375 Category Axle Axle Axle Axle Axle Category Axle Axle Axle Axle	IGN ES 5,916 Cc Design AAE 379 379 379 379 379 379 379 379	ALS: Distruction Lane DT 93 93 93 93 93 93 93 93 93 93	ion Year I % AAI Truck C 2.5 0.0 0.0 0.0 To 7 ruction Y % AAI Truck C 2.5 0.0 0.3	ESAL Ca DT in ategory 55 6 8 05 tal Constr fear ESA DT in ategory 55 6 8 0 05	ICULATION Load Fa Truck C 0. 0.3 1. 2.3 uction Yea Load Fa Truck C 0. 0. 0. 1. 1. 2.3 UCULATION LOAD FA Truck C	L HIST 648 actor for ategory 5 5 5 2 2 4 ar ESALs: actor for ategory 5 5 8 5 2 2 5 5 2 4 actor for ategory 5 5 5 2 2 5 5 2 2 4 3 5 5 2 2 5 5 5 2 2 4 3 5 5 5 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ORICE ,601 Construct ES/ 17,6 7,0 13,2 0 11,5 1 11,7 0 11,7 11,7	SALS: tion Year ALs 552 61 291 51 555 555 555 007ic uction ar ALs 757 03 111 0 96	

ATTACHMENT B

Temperature Data Summary and Calculations

	8/9/2005	Max 7 Day Avg		Date	Min 1 Day Temp
	8/9/2005	81.0		1/12/2005	-47
	7/19/2006	75.9		1/27/2006	5 -51
	6/28/2007	79.9		1/9/2007	-44
	7/2/2008	78.3		2/10/2008	-48
	7/2/2009	83.3		1/8/2009	-47
	7/29/2010	79.3		1/12/2010) -41
	5/25/2011	80.9		2/15/2011	-44
	6/18/2012	80.1		1/29/2012	-51
	6/14/2013	85.7		1/27/2013	-48
	7/4/2014	78.6		1/13/2014	-41
	6/14/2015	82.4		2/7/2015	-43
	5/8/2016			2/19/2016	õ -21
North Latitude		64.85			
			-	26.0	<u>^</u>
Seven Day Average High Air Temperature		80.5	F	26.9	С
Minimum Average Air Temperature		-43.8	F	-42.1	С


Seven Day Average High Air Temperature	80.5	F	26.9
Minimum Average Air Temperature	-43.8	F	-42.1
Seven Day Average High Pavement Temperature, T20mm	37.6	С	
Low-speed traffic - add 6 degrees to pavement temperature	43.6	С	
Minimum Pavement Temperature in Average Year, Tmin	-34.5	С	

ATTACHMENT D

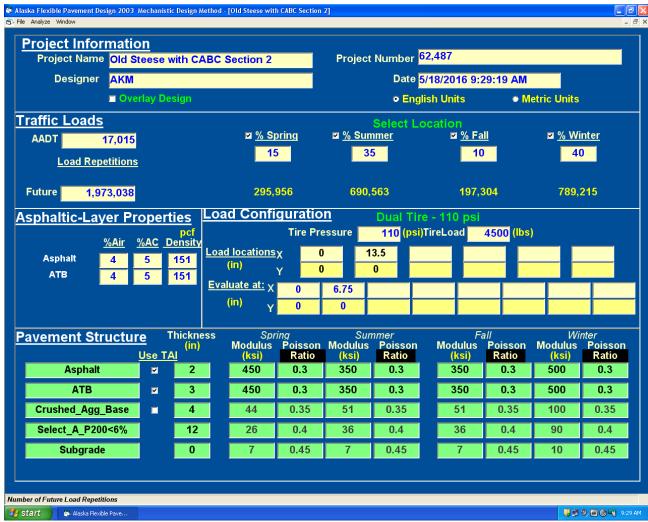
Alaska Flexible Pavement Design Software Inputs and Outputs

Section 1 – Johansen Expressway to Helmericks Avenue	ii
Section 2 – Helmericks Avenue to Trainor Gate Road	. iv
Section 3 – Trainor Gate Road to College Road	. vi
Section 4 – College Road to 3rd Street	viii
Section 5 – 3rd Street to 2nd Street	x

igure 1: Section 1 – INPUT	ii
igure 2: Section 1 – OUTPUT	iii
igure 3: Section 2 – INPUT	iv
igure 4: Section 2 – OUTPUT	v
igure 5: Section 3 – INPUT	vi
igure 6: Section 3 – OUTPUT	/ii
igure 7: Section 4 – INPUT	iii
igure 8: Section 4 – OUTPUT	ix
igure 9: Section 5 – INPUT	Х
igure 10: Section 5 - OUTPUT	xi

Section 1 - Johansen Expressway to Helmericks Avenue

Figure 1: Section 1 – INPUT


S Alaska Flexible Pavement Design 2003 Mechanistic Design Method - [NEW CONSTRUCTION Analysis Results for: Old Steese with CABC Section 1 @ 9:28:46 AM]

🔂 View Window Print

Project: Old Steese v Proj No.: 62,487	with CABC Section	on 1		1		New Construction by AKh 5/18/2016 9:28:46 AM						
AADT = 8,615	Past Loadings	Future Loadings							ocations (in): 500 (lbs) e = 110 (psi)	0	13.5 0	
15% Spring 35% Summer 10% Fall 40% Winter		149,859 349,671 99,906 399,624							X/Y Evaluation Points (in):	6.75 0	0	
Total:		999,059										
Layer	Critical Z Coordinate	Asphalt Properties	Season	Modulus (ksi)	Poisson's Ratio	Tensile Critical Micro Strain	Critical Compressive Stress (psi)	Million Cycles to Failure		Future Damage %	Total Damage %	
		der els	Spring	450	0.3	35.5		1,013.94		0.01	0.01%	
2(in) Asphalt	1.99	4% Air 5% Asph	Summer	350	0.3	38.7		945.94		0.04	0.04%	
· ····		151 pcf	Fall	350	0.3	38.7		945.94		0.01	0.01%	
			Winter	500	0.3	24.4		3,183.00 Total Damage:		0.01	0.01%	
		1	Spring	450	0.3	212		Total Damage: 2.83		5.29	5.29%	
		4% Air	Summer	350	0.3	209		3.68		9.51	9.51%	
3(in) ATB	4.99	5% Asph 151 pcf	Fall	350	0.3	209		3.68		2.72	2.72%	
		101 por	Winter	500	0.3	114		19.93		2.01	2.01%	
		1		1		I		Total Damage:		19.53	19.53	
			Spring Summer	44 51	0.35		21.00	4.40		3.41 9.73	3.41% 9.73%	
4(in) rushed_Agg_Base	5.01		Fall	51	0.35		25.90	3.59		2.78	2.78%	
			Winter	100	0.35		30.50	18,94	1	2.11	2,11%	
					A			Total Damage:		18.03	18.03	
	1		Spring	26	0,4		10.30	8.07		1.86	1.86%	
12(in)	9.01		Summer	36	0.4		12.40	12.74	-	2.74	2.74%	
elect_A_P200<6%			Fall Winter	36	0.4		12.40	12.74 148.32	-	0.78	0.78%	
			winter	30	0.4		1430	Total Damage:	-	5.65	5.65	
			Spring	7	0.45		2.87	3.86		3.88	3.88%	
S-Infinite	21.01		Summer	7	0.45		2.73	4.55	-	7.69	7,69%	
Subgrade	2 (38)	· · · · · · · · · · · · · · · · · · ·	Fall	7	0.46		2.73	4.55		2.20	2.20%	
	_		Winter	10	0.45	1	2.22	34.39		1.16	1.16%	
i			-		i	i		Total Damage:		14.92	14.92	
								Tak	≥ a tour of Windo	ws XP		
mplete								To learn a To take th	bout the exciting n	ew features in XP no Il Programs on the S	w, click here.	

