HEMMER ROAD EXTENSION AND UPGRADE, PALMER-WASILLA HIGHWAY TO BOGARD ROAD

Project No.: 0001(743)/CFHWY00885

DESIGN STUDY REPORT

ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

PREPARED BY: DOT&PF Central Region – Design and Construction

4111 Aviation Avenue Anchorage, AK 99502

March 2025

ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES DESIGN AND ENGINEERING SERVICES – CENTRAL REGION

DESIGN STUDY REPORT

For

Hemmer Road Extension and Upgrade, Palmer-Wasilla Highway to Bogard Road

Project No.: 0001(743)/CFHWY00885

Written by: Chase Hansen, Engineering Assistant II

Prepared by:

Clint J. Adler, P.E.

Luke S. Bowland, P.E.

Preconstruction Engineer

Approved:

Mat-Su District Office Chief

Claire Ellis, P.E.	Date
Project Engineer	
State of Alaska	
Department of Transportation	and Public Facilities
4111 Aviation Avenue	
Anchorage, AK 99502	
(907) 269-0590	
Cert. of Auth. Number	
Concur by:	
Chris Bentz, P.E.	Date
Project Manager	
Concur by:	

Date

Date

DRAFT

NOTICE TO USERS

This report reflects the thinking and design decisions at the time of publication. Changes frequently occur during the evolution of the design process, so persons who may rely on information contained in this document should check with the Alaska Department of Transportation and Public Facilities for the most current design. Contact the Design Project Manager, Chris Bentz, at 907-269-0652 for this information.

PLANNING CONSISTENCY

This document has been prepared by the Alaska Department of Transportation and Public Facilities according to currently acceptable design standards and Federal regulations, and with the input offered by the local government and public. The department's Planning Section has reviewed and approved this report as being consistent with present community planning.

CERTIFICATION

The Alaska Department of Transportation and Public Facilities hereby certify that this document was prepared in accordance with Section 520.4.1 of the current edition of the department's Highway Preconstruction Manual and CFR Title 23, Highway Section 771.111(h).

The department has considered the project's social and economic effects upon the community, its impacts on the environment and its consistency with planning goals and objectives as approved by the local community. All records are on file with Central Region - Design and Engineering Services Division, Highway Design Section, 4111 Aviation Avenue, Anchorage, AK 99502.

Luke S. Bowland, P.E. Preconstruction Engineer	Date	Todd Vanhove Chief, Planning	Date

DRAFT

TABLE OF CONTENTS

LIST OF FIGURES	
LIST OF ACRONYMS	
1.0 PROJECT DESCRIPTION	1
1.1 Project Location and Description	
1.2 Existing Facilities and Land Use	
1.3 Purpose and Need	
2.0 DESIGN STANDARDS AND GUIDELINES	
3.0 DISCUSSION OF ALTERNATIVES	
3.1 First Alternative	
3.2 Second Alternative	
4.0 PREFERRED ALTERNATIVE	
5.0 TYPICAL SECTIONS	
6.0 HORIZONTAL AND VERTICAL ALIGNMENT	
6.1 Horizontal Alignment	
7.0 EROSION AND SEDIMENT CONTROL	
8.0 DRAINAGE	
9.0 SOIL CONDITIONS	
10.0 ACCESS CONTROL FEATURES	
11.0 TRAFFIC ANALYSIS	
12.0 SAFETY IMPROVEMENTS	
13.0 RIGHT-OF-WAY REQUIREMENTS	
14.0 PEDESTRIAN AND BICYCLE FACILITIES	
15.0 UTILITY RELOCATION AND COORDINATION	
15.1 General Communications Inc. (GCI)	
15.1 General Communications inc. (GC1)	
15.3 Matanuska Telephone Association (MTA)	9
15.4 ENSTAR Natural Gas Co.	
15.5 City of Palmer Public Water Main	
16.0 PRELIMINARY WORK ZONE TRAFFIC CONTROL	9
16.1 Traffic Control Plan (TCP)	
16.2 Public Information Plan (PIP)	
17.0 STRUCTURAL SECTION AND PAVEMENT DESIGN	
18.0 COST ESTIMATE	
19.0 ENVIRONMENTAL COMMITMENTS AND CONSIDERATIONS	
20.0 BRIDGES20.0 BRIDGES	
21.0 EXCEPTIONS TO DESIGN STANDARDS	
22.0 MAINTENANCE CONSIDERATIONS	
23.0 ITS FEATURES	12

APPENDIX A Approved Design Criteria and Design Designation

APPENDIX B Typical Sections

APPENDIX C Traffic Analysis

APPENDIX E Material Recommendations

APPENDIX G Approved Environmental Document

APPENDIX H Approved Design Exceptions and Design Waivers

APPENDIX J Design Memos

LIST OF FIGURES

Figure 1 Location & Vicinity Map

LIST OF ACRONYMS

AADT Annual Average Daily Traffic

AASHTO American Association of State Highway and Transportation Officials

ADA Americans with Disabilities Act
AHDM Alaska Highway Drainage Manual
ANSI American National Standards Institute

APDES Alaska Pollutant Discharge Elimination System

ATM Alaska Traffic Manual

ATMS Alaska Traffic Manual Supplement

BMP Best Management Practice CFR Code of Federal Regulations

CGP Alaska Construction General Permit

DEC Alaska Department of Environmental Conservation

DOT U.S. Department of Transportation

DOT&PF Alaska Department of Transportation and Public Facilities

DOJ U.S. Department of Justice

ESCP Erosion and Sediment Control Plan EPA Environmental Protection Agency FHWA Federal Highway Administration

HMA Hot Mix Asphalt

HPCM Alaska Highway Preconstruction Manual

HMCP Hazardous Material Control Plan HSIP Highway Safety Improvement Program

LOS Level of Service

MADT Monthly Average Daily Traffic MEA Matanuska Electric Association MTA Matanuska Telephone Association

MPH Miles per Hour

MS4 Municipal Separate Storm Sewer Systems

MSB Matanuska-Susitna Borough

MUTCD Manual on Uniform Traffic Control Devices
NPDES National Pollutant Discharge Elimination System
PGDHS A Policy on Geometric Design of Highways and Streets

PIP Public Information Plan

PROWAG Proposed Accessibility Standards for Pedestrian Facilities in the Public Right-of-Way

PWH Palmer-Wasilla Highway RDG Roadside Design Guide

ROW Right-of-Way

SWMM Storm Water Management Model SWPPP Storm Water Pollution Prevention Plan

TMP Traffic Management Plan
 TOP Transportation Operations Plan
 TRB Transportation Research Board
 USGS United States Geological Survey

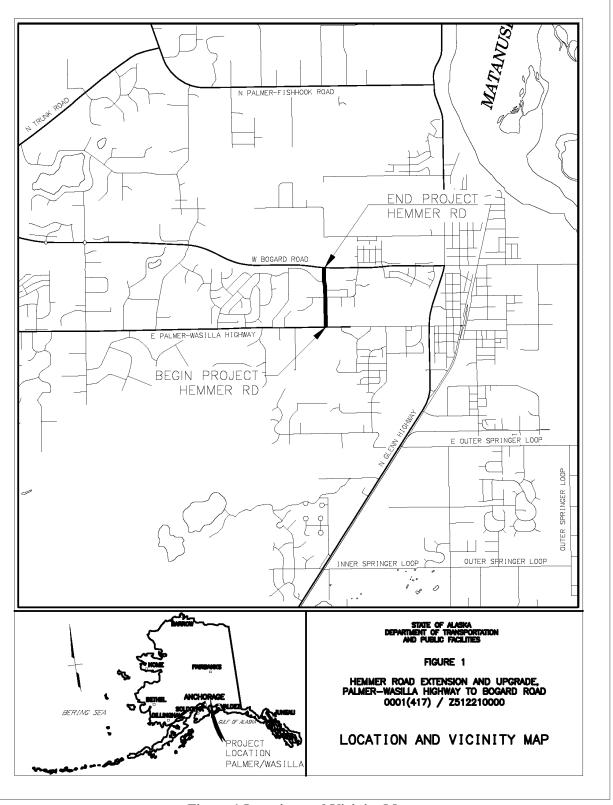


Figure 1 Location and Vicinity Map

1.0 PROJECT DESCRIPTION

1.1 Project Location and Description

The Alaska Department of Transportation and Public Facilities (DOT&PF) in cooperation with the Federal Highway Administration (FHWA), is proposing to reconstruct and extend Hemmer Road from its intersection with Palmer-Wasilla Highway (PWH) north to Bogard Road. The existing portions of Hemmer Road are owned and maintained by the Matanuska-Susitna Borough (MSB) and will remain under the ownership of the MSB post-construction. This connection/extension project was originally a Matanuska-Susitna Borough project but was nominated to the DOT&PF Community Transportation Program (CTP) by the MSB in 2019. The project is located in Sections 31 and 32, Township 18 North, Range 2 East, of the Seward Meridian; 61.603 Latitude, -149.1485 Longitude. See Figure 1 for the location and vicinity map.

This project will reconstruct the existing portions of Hemmer Road between the PWH and Bogard intersections and construct a new segment between E Chalet Drive and E Folsom Drive, providing a new north-south road connection between the PWH and Bogard Road. The roadway is proposed to consist of a two-lane section with turn pockets and a designated multi-use pathway along the east side of the roadway. Work also includes improving ditching and drainage, addition of signalization at the Bogard intersection, ADA improvements at curb ramps, utility relocations, and signage and striping.

1.2 Existing Facilities and Land Use

Land use in the vicinity of the project is mixed consisting of a variety of single family residential, multifamily residential, and community facilities including a church, medical offices, and industrial and retail commercial facilities.

N Hemmer Road currently consists of two existing road segments that do not connect. The existing portions of N Hemmer Road extend from E Maple Springs Way (south of the Palmer Wasilla Highway) north to E Chalet Drive, and from E Folsom Drive northward to Bogard Road. The existing southern portion from Maple Springs to PWH is paved and varies in width from 22-36 feet. From the PWH intersection north, Hemmer Road consists of a two-lane paved roadway averaging 36 feet in width, terminating 1,200 feet north at its intersection with Palmer Moose Drive/Chalet Drive. The road continues, unpaved and approximately 20-feet wide, northward 600 feet to intersect Chalet Drive from the east. Chalet Drive is also unpaved and provides access to several single-family homes east of the corridor. An unpaved driveway extends northward from Chalet Drive to provide access to one single family home on the east side of the corridor and a few outbuildings on the west side of the corridor (located directly south of Folsom Road), terminating before reaching the northern segment of North Hemmer Road. From its intersection with Bogard, North Hemmer Road extends southward for 600 feet, terminating at the intersection with Folsom Drive, a short distance before intercepting the driveway serving the outbuildings mentioned above.

Hemmer Road is classified as a minor collector from its intersection with the PWH northward to its intersection with Palmer Moose/Quil. The portions of Hemmer Road between Maple Springs Way and PWH; Palmer Moose northward to Chalet; and Folsom northward to Bogard, are currently classified as local roads. Palmer Moose Drive is classified as a minor collector while Maple Springs Way, Quil, Chalet, and Folsom are classified as local streets. Bogard Road and the Palmer Wasilla Highway (PWH) are both classified as arterials (minor and principle, respectively) and provide major east-west connections within the MSB and between the cities of Palmer and Wasilla.

The existing intersection of Hemmer Road and Palmer-Wasilla Highway is signalized with left turn pockets on all four legs. The intersections of Hemmer Road with Maple Springs, Palmer Moose/Quil, Chalet, and Folsom, are stop controlled on the minor streets. The intersection of Hemmer Road and Bogard is plumbed for a signal with poles in place but has not been activated, thus functions as a stop-control intersection on the minor leg (i.e. N Hemmer Road).

Existing pedestrian facilities along Hemmer Road consist of a separated 6-foot-wide paved pathway along the east side of the road from PWH to Palmer Moose Drive, where it connects to a separated pathway along Palmer Moose Drive. No pathway exists on Hemmer Road north of this point and therefore the pathway on Palmer Moose Drive currently functions as a circuitous north-south connector between PWH and Bogard road in addition to providing access to Palmer High School.

Existing utilities within the proposed project area include:

- Matanuska Electric Association (MEA) overhead and underground electric.
- Matanuska Telephone Association (MTA) underground telecommunications, coaxial underground cable.
- ENSTAR Natural Gas Company underground 6-inch gas transmission main, 4-inch distribution gas main, 2-inch gas distribution main and several gas service lines.
- City of Palmer Water Facilities underground water main and fire hydrant.

In general, these utilities are located along the west side of the corridor and cross the roadway at several locations. The City of Palmer water main is located within the project limits on the north end of the project only, at the Hemmer/Bogard road intersection. This consists of a 12-inch mainline along the north side of Bogard Road with a hydrant and mainline stub located in the southeast quadrant of the North Hemmer/Bogard intersection. Illumination exists at the PWH intersection, Bogard Road intersection, and Palmer Moose Drive intersection.

Additionally, two public water systems are located within the project area: Palmer Family Church of the Nazarene, PWSID# 227432; and Hemmer Building, PWSID# 227643.

1.3 Purpose and Need

The purpose of the project is to extend and upgrade Hemmer Road to provide a new north-south road between the Palmer-Wasilla Highway and Bogard Road. There currently exists only one north-south connection constructed to collector road standards in the four mile stretch between the Glenn Highway and Trunk Road leading to congestion and a lack of north-south connectivity.

2.0 DESIGN STANDARDS AND GUIDELINES

Design standards and guidelines that apply to the Hemmer Road Extension and Upgrade, Palmer-Wasilla Highway to Bogard Road Project, are contained in the following publications:

Standards:

- A Policy on Geometric Design of Highways and Streets (PGDHS), 7th Edition, AASHTO, 2018.
- Roadside Design Guide (RDG), 4th Edition, AASHTO, 2011.
- Alaska Highway Preconstruction Manual (HPCM), DOT&PF, 2023 as amended.
- Alaska Highway Drainage Manual (AHDM), DOT&PF, 2006.

- The <u>Alaska Traffic Manual (ATM)</u>, consisting of the <u>Manual on Uniform Traffic Control Devices</u> (<u>MUTCD</u>), 2009 as amended, U.S. DOT, FHWA) and the <u>Alaska Traffic Manual Supplement</u> (ATMS), DOT&PF, 2016.
- ADA Standards for Transportation Facilities, DOT, 2006.
- ADA Standards for Accessible Design, DOJ, 2010.
- Guide for the Development of Bicycle Facilities, 4th Edition, AASHTO, 2012.
- Highway Capacity Manual (HCM), 5th Edition, TRB, 2010.
- Guidelines for Geometric Design of Very Low-Volume Local Roads (ADT ≤ 400), AASHTO, 2001.

Guidelines:

- <u>Proposed Accessibility Standards for Pedestrian Facilities in the Public Right-of-Way (PROWAG)</u>, U.S. Access Board, 2011.
- Guide for the Planning, Design, and Operation of Pedestrian Facilities, 1st Edition, AASHTO, 2004.

Appendix A contains the project Design Criteria and Design Designation.

3.0 DISCUSSION OF ALTERNATIVES

Prior to this project being nominated to the CTP, planning level investigations into design alternatives were conducted by the Matanuska-Susitna Borough. Long-range planning efforts by the Matanuska-Susitna Borough include proposals for future build-out of Hemmer Road to link the Glenn Highway to Palmer-Fishhook Road, alleviating higher traffic volumes based on growth projections for the Core Area. As this project is a segment of this future planned linkage, the MSB considered either a two-lane, a three-lane, or a five-lane urban section. Based on traffic modeling conducted as a part of this project, a two- or three-lane section was determined to be sufficient for projected AADT at the project design year. Pedestrian use was also considered when comparing the lane alternatives; a two-lane section provides more crossing opportunities for pedestrians due to a narrower roadway width. As a result of this analysis and to minimize ROW impacts and construction and maintenance costs, a two-lane section was selected for further consideration. Therefore, the alternatives presented here include variations on a two-lane section, and a 'No Build' alternative.

3.1 First Alternative

The first alternative is the No-Build alternative. Leaving Hemmer Road as-is would not address the need for an additional north/south connection or alleviate localized traffic congestion and therefore would not fulfill the purpose of this project. This alternative would not have any ROW or construction costs, or environmental impacts in the project area.

3.2 Second Alternative

The second alternative consists of a 2-lane urban roadway section with turn pockets and multi-use sidewalk facilities along both sides. This alternative includes a storm sewer system for collection and conveyance of stormwater and allows the existing signalized intersection configurations to remain.

3.3 Third Alternative

This alternative consists of a 2-lane rural roadway section with separated pedestrian facilities along the east side of the corridor. As this alternative includes ditching rather than a curb and gutter stormwater system, the footprint of the roadway and drainage structures is larger than that of the second alternative. In order to keep the project within the same ROW footprint as the second alternative, pathway is provided on only the east side of the corridor. This alternative also allows the existing signalized intersection configurations to remain.

