

Alaska Department of Transportation & Public Facilities Comparing 401 and 408 Hot Mix Asphalt (and other things) Drew Pavey

January 23rd, 2018

Keep Alaska Moving through service and infrastructure

What We Will Cover

- Differences Between HMA Types
 - Type II
 - Type IV
 - Type V
- Differences Between HMA Classes
 - Class A
 - Class B
- Differences Between Oils
 - PG 52-28, PG 52-40, etc.

• Why Do We Pick What We Do?

Existing Road Condition

- Why are we doing this project?
- What are the problems with the road?

Why is the road in this condition?

Existing Road Condition Cont.

- Rutting
 - Studded Tire Wear
 - Shoving/Deformation

Fatigue
 Cracking

Project Location

- Where is the project?
 - Urban
 - Rural
- Traffic Conditions?
 - AADT
 - Speed
 - Static Loading

What We Know

Project Location

 Existing Road Condition Resist vertical compressive stress

What We Need

- Shear Stress
 - These resist permanent deformation
- Horizontal Tensile Stress (at bottom of HMA)
 - Resists alligator cracking

Pavement Loading

Types of HMA

- Types of HMA
 - Type II
 - Type IV
 - Type V
- Classes of HMA for Type II & IV
 - Class A
 - Class B

HMA (Hot Mix Asphalt)

Differences Between HMA Types

- Marshall Mix Design
 - Type II
 - Type IV

<u>Su</u>perior <u>Per</u>forming Asphalt <u>Pave</u>ments (Superpave) – Type V

- Marshall (401)
 - Determine optimum asphalt binder content
 - Prepare samples at varying binder contents
 - Asphalt binder content corresponds to 4% air voids
 - Test Stability and Flow
 - Stability is peak load
 - Flow is deformation

Keep Alaska Moving through service and infrastructure

- Type II vs. Type IV Gradation
 - Type II ¾" Aggregate
 - Type IV 3/8" Aggregate

Class A

- 15% RAP
- 75 Blow Marshall
 - 1% Lower Oil Than Class B
- Stricter Stability/Flow

Class B

- 25% RAP
- 50 Blow Marshall
 - 1% Higher Oil than Class A
 - Lower Fracture

- Superpave (408)
 - Coarse & fine aggregate angularity
 - Volumetric test (no stability / flow)
 - Prepare samples two at proposed asphalt content, two above, two below
 - Gyrate (compact) samples
 - Select optimum binder content at 4% air voids

We do have a rut index test for deformation

- Why use rut index?
 - Resist deformation

Primary Differences

	Type II, Class A	Type II, Class B	Type IV	Type V (Superpave)
Fracture, %	90, 2 Face	80, 1 Face	90, 2 Face	<u>98</u> , 2 Face
Compaction	Marshall 75 Blows	Marshall 50 Blows	Marshall 50 Blows	Gyratory
RAP, %	15	25	25	<u>0</u>
Nordic, %	-	-	-	<u>8</u>
Mat Density, %	92	92	92	93
Cost	Intermediate Cost	Cheapest	Typically Pre-Level	Most Expensive

HMA Selection

Do You Have?	You Need	
Heavy Static Loading	Resist Compressive/Shear Forces	
High Speed Traffic	Resist Studded Tire Wear (High Density/Hard Aggregate)	
High Traffic Volumes		
High Stud Use		
Heavy Stop/Go Traffic	Resist Shoving/Plastic Deformation	

Consider Using Type V

HMA Selection Continued

Do You Have?	You Need	
Moderate Static Loading	Resist Compressive/Shear Forces	
High/Moderate Speed Traffic		
Moderate Traffic Volumes	Resist Studded Tire Wear	
Moderate Stud Use		
Moderate Stop/Go Traffic	Resist Shoving/Plastic Deformation	

Consider Using Type II, Class A

Keep Alaska Moving through service and infrastructure

HMA Selection Continued

Do You Have?	You Need		
Low/No Static Loading	Resist Compressive/Shear Forces		
Low/Moderate Speed Traffic			
Low Traffic Volumes	Resist Studded Tire Wear		
Low Stud Use			
Limited Stop/Go Traffic	Resist Shoving/Plastic Deformation		

Consider Using Type II, Class B

Keep Alaska Moving through service and infrastructure

But Wait, There's Oil Too!

- Even more choices!
 - Type II, Class B, PG 52-28
 - Or maybe 52-40?
 - No... 52-34?
 - » Dangit... 64-40!?
- So how do you make the right choice?
 - Understand what the numbers mean
 - Like with HMA, know your project conditions

What Do the Numbers Mean?

52

PG is Performance Grade

Increasing stiffness

76

 The idea is the binder properties relate to the conditions its used

Thermal cracking Low Temperature, °C

-22 -28 -34

52-16 64-16 70-16 76-16 -16 58-16 52-22 58-22 64-22 70-22 76-22 52-28 58-28 64-28 70-28 76-28 52-34 64-34 70-34 76-34 58-34 40 52-40 58-40 64-40 70-40 76-40

What is a modifier?

- Polymer
- Extender

= High Quality Crude Oil

= Modifier Required

OK, So What?

do l look like l

- Polymers Increase
 - Stiffness
 - Elasticity

- Extenders Improve
 - Low temperature performance

- Polymers help with Calles
 - Static Loading
 - Shoving from stop/go traffic

Extenders Help With Thermal crackingand rutting?

Choose Oil for the Mix

- Project Conditions
 - High speed
 - High AADT (studs)
 - Heavy Loading
 - Stop/Go Traffic

• PG 64-40

- Modified top end for elasticity/stiffness
- Low end for thermal cracking / studded tire

.. will get to that

PG 52-28 & PG 58-34

- Project Conditions
 - Low/Moderate AADT (studs)
 - Limited Static Loading
 - Limited Stop/Go Traffic

• PG 52-40

 Low end for thermal cracking resistance

PG Grading and Studded Tires

- Prall Test
 - Simulate studded tires
 - Metal balls impact at near freezing temperature

 Testing shows that lowering low end improves prall test results

Oil Content/Grade vs. Prall

Bringing it Together

- Urban, high traffic volumes with static loading
 - Type V, PG 64-40

- Rural, low traffic volumes, low/minimal static loading
 - Type II, Class B, PG 52-40

- Moderate traffic volumes, low to moderate static loading
 - Type II, Class A, PG
 52-40
- Overlays
 - PG 52-28
 - Vary based on location/loading

Questions?

If a dog wore pants would he wear them like this or like this?