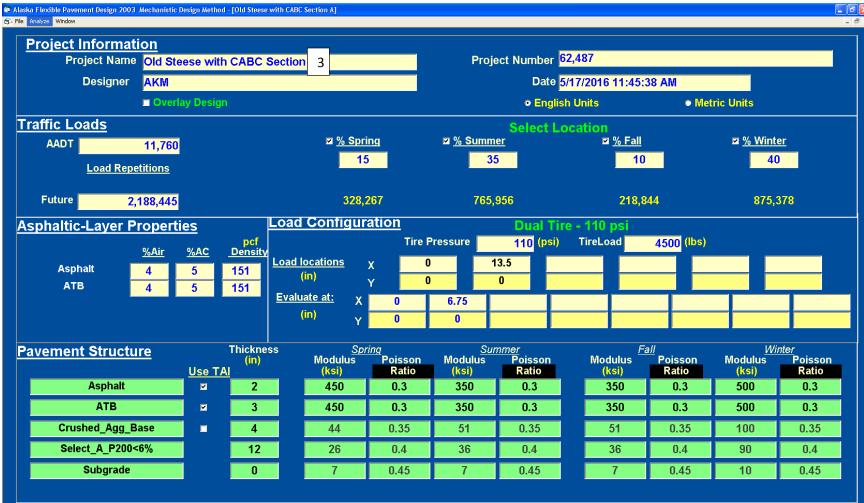
Figure 2: Section 1 – OUTPUT

- 7 ×

Section 2 - Helmericks Avenue to Trainor Gate Road

Figure 3: Section 2 – INPUT

S Alaska Flexible Pavement Design 2003 Mechanistic Design Method - [NEW CONSTRUCTION Analysis Results for: Old Steese with CABC Section 2 @ 9:29:35 AM]


🔂 View Window Print

Project: Old Steese v Proj No.: 62,487		1		1						5/1	onstruction by:AKM 8/2016 9:29:35 AM
AADT = 17,015	Past Loadings	Future Loadings						X/Y Load L Load = 4 Tire Pressur	(500 (lbs)	0 0	13.5 0
15% Spring 35% Summer 10% Fall 40% Winter		295,956 690,563 197,304 789,215							X/Y Evaluation Points (in):	6.75 0	0
Total:		1,973,038									
Layer	Critical Z Coordinate	Asphalt Properties	Season	Modulus (ksi)	Poisson's Ratio	Tensile Critical Micro Strain	Critical Compressive Stress (psi)	Million Cycles to Failure		Future Damage %	Total Damage %
		4% Air	Spring	450	0.3	35.5		1,013.94		0.03	0.03%
2(in) Asphalt	1.99	5% Asph	Summer	350	0.3	38.7		945.94		0.07	0.07%
· · · · · · · · · · · · · · · · · · ·		151 pcf	Fall	350	0.3	38.7		945.94		0.02	0.02%
		1	Winter	500	0.3	24.4		3,183.00		0.02	0.02%
			Coriog	450	0.3	212		Total Damage: 2.83		0.15	0.15
		4% Air	Spring Summer	460	0.3	212		2.83		10.46	10.46%
3(in) ATB	4.99 5% Asph	Fall	350	0.3	209		3.68		5.37	5.37%	
		151 pcf	Winter	500	0.3	114		19.93		3.96	3.96%
								Total Damage:		38.57	38.57
			Spring	44	0.35		21.00	4.40		6.73	6.73%
4(in) Crushed_Agg_Base	5.01		Summer	51	0.35		25.90	3.59		19.22	19.22%
		- FO	Fall	51	0.35		25.90	3.59		5.49	5.49%
			Winter	100	0.35		30.50	18.94	-	4.17	4.17%
		1	La No.			-	14.6	Total Damage:		35.60	35.60
100.0			Spring Summer	26 36	0.4		10.30 12.40	8.07		3.67 5.42	3.67%
12(in) select_A_P200<6%	9.01		Fall	36	0.4		12.40	12.74		1.55	1.55%
			Winter	90	0.4		14.60	148.32	-	0.63	0.53%
							0.100	Total Damage:	-	11.17	11.17
	1.		Spring	7	0.45		2,87	3.86		7.66	7.66%
S-Infinite	21.01		Summer	- 7 -	0.45	-	2.73	4.55	4	15.18	15.18%
Subgrade	21.01		Fall	7	0.45		2,73	4.55		4.34	4.34%
			Winter	10	0.45		2.22	34.39		2,29	2.29%
								Total Damage:		29,47	29.47

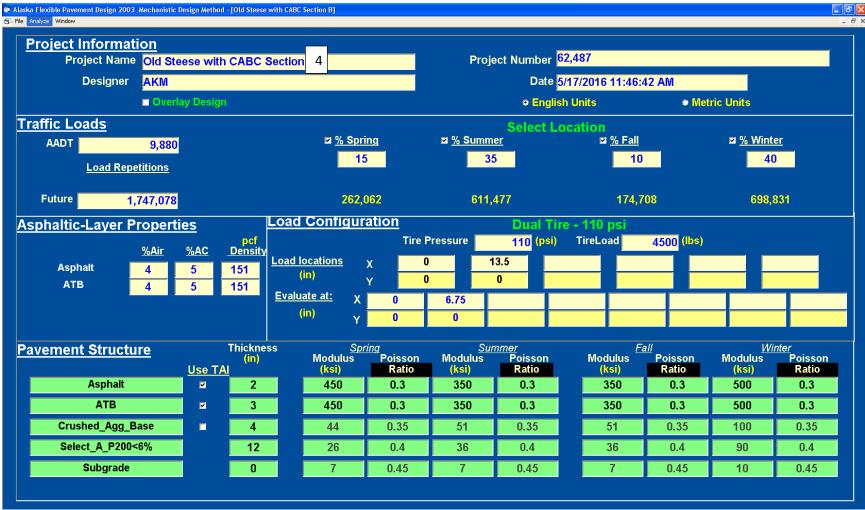
Figure 4: Section 2 – OUTPUT

_ **-** ×

Section 3 – Trainor Gate Road to College Road

Figure 5: Section 3 – INPUT

S Alaska Flexible Pavement Design 2003 Mechanistic Design Method - [NEW CONSTRUCTION Analysis Results for: Old Steese with CABC Section A 🛛 11:45:38 AM]


🔂 View Window Print

Project: Old Steese with C Proj No.: 62,487	ABC Section A									1	New Construction by:AKN 5/17/2016 11:45:38 AN
AADT = 11,760	Past Loadings	Future Loadings						X/Y Load Lo Load = 4 Tire Pressur	500 (lbs)	0 0	13.5 0
5% Spring 5% Summer 0% Fall 0% Winter		328,267 765,956 218,844 875,78							XM Evaluation Points (in):	6.75 0	0 0
Total:		2,188,445									
Layer	Critical Z Coordinate	Asphalt Properties	Season	Modulus (ksi)	Poisson's Ratio	Tensile Critical Micro Strain	Critical Compressive Stress (psi)	Million Cycles to Failure		Future Damage %	Total Damage %
			Spring	450	0.3	35.5		1,013.94		0.03	0.03%
2(in) Asphalt	1.99	4% Air 5% Asph	Summer	350	0.3	38.7		945.94		0.08	0.084
2(in) Asphant 1.99	1.88	151 pcf	Fall	350	0.3	38.7		945.94		0.02	0.02
		101 0	Winter	500	0.3	24.4		3,183.00		0.03	0.034
								Total Damage:		0.16	0.1
		4% Air	Spring	450	0.3	212		2.83		11.60	11.604
3(in) ATB	4.99	5% Asph	Summer	360	0.3	209		3.68		20.83	20.83
0(11)/110		151 pcf	Fall	350	0.3	209		3.68		5.95	5.95
			Winter	500	0.3	114		19.93		4.39	4.39
				1	1			Total Damage:		42.78	42.7
			Spring	11	0.35		21.00	1.10		7.46	7.46
in) Crushed_Agg_Base	5.01		Summer	51	0.35		25.90	3.59		21.32	21.32
			Fall	51	0.35		25.90	3.59		6.09	6.09
			Winter	100	0.35		30.50	18.94		4.62	4.62
			Spring	26	0.4	1	10.30	Total Damage: 8.07		4.07	39.4
10/1->			Summer	26	0.4		10.30	8.07		4.07	4.07
12(in) Select A P200<6%	9.01		Fall	30	0.4		12.40	12.74		1.72	1.72
00100_1_120040 W			Winter	90	0.4		12.40	12.74		0.59	0.59
		L	Loouriei	1 90	1 0.4	1	14.00	Total Damage:		12.39	12.3
I			Spring	7	0.45		2.87	3.86		8.50	8.50
S-Infinite			Summer	7	0.45		2.87	4.55		16.84	16.84
Subgrade	21.01		Fall	7	0.45		2.73	4.55		4.81	4.81
			Winter	10	0.45		2.22	34.39		2.55	2.55
			1	1 10	1 0.10	1		Total Damage:		32.69	32.6