4.0 PREFERRED ALTERNATIVE

The preferred alternative is the third alternative.

This alternative is adequate for the current and projected traffic volumes and will fulfill the project objectives of providing a link between PWH and Bogard Road and alleviating traffic congestion while also minimizing impacts to adjoining properties and providing improved pedestrian accommodation.

During public involvement efforts, participants voiced support for a separated pathway featured in the third alternative rather than a connected pathway/sidewalk featured in the second alternative, due to comfortability associated with greater separation from the travel lane and perceived increased safety. The MSB as future owner of the new facility has voiced support of the third alternative due to decreased maintenance efforts of a rural section with ditches as compared to an urban section with curb and gutter.

The first alternative was eliminated because it does not advance the project goals of providing increased access and connectivity to this area.

5.0 TYPICAL SECTIONS

The typical section along the proposed Hemmer Road extension includes a 12-foot lane and 4-foot shoulder in each direction, with multi-use pathway on the east side of the corridor. Left-hand turn pockets will be included at the intersections of Hemmer Road with Bogard Road and PWH; turn lane width will be 12-foot. A rural section with ditch and separated pathway is proposed for the corridor, with a few exceptions where ROW or grade constraints exist. A minimum clear zone of 14-feet from edge of travel way will be maintained along Hemmer Road. Fore and fill slopes will be constructed at 4:1 with cut back slopes at 2:1.

The pathway will be 10 foot wide with 2-foot shoulders and separated except for where curb and gutter sections occur. The new pathway will tie into the existing ADA crossings and pathway at the Hemmer/Palmer Wasilla Highway and Hemmer/Bogard Road intersections, thereby providing a continuous multi-use link between the existing Palmer Wasilla Highway and Bogard Road pathways. Fore and fill slopes off the pathway will vary.

To match existing conditions, the typical section for the tie-in to Palmer Moose Drive will include 12-foot lanes and 6-foot shoulders with an 8-foot separated pathway. A mailbox pullout on Hemmer Road is being relocated onto Palmer Moose Drive and will taper out to 12 feet from edge of travel way for a distance of 50 feet.

The typical sections for tie-ins to E. Quil Avenue, E. Chalet Drive, and E. Folsom Drive are proposed to include 12-foot lanes, no shoulders, and 4:1 foreslopes.

The typical sections are provided in Appendix B.

6.0 HORIZONTAL AND VERTICAL ALIGNMENT

6.1 Horizontal Alignment

The existing portions of Hemmer Road are posted at 35 mph. The design speed for this project was selected based on the Matanuska-Susitna Boroughs Core Area Comprehensive Plan (2007 Update), which lists a design speed of 40 mph.

6.2 Vertical Alignment

The proposed finished grade elevation of Hemmer Road is largely controlled by the elevations of the existing intersections, particularly Bogard Road and PWH. The profile of the reconstructed roadway will largely match the existing Hemmer Road profile, varying between 0.57% and 1.33%. The profile will reach a maximum grade of 5% where the two existing portions of Hemmer Road are connected by the new extension.

7.0 EROSION AND SEDIMENT CONTROL

The project includes temporary and permanent measures to control or prevent erosion and sedimentation during and after construction. The contractor will prepare a Storm Water Pollution Prevention Plan (SWPPP) prior to construction that conforms to the DOT&PF Best Management Practices (BMPs) for Erosion and Sediment Control in accordance with the DOT&PF contract specifications and following the guidelines of the Erosion and Sediment Control Plan (ESCP) provided to the contractor. The contractor will submit the SWPPP for approval by the Construction Project Engineer. The contractor will conduct construction activities in accordance with the approved SWPPP. Appropriate erosion and siltation controls will be used and maintained in optimal condition during construction and all other exposed soils/fills will be permanently stabilized. Temporary BMP's will remain in place until permanent erosion and sediment control measures are in place and soil is permanently stabilized.

8.0 DRAINAGE

The global topography of the project area is generally north to south. Stormwater in the project area infiltrates or flows south along ditches on both sides of Hemmer Road. Culverts beneath the approach roads facilitate southward flow of drainage along the west and east ditch lines. A natural low area on the west side of the corridor opposite Chalet Drive appears to capture runoff from the area including the northern portion of the corridor. Runoff on the southern half of the project appears to collect in the ditches and run westward in a large ditch on the north side of PWH into a low area on an adjoining undeveloped parcel west of the project boundary. There are no known wetlands within the project limits.

The new stormwater drainage system will consist of both deep ditches and storm drain culverts to transport runoff to an infiltration basin near the south end of the project, with an overflow pipe crossing the Hemmer/PWH intersection to outlet in the existing ditch along the Hemmer Road South. This project is expected to produce minimal or negligible impacts to the current runoff volumes. All culverts through the project corridor will be replaced in kind or with storm drain infrastructure.

9.0 SOIL CONDITIONS

A preliminary geotechnical report was developed by Central Region Materials section in August of 2024 based on subsurface investigations completed in May of 2024. Soils were found to range from organics to gravel, with the existing structural section consisting of sands and gravel with silt w/sand below. Bore logs from the proposed extension segment of the project showed organics and soil to an average depth of 5.8' below ground surface (7.5' max) and sand w/gravel beneath. Groundwater was encountered in three of the eleven testholes, ranging from 8' to 15.5' below ground surface. No material source investigations were performed as a part of this project.

10.0 ACCESS CONTROL FEATURES

No new accesses will be added to Hemmer Road as a part of this project with the exception of new access road for the proposed infiltration basin. Access to the infiltration basin will be restricted.

Two properties, a commercial and a residential, will have their driveways relocated from Hemmer Road to Chalet Drive. Two adjoining properties on Hemmer Road will have their driveways combined onto an existing shared access easement. One existing driveway on Quil Avenue will be shifted westward due to proximity to the intersection with Hemmer Road.

Additional access to Hemmer Road will be managed through driveway permits and future project evaluation.

11.0 TRAFFIC ANALYSIS

Kinney Engineering, LLC, performed a traffic analysis of this corridor, included in Appendix C, in order to evaluate the build alternative needed for the road extension.

Future volumes were forecasted used projections of current volume growth rates. Additional adjustments were made to estimate how traffic would adjust given the more direct connection between Palmer-Wasilla Highway and Bogard Road at Hemmer Road. It was assumed that some traffic would move from Palmer Moose Drive to Hemmer Road; however, school traffic to and from the south would continue to use Palmer Moose Drive. Minor adjustments were also made to 49th State Street, Felton Street, Trunk Road, and the Glenn Highway, with some traffic from each of these roads being redirected to Hemmer Road. Table 1 presents the forecasted build volumes for the 2025 construction, 2035 mid-life, and 2045 design years.

Table 1: Forecasted Build AADTs

Segment	Extents	2021	2025	2035	2045
Hemmer Rd	Palmer-Wasilla Hwy to Palmer Moose Dr	1000	2800	3150	3600
Hemmer Rd	Hemmer Rd Palmer Moose Dr to Bogard Rd - 2600		2950	3300	
Bogard Rd	49 th State St to Glenn Hwy	6500	7000	9000	11,250
Palmer Moose Dr	Hemmer Rd to Bogard Rd	900	700	800	900
Palmer-Wasilla Hwy	49 th State St to Hemmer Rd	12,000	13,000	16,500	20,750
Palmer-Wasilla Hemmer Rd to Hwy Glenn Hwy		14,000	15,000	20,000	26,000
Folsom Dr	Hemmer Rd to Monte Vista Dr	500	500	550	650

Given the forecasted build volumes for this segment of the corridor, either a 3-lane or a 2-lane section was found to serve the expected volumes. However, an analysis of turning movements at the unsignalized intersections within the corridor show that a two-way-left-turn-lane (TWLTL) would not be needed operationally to accommodate the projected traffic. A 3-lane section is projected to adversely impact opportunities for pedestrian mid-block crossings, as without a median refuge island, larger (and less frequent) gaps in traffic would be needed for pedestrians to safely traverse the additional 16-foot center TWLTL.

12.0 SAFETY IMPROVEMENTS

This project will establish clear zones, lane and shoulder widths, roadway cross-slopes, minimum horizontal radii, vertical curvature, superelevation, and sight distance requirements stipulated by the PGDHS and HPCM. Drainage improvements including cross slope, ditch establishment, and culverts will address the potential for ponding on the roadway or roadway embankment overtopping. Resurfacing the roadway will increase driver safety by eliminating ruts and cracking of current asphalt. New signing and striping will also meet current design standards for crashworthiness, reflectivity, etc. along the roadway. Activation of the signalization at the Bogard/Hemmer intersection will provide improved accessibility for vehicular traffic turning onto or off Hemmer Road as well as for pedestrian traffic using the intersection. The design will include a lengthened turn pocket on Hemmer Road for south-bound traffic turning left (east) onto the Palmer Wasilla Highway (PWH), to accommodate additional vehicle storage at this intersection.

As part of this project, conflict points along Hemmer Road will be reduced as several driveways will be relocated onto side streets and/or combined. Driveways will be adjusted to meet current standards for spacing, width, and radii. Similarly, the mailbox pullout currently located on the east side of the Hemmer Road corridor directly north of the PWH intersection is being relocated onto Palmer Moose Drive. This is in accordance with MSB stipulations to locate mailbox pullouts on minor streets and spacing from intersections and driveways.

Safety improvements for pedestrian and other non-motorized users will also be included in this project. A designated pedestrian/share-use pathway currently only exists along the segment of Hemmer Road from the PWH intersection to Palmer Moose Drive. This project will include reconstruction and widening of this portion of the pathway and extend it northward to Bogard Road, linking to existing pathway along the Bogard Road corridor. This will provide a direct pedestrian/shared-use connection between Bogard Road and the PWH and creating a loop with existing pathway along Palmer Moose Drive.

13.0 RIGHT-OF-WAY REQUIREMENTS

The Hemmer Road Extension Project will require additional ROW acquisition.

The existing right of way along the southern segment of Hemmer Road (i.e. from its intersection with Palmer Moose/Quil Avenue southward to the project limits) is largely adequate for the roadway footprint itself; however, partial strip acquisitions will be necessary to accommodate turn radii, ditching, and pathway features. Currently, portions of the separated pathway along the east side of Hemmer Road are located outside the existing right-of-way. The Table below shows a summary of the type of acquisitions proposed.

Table 2: ROW Acquisitions

Lot #	MSB Partial ID No.	Acquisition Type	Parcel Type	Impacts
1	15020	Partial	Residential	Land
2	79997	Partial	Commercial	Land
2	42498	Partial	Commercial	Land
1	23787	Partial	Commercial	Land
1	58258	Partial	Commercial	Land & Parking
TR 1	540425	Partial	Residential	Land
TR 2	540426	Partial	Residential	Land
1	52660	Partial	Residential	Land & Driveway
C22	20176	Partial	Commercial	Land & Parking

Right of way acquired along Hemmer Road will be transferred to the Matanuska-Susitna Borough upon completion of the project.

Temporary Construction Easements and Permits will be required to complete the project.

14.0 PEDESTRIAN AND BICYCLE FACILITIES

The existing pedestrian facilities consist of a 6-foot wide separated pathway on the east side of the corridor from PWH to Palmer Moose Drive, which continues east along Palmer Moose Drive, eventually connecting to Bogard road. No designated pathway currently exists north from Palmer Moose/Quil Drive intersection to Chalet, or from Bogard Road south to Folsom Dr, although the existing shoulders do provide space for pedestrian/multi-modal users. The proposed design includes a 10-foot wide shared use pathway along the east side of the corridor from PWH to Bogard Road. The pedestrian/shared-use facilities will be constructed to ADA standards and will create a direct connection between existing pedestrian/shared-use facilities on Bogard Road and the PWH as well as Palmer Moose Drive.

15.0 UTILITY RELOCATION AND COORDINATION

Utility companies with facilities in the project limits include ENSTAR Natural Gas Company, Matanuska Electric Association, Matanuska Telephone Association, GCI Communications, and City of Palmer Public Water. Utilities will require relocation, and agreements will need to be developed, at select locations throughout the project, to address the following conflicts:

15.1 General Communications Inc. (GCI)

General Communications Inc. (GCI) owns and operates telecommunication throughout the project limits. Existing infrastructure includes underground and overhead components along the Palmer Wasilla Highway and underground along the west side of the Hemmer Road corridor, terminating just north of Chalet Drive, with crossings at two locations in between. Coordination with the utility is ongoing.

15.2 Matanuska Electric Association (MEA)

Matanuska Electric Association (MEA) owns and operate both aerial and underground distribution lines throughout the project limits. Aboveground and underground lines exist at the Palmer Wasilla intersection and along the west side of the Hemmer Road corridor, with seven overhead crossings between the PWH and Folsom Road intersections. Additionally, MEA has a streetlight pole and service at the northeast quadrant of the Hemmer Road/Palmer Moose intersection. Coordination with the utility is ongoing.

15.3 Matanuska Telephone Association (MTA)

Matanuska Telephone Association (MTA) owns and operates underground communication lines throughout the project limits with two crossings within the Hemmer Road corridor. Coordination with the utility is ongoing.

15.4 ENSTAR Natural Gas Co.

ENSTAR Natural Gas owns and operates transmission and distribution facilities throughout the project limits. Existing distribution infrastructure primarily exists on the west side of the Hemmer Road corridor but crosses Hemmer Road at several locations to serve the east side of the corridor. For the segment of Hemmer Road south of the PWH, infrastructure is located solely on the east side of the corridor. Transmission lines are located along both the PWH and Bogard Road corridors running parallel to the respective roadway alignments (i.e. east to west). The PWH transmission line passes through the PWH/Hemmer Road intersection on the southern side of the intersection, while the Bogard Road transmission line passes is located on the north side of the Bogard/Hemmer intersection and lies outside the project limits. Coordination with the utility is ongoing.

15.5 City of Palmer Public Water Main

No impacts or relocations to the City of Palmer water system are anticipated as a part of this project.

16.0 PRELIMINARY WORK ZONE TRAFFIC CONTROL

The HPCM, Section 1400.2 sets forth the criteria for determining if a project is to be classified as a "Significant Project" for purposes of determining the level of effort required in developing a Traffic Management Plan (TMP). Though the project is classified as a Minor Collector, the project is not located

within the Anchorage urban area, roadway AADTs are below 30,000 vpd, and in the event of a full closure, a practical alternate route is available. Therefore, the project is not considered a "Significant Project." The TMP for this project will not require a Public Information Plan (PIP) or Traffic Operation Plan (TOP).

16.1 Traffic Control Plan (TCP)

The contractor will develop a TCP during construction to safely guide and protect the traveling public in work zones, in accordance with the Alaska Traffic Manual (ATM) and the project specification. The plan will be assessed and approved by the Construction Project Engineer and the Traffic Control Engineer.

The contractor is responsible for providing advance notice to the public, including local businesses, residents, and road travelers, of construction activities that could cause delays, detours, or affect access to adjacent properties.

16.2 Public Information Plan (PIP)

A Public Information Plan is not anticipated for this project.

16.3 Transportation Operations Plan (TOP)

A Transportation Operations Plan is not anticipated for this project.

17.0 STRUCTURAL SECTION AND PAVEMENT DESIGN

The preliminary mainline and pathway structural section design is based on recommendations provided by the DOT&PF Central Region Materials section from in-situ and laboratory testing in accordance with the Alaska Flexible Pavement Design Manual.

Mainline Hemmer Road:

- 2" HMA, Type II, Class A, PG 52-40E
- STE-1 Asphalt for Tack Coat
- 2" ATB (or HMA, Type II, Class A, PG 52-40E)
- 6" Aggregate Base Course, Grading D-1
- 36" Selected Material, Type A (NOTE: For the segment of Hemmer Road south of the PWH classified as a local road, 24" of Type A is proposed.)
- Geotextile, Separation
- Existing embankment or Selected Material, Type C, as needed in deep fills to bottom of new embankment

The section for the Palmer Wasilla Highway will be reconstructed to match existing.

- 2" HMA, Type II, Class A, PG 52-40E
- STE-1 Asphalt for Tack Coat
- 2" ATB (or HMA, Type II, Class A, PG 52-40E)
- STE-1 Asphalt for Tack Coat
- 2" ATB (or HMA, Type II, Class A, PG 52-40E)
- 2" Aggregate Base Course, Grading D-1
- Existing ground/Selected Material

Minor streets including Palmer Moose Drive, Quil Avenue, Chalet Drive, and Folsom will utilize the following section:

- 2" HMA, Type II, Class A, PG 52-40E
- 4" Aggregate Base Course, Grading D-1
- 36" Selected Material, Type A
- Existing ground/Selected Material

Separated Asphalt Pathway:

- 2" Asphalt Pathway
- 4" Aggregate Base Course, Grading D-1
- 24" (*min) Selected Material, Type A
- Geotextile, Separation
- Selected Material, Type C as needed in deep fills to bottom of new embankment

Connected Asphalt Pathway:

- 2" Asphalt Pathway
- 6" Aggregate Base Course, Grading D-1
- 24" (*min) Selected Material, Type A
- Existing ground/Selected Material

Typical sections are shown in Appendix C.