Figure 6: Section 3 – OUTPUT

_ **-** ×

Section 4 - College Road to 3rd Street

Figure 7: Section 4 – INPUT

🗣 Alaska Flexible Pavement Design 2003 Mechanistic Design Method - [NEW CONSTRUCTION Analysis Results for: Old Steese with CABC Section B 💿 11:46:42 AM]

🔂 View Window Print

Analysis Complete

roj No.: 62,487	CABC Section B									1	New Construction by:Al 5/17/2016 11:46:42
AADT = 9,880	Past Loadings	Future Loadings							ocations (in): 4500 (lbs) re = 110 (psi)	0	13.5 0
5% Spring 5% Summer 0% Fall 0% Winter		262,062 611,477 174,708 698,831							X/Y Evaluation Points (in):	6.75 0	0 0
Total:		1,747,078									
Layer	Critical Z Coordinate	Asphalt Properties	Season	Modulus (ksi)	Poisson's Ratio	Tensile Critical Micro Strain	Critical Compressive Stress (psi)	Million Cycles to Failure		Future Damage %	Total Damage %
			Spring	450	0.3	35.5		1,013.94		0.03	0.0
2(in) Asphalt	1.99	4% Air 5% Asph	Summer	350	0.3	38.7		945.94		0.06	0.0
2(iii) Aspirant 1.88	1.88	151 pcf	Fall	350	0.3	38.7		945.94		0.02	0.0
		101 por	Winter	500	0.3	24.4		3,183.00		0.02	0.0
								Total Damage:		0.13	(
		4% Air	Spring	450	0.3	212		2.83		9.26	9.2
3(in) ATB	3(in) ATB 4.99	5% Asph	Summer	350	0.3	209		3.68		16.63	16.6
0()		151 pcf	Fall	350	0.3	209		3.68		4.75	4.3
			Winter	500	0.3	114		19.93		3.51	3.6
				-	-			Total Damage:		34.15	3
			Spring	44	0.35		21.00	4.40		5.96	5.
(in) Crushed_Agg_Base	5.01		Summer	51	0.35		25.90	3.59		17 02	17 (
			Fall	51	0.35		25.90	3.59		4.86	4.
			Winter	100	0.35		30.50	18.94		3.69	3.
T			1	1				Total Damage:		31.53 3.25	3
			Spring	26	0.4		10.30	8.07		3.25	3.3
12(in) Select_A_P200<6%	9.01		Summer Fall	36	0.4		12.40	12.74		4.80	4.3
Select_A_P200x0%			Winter	30				12.74		1.37	1.8
		1	oomen	1 90	0.4		14.60	Total Damage:		9.89	0.4
T			Spring	7	0.45		2.87	i otal Damage: 3.86		6.78	6.3
S-Infinite			Summer	7	0.45		2.87	4.55		13.44	13.4
S-infinite Subgrade	21.01		Fall	7	0.45		2.73	4.55		3.84	3.6
			Winter	10	0.45		2.73	34.39		2.03	2.0
		1	Loomes.	1 10	0.40		2.22	Total Damage:		26.10	20

Figure 8: Section 4 – OUTPUT

_ @

Section 5 - 3rd Street to 2nd Street

Figure 9: Section 5 – INPUT

🖨 Alaska Flexible Pavement Design 2003 Mechanistic Design Method - [NEW CONSTRUCTION Analysis Results for: Old Steese with CABC Section C 💿 11:48:20 AM]

🔂 View Window Print

Analysis Complete

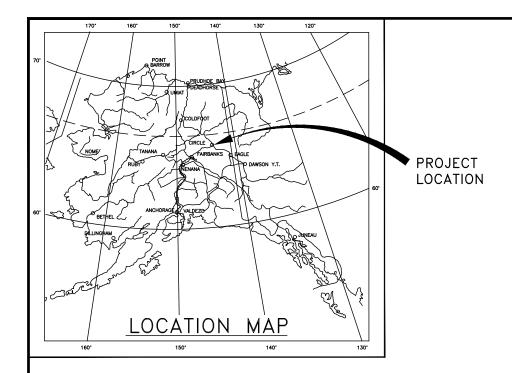
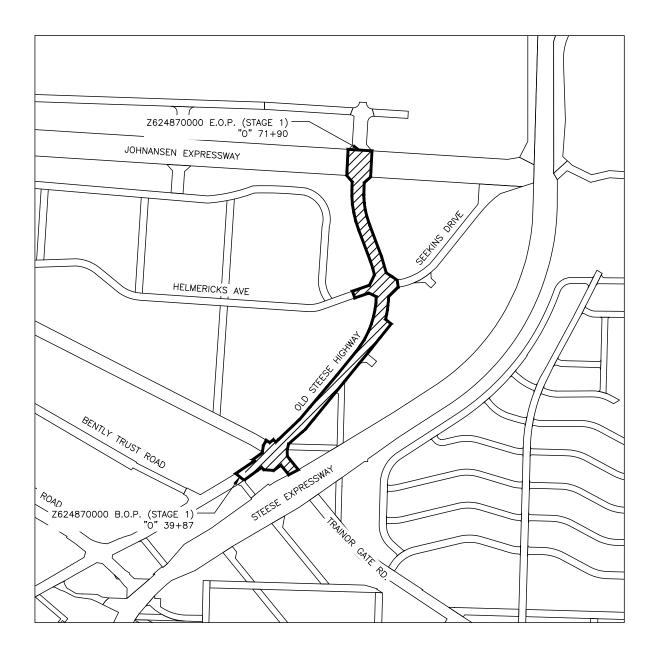

AADT = 8,620	Past Loadings	Future Loadings						X/Y Load L Load = 4 Tire Pressu	1500 (lbs)	0 0	5/17/2016 11:48:20) 13.5 0
5% Spring 5% Summer 0% Fall 0% Winter Total:		206,387 481,571 137,592 550,366 1,375,916							XM Evaluation Points (in):	6.75 0	0 0
Layer	Critical Z Coordinate	Asphalt Properties	Season	Modulus (ksi)	Poisson's Ratio	Tensile Critical Micro Strain	Critical Compressive Stress (psi)	Million Cycles to Failure		Future Damage %	Total Damage %
			Spring	450	0.3	35.5		1,013.94		0.02	0.0
2(in) Asphalt	1.99	4% Air 5% Asph	Summer	350	0.3	38.7		945.94		0.05	0.0
2(iii) Aspnant 1.88	1.88	151 pcf	Fall	350	0.3	38.7		945.94		0.01	0.0
			Winter	500	0.3	24.4		3,183.00		0.02	0.0
								Total Damage:		0.10	0
	4% Air	Spring	450	0.3	212		2.83		7.29	7.2	
3(in) ATB	4.99	5% Asph	Summer	350	0.3	209		3.68		13.10	13.1
		151 pcf	Fall	350	0.3	209		3.68		3.74	3.7
			Winter	500	0.3	114		19.93		2.76	2.7
			Spring	44	0.35		21.00	Total Damage: 4.40		4.69	4.6
			Summer	51	0.35		25.90	3.59		13.40	4.0
(In) Crushed_Agg_Base	5.01		Fall	51	0.35		25.90	3.59		3.83	3.8
			Winter	100	0.35		30.50	18.94		2.91	2.9
			1	1				Total Damage:		24.83	24
			Spring	26	0.4		10.30	8.07		2.56	2.5
12(in)	9.01		Summer	36	0.4		12.40	12.74		3.78	3.7
Select_A_P200<6%	9.01		Fall	36	0.4		12.40	12.74		1.08	1.0
			Winter	90	0.4		14.60	148.32		0.37	0.3
								Total Damage:		7.79	7
			Spring	7	0.45		2.87	3.86		5.34	5.3
S-Infinite	21.01		Summer	7	0.45		2.73	4.55		10.59	10.5
Subgrade			Fall	7	0.45		2.73	4.55		3.02	3.0
			Winter	10	0.45	1	2.22	34.39		1.60	1.6
								Total Damage:		20.55	20

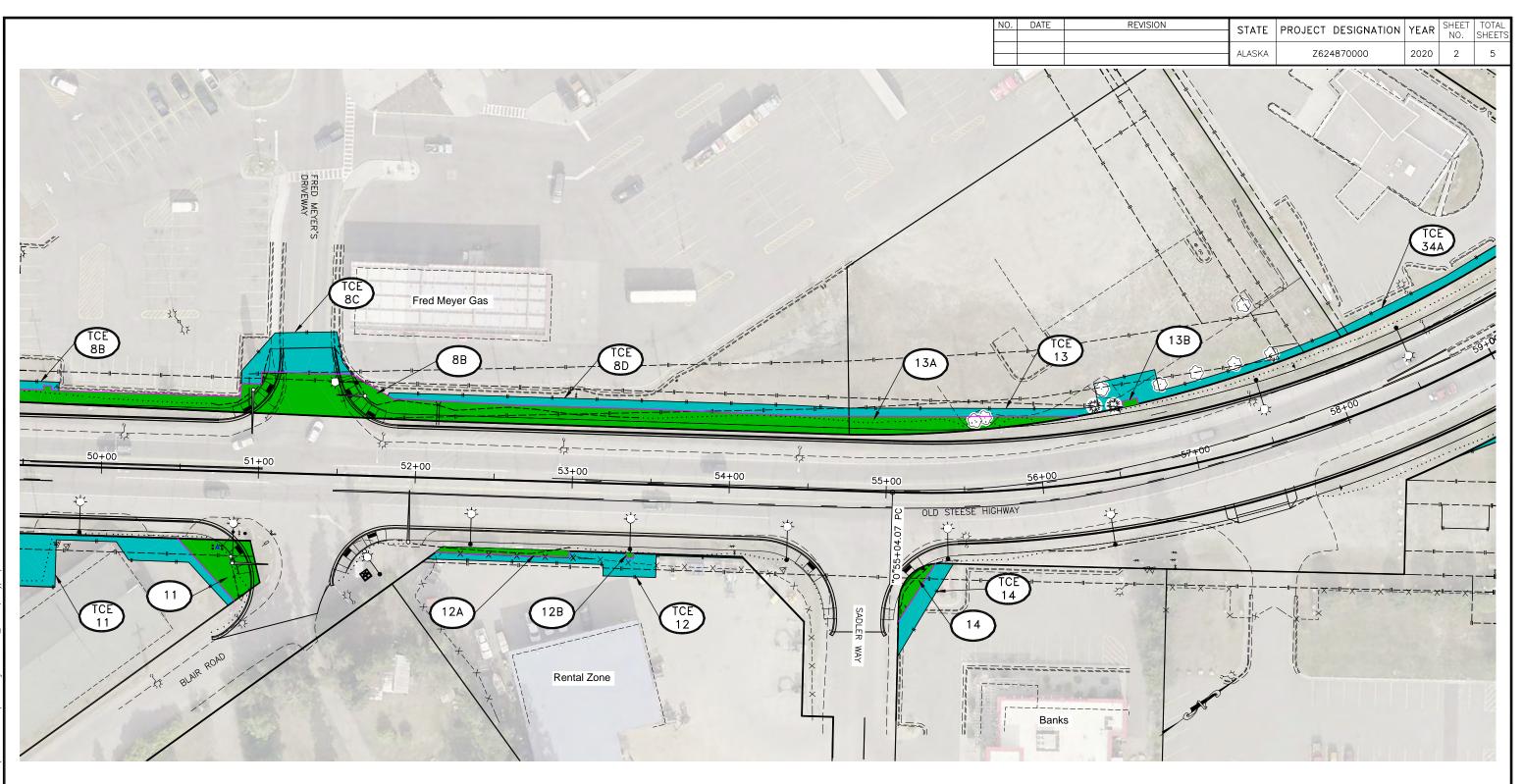
Figure 10: Section 5 - OUTPUT

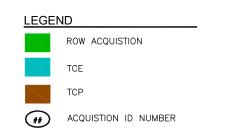
_ **-** ×

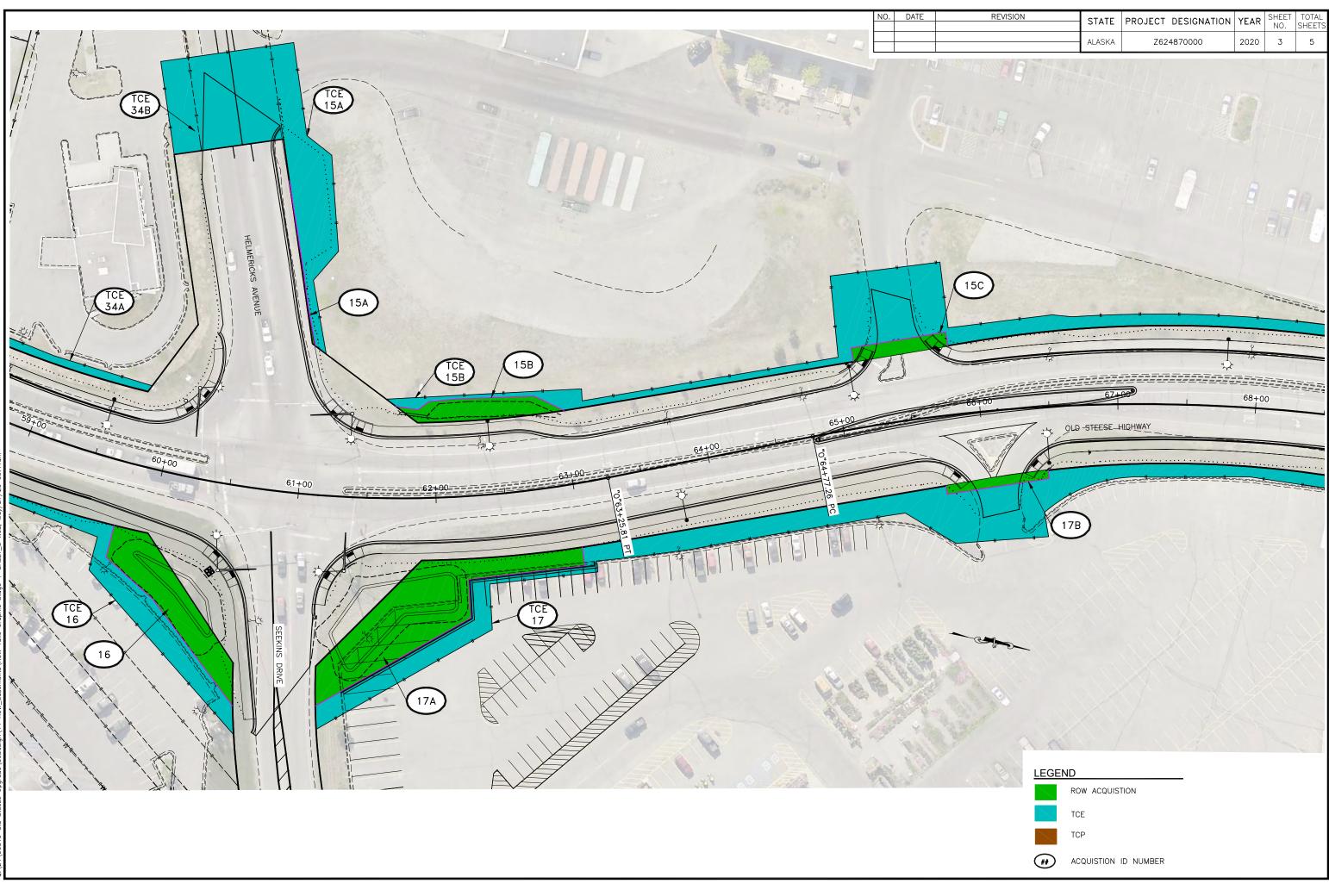

APPENDIX E

PROPOSED ROW ACQUISITIONS

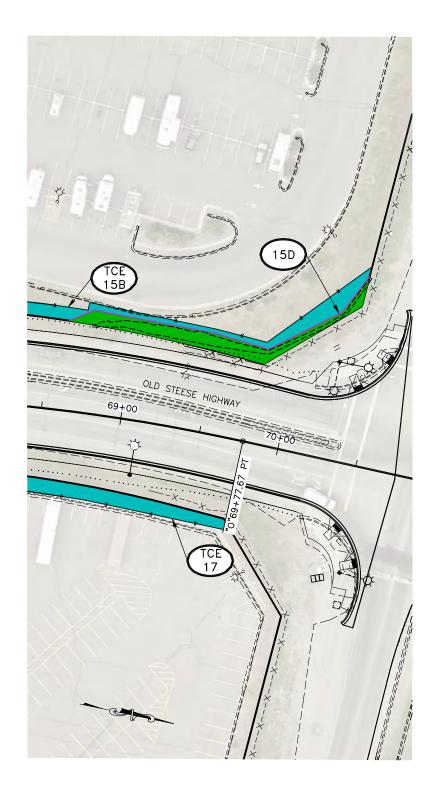
STAGE 1 ROW PLAN SHEETS

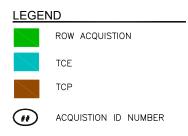

\Civil 3D Projects\2016\24\90019-01\Civil\62487-A-Title.dwg PLOT DATE 2020-5-27 10:10