Material sources for this project will be contractor supplied.

18.0 COST ESTIMATE

The project cost estimate is as follows:

Total	\$ 12,950,000
Construction	\$ 9,500,000
Utility Relocation	\$ 830,000
Right-of-Way	\$ 1,120,000
Preliminary Engineering	\$ 2,000,000

Costs reflect estimate as of the date of this report.

19.0 ENVIRONMENTAL COMMITMENTS AND CONSIDERATIONS

The proposed project does not involve any unusual circumstances or significant environmental impacts; it meets the criteria for classification as a Categorical Exclusion per 23 CFR 771.117. A Categorical Exclusion for the project was approved on April 30, 2024.

The contractor will be required to prepare and implement a Storm Water Pollution Prevention Plan (SWPPP) that conforms to the DOT&PF BMPs for Erosion and Sediment Control in accordance with the DOT&PF contract specifications. Appropriate erosion and siltation controls will be used and maintained in optimal condition during construction and all other exposed soils/fills will be permanently stabilized.

The contractor will be required to dispose of solid waste at an Alaska Department of Environmental Conservation (ADEC) approved landfill.

An Erosion and Sediment Control Plan (ESCP) will be made available to the contractor to use as guidance in developing the SWPPP.

The contractor is responsible for obtaining all necessary permits and clearances for materials sites, disposal sites, and staging areas unless DOT&PF has obtained all necessary permits. See the Environmental Document in Appendix C for project specific commitments.

20.0 BRIDGES

No bridges are within the project limits.

21.0 EXCEPTIONS TO DESIGN STANDARDS

There are no exceptions to design standards for this project.

22.0 MAINTENANCE CONSIDERATIONS

Hemmer Road is owned and maintained by the Matanuska-Susitna Borough and will remain the responsibility of the MSB post-construction. Additionally, maintenance responsibility for right-of-way acquired as a part of this project will be transferred to the Matanuska-Susitna Borough.

The project will add additional pavement surface area for snow removal, new storm drain systems, new curb and gutter, additional pathway, and a new infiltration basin. Drainage improvements are expected to increase maintenance efforts.

23.0 ITS FEATURES

No ITS elements will be incorporated into this project.

APPENDIX A

Approved Design Criteria and Design Designation

PROJECT DESIGN CRITERIA

Page 1 of 3

Project Name: Hemmer Road Extension -Palmer-Wasilla Hwy to Bogard Rd – CFHWY00885

State Project No.: 00885 Federal Project No.: 1743

Functional Classification: <u>Minor Collector</u> Terrain: <u>Rolling</u>

Present ADT (2022): <u>740</u> Mid-Design ADT (2037): <u>1016</u> Design ADT (2047): <u>1238</u>

DHV (%): 12.30 Trucks (%): 5.5 Directional Split (%/%): 55/45

Pavement Design Year: 2042 Pavement Design ESAL: TBD

Design Turning Vehicle: WB-67

Project Type: New Construction/Reconstruction NHS: □ Non-NHS: □

roject Type: <u>I</u>	VCW CONSTIUCTION	n/Reconstruction			
FHWA 10 CONTROLLING DESIGN CRITERIA		SOURCE	STANDARD	AS PROPOSED	WAIVER
Design Speed ¹		PGDHS (7 th) 6.3.1.1	30-40 mph	40 mph	No
	Travel	PGDHS (7 th) 6.3.2.1	10-12 ft	12 ft	No
Lane Width	Auxiliary	PGDHS (7 th) 6.3.2.1	10-12 ft	12 ft	No
Shoulder Width	Outside	PGDHS (7 th) 6.3.1.1, directs to Table 6-5 HPCM directs to PGDHS	4 ft	4 ft	No
Silouluei Width	Inside	N/A	N/A ft	N/A ft	No
	Auxiliary	N/A	N/A ft	N/A ft	No
Horizontal Curve Radius, min		PGDHS (7 th) 3.3.5 Table 3-8 HPCM Figure 1120-1, pg. 1120-3	553 ft 510 ft	553 ft	No
Superelevation Rate, e, max		PGDHS (7 th) 3.3.5 Table 3-8 HPCM Figure 1120-2, pg. 1120-4	2-4% 6%	4%	No
Stopping Sight Distance (SDD), min		PGDHS (7 th) 6.3.1.8 Tables 6-3 and 3-2 (interpolation from proposed max. grade) HPCM Figure 1120-1, pg. 1120-3	327 ft	327 ft	No
Crada	Min. ²	PGDHS (7 th) 6.3.1.5 HPCM Figure 1120-1	0.3% 0.3%	0.5%	No
Grade	Max.	PGDHS (7 th) 6.3.1.5 Table 6-7 HPCM Figure 1120-1	10% 8%	5%	No
Cross Slope		HPCM Figure 1130-1	2%	2%	No
Vertical Clearance: Overhead Utility (OHU), Bottom of Signal Housing (BSH)		HPCM Table 1130-1	20.5 ft (OHU) 17.5 ft (BSH)	20.5 ft	No
Design Loading Struc	tural Capacity ¹	N/A	N/A	N/A	No

¹ On low speed roadways (<50 mph) on the NHS, only Design Speed and Design Loading Structural Capacity require a Design Exception; all other criteria require a Design Waiver. For projects off the NHS, all criteria require a Design Waiver.

² Minimum grade is not one of the FHWA 10 Controlling Design Criteria and will require a Design Waiver for any variance.

OTHER DESIGN CRITERIA		SOURCE	STANDARD	AS DESIGNED	WAIVER
Superelevation Transition, Δ		PGDHS (7 th) 3.3.8.2.1 Table 3-16a	84	84	No
Bridge Clear-Roadway	Width	N/A	N/A ft	N/A ft	No
Vertical Curvature	K (crest)	PGDHS (7 th) 3.4.6.2 Table 3-35	44	44	No
(min)	K (sag)	PGDHS (7 th) 3.4.6.3 Table 3-37	64	64	No
Lateral Offset to Obsti	uction	HPCM Table 1130-9, pg. 1130-20 RDG (4 th) Chapter 10.1.3.1	5.0 ft 4-6 ft	5.0 ft	No
Surfacing Material		HPCM 1180.3.1 AKFPD Section 7.3	НМА	НМА	No
	Slope (fill)		1V:5H to 1V:4H	1V:4H	No
Clear Zone	Width (fill)	HPCM Table 1130-2, pg. 1130-6	12-14 ft	14 ft	No
Cledi Zolle	Slope (cut)	RDG (4 th) Chapter 3 Table 3-1	1V:5H to 1V:4H	1V:4H	No
	Width (cut)		10-12 ft	12 ft	No
Bicycle Lane Width		N/A	N/A N/A		No
Sidewalk/Pathway Wi	dth (Shared Use)	GDBF (4 th) 5.2.1	8-14 ft	8-10 ft	No
Intersection Sight	Left Turn (GB Case B1)	PGDHS (7 th) 9.5.3.2.1 Table 9-7	445 ft	445 ft	No
Distance, Passenger Car	Right Turn (GB Case B2)	PGDHS (7 th) 9.5.3.2.2 Table 9-9	385 ft	385 ft	No
	Crossing (GB Case B3)	PGDHS (7 th) 9.5.3.2.3 Table 9-11	· · · · · · · · · · · · · · · · · · ·		No
Passing Sight Distance		PGDHS (7 th) 6.2.1.8 Table 6-4 HPCM 1120-3 Figure 1120-1	600 ft 1470 ft		No
Degree of Access Control		PGDHS (7 th) 7.3.8.1	Partial Access		No
Treatment		DCDUS (7th) C 2 2 4	Asphalt (n	o median)	No
Median	Width	PGDHS (7 th) 6.3.2.4	0-4 ft	0 ft	No
Illumination		PGDHS (7 th) 6.3.8 HPCM 1170-1	As nec	essary	No
Curb Type		PGDHS 4.7 Alaska Standard Plan	Mountable curb and gutter		No

Proposed by:	Claire L Ellis	Date: 4/30/2024
	Designer (Consultant or Staff)	
Recommended by:	Chris Bentz Engineering Manager	Date: 4/30/2024
	Engineering Manager	

Regional Preconstruction Engineer

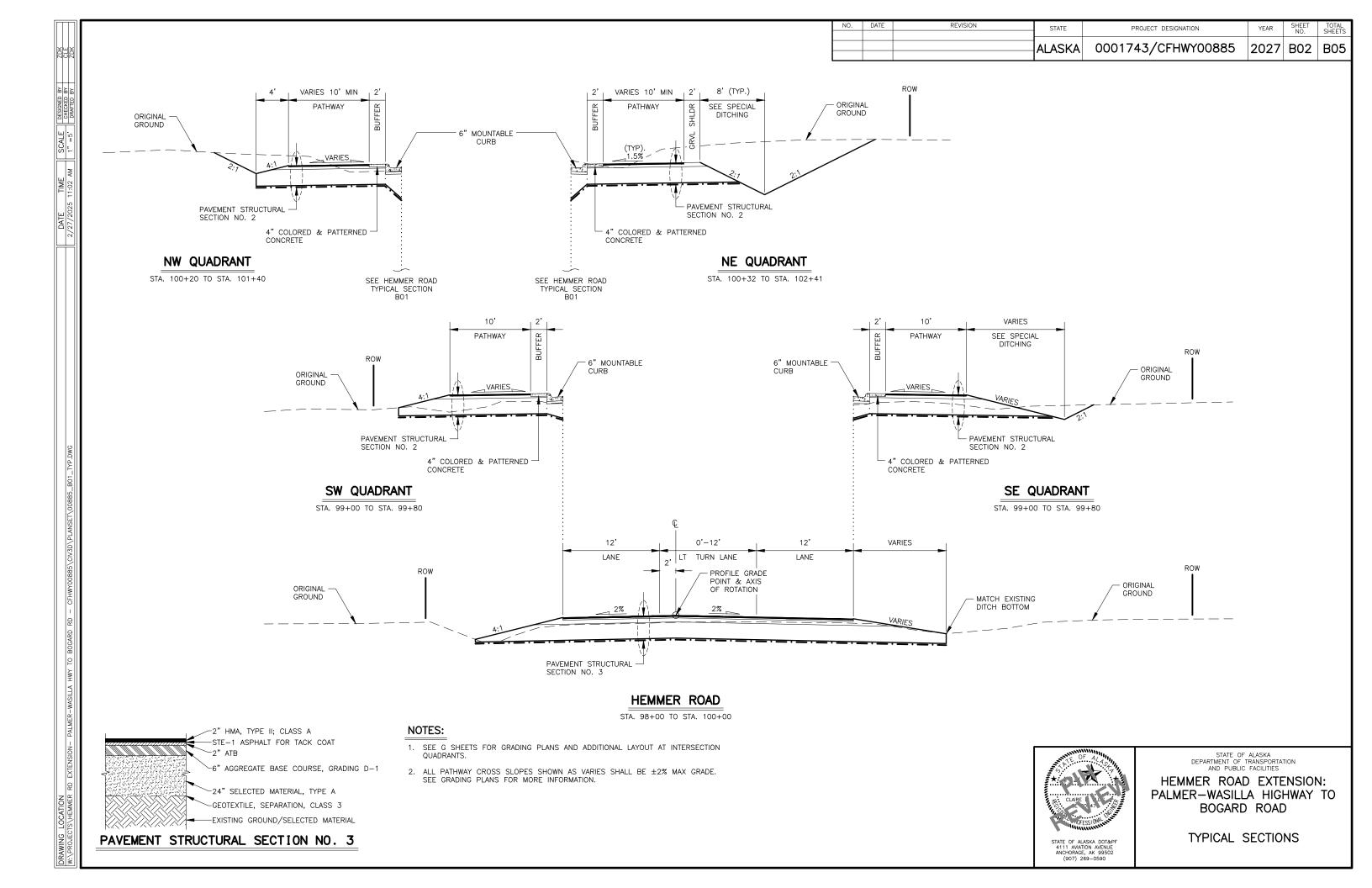
Date:_____

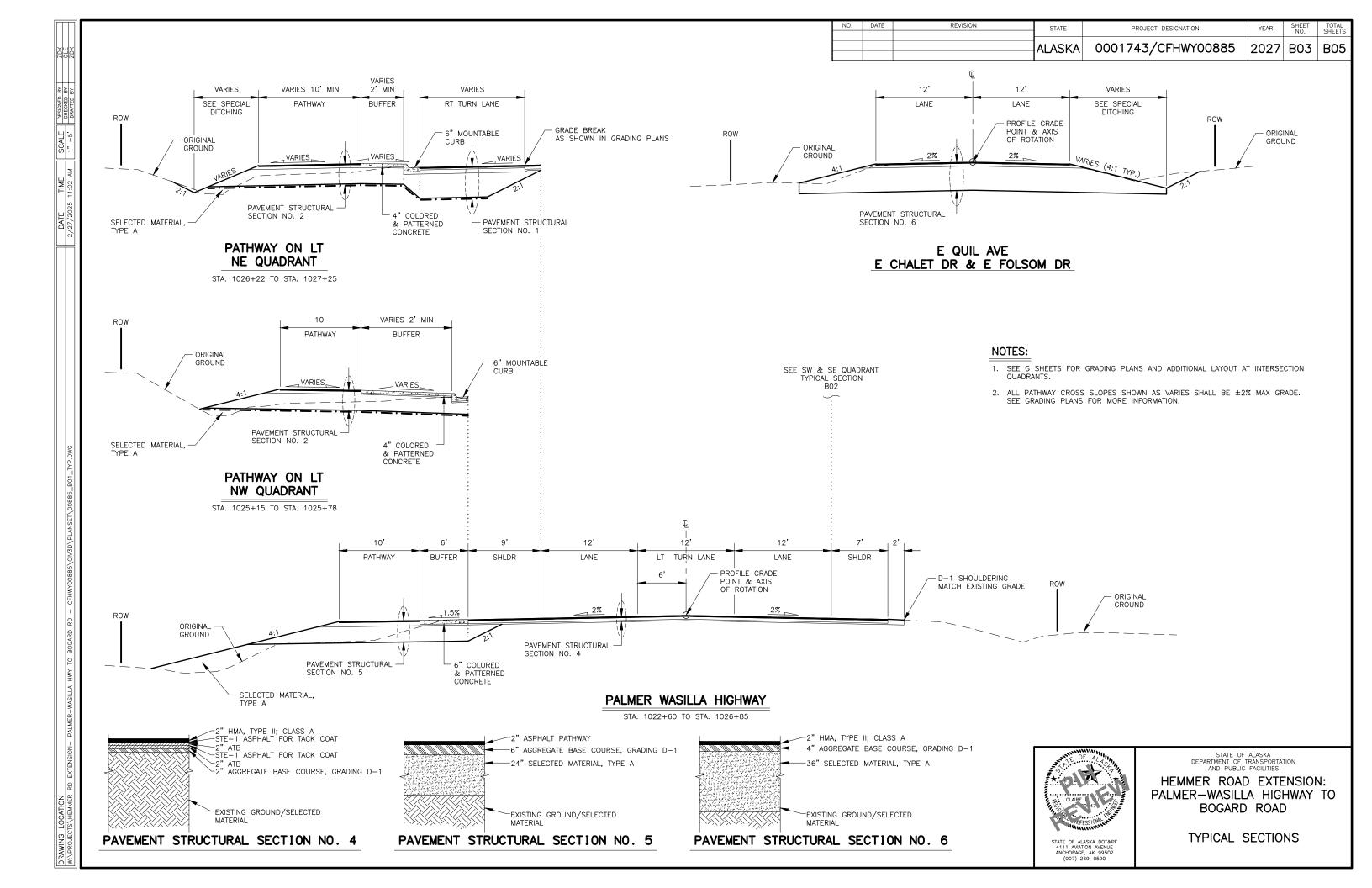
Notes:

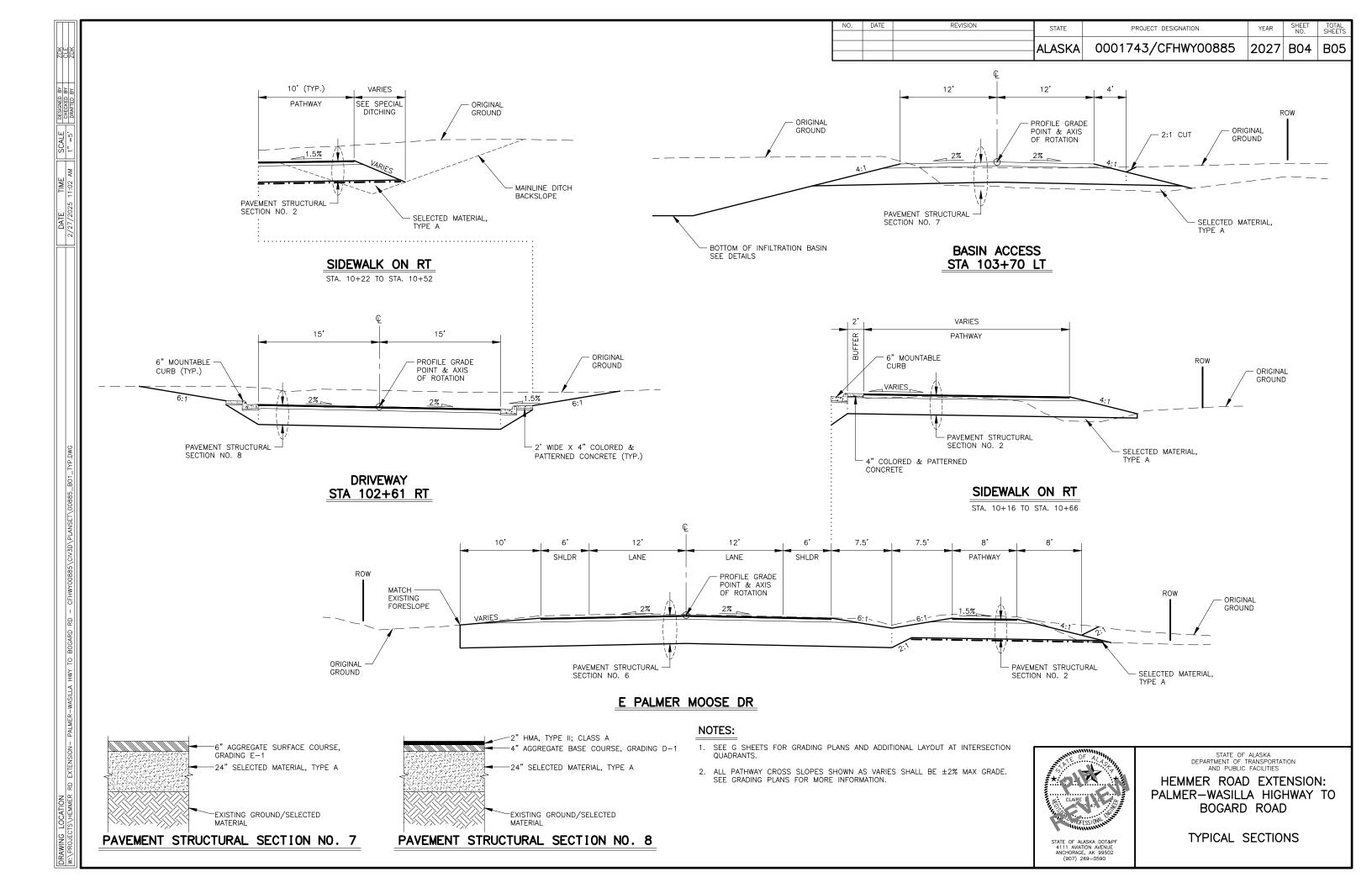
Accepted by:

DESIGN DESIGNATION

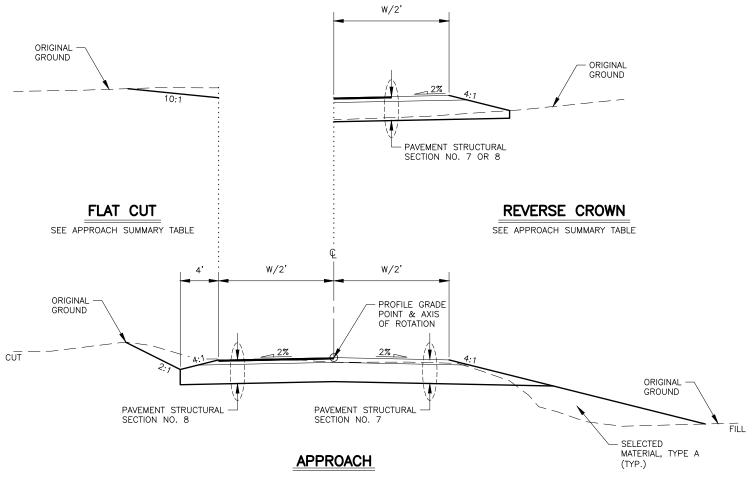

State Route Number: _	2361013X000	Route Name:		Hemmer Rd	
Project Limits:					
State Project Number: _	CFHWY00885	5 Federal A	id Number:	1743	
Project Description:	Hen	nmer Rd Extension and	Upgrade: Palmer-Wa	silla Hwy to Bogard	Rd
Design Functional Class	R	reeway X Rural Arterial	Collector, type <u>M</u> Local Recreational F Local Resource Rec	Rd	Rural Local Rd. Urban Local St. Local Service Rd.
Project Type: X	New Construction Preventive Mainte		☐ 3R ☐ HSIP		
Project Design Life (yea	rs): 5	10 20 X	25 30	Other	
Traffic Projections:		Current Construc Year Year	tion Mid - Life Year	Design Year	
		2022 202	27 2037	2047	
Peak Directiona Percent Recreatio Percent Comme Grov Pedestrians (N Bicyclists (N	ercial Trucks vth Rate (%) ESALs lumber/Day) lumber/Day) M Traffic Data Request	740 12.30% 0.92 55/45 N/A 5.5% 2% N/A N/A N/A N/A N/A N/A Form, Figure 6.1 for pavem	0% 12.3 0.92 45 N/A 5.5% 6 2% A N/A A N/A ent design. Form 6.1 is av		
Design Vehicle:		s/stwddes/dcsprecon/assets/	pdi/other/tramc_data_req_	_torm.par	
Level of Service (Urban					
Design Speed:	40 MPH				
Terrain: Level	X Rolling	Mountainous			
Attach intersection diagr	/ \ /			11/22	/
APPROVED / S	Preconstruction	Engineer	DAT	E /1/25/	

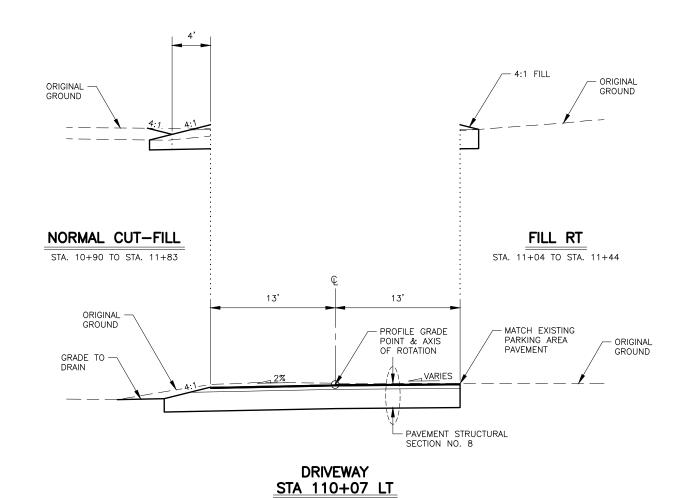

Figure 1100-1 Design Designation Form

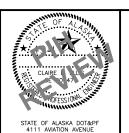



APPENDIX B

Typical Sections






	NO.	DATE	REVISION	STATE	PROJECT DESIGNATION	YEAR	SHEET NO.	TOTAL SHEETS
				ALASKA	0001743/CFHWY00885	2027	B05	B05
DESIGNATION DISCONSIDERAL DESIGNATION DISCONSIDERAL DESIGNATION DISCONSIDERAL DESIGNATION								

NOTES:

- 1. WHERE APPROACHES HAVE A REVERSE CROWN THEY ARE TO BE PITCHED IN THE DOWNHILL DIRECTION FOR DRAINAGE. REVERSE CROWN CAN BE APPLIED TO EITHER SIDE.
- 2. FLAT CUT CAN BE APPLIED TO EITHER SIDE.

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

HEMMER ROAD EXTENSION: PALMER-WASILLA HIGHWAY TO BOGARD ROAD

TYPICAL SECTIONS

APPENDIX C

Traffic Analysis

Hemmer Road Extension & Upgrade: Palmer-Wasilla Highway to Bogard Road

IRIS Program No. CFHWY00885 Federal Project No. 0001743

Traffic Analysis Report

June 2023

Prepared For:
Alaska Department of
Transportation and Public
Facilities

Prepared By: Kinney Engineering, LLC 3909 Arctic Blvd, Ste 400 Anchorage, AK 99503 907-346-2373 AECL1102

June 2023

Table of Contents

Exec	utive Su	mmary	vi				
1	Introd	luction	1				
2	Safety	y	3				
3	Existi	Existing Operations					
	3.1	Historical Annual Average Daily Traffic (AADT)	6				
	3.2	Existing Turning Movement Volumes	6				
	3.3	Existing Intersection Capacity	10				
4	Future	e No Build Conditions	15				
	4.1	Existing Pedestrian and Bicycle Considerations	15				
	4.2	No Build Traffic Volume Forecasts	16				
	4.3	No Build Turning Movement Volumes	16				
	4.4	No Build Intersection Capacity	21				
	4.5	No Build Pedestrian and Bicycle Considerations	21				
5	Future	Future Build Conditions					
	5.1	Build Traffic Volume Forecasts	25				
	5.2	Build Turning Movement Volumes	26				
	5.3	Build Intersection Control	30				
	5.4	Build Intersection Configuration	33				
	5.5	Build Intersection Capacity	34				
	5.6	Build Pedestrian and Bicycle Considerations	37				
	5.7	Build Condition Safety	39				
	5.8	Proposed Typical Section	39				
6	Refere	ences	42				
Appe	endix A	24-Hour Counts	43				
Appe	endix B	Existing Traffic Operations	50				
Appe	endix C	2045 No Build Traffic Operations	69				
Appe	endix D	2045 Build Traffic Operations	88				

Hemmer Road Extension & Upgrade: Palmer-Wasilla Highway to Bogard Road CFHWY00885/0001743

Traffic Analysis Report

June 2023

Figures

Figure 1: Vicinity Map	2
Figure 2: Crash Type by Location (2016 to 2020)	3
Figure 3: Crash Severity by Location (2016 to 2020)	4
Figure 4: Existing TMVs – AM Peak Hour	7
Figure 5: Existing TMVs – Midday Peak Hour	8
Figure 6: Existing TMVs – PM Peak Hour	9
Figure 7: Existing LOS – AM Peak Hour	12
Figure 8: Existing LOS – Midday Peak Hour	13
Figure 9: Existing LOS – PM Peak Hour	14
Figure 10: Total Pedestrian & Bicycle Volumes Observed	15
Figure 11: No Build TMVs – AM Peak Hour	18
Figure 12: No Build TMVs – Midday Peak Hour	19
Figure 13: No Build TMVs – PM Peak Hour	20
Figure 14: 2045 No Build LOS – AM Peak Hour	22
Figure 15: 2045 No Build LOS – Midday Peak Hour	23
Figure 16: 2045 No Build LOS – PM Peak Hour	24
Figure 17: Build TMVs – AM Peak Hour	27
Figure 18: Build TMVs – Midday Peak Hour	28
Figure 19: Build TMVs – PM Peak Hour	29
Figure 20: Proposed Lane Configuration at Hemmer Road & Palmer-Wasilla Highway	33
Figure 21: Proposed Intersection Configuration at Hemmer Road & Bogard Road	34
Figure 22: 2045 Build LOS – AM Peak Hour	35
Figure 23: 2045 Build LOS – Midday Peak Hour	36
Figure 24: 2045 Build LOS – PM Peak Hour	37

Hemmer Road Extension & Upgrade: Palmer-Wasilla Highway to Bogard Road CFHWY00885/0001743

Traffic Analysis Report

7	ิล	h	es
	u	.,,	

Table 1: Build Alternative Recommendationsv	⁄i
Table 2: Existing Traffic Control at Key Intersections	1
Table 3: Intersection Crashes (2016 to 2020)	5
Table 4: Historical AADTs - Hemmer Road Project Area Segments	6
Table 5: Existing Peak Hour Factors	0
Table 6: Existing Heavy Vehicle Percentages	0
Table 7: Forecasted No Build AADT Volumes	6
Table 8: No Build Design Hour Percentages	7
Table 9: Forecasted Build AADTs2	5
Table 10: Forecasted Full Build AADTs20	6
Table 11: Signal Warrant Summary - Hemmer Road at Bogard Road	2
Table 12: Signalized Intersections on Bogard Road	2
Table 13: 2045 Build Pedestrian Delays Crossing Hemmer Road	9
Table 14: 2045 Build Pedestrian Delays Crossing Hemmer Road for 3-Lane Cross Section 40	0
Tables for Appendices	
Table A-1: Hourly Hose Count Volumes on Hemmer Road south of Palmer Moose Drive 4-	4
Table A-2: Hourly Hose Count Volumes on Hemmer Road south of Bogard Road 40	6
Table A-3: Hourly Hose Count Volumes on Palmer Moose Drive west of curve	

Hemmer Road Extension & Upgrade: Palmer-Wasilla Highway to Bogard Road

CFHWY00885/0001743

Traffic Analysis Report

June 2023

Abbreviations

AADT Annual Average Daily Traffic

AMATS Anchorage Metropolitan Area Transportation Solutions

ATM Alaska Traffic Manual

AWSC All-Way Stop Controlled

CAR Critical Accident Rate

CCS Continuous Count Station

CTP Community Transportation Program

DOT&PF Alaska Department of Transportation and Public Facilities

HCM Highway Capacity Manual

HV% Heavy Vehicle Percentage

ITE Institute of Transportation Engineers

LOS Level of Service

MEV Million Entering Vehicles

mph miles per hour

MSB Matanuska-Susitna Borough

MUTCD Manual on Uniform Traffic Control Devices

NCHRP National Cooperative Highway Research Program

OS&HP Official Streets and Highways Plan

PGDHS A Policy on Geometric Design of Highways and Streets

PHF Peak Hour Factor

SSD Stopping Sight Distance

TMV Turning Movement Volumes

TWLTL Two-Way Left-Turn Lane

TWSC Two-Way Stop Controlled

v/c Volume to Capacity Ratio

vpd vehicles per day

Definition of Terms

Annual Average Daily Traffic (AADT): A measurement of the number of vehicles traveling on a segment of highway each day, averaged over the year.

Capacity: Value of the maximum sustainable hourly flow rate, considering prevailing roadway, environmental, traffic, and control conditions.

Critical Accident Rate (**CAR**): Threshold crash rate for which a calculated higher than average crash rate is considered statistically different from the average population rate, signifying that the elevated crash rate may be caused by underlying contributing factors, instead of randomness.

Level of Service (LOS): Performance measure concept used to quantify the operational performance of a facility and present the information to users and operating agencies. The actual performance measure used varies by the type of facility; however, all use a scale of A (best conditions for individual users) to F (worst conditions). Often, LOS C or D in the most congested hours of the day will provide the optimal societal benefits for the required construction and maintenance costs.

Peak Hour Factor (PHF): Measure of traffic variability over an hour period calculated by dividing the hourly flowrate by the peak 15-minute flowrate. PHF values can vary from 0.25 (all traffic for the hour arrives in the same 15-minute period) to 1.00 (traffic is spread evenly throughout the hour).

Stopping Sight Distance (SSD): Distance along the main line at which a driver on the main line (driver eye height of 3.5 feet from the road surface) can see an object on the road ahead. The minimum SSD provides the main line driver sufficient sight distance to judge and slow or stop without striking the object in the road.

Volume to Capacity Ratio (v/c): Measure of how much of the available capacity of a facility is being used, calculated by dividing the demand volume by the capacity of a facility. Values of 0.85 or less are a good design objective so that there is available reserve capacity.

Executive Summary

The Alaska Department of Transportation and Public Facilities (DOT&PF) has retained Kinney Engineering, LLC to prepare this Traffic Analysis Report for the Hemmer Road Extension and Upgrades project, which will extend Hemmer Road to create a direct connection between Palmer-Wasilla Highway and Bogard Road, as envisioned in the Matanuska-Susitna Borough (MSB) 2017 Long Range Transportation Plan.

This traffic analysis report reviews the existing safety and operations for vehicle, pedestrian, and bicycle modes; forecasts no-build and build volumes for the design year of 2045; and makes recommendations regarding traffic control at the intersections, as well as for the roadway typical section.

Table 1 summarizes the report recommendations.

Table 1: Build Alternative Recommendations

Location	Traffic Control	Hemmer Road Lane Configuration
Hemmer Rd & Palmer-Wasilla Hwy	Signal (existing)	Southbound Approach 1 left-turn lane (175 feet long) 1 shared through-and-right-turn lane
Hemmer Rd & Palmer Moose Dr	Two-Way Stop Control (STOP on Palmer Moose Dr and Quil Ave)	Single lanes (no turn lanes)
Hemmer Rd & Folsom Dr	YIELD or STOP on Folsom Dr	Single lanes (no turn lanes)
Hemmer Rd & Bogard Rd	Signal	Northbound Approach 1 left-turn lane 1 right-turn lane (100 feet long)
Hemmer Rd Segment		Two-lane roadway (one lane in each direction). Pedestrian pathway on both sides between Palmer-Wasilla Hwy and Palmer Moose Dr. Pedestrian pathway on east side between Palmer Moose Dr and Bogard Rd.