WITHIN SECTION 2 AND 11, TOWNSHIP 001 S, RANGE 001 W, FAIRBANKS MERIDIAN FAIRBANKS RECORDING DISTRICT


INDEX OF SHEETS							
SHEET NO.	DESCRIPTION						
1-4	ROW PLAN SHEETS						
5-6	ROW ACQUISITIONS TABLE						

PEGE 2301





99709 (907)451-2200 ¥ Ч STATE se Upo BY: B DEVEI

NO.	DATE	

REVISION	STATE	PROJECT DESIGNATION	YEAR	SHEET NO.	TOTA SHEE
	ALASKA	Z624870000	2020	4	5

Old Steese Highway: Stage 1 Acquisition Summary Program # Z624870000 Date: 5-27-2020

Derroll	ACQUISITION	<u> </u>	D	Legal Descri	otion		0	Area	
Parcel #	ID	Sheet #	Purpose	Subdivision	block	Lot	Owner	(SF)	
	5	1	Adding Lanes and sidewalk	1S 1W	2	202	N C Machinery Co	1,130	ROW Acquisition
5	TCE 5B	1	Adding Lanes and sidewalk	1S 1W	2	202	N C Machinery Co	675	Temporary Constru
	TCP 5B	1	Driveway	1S 1W	2	202	N C Machinery Co	550	Temporary Constru
6	6	1	Adding Lanes and sidewalk	Derby Tact		6-1	Barbara & Kevin Rima	660	ROW Acquisition. F minimum of 40,000
	TCE 6	1	Adding Lanes, sidewalk	Derby Tact		6-1	Barbara & Kevin Rima	780	Temporary Constru
	7	1	Adding Lanes and sidewalk	Derby Tact		06-5	Franich Law Offices	270	
7	TCE 7	1	Adding Lanes and sidewalk	Derby Tact		06-5	Franich Law Offices	295	Temporary Constru
	TCP 7	1	Driveway	Derby Tact		06-5	Franich Law Offices	970	Temporary Constru
35	TCE 35	1	Retention Basin	US Survey		8	Alaska Railroad	500	Temporary Constru
36	TCE 36	1	Retention Basin	Bentley Brothers 1st Addition		10	JJs Development LLC	300	Temporary Constru
	8A	1	Retention Basin	Bentley Brothers 1st Addition		8A	Fred Meyers Stores Inc	30,110	Due to the size of the design to see if the pushing this parcel determination can
	8B	1/2	Signalized intersection and added lanes	Bentley Brothers 1st Addition		8A	Fred Meyers Stores Inc	7,300	ROW Acquisition
8	TCE 8A	1	Retention Basin	Bentley Brothers 1st Addition		8A	Fred Meyers Stores Inc	900	Temporary Constru
	TCE 8B	1/2	Adding Lanes, Driveway, and sidewalk	Bentley Brothers 1st Addition		8A	Fred Meyers Stores Inc	2,050	Temporary Constru
	TCE 8C	2	Signalized intersection	Bentley Brothers 1st Addition		8A	Fred Meyers Stores Inc	1,500	Temporary Constru
	TCE 8D	2	Adding Lanes and sidewalk	Bentley Brothers 1st Addition		8A	Fred Meyers Stores Inc	1,450	Temporary Constru
32	TCP 32	1	Driveway	RavenTree		1	910 Holdings LLC	390	Temporary Constru
22	TCE 33	1	Adding Lanes and sidewalk	RavenTree		2	910 Holdings LLC	1225	Temporary Constru
33	TCP 33	1	Driveway	RavenTree		2	910 Holdings LLC	410	Temporary Constru
	9	1	Storm Drain inlet	Derby Tract		29A	Barbara & Wallace Hopkins	10	ROW Acquisition
9	TCE 9	1	Added Lanes, Storm Drain inlet, and grading	Derby Tract		29A	Barbara & Wallace Hopkins	800	Temporary Constru
	TCP 9	1	Driveway	Derby Tract		29A	Barbara & Wallace Hopkins	270	Temporary Constru
	10	1	Light Pole	Derby Tact	2	28A	Max & Yvonne Sadtler	6	ROW Acquisition
10	TCE 10	1	Added Lanes and Light Pole	Derby Tact	2	28A	Max & Yvonne Sadtler	395	Temporary Constru
10	TCP 10A	1	Driveway	Derby Tact	2	28A	Max & Yvonne Sadtler	80	Temporary Constru
	TCP 10B	1	Driveway	Derby Tact	2	28A	Max & Yvonne Sadtler	100	Temporary Constru

ruction Easement

ruction Permit

. Parcel size is already smaller than the GU-1 Zone 00 sf; reduced lot size will require a variance

ruction Easement

ruction Easement

ruction Permit

ruction Easement

ruction Easement

f this parcel, DOWL is reviewing the infiltration ne basin could be reduced in size. Recommend el plat toward the end of the list until this n be made.