1 Introduction

The Alaska Department of Transportation and Public Facilities (DOT&PF) has retained Kinney Engineering, LLC (KE) to prepare this Traffic Analysis Report for the Hemmer Road Extension and Upgrade project. The project is included in the Matanuska-Susitna Borough (MSB)'s 2017 Long Range Transportation Plan which recommends road projects to the year 2035 horizon. The project will extend Hemmer Road and create a direct connection between Palmer-Wasilla Highway and Bogard Road. The purpose of this study is to evaluate the build alternative needed for the road extension.

Figure 1 presents the vicinity map of the project. Hemmer Road is a north-south roadway located in the MSB, west of the City of Palmer limits. Within the study area, Hemmer Road consists of two road segments that do not connect. On the south end, between Palmer-Wasilla Highway and Palmer Moose Drive, Hemmer Road is a paved, two-lane minor collector roadway that becomes an unpaved, local roadway north of Palmer Moose Drive. On the north end, between Folsom Drive and Bogard Road, Hemmer Road is a paved, local roadway. While the DOT&PF classifies Hemmer Road as a minor collector or a local road, the 2022 MSB *Official States and Highways Plan* (OS&HP) classifies the road as a major collector.

There is a separated pedestrian pathway along the east side of Hemmer Road from Palmer-Wasilla Highway to Palmer Moose Drive.

South of Hemmer Road is Palmer-Wasilla Highway which is a principal arterial roadway running east-west. North of Hemmer Road is Bogard Road which runs east-west and is classified as a minor arterial roadway. Palmer Moose Drive is a minor collector roadway used, in conjunction with Hemmer Road, to travel between Palmer-Wasilla Highway and Bogard Road.

Table 2 presents the traffic control at key intersections within the study area. Along Hemmer Road, the intersecting side streets are stop controlled.

Table 2: Existing Traffic Control at Key Intersections

Intersection	Existing Traffic Control
Hemmer Rd & Palmer-Wasilla Hwy	Signal
Hemmer Rd & Palmer Moose Dr	All-Way Stop Control
Hemmer Rd & Folsom Dr	Free (uncontrolled)
Hemmer Rd &Bogard Rd	Two-way Stop Control with stop on Hemmer Rd
Bogard Rd & Palmer Moose Dr	Two-way Stop Control with stop on Palmer Moose Dr

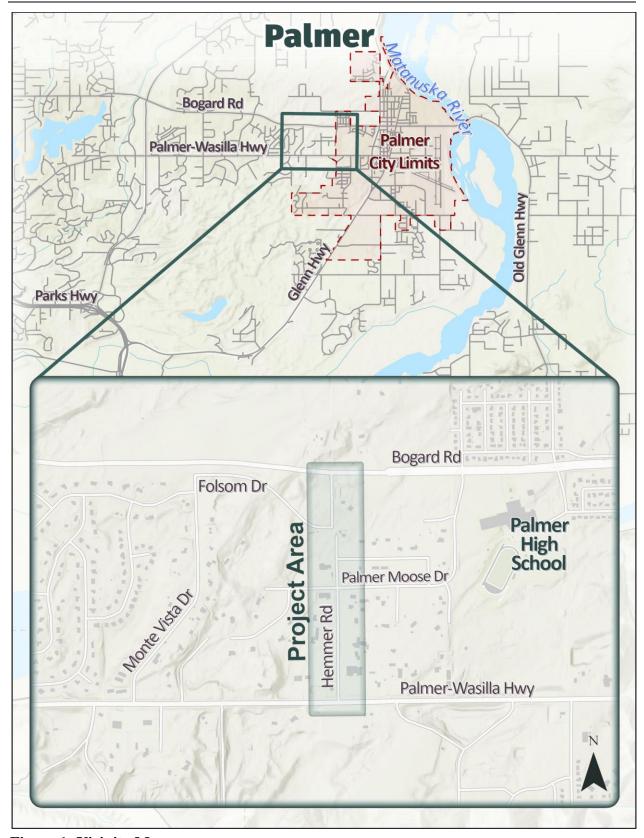


Figure 1: Vicinity Map

2 Safety

DOT&PF provided crash data for the project study area from 2015 through 2020. In 2015, Bogard Road was extended from 49th State Street to the Glenn Highway, providing an alternate east-west connection for the area. Therefore, crashes from 2015 were excluded from the analysis due to the traffic pattern changes caused by the road extension.

Figure 2 presents the crash types that occurred within the study area. No crashes were reported occurring at the Hemmer Road at Bogard Road intersection or along the Hemmer Road segments, so these are not shown in the figure. No crash patterns for the study area were identified as there were few crashes reported for each location (0 to 5 crashes at each location analyzed over the 2016 to 2020 study period). The Hemmer Road intersection at Palmer-Wasilla Highway had the most crashes with the predominant crash type being rear-end crashes which is not unexpected for signalized intersections.

Figure 2: Crash Type by Location (2016 to 2020)

The severity of the crashes occurring from 2016 to 2020 in the study area are shown in Figure 3. Intersections on Palmer-Wasilla Highway had crashes with the most severity (minor injuries); one was a single-vehicle crash colliding with an animal near Hemmer Road and the other was the right-angle crash at the Monte Vista Drive intersection.

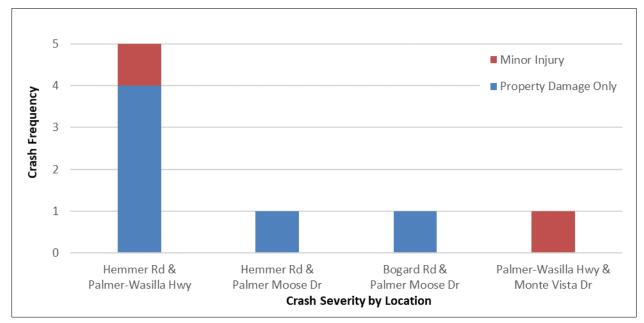


Figure 3: Crash Severity by Location (2016 to 2020)

Crash rates over the 5-year period (2016 to 2020) were calculated based on the number of crashes, the number of years in the study period, and annual average daily traffic (AADT) volumes. The crash rates were compared to statewide averages for similar facilities and the Critical Accident Rate (CAR) using the most recent published values found in the 2018 Alaska Highway Safety Improvement Program Handbook. The CAR is a threshold above which the observed rate is statistically higher than average at a 95% confidence level. When a crash rate exceeds the CAR, there is strong evidence that crashes are caused by underlying contributing factors instead of just random occurrences.

Table 3 presents the intersection crash rates, given in terms of crashes per million entering vehicles (MEV). All the intersections analyzed fall below the statewide average, indicating that there is no statistical evidence that the intersections have poor safety performance or have an unusually high crash rate.

Hemmer Road Extension & Upgrade: Palmer-Wasilla Highway to Bogard Road CFHWY00885/0001743

Traffic Analysis Report

June 2023

Table 3: Intersection Crashes (2016 to 2020)

		AADT s/day)		Crash Ra cashes/M	age?	.R?	
Intersection	Total Crashes	Entering AAD' (vehicles/day)	Calculated	Statewide Average	CAR @ 95% Confidence	Above Average?	Above CAR?
Hemmer Rd & Palmer-Wasilla Hwy	5	13,859	0.20	1.02	1.37	No	No
Hemmer Rd & Palmer Moose Dr	1	1,870	0.29	0.73	1.64	No	No
Hemmer Rd & Bogard Rd	0	5,545	-	0.52	0.95	No	No
Bogard Rd & Palmer Moose Dr	1	3,103	0.18	0.55	1.16	No	No
Palmer Wasilla Hwy & Monte Vista Dr	1	12,114	0.05	0.52	0.80	No	No

Note that the crash rate for the Hemmer Road intersection at Palmer-Wasilla Highway intersection was compared to statewide average rates for similar three-legged intersections. In 2020, a fourth leg was added to the south side of the intersection. No crashes were reported at the intersection under the new configuration during the study period analyzed.

3 Existing Operations

3.1 Historical Annual Average Daily Traffic (AADT)

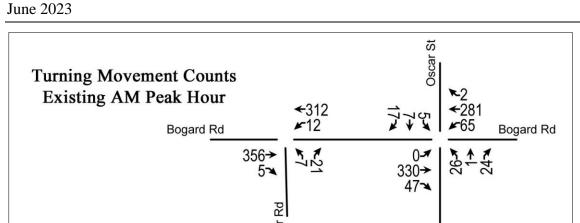

AADT volumes were collected from the DOT&PF Alaska Traffic Data online portal. Table 4 summarizes historical AADT volumes for road segments within the study area.

Table 4: Historical AADTs - Hemmer Road Project Area Segments

Road	Extents	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Hemmer Rd	Palmer-Wasilla Hwy to Palmer Moose Dr	1,962	2,120	1,935	1,814	2,144	1,927	1,984	982	660	740
Palmer Moose Dr	Hemmer Rd to Bogard Rd					750	618	645	708	580	689
Bogard Rd	49th State St to Glenn Hwy					3,000	6,095	6,286	6,433	5,910	6,690
Palmer-Wasilla Hwy	49 th State St to Hemmer Rd	15,590	13,656	13,900	14,110	12,506	12,680	13,155	11,829	10,400	11,900
Palmer-Wasilla Hwy	Hemmer Rd to Glenn Hwy	12,533	13,510	12,665	13,911	14,319	14,519	15,063	13,784	12,100	13,500

3.2 Existing Turning Movement Volumes

Turning movement volumes (TMVs) for the study intersections were collected by KE in October 2022. Intersections on Bogard Road and Palmer-Wasilla Highway were observed for 8 hours throughout the day, while intersections on Hemmer Road were observed for 4 hours. Figure 4 through Figure 6 present the intersection TMVs for the AM, midday, and PM peak hours. The AM peak captures both commute traffic as well as school arrival traffic for the nearby high school.

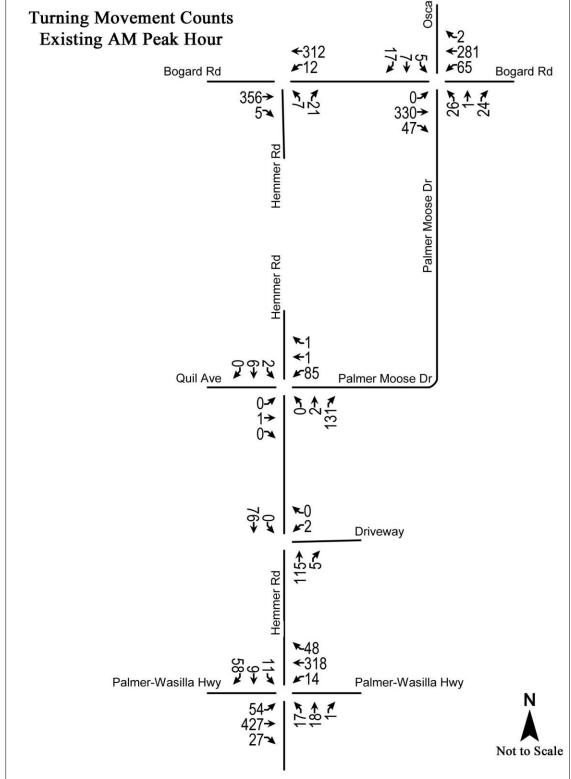


Figure 4: Existing TMVs – AM Peak Hour

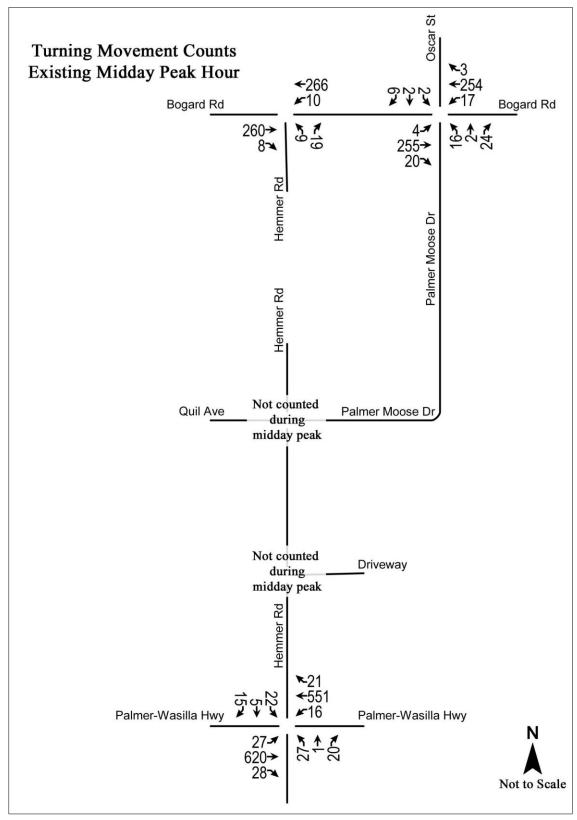


Figure 5: Existing TMVs – Midday Peak Hour

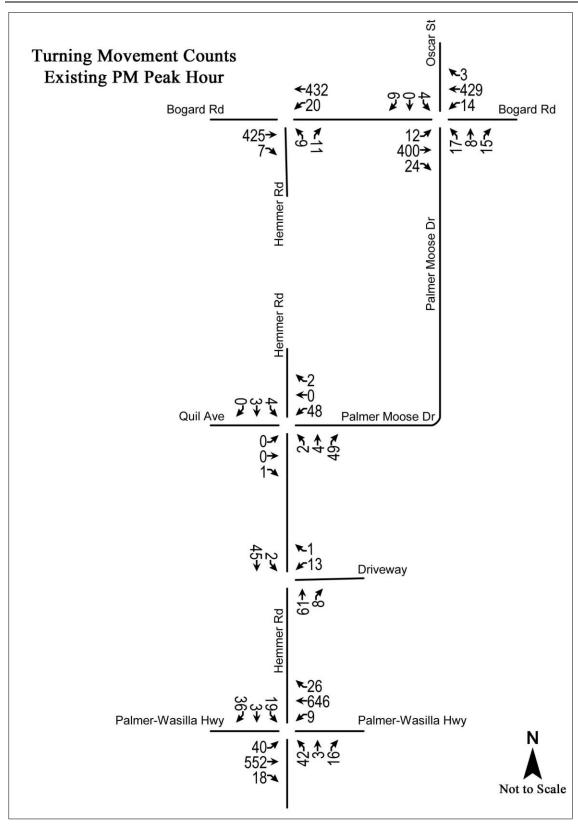


Figure 6: Existing TMVs - PM Peak Hour

Hemmer Road Extension & Upgrade: Palmer-Wasilla Highway to Bogard Road CFHWY00885/0001743

Traffic Analysis Report

June 2023

3.2.1 Peak Hour Factors

Peak hour factors (PHFs) are used to convert hourly volumes to 15-minute design flow rates for capacity analyses. They represent the uniformity of traffic volumes over an hourly period and range from 0.25 (all traffic arrives in one 15-minute period and no additional traffic arrives for the rest of the hour) to 1.0 (equal number of vehicles arrive during each 15-minute period).

Table 5 shows the adjusted PHFs used for the analysis of the AM, midday, and PM peaks at the study intersections.

Table 5: Existing Peak Hour Factors

Intoxaction		Peak Period				
Intersection	AM	Midday	PM			
Hemmer Rd & Bogard Rd	0.78	0.94	0.92			
Bogard Rd & Palmer Moose Dr	0.83	0.96	0.81			
Hemmer Rd & Palmer Moose Dr	0.71	-	0.83			
Hemmer Rd & Office Park Driveway	0.68	-	0.86			
Hemmer Rd & Palmer-Wasilla Hwy	0.76	0.94	0.91			

3.2.2 Heavy Vehicle Percentages

Heavy vehicle percentages (HV%) are taken into account during the analysis of intersection capacity. Average HV% were taken from 24-hour hose counts on Hemmer Road and Palmer Moose Drive. For Bogard Road and Palmer-Wasilla Highway, the HV% comes from nearby Continuous Count Stations (CCS). The existing HV% used for analysis are shown in Table 6. A summary of the 24-hour counts is found in the Appendix A starting on page 43.

Table 6: Existing Heavy Vehicle Percentages

Segment	HV%
Hemmer Rd: Palmer-Wasilla Hwy to Palmer Moose Dr	2%
Hemmer Rd: Folsom Dr to Bogard Rd	2%
Palmer Moose Dr	2%
Bogard Rd	5%
Palmer-Wasilla Hwy	6%

3.3 Existing Intersection Capacity

Traffic operation analyses were conducted using Synchro Software for both signalized and unsignalized intersections, which rely on Highway Capacity Manual (HCM) methodologies.

Capacity analyses for unsignalized intersections consider delay for the stop- and yield-controlled movements only. For two-way stop-controlled (TWSC) intersections, since the main street

through traffic experiences no delay, operations for uncontrolled movements are not reported. In contrast, all approaches experience delay at signalized intersections and unsignalized all-way stop controlled (AWSC) intersections; therefore, operations are reported for all approaches individually and for the entire intersection.

Figure 7 through Figure 9 summarizes the existing movement delays for TWSC intersections and existing intersection operations for AWSC and signalized intersections for the peak hour periods studied (AM, midday, and PM peak). All of the intersections and movements operate at level of service (LOS) C or better, with minimal delay. Synchro reports of the existing traffic operations are found in Appendix B starting on page 50.

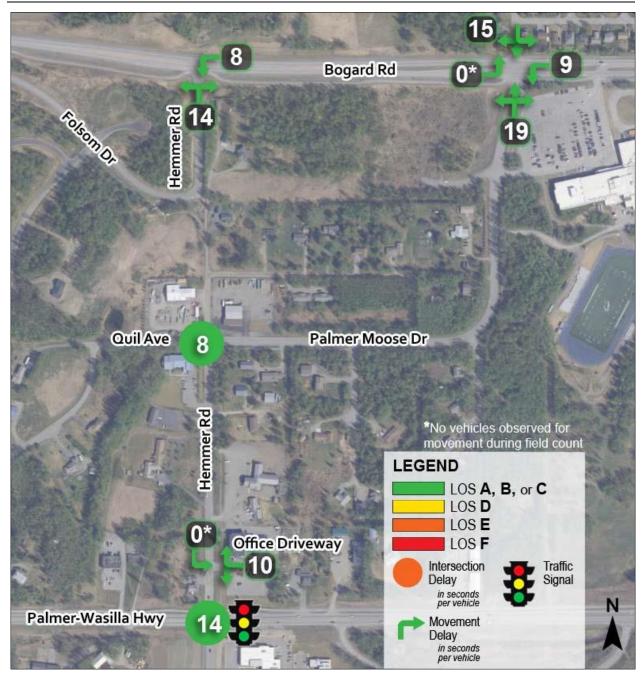


Figure 7: Existing LOS – AM Peak Hour

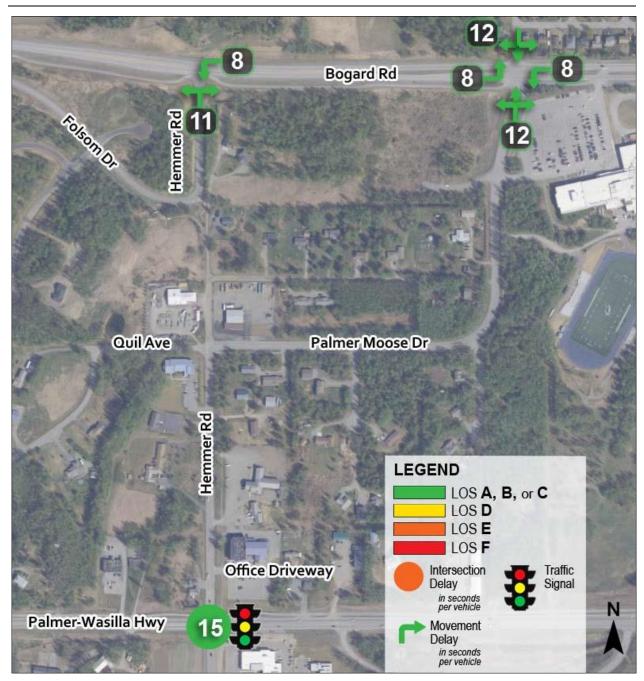


Figure 8: Existing LOS – Midday Peak Hour

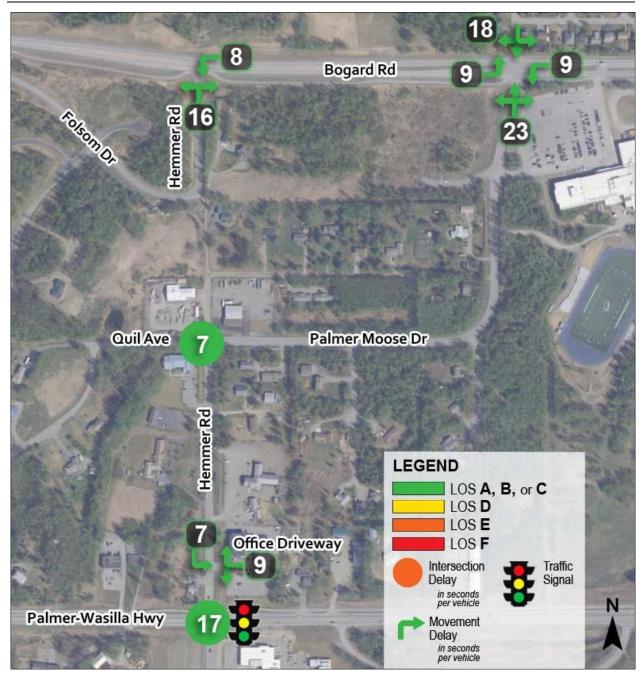


Figure 9: Existing LOS – PM Peak Hour

4 Future No Build Conditions

4.1 Existing Pedestrian and Bicycle Considerations

Pedestrians and bicycles crossing the roadway at the study intersections were counted at the same time as the vehicle counts. Figure 10 presents the total number of pedestrians and bicycles observed. The figure also indicates the number of hours the intersections were observed. Of the intersections with 8-hour counts, most pedestrians and bicyclists were observed traveling along Bogard Road.

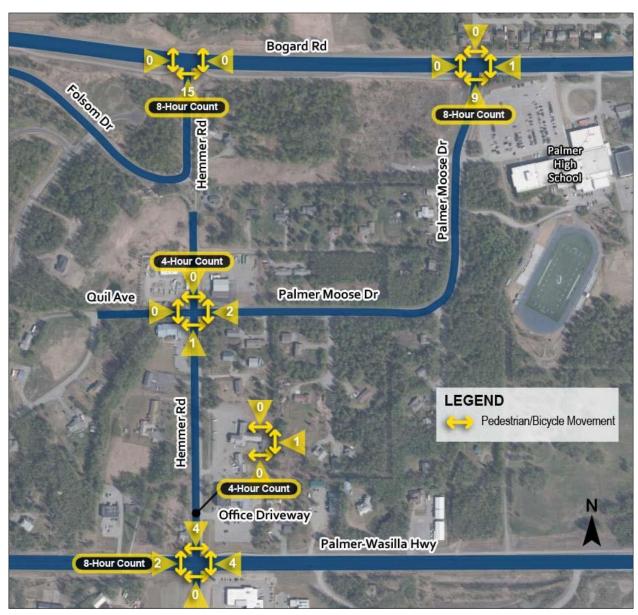


Figure 10: Total Pedestrian & Bicycle Volumes Observed

Walking along Hemmer Road and crossing at the Palmer Moose Drive intersection, vehicles yield to pedestrians at all driveways and intersections. As such, pedestrians experience no delay

for the existing condition except when crossing mid-block. Midblock crossing delay was not calculated.

4.2 No Build Traffic Volume Forecasts

Base forecasted volumes from the Anchorage Metropolitan Area Transportation Solutions (AMATS) 2040 travel demand model were used to develop forecasted construction year (2025), mid-life year (2035), and design year (2045) volumes. Since the AMATS model does not include the Bogard Road extension to the Glenn Highway, post-processing methodologies presented in the National Cooperative Highway Research Program (NCHRP) Report 765: *Analytical Travel Forecasting Approaches for Project Level Planning and Design* were applied to forecast future volumes. Model volumes were also adjusted based on the historical traffic demand and available capacity on Bogard Road and Palmer-Wasilla Highway. Adjusted 2040 volumes were then grown to 2045 volumes using annual growth rates calculated from 2021 to 2040 for each of the roadways.

Table 7 presents the forecasted no build volumes for the 2025 construction, 2035 mid-life, and 2045 design years.

Table 7: Forecasted No Build AADT Volumes

Segment	Extents	2021	2025	2035	2045
Hemmer Rd	Palmer-Wasilla Hwy to Palmer Moose Dr	1,000	1,150	1,300	1,500
Hemmer Rd	Folsom Dr to Bogard Rd	500	500	550	650
Bogard Rd	49th State St to Glenn Hwy	6,500	7,000	9,000	11,250
Palmer Moose Dr	Hemmer Rd to Bogard Rd	900	1,150	1,300	1,450
Palmer-Wasilla Hwy	49 th State St to Hemmer Rd	12,000	13,000	16,500	20,750
Palmer-Wasilla Hwy	Hemmer Rd to Glenn Hwy	14,000	15,000	20,000	26,000

4.3 No Build Turning Movement Volumes

Future intersection TMVs were calculated using methodology found in NCHRP 765 to predict future intersection movements. The methodology is based on the projected AADT volumes of the approach roads, existing turning movement proportions, and design hour volume percentages determined from the 24-hour hose counts and CCS data. Table 8 presents the design hour percentages used.

Table 8: No Build Design Hour Percentages

Commont	Design Hour Percentages				
Segment	AM	Midday	PM		
Hemmer Rd: Palmer-Wasilla Hwy to Palmer Moose Dr	15%	6%	7%		
Hemmer Rd: Folsom Dr to Bogard Rd	7%	8%	8%		
Palmer Moose Dr	15%	6%	7%		
Bogard Rd	7%	6%	9%		
Palmer-Wasilla Hwy	7%	7%	9%		

Figure 11 through Figure 13 present the forecasted no build intersection TMVs.

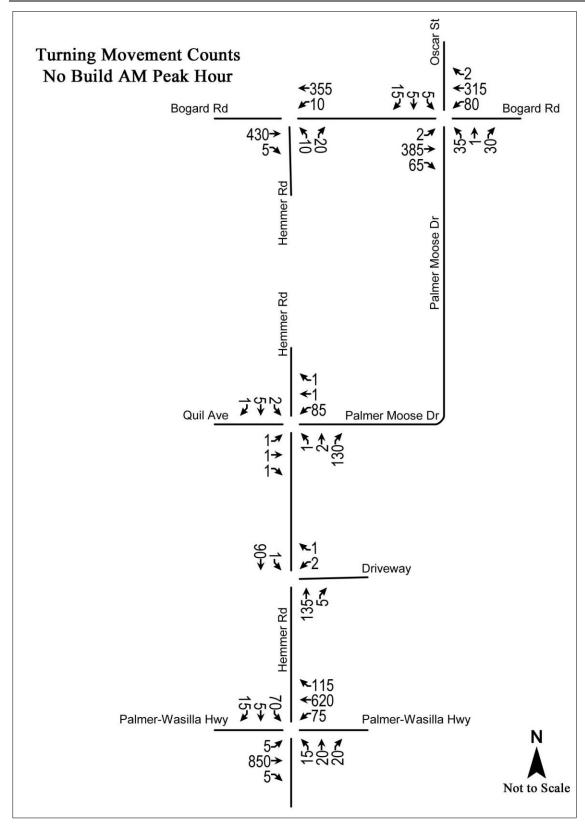


Figure 11: No Build TMVs – AM Peak Hour

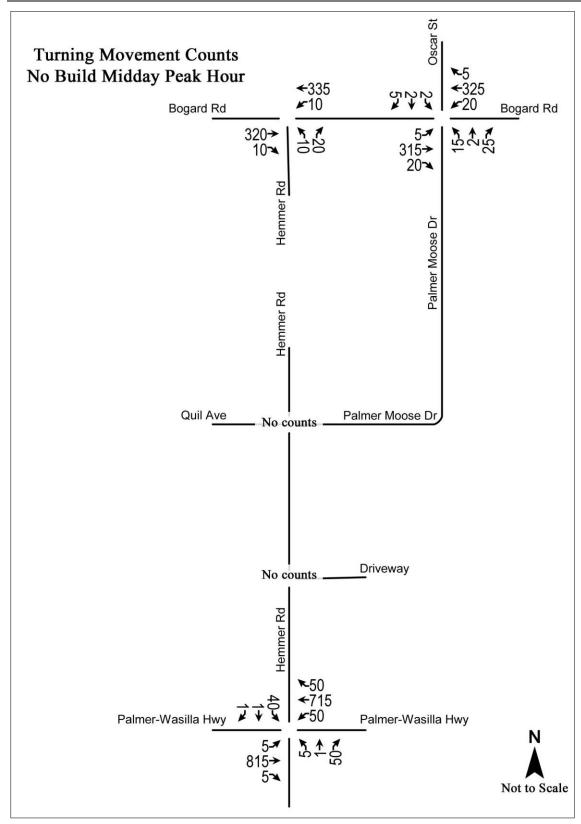


Figure 12: No Build TMVs – Midday Peak Hour

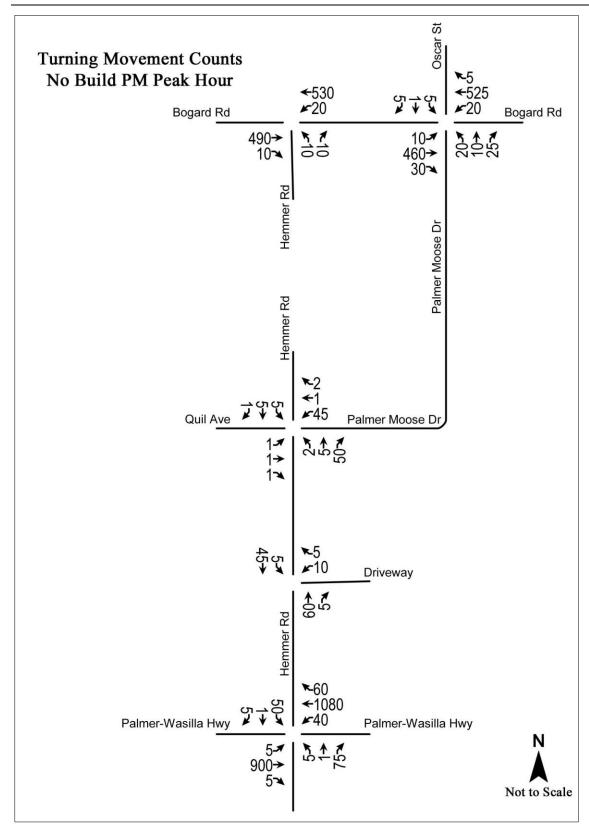


Figure 13: No Build TMVs - PM Peak Hour

4.4 No Build Intersection Capacity

Future 2045 operations were analyzed under no build conditions. In general, it was assumed that the future PHFs would be equivalent to existing PHFs. However, for intersections with movements operating over capacity, intersection PHFs were increased since operating over capacity would result in traffic going through the intersection more evenly over the hour (have a higher PHF value). The percentage of heavy vehicles in the study area was assumed to remain constant through the 2045 design year.

Figure 14 through Figure 16 present the movement and intersection delays at the study intersections for the AM, midday, and PM peak hours. The Hemmer Road and Palmer-Wasilla Highway signal is expected to operate at LOS D conditions during the 2045 PM peak with the westbound through movement experiencing about 45 seconds of delay per vehicle (LOS F conditions). Signal operations during the 2045 AM and midday peak hours are anticipated to operate at LOS C conditions with the Hemmer Road approaches (north and southbound) experiencing the most delay with about 1 minute of delay per vehicle.

Most of the unsignalized intersections are expected to operate at LOS C or better during the 2045 no build peak hours. The north and southbound approaches at the Bogard Road and Palmer Moose Road intersection is anticipated to operate at LOS D conditions during the 2045 AM and PM peak hours with delays of about 30 seconds per vehicle.

Synchro reports under no build conditions are shown in Appendix C starting on page 69.

4.5 No Build Pedestrian and Bicycle Considerations

For the no build condition, vehicles yield to pedestrians at all driveways and unsignalized intersections. As such, pedestrians experience no delay for the existing condition except when crossing mid-block. Midblock crossing delay was not calculated.

Measures of pedestrian and bicycle operations do not depend on the number of people walking or biking, so volume forecasts for these modes were not completed.