ruction Easement

ruction Easement

ruction Easement

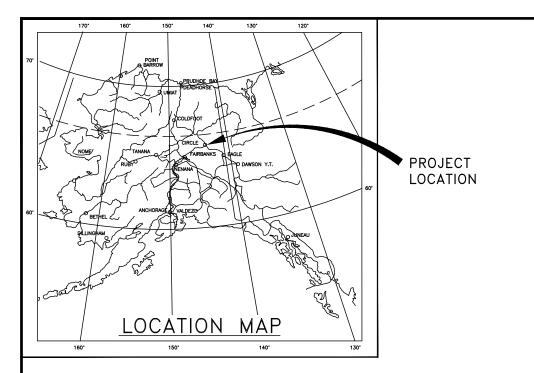
ruction Easement

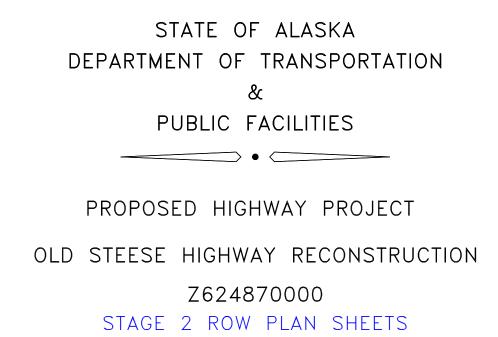
ruction Permit

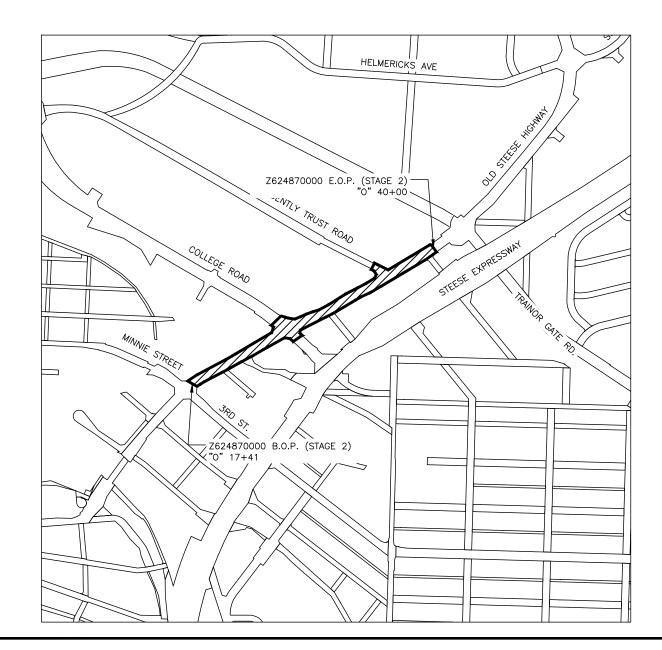
ruction Easement

ruction Permit

ruction Easement

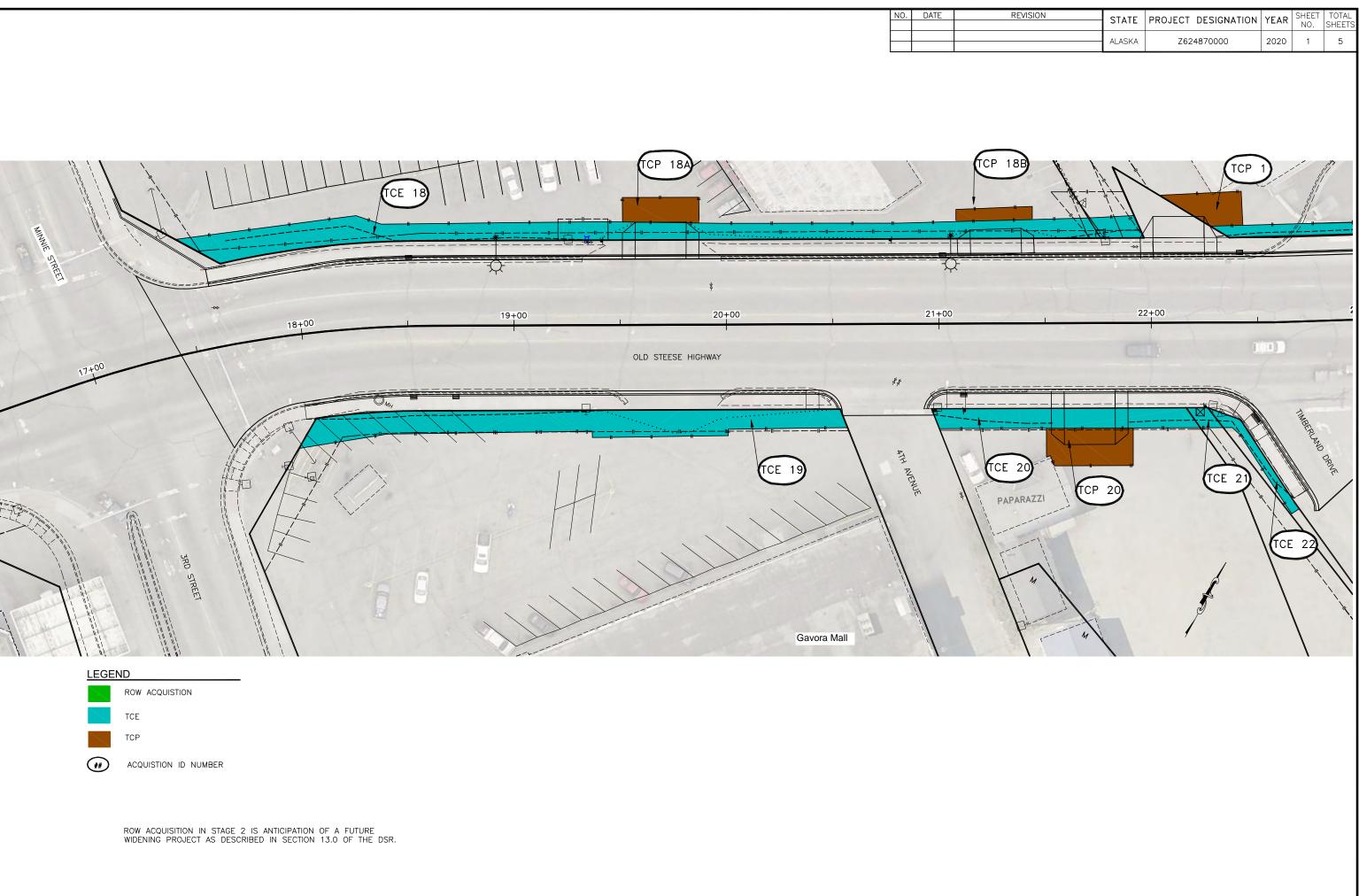

ruction Permit

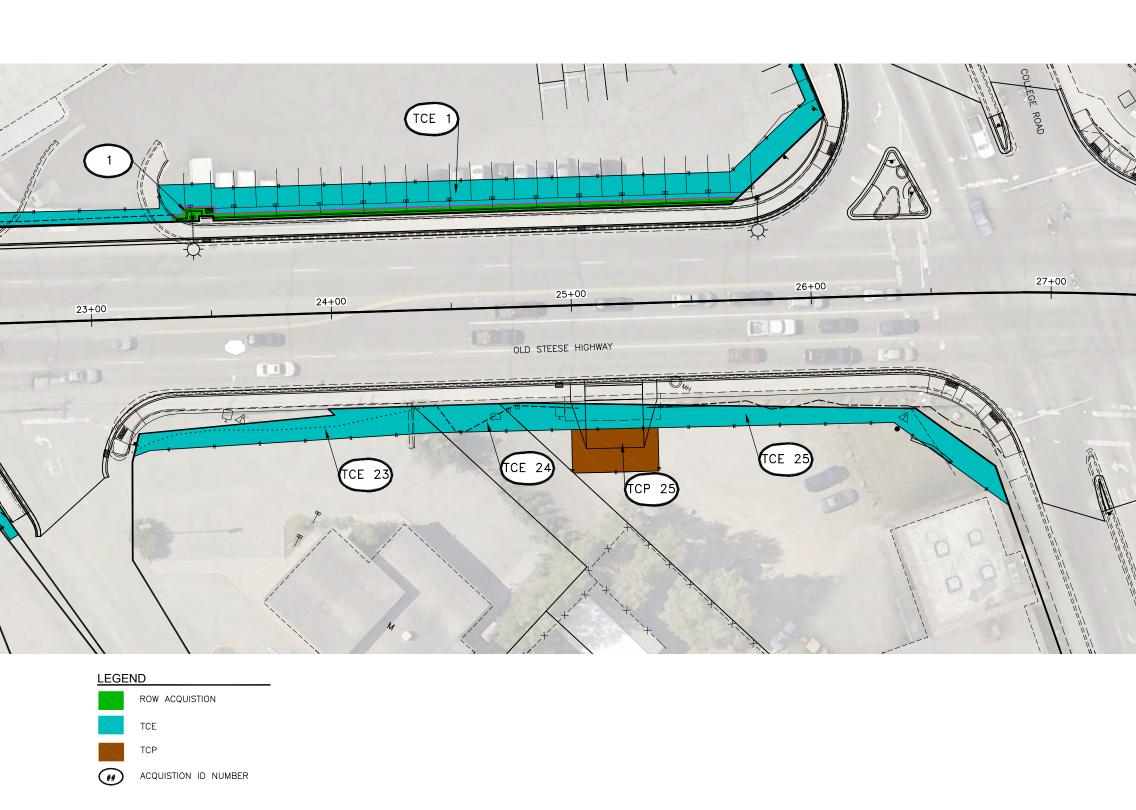

ruction Easement


ruction Permit

ruction Permit

Demost #	ACQUISITION	Cheet #	Dumpers	Legal Descri	ption		2	Area	Commant
Parcel #	ID	Sheet #	Purpose	Subdivision	block	Lot	Owner	(SF)	Comment
	11	2	Signalized intersection and utilities	Derby Tact		25	Max & Yvonne Sadtler	1,150	ROW Acquisition
11	TCE 11	1/2	Signalized intersection, closed driveway, added lanes, sidewalk, and utilities	Derby Tact		25	Max & Yvonne Sadtler	2,875	Temporary Construction Easement
	TCP 11	1	Driveway	Derby Tact		25	Max & Yvonne Sadtler	510	Temporary Construction Permit
	12A	2	Added lanes and sidewalk	Saddlers Business Park First			Rental Zone (Business)	320	ROW Acquisition
12	12B	2	Storm Drain inlet	Saddlers Business Park First			Rental Zone (Business)	15	ROW Acquisition
	TCE 12	2	Added Lanes, drainage, and Light Pole	Saddlers Business Park First			Rental Zone (Business)	1,100	Temporary Construction Easement
	13A	2	Added lanes and sidewalk	Bentley Brothers 1st Addition		9A	SEE FOREVER LLC	1,200	ROW Acquisition
13	13B	2	Catch Basin Inlet	Bentley Brothers 1st Addition		9A	SEE FOREVER LLC	40	ROW Acquisition
	TCE 13	2	Added lanes, sidewalk, and catch basin inlet	Bentley Brothers 1st Addition		9A	SEE FOREVER LLC	2,100	Temporary Construction Easement
14	14	2	Sidewalk and catch basin inlet	Saddlers Business Park First		1	BANDERAS BAY DEVELOPMENT LLC	300	ROW Acquisition
14	TCE 14	2	Sidewalk and catch basin inlet	Saddlers Business Park First		1	BANDERAS BAY DEVELOPMENT LLC	600	Temporary Construction Easement