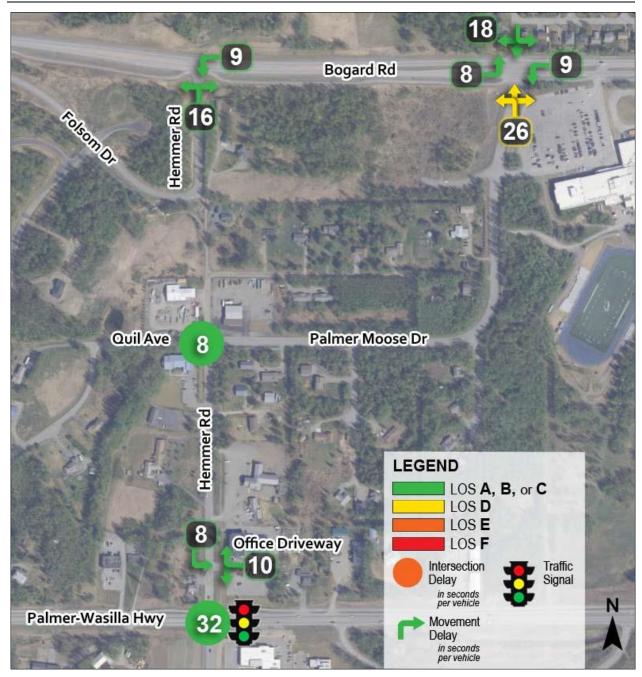


Figure 14: 2045 No Build LOS – AM Peak Hour

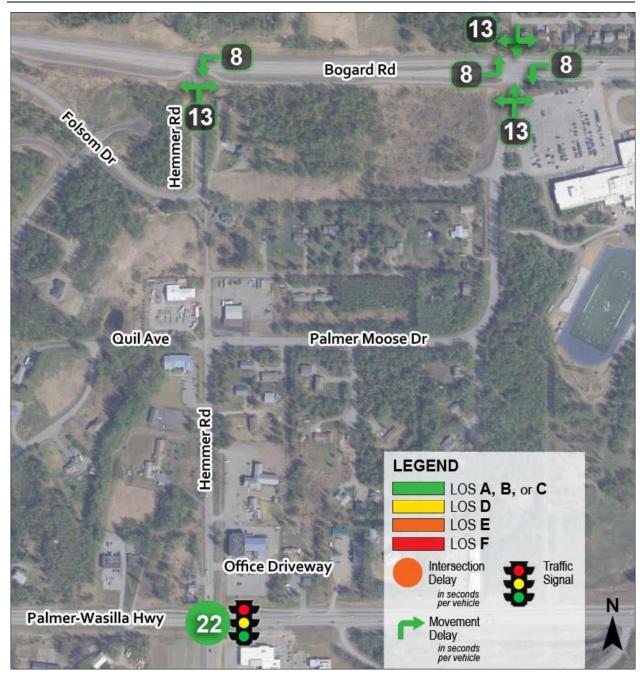


Figure 15: 2045 No Build LOS – Midday Peak Hour

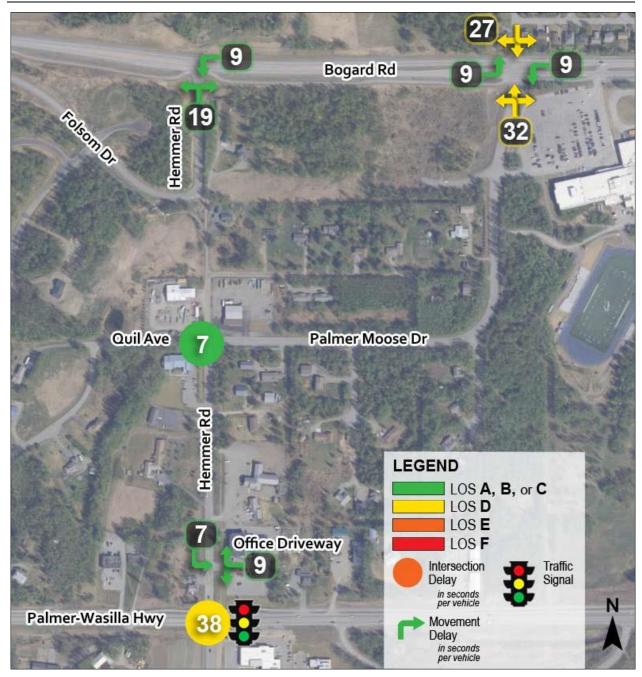


Figure 16: 2045 No Build LOS – PM Peak Hour

June 2023

5 Future Build Conditions

5.1 Build Traffic Volume Forecasts

Future build condition volumes were forecasted similar to no build volumes. Additional adjustments were made to estimate how traffic would adjust given the more direct connection between Palmer-Wasilla Highway and Bogard Road at Hemmer Road. It was assumed that some traffic would move from Palmer Moose Drive to Hemmer Road; however, school traffic to and from the south would continue to use Palmer Moose Drive. Minor adjustments were also made to 49th State Street, Felton Street, Trunk Road, and the Glenn Highway, with some traffic from each of these roads being redirected to Hemmer Road.

Table 9 presents the forecasted build volumes for the 2025 construction, 2035 mid-life, and 2045 design years.

Table 9: Forecasted Build AADTs

Segment	Extents	2021	2025	2035	2045
Hemmer Rd Palmer-Wasilla Hwy to Palmer Moose Dr		1,000	2,800	3,150	3,600
Hemmer Rd Palmer Moose Dr to Bogard Rd		-	2,600	2,950	3,300
Bogard Rd 49 th State St to Glenn Hwy		6,500	7,000	9,000	11,250
Palmer Moose Dr Hemmer Rd to Bogard Rd		900	700	800	900
Palmer-Wasilla Hwy	49 th State St to Hemmer Rd	12,000	13,000	16,500	20,750
Palmer-Wasilla Hwy	Hemmer Rd to Glenn Hwy	14,000	15,500	20,000	26,000
Folsom Dr	Hemmer Rd to Monte Vista Dr	500	500	550	650

The full build-out condition for Hemmer Road, as presented in the recently adopted *Official Streets and Highways Plan* (OS&HP) and other area planning documents, is for Hemmer Road to extend from the Glenn Highway (near the Inner Springer Loop/Claire Street intersection) to Palmer-Fishhook Road. If Hemmer Road is fully extended in the future, traffic volumes would likely increase, since Hemmer Road could provide a shorter and faster route for additional trips. Table 10 shows the forecasted 2045 volumes for Hemmer Road developed using a sketch planning methodology. Note that these volumes are consistent with forecasted volumes for Hemmer Road of 4,000 to 5,000 vehicles per day (vpd) that were developed as part of the Glenn Highway MP 34 to 42 Reconstruction project.

Hemmer Road Extension & Upgrade: Palmer-Wasilla Highway to Bogard Road CFHWY00885/0001743

Traffic Analysis Report

June 2023

Table 10: Forecasted Full Build AADTs

Segment	Extents	2045
Hemmer Rd	Glenn Hwy to Palmer-Wasilla Hwy	5,500
Hemmer Rd	Palmer-Wasilla Hwy to Bogard Rd	4,750
Hemmer Rd	Bogard Rd to Palmer-Fishhook Rd	4,500

5.2 Build Turning Movement Volumes

2045 build condition TMVs were calculated using the same methodology as the no build condition TMVs. Figure 17 through Figure 19 present the forecasted TMVs under the build condition.

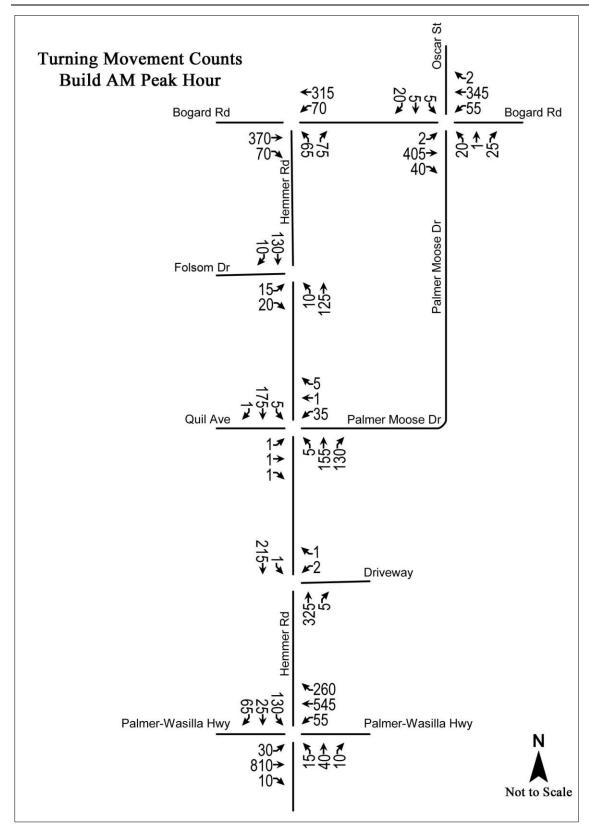


Figure 17: Build TMVs – AM Peak Hour

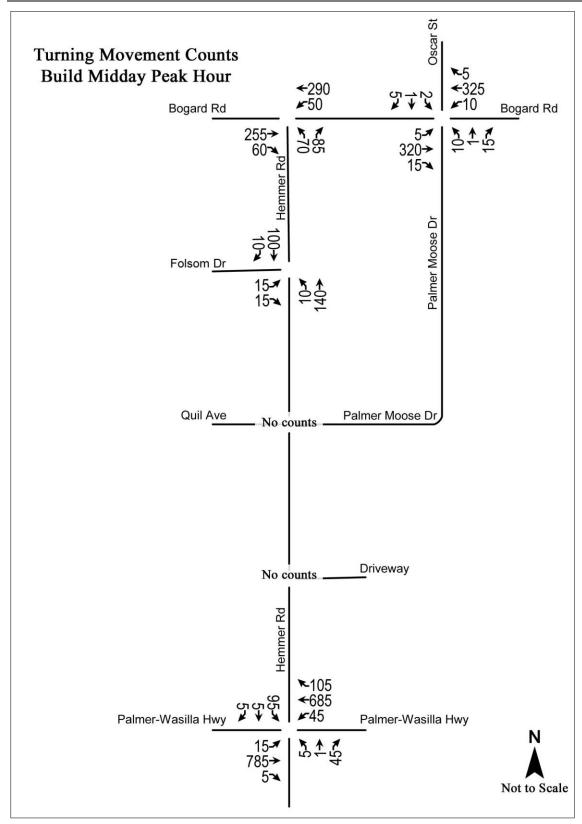


Figure 18: Build TMVs – Midday Peak Hour

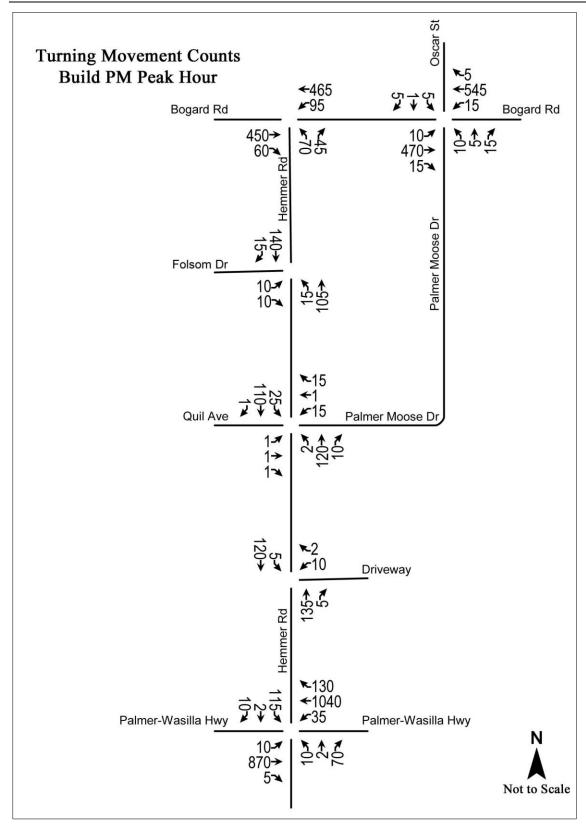


Figure 19: Build TMVs - PM Peak Hour

5.3 Build Intersection Control

5.3.1 Hemmer Road & Palmer Moose Drive

The Manual on Uniform Traffic Control Devices (MUTCD) has guidance on when TWSC is an appropriate control for an intersection. Forecasted traffic and build road conditions for the Hemmer Road at Palmer Moose Drive intersection are anticipated to meet one condition for a TWSC intersection:

- Vehicular traffic volume exceeds 6,000 vpd on the major road criteria not met
- Restricted sight distance requiring road user to stop to observe conflicting traffic criteria met
- Crash records indicate three or more crashes that could be corrected by the installation of a STOP sign, or 5 or more crashes were reported within a two-year period – criteria not met

A Google Earth aerial review of intersection sight distances under yield control was conducted for the Palmer Moose Drive and Quil Avenue approaches. Based on the existing road configurations in the area, sight lines are obstructed by trees and buildings. The sight obstructions are assumed to continue under build conditions. Therefore, it is recommended that the Hemmer Road at Palmer Moose Drive intersection operate under TWSC.

5.3.2 Hemmer Road & Folsom Drive

The MUTCD has guidance on when TWSC is an appropriate control for an intersection, as well as if YIELD or STOP signs are appropriate.

The MUTCD TWSC is appropriate at the intersection if one or more of the following conditions are met:

- Vehicular traffic volume exceeds 6,000 vpd on the major road criteria not met
- Restricted sight distance requiring road user to stop to observe conflicting traffic criteria not met (assumed design would meet sight distance)
- Crash records indicate three or more crashes that could be corrected by the installation of a STOP sign, or 5 or more crashes were reported within a two-year period – criteria not met

The MUTCD also has guidance on the appropriate usage of YIELD or STOP signs. The MUTCD states that a YIELD or a STOP sign is appropriate at an intersection if one or more of the following conditions are met:

- Normal right-of-way rule not expected to provide reasonable compliance with the law at an intersection where a less important road meets a more important road criteria met
- Minor road is entering a designated through highway or street criteria not met
- Intersection is within a signalized area criteria not met

A YIELD or STOP sign is appropriate on the Folsom Drive approach. The right-of-way rule (for an intersection with no regulatory signs) is that drivers approaching the intersection must yield

right-of-way to any road user (such as a vehicle or pedestrian) already in the intersection. The Hemmer Road at Folsom Drive intersection is currently under free flow conditions, where Hemmer Road curves and turns into Folsom Drive (and vice versa), and vehicles do not need to stop. The Hemmer Road Extension would add another leg to the intersection transforming it into a T-intersection. Vehicles on Folsom Drive may not comply with the right-of-way rule under build conditions since they do not need to stop under existing conditions.

5.3.3 Hemmer Road & Bogard Road

The warrant for signals was analyzed for the Hemmer Road at Bogard Road intersection. The California Department of Transportation (Caltrans) has developed a methodology for analyzing signal warrants based on AADT that was adopted by the Institute of Transportation Engineers (ITE). The methodology considers the entering average daily traffic volumes, number of approach lanes, and area type. This method uses future AADT volumes as the input variables and estimates whether the intersection would meet the Signal Warrant 1 found in the MUTCD in a design year. In using AADT, the Caltrans methods can be directly applied to planning-level forecast volumes.

MUTCD Signal Warrant 1 has three conditions. If traffic volumes at the intersection satisfies one of the conditions, then a signal can be considered. Condition A (minimum vehicular volume) is met when the volume on the side street is large enough to consider signal warrants. Condition B (interruption of continuous traffic) is met when the volume on the major street is so heavy that the side-street traffic experiences excessive delay or conflict in entering or crossing the major street. The last condition is the combination of conditions A and B and is satisfied when the volumes on the major and side streets meet a percentage of the volume thresholds for the other conditions.

There are separate thresholds for urban areas (100% volume thresholds) and rural areas (70% volume thresholds) for the warrant analysis. Rural area thresholds may be used if either the intersection lies within an isolated community with a population of less than 10,000 people, or if the posted speed on the major road is greater than 40 miles per hour (mph). Bogard Road (the major road) is a 45-mph roadway; therefore, the rural thresholds were used for the analysis.

Signal warrants for the Hemmer Road at Bogard Road intersection were analyzed under forecasted 2025, 2035, and 2045 build volumes. Table 11 summarizes the volume thresholds under each condition and the entering volumes for the years analyzed with Bogard Road as the major road and Hemmer Road as the minor road. A signal is warranted by 2035 under Condition B.

Hemmer Road Extension & Upgrade: Palmer-Wasilla Highway to Bogard Road

CFHWY00885/0001743

Traffic Analysis Report

June 2023

Table 11: Signal Warrant Summary - Hemmer Road at Bogard Road

	2025		2035		2045	
Condition A	Major Road	Minor Road	Major Road	Minor Road	Major Road	Minor Road
	Bogard Rd	Hemmer Rd	Bogard Rd	Hemmer Rd	Bogard Rd	Hemmer Rd
Volume	7,000	1,300	9,000	1,475	11,250	1,650
Threshold	5,600	1,680	5,600	1,680	5,600	1,680
Condition Met?	No		No		No	
	2025		2035		2045	
	20	25	20	35	20	45
Condition B	20 Major Road	25 Minor Road	20 Major Road	35 Minor Road	20 Major Road	45 Minor Road
Condition B				I		
Condition B Volume	Major Road	Minor Road	Major Road	Minor Road	Major Road	Minor Road
	Major Road Bogard Rd	Minor Road Hemmer Rd	Major Road Bogard Rd	Minor Road Hemmer Rd	Major Road Bogard Rd	Minor Road Hemmer Rd

5.3.3.1 Left-Turn Phasing

Left-turn phasing for the proposed Hemmer Road and Bogard Road signal was determined by *NCHRP Web-Only Report 284: Decision-Making Guide for Traffic Signal Phasing*, which bases recommendations for left-turn phasing on traffic volumes, cycle length, vehicle speeds, sight distance, lane configuration, and the number of left-turn crashes. Based on the methodology, the westbound left turn is recommended to have protected-permissive phasing.