24	TCE 34A	2/3	Added lanes, and sidewalks	Bentley Brothers		6	Mt Mckinley Bank	1,675	Temporary Construction Easement
34	TCE 34B	3	Turn lane and roadway repave	Bentley Brothers		6	Mt Mckinley Bank	1,100	Temporary Construction Easement
	15A	3	Adding sidewalk	Bentley Brothers		5	Wal-Mart Real Estate Business Trust	90	ROW Acquisition
	15B	3	Right turn lane and drainage culvert	Bentley Brothers		5	Wal-Mart Real Estate Business Trust	1,500	ROW Acquisition
	15C	3	Driveway Sidewalk	Bentley Brothers		5	Wal-Mart Real Estate Business Trust	710	ROW Acquisition
15	15D	4	Drainage Ditch Overflow	Bentley Brothers		5	Wal-Mart Real Estate Business Trust	1,510	ROW Acquisition
	TCE 15A	3	Adding sidewalk and roadway work	Bentley Brothers		5	Wal-Mart Real Estate Business Trust	4,300	Temporary Construction Easement
	TCE 15B	3/4	Right Turn lane, added lanes, sidewalk, and drainage	Bentley Brothers		5	Wal-Mart Real Estate Business Trust	9,900	Temporary Construction Easement
10	16	3	Added lanes, sidewalk, and retention basin	Saddlers Business Park First		01A	Alaska USA FCU	3,280	ROW Acquisition
16	TCE 16	2/3	Added lanes, sidwalk, and retention basin	Saddlers Business Park First		01A	Alaska USA FCU	3,600	Temporary Construction Easement
	17A	3	Retention Basin	1S 1W	2	233	Home Depot	6,450	ROW Acquisition
17	17B	3	Driveway Sidewalk	1S 1W	2	233	Home Depot	495	ROW Acquisition
	TCE 17	3/4	Retention basin, added lanes, sidewalk, and driveway	1S 1W	2	233	Home Depot	13,200	Temporary Construction Easement

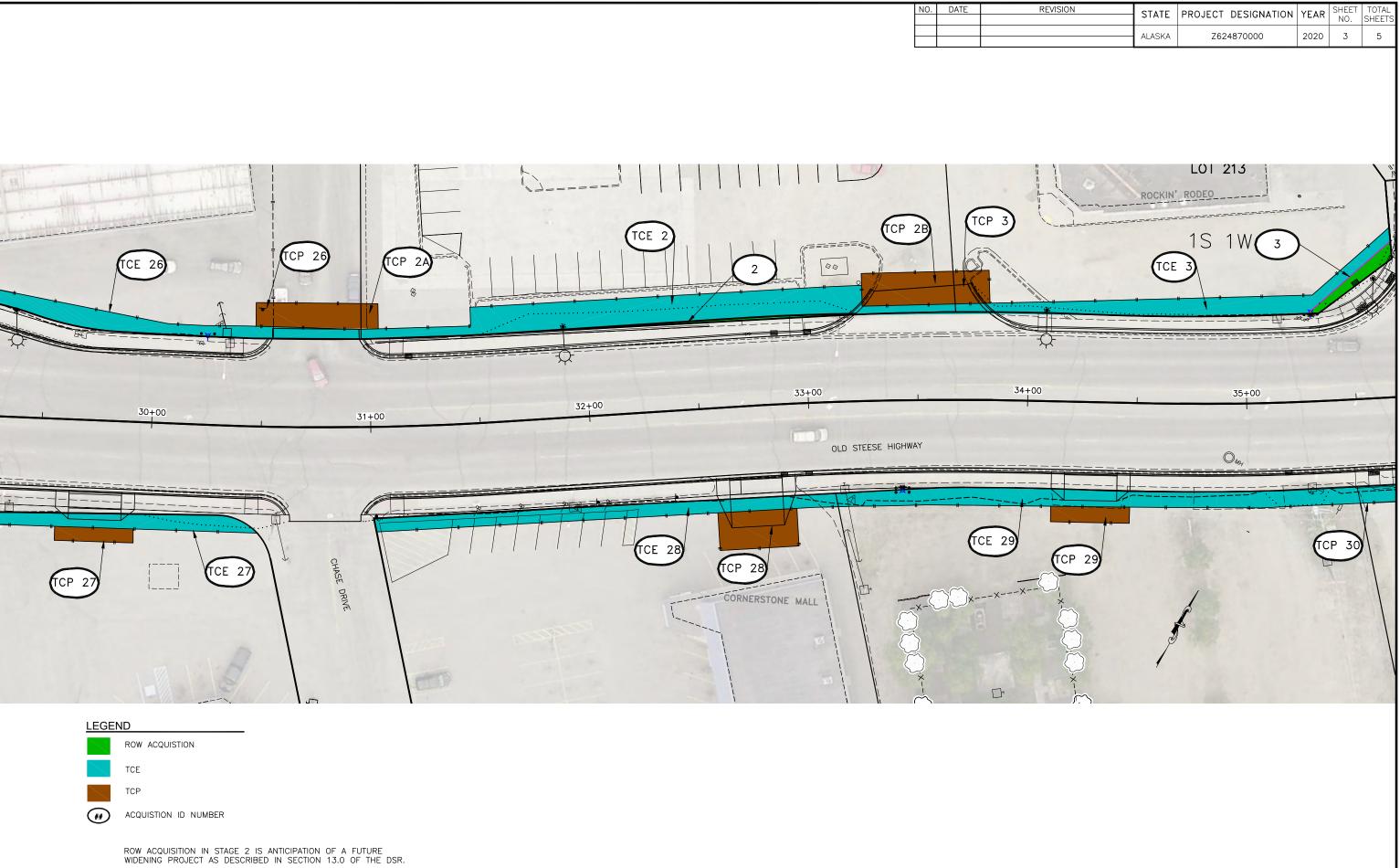


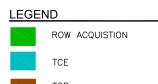


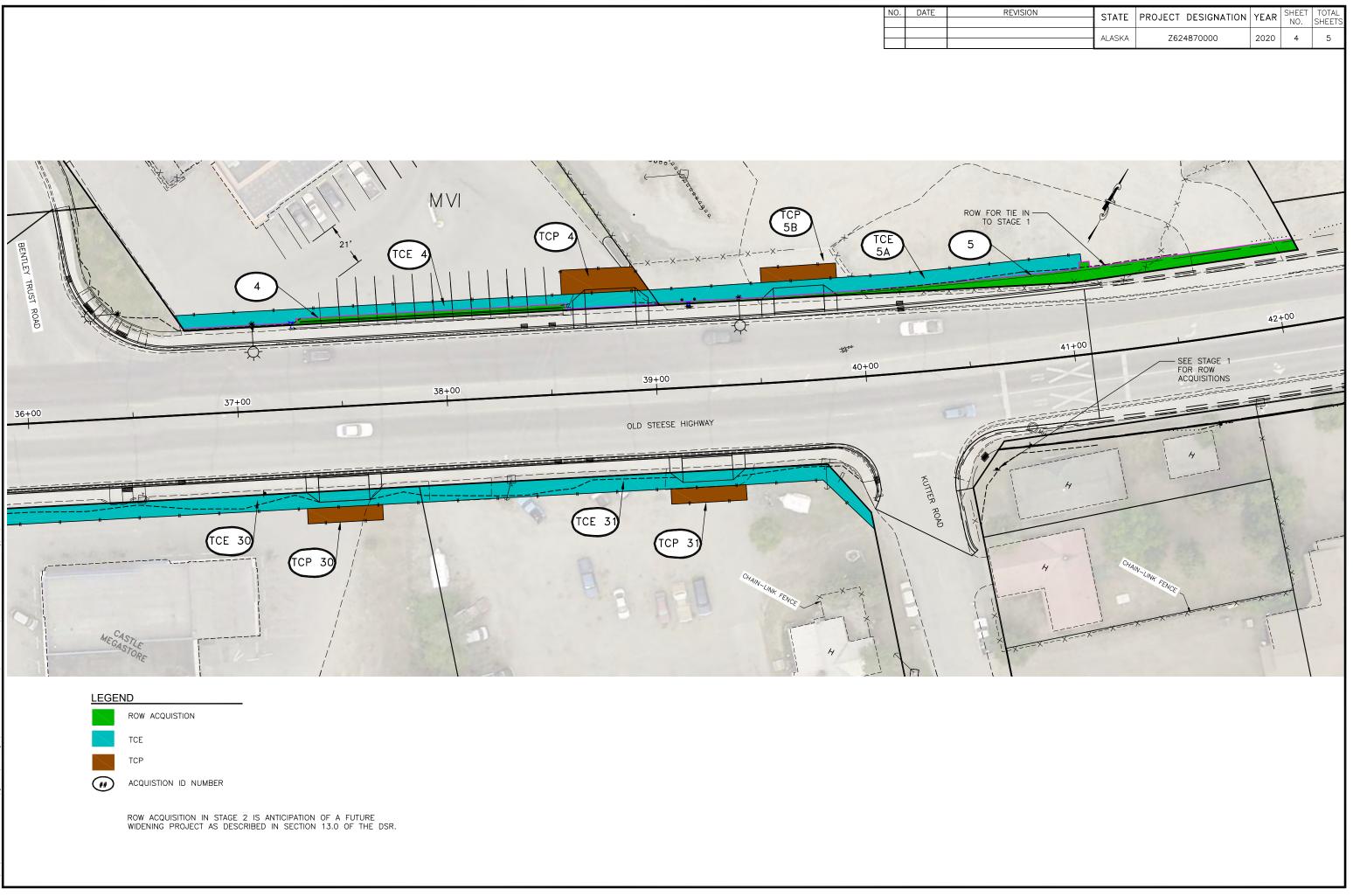
ROW ACQUISITION IN STAGE 2 IS IN ANTICIPATION OF A FUTURE WIDENING PROJECT AS DESCRIBED IN SECTION 13.0 OF THE DSR.

WITHIN SECTION 2 AND 11, TOWNSHIP 001 S, RANGE 001 W, FAIRBANKS MERIDIAN FAIRBANKS RECORDING DISTRICT

INDEX OF SHEETS SHEET NO. DESCRIPTION 1-4 ROW PLAN SHEETS 5 ROW ACQUISITIONS TABLE




ROW ACQUISITION IN STAGE 2 IS ANTICIPATION OF A FUTURE WIDENING PROJECT AS DESCRIBED IN SECTION 13.0 OF THE DSR.


REVISION	STATE	PROJECT DESIGNATION	YEAR	SHEET	TOTAL SHEETS
	ALASKA	Z624870000	2020	NO. 2	SHEETS 5
			_020	_	Ľ
and a state		(Charles)	(TCE 2	20
				*	
1					
00					
11	28-	-00			2 9
1 ;	-	OLD STEESE	HIGHWA	Y	
		:			
		* * * +	E 27)	#
		-			-
COLE			Ĺ	/	
COLLEGE ROAD			J		

NO. DATE

NO. DATE

Old Steese Highway: Stage 2 Acquisition Summary Program # Z624870000 Date: 5-27-2020

December 1	ACQUISITION		•	Legal Descr	iption		2	Area	
Parcel #	ID	Sheet #	Purpose	Subdivision	block	Lot	Owner	(SF)	Comment
	TCE 18	1	Sidewalk	North Gate		1	North Gate Square Commerical Condominiums	4,030	Temporary Construction Easement
18	TCP 18A	1	Driveway	North Gate		1	North Gate Square	435	Temporary Construction Permit
	TCP 18B	1	Driveway	North Gate		1	North Gate Square	215	Temporary Construction Permit
19	TCE 19	1	Sidewalk	Graehl Townsite		G1	Gavora Mall	2,750	Temporary Construction Easement
20	TCE 20	1	Sidewalk	Graehl Townsite	13	1	Ricky & Yun Suk Osborne	1,134	Temporary Construction Easement
20	TCP 20	1	Driveway	Graehl Townsite	13	1	Ricky & Yun Suk Osborne	710	Temporary Construction Permit
21	TCE 21	1	Sidewalk	Graehl Townsite	13	2	Ricky & Yun Suk Osborne	106	Temporary Construction Easement
22	TCE 22	1	Sidewalk	Graehl Townsite	13	3	Ricky & Yun Suk Osborne	270	Temporary Construction Easement
	1	2	Sidewalk/Wall	North Gate		2	North Arctic Trust LLC	730	ROW Acquisition
1	TCE 1	2	Sidewalk/Wall	North Gate		2	North Arctic Trust LLC	3,700	
	TCP 1	1	Driveway	North Gate		2	North Arctic Trust LLC	550	Temporary Construction Permit
23	TCE 23	2	Sidewalk	Timberland	2	01A	Dallin Young	1,175	Temporary Construction Easement
24	TCE 24	2	Sidewalk	1S 1W	2	236	Farthest North Girl Scout Council	410	Temporary Construction Easement
25	TCE 25	2	Sidewalk	1S 1W	2	237	Farthest North Girl Scout Council	1,925	Temporary Construction Easement
25	TCP 25	2	Driveway	1S 1W	2	650	Farthest North Girl Scout Council	1,925	Temporary Construction Permit
26	TCE 26	2/3	Sidewalk	1S 1W	2	227	Safeway Inc.	1,735	Temporary Construction Easement
20	TCP 26	3	Driveway	1S 1W	2	227	Safeway Inc.	540	Temporary Construction Permit
27	TCE 27	2/3	Sidewalk	Cornertsone		REM	MV Investments	1,735	Temporary Construction Easement
27	TCP 27	3	Driveway	Cornertsone		REM	MV Investments	230	Temporary Construction Permit
	2	3	Sidewalk	Bentley Annex		01A	OSC Holdings LLC	85	ROW Acquisition
2	TCE 2	3	Sidewalk and drainage	Bentley Annex		01A	OSC Holdings LLC	2,570	Temporary Construction Easement
2	TCP 2A	3	Driveway	Bentley Annex		01A	OSC Holdings LLC	90	Temporary Construction Permit
	TCP 2B	3	Driveway	Bentley Annex		01A	OSC Holdings LLC	640	Temporary Construction Permit
28	TCE 28	3	Sidewalk	Derby Tract		02N	MV Investments	1,250	Temporary Construction Easement
20	TCP 28	3	Driveway	Derby Tract		02N	MV Investments	625	Temporary Construction Permit
29	TCE 29	3	Sidewalk	Derby Tract		03A	Sidney Sanford Estate	1,790	Temporary Construction Easement
29	TCP 29	3	Driveway	Derby Tract		03A	Sidney Sanford Estate	260	Temporary Construction Permit

Old Steese Highway: Stage 2 Acquisition Summary Program # Z624870000 Date: 5-27-2020

Parcel #	ACQUISITION	Sheet #	Durnoso	Legal Descr	iption		Ownor	Area	Commont
Parcel #	ID	Sheet #	Purpose	Subdivision	block	Lot	Owner	(SF)	Comment
	3	3	Bentley Trust road curb return and Storm Drain	1S 1W	2	213	NWD Inc	220	ROW Acquisition
3	TCE 3	3	Sidewalk, curb return and Storm Drain	1S 1W	2	213	NWD Inc	1,320	Temporary Construction Easement
	TCP 3	3	Driveway	1S 1W	2	213	NWD Inc	241	Temporary Construction Permit
30	TCE 30	3/4	Sidewalk	Derby Tract		04A	Dennis and Conceicao Stuller	1,800	Temporary Construction Easement
30	TCP 30	4	Driveway	Derby Tract		04A	Dennis and Conceicao Stuller	265	Temporary Construction Permit
	4	4	Sidewalk/Wall	MVI		1	Timmons & Larsons Inc	470	ROW Acquisition
4	TCE 4	4	Sidewalk/Wall	MVI		1	Timmons & Larsons Inc	1,225	Temporary Construction Easement
	TCP 4	4	Driveway	MVI		1	Timmons & Larsons Inc	440	Temporary Construction Permit
31	TCE 31	4	Sidewalk	Derby Tract		5	Ken's Fairbanks Alignment	1,740	Temporary Construction Easement
51	TCP 31	4	Driveway	Derby Tract		5	Ken's Fairbanks Alignment	265	Temporary Construction Permit
	5	4	Adding Stage 1 lanes, sidewalk	1S 1W	2	202	N C Machinery Co	1,130	ROW Acquisition
5	TCE 5A	4	Adding lanes	1S 1W	2	202	N C Machinery Co	1,420	Temporary Construction Easement
	TCP 5A	4	Driveway	1S 1W	2	202	N C Machinery Co	260	Temporary Construction Permit