5.3.3.2 Dismissed Roundabout Alternative

A roundabout was considered and dismissed for the Hemmer Road and Bogard Road intersection. The intersection is adjacent to a system of regularly-placed signalized intersections. Table 12 presents the nearby signalized intersections on Bogard Road and the distance between them. The table also shows that the proposed signal on Hemmer Road is greater than the minimum spacing recommended in the *Alaska Highway Preconstruction Manual* (0.25 miles) for adequate signal progression.

Table 12: Signalized Intersections on Bogard Road

Bogard Road Intersection	Next Intersection (to the east)	Distance between Signals	
Hemmer Road (proposed)	Felton Street	0.50 miles	
Felton Street	Glenn Highway	0.50 miles	
Glenn Highway	Alaska Street	0.15 miles	

Under coordinated timing, regularly-placed signals platoon the major road traffic, allowing high traffic volumes to move smoothly through the system. Roundabouts do not facilitate the movement of platoons. As such, traffic from the coordinated signal system will arrive at the roundabout in a platoon, resulting in increased delay as the roundabout serves each vehicle individually.

Furthermore, a previous study of the Hemmer Road and Bogard Road intersection concluded that a signal was warranted, and, as a result, signal poles were plumbed at the intersection.

5.4 Build Intersection Configuration

Guidance from NCHRP Report 457: *Evaluating Intersection Improvements: An Engineering Study Guide* was used to determine the lane configurations at the Hemmer Road intersections. NCHRP 457 provides recommendations for the number of through lanes or exclusive turn lanes for both unsignalized and signalized intersections.

5.4.1 Hemmer Road & Palmer-Wasilla Highway

The southbound Hemmer Road approach is recommended to have one exclusive left-turn lane and one shared through-and-right-turn lane. NCHRP 457 recommends that at least two approach lanes on the minor-road approach should be considered when a minor road intersects with an arterial street or highway at a signal; the two lanes could be any combination of movements. Palmer-Wasilla Highway (the major road) is classified as a principal arterial by DOT&PF. Peak hour volumes meet thresholds for an exclusive left-turn lane but do not meet thresholds for any exclusive right-turn lanes.

Figure 20 presents the proposed intersection configuration at Hemmer Road and Palmer-Wasilla Highway.

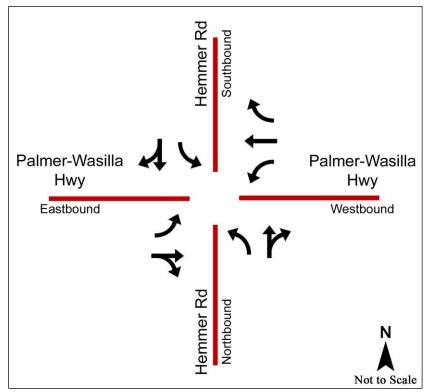


Figure 20: Proposed Lane Configuration at Hemmer Road & Palmer-Wasilla Highway

5.4.2 Hemmer Road & Bogard Road

The northbound approach is recommended to have one left-turn lane and one right-turn lane. At least two approach lanes should be considered for the Hemmer Road approach because Bogard Road (the major road) is classified as a minor arterial by DOT&PF. Since the northbound Hemmer Road approach has two movements (a left turn and a right turn), each movement could have its own lane.

Figure 21 presents the proposed intersection configuration at Hemmer Road and Bogard Road.

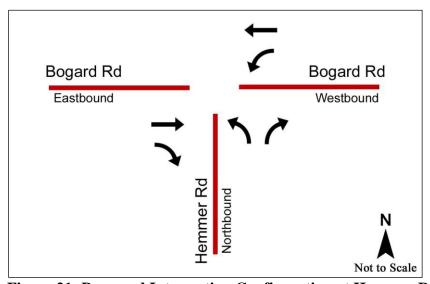


Figure 21: Proposed Intersection Configuration at Hemmer Road & Bogard Road

5.4.3 Unsignalized Hemmer Road Intersections

No turn lanes are recommended at any unsignalized Hemmer Road intersections in the study. Forecasted 2045 build volumes at the intersections do not meet thresholds found in *NCHRP 457 Evaluating Intersection Improvements* for additional lanes on Hemmer Road or on the side streets.

5.5 Build Intersection Capacity

Figure 22 through Figure 24 present 2045 operations at the studied intersections with the extension of Hemmer Road. Synchro reports under build conditions are shown in Appendix D starting on page 88.

Both signalized intersections on Hemmer Road are anticipated to operate at LOS C or better throughout the day under build conditions. At the Palmer-Wasilla Highway signal, movement delays are up to one minute during the AM and PM peak hours. At the proposed Bogard Road signal, the northbound Hemmer Road approach is anticipated to have the most delay with about 45 seconds per vehicle during the peak hours.

Most of the unsignalized intersections are expected to operate at LOS C or better during the 2045 build peak hours with 20 seconds of delay per vehicle. The Bogard Road at Palmer Moose Drive

intersection is expected to have the most delay in the PM peak with almost 30 seconds per vehicle on the stop-controlled approaches.

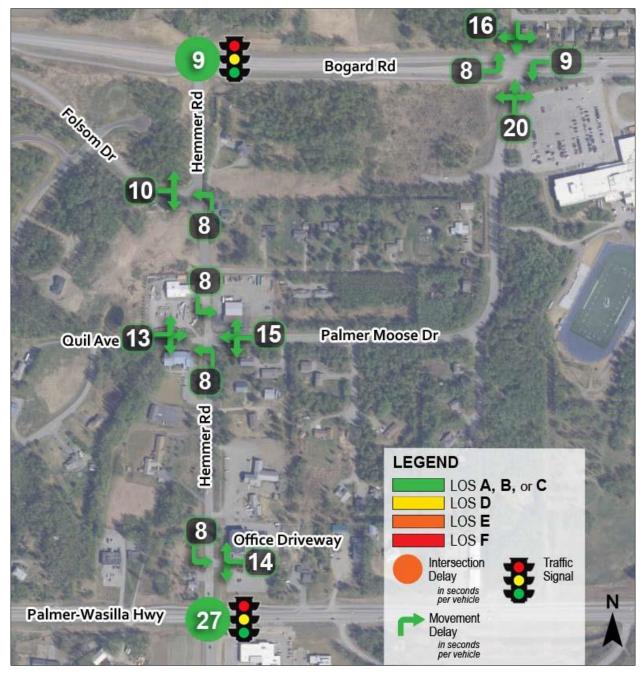


Figure 22: 2045 Build LOS – AM Peak Hour

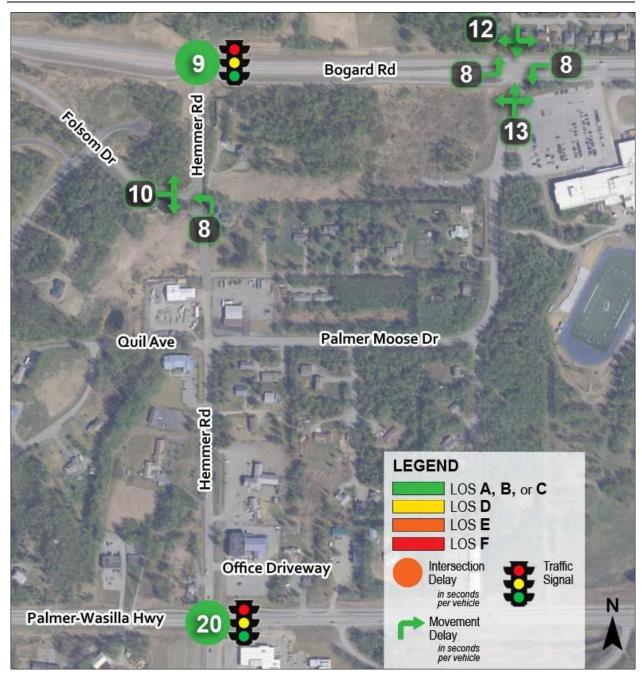


Figure 23: 2045 Build LOS – Midday Peak Hour

Figure 24: 2045 Build LOS – PM Peak Hour

5.6 Build Pedestrian and Bicycle Considerations

5.6.1 Pedestrian Pathway

The MSB desires a connected non-motorized network. A goal of the MSB 2035 Long Range Transportation Plan is to improve the roadway network connectivity for motorized and non-motorized users. The MSB Safe Routes to School Walk Zone Inventory and Recommendations advocates for the improvement and addition of sidewalks to create routes to schools and separate pedestrians and vehicles. The MSB is currently developing a Bike and Pedestrian Plan with the

vision of creating a safer and more connected network for bicycles and pedestrians to accommodate the fast-growing MSB population.

The 2012 American Association of State Highway and Transportation Officials (AASHTO) *Guide for the Development of Bicycle Facilities* has general guidance on bicycle facilities and indicates that marked shared lanes, bike lanes, or shared pathways are appropriate treatments for Hemmer Road based on traffic volumes, posted speeds, and the roadway functional classification. The Federal Highway Administration's 2019 *Bikeway Selection Guide* presents a preferred bikeway type based on volume and speed. Using forecasted 2045 volumes and the 35-mph posted speed limit on Hemmer Road, separated bike lanes or shared-use paths are recommended.

For urban collector roads, the AASHTO's 2011 A Policy on Geometric Design of Highways and Streets recommends pedestrian facilities on both sides of the road for commercial areas and at least one side of the road for residential areas (though desirable on both sides). Within the study area, Hemmer Road has a mixture of residential and commercial land uses. The north end consists of mostly residential areas located on the east side of the road. The south end has more developed areas with a mix of residential and commercial uses.

Based on this guidance, shared pathways are recommended on both sides of Hemmer Road between Palmer-Wasilla Highway and Palmer Moose Drive. Between Palmer Moose Drive and Bogard Road, a shared pathway is desirable for both sides of Hemmer Road, but a shared path on one side of the road would be adequate.

5.6.2 Pedestrian Crossings

Marked crosswalks were considered for pedestrians to cross Hemmer Road at Folsom Drive and at Palmer Moose Drive using guidance from the Alaska Traffic Manual (ATM). Based on the daily 2045 volumes and 35-mph posted speed limit on Hemmer Road, marked crosswalks are appropriate at both locations. However, the ATM uses a minimum pedestrian volume threshold of 20 pedestrians crossing per peak hour (or 15 elderly and/or child pedestrians); the minimum pedestrian volume was not met during the intersection volume counts conducted at the Hemmer Road at Palmer Moose Drive intersection.

Crossing delays were calculated for pedestrians crossing Hemmer Road at Folsom Drive and at Palmer Moose Drive. The calculations assumed a crosswalk length of 32 feet (one 12-foot lane in each direction, with 4-foot shoulders) and a yield rate of zero (meaning the analysis assumes drivers do not yield to pedestrians so that pedestrians must wait for gaps in the traffic). While delay does not depend upon the volume of pedestrians, it does reflect the volume of traffic using the roadway to be crossed. As such, 2045 vehicle volumes were used when calculating pedestrian delay.

Table 13 presents the 2045 pedestrian delays for crossing Hemmer Road at Folsom Drive and at Palmer Moose Drive. For most of the day, pedestrian delays are anticipated to be less than

10 seconds per pedestrian. Crossing Hemmer Road at the Palmer Moose Drive intersection during the AM peak has the most delay with 20 seconds per pedestrian, due to the high volume of traffic traveling to and from the school in the morning. According to the HCM 2010, pedestrian delay of 30 seconds or more results in a high likelihood of pedestrian risk-taking. Delay between 5 and 20 seconds is considered to result in low to moderate likelihood of pedestrian risk-taking.

Table 13: 2045 Build Pedestrian Delays Crossing Hemmer Road

Hemmer Road Crossing	A	Average Pedestrian I (seconds/pedestria	· ·
	AM	Midday	PM
at Folsom Dr	8	7	8
at Palmer Moose Dr	20	not measured	8

5.7 Build Condition Safety

Under build conditions, since Hemmer Road would provide a direct connection between Palmer-Wasilla Highway and Bogard Road, traffic would increase on Hemmer Road and decrease at adjacent north-south roads. The volume changes could reduce crashes at existing routes between the two roads and can increase crashes at the Hemmer Road intersections. For example, crashes occurring at the Bogard Road and Palmer Moose Drive intersection could move to the Hemmer Road and Bogard Road intersection. Because there were few crashes during the 5-year study period, the increase in crashes is not expected to be a safety concern.

While Hemmer Road at Bogard Road had no reported crashes during the 5-year study period, the installation of signals is expected to increase crashes at the intersection since traffic at Bogard Road, which is currently operating free (uncontrolled), would need to stop under the new traffic control. The 2022 *Alaska Highway Safety Improvement Program Handbook* reports the installation of a new traffic signal would decrease right-angle crashes by 60% and increase rearend crashes by 25%. However, with few crashes in the study area, the increased crash rate for the Hemmer Road at Bogard Road intersection is expected to continue to be lower than the statewide average.

5.8 Proposed Typical Section

A *Reconnaissance Report for Hemmer Road Improvements* between Palmer-Wasilla Highway and Bogard Road was prepared in October 2020. This report compared the costs for four different typical section alternatives for the new roadway. The report did not include volume forecasting, or operational or safety analyses. The four typical sections that were evaluated are:

• 5-lane section (two 12-foot through lanes in each direction, with a 16-foot center two-way-left-turn lane (TWLTL), a 10-foot pathway on the east side, and a 5-foot attached sidewalk on the west side)

- 3-lane section (one 12-foot through lane in each direction, with a 16-foot center TWLTL, a 10-foot pathway on the east side, and a 5-foot attached sidewalk on the west side)
- 3-lane section with shoulder (4-foot shoulders, one 12-foot through lane in each direction, with a 16-foot center TWLTL, a 10-foot pathway on the east side, and a 5-foot attached sidewalk on the west side)
- 2-lane section with shoulder (4-foot shoulders, one 12-foot through lane in each direction, and 5-foot attached sidewalk on both sides)

The Community Transportation Program (CTP) nomination that received funding for this project proposed a 3-lane typical section, with a center TWLTL.

Given the forecasted build volumes for this section of Hemmer Road (3,600 to 4,750 vehicles per day), either a 3-lane or a 2-lane typical section would adequately serve the expected volumes. In addition to traffic volumes, a few other considerations play a role in choosing between a 2-lane and a 3-lane section:

- Vehicle Operations. A TWLTL acts as a left-turn lane to pull left-turning vehicles out of
 the through lanes, reducing impacts to through traffic. As such, a TWLTL reduces
 vehicle delay where there are many access points and many vehicles making left turns. In
 the case of Hemmer Road, our analysis shows that with the forecasted combination of
 through and left-turn volumes, left-turn lanes are not needed operationally at the
 unsignalized intersections within the corridor.
- Pedestrian Operations. Pedestrians are expected to be crossing Hemmer Road at the
 Palmer Moose Drive intersection and at the Folsom Drive intersection. Pedestrian delay
 increases with the width of road they must cross. Pedestrian delay for a 2-lane typical
 section was presented in Section 5.6.2 Pedestrian Crossings. Table 14 presents the delay
 for a 3-lane typical section (a 12-foot lane in each direction with a 16-foot center TWLTL
 and 4-foot shoulders).

Table 14: 2045 Build Pedestrian Delays Crossing Hemmer Road for 3-Lane Cross Section

Hemmer Road Crossing	A	verage Pedestrian l (seconds/pedestria	•
_	AM	Midday	PM
at Folsom Dr	18	16	17
at Palmer Moose Dr	50	not measured	17

Comparing Table 13 with Table 14, pedestrian delay is more than doubled by adding the 16-foot center TWLTL. Moreover, pedestrian delay in the morning peak at Palmer Moose Drive of more than 45 seconds results in a very high likelihood of pedestrian risk taking. This delay could be decreased by encouraging drivers to yield to pedestrians using signs, markings, or signals, or by reducing the crossing distance. For example, by constructing a median refuge island. These types of treatments could be appropriate if at least 15 schoolchildren are expected to be using the crossing regularly.

- Safety. Analyses of TWLTLs indicate a reduction in crashes of about 26% for a roadway with a TWLTL as compared to a roadway with no median. In the case of Hemmer Road, the crash experience is minimal. As such, installation of a TWLTL would have a minimal effect on safety.
- Geometric Design. Based on the cost estimates developed for the Reconnaissance Report for Hemmer Road Improvements, the cost of adding a TWLTL is 5 to 10% more than the cost of a 2-lane typical section, due to increased ROW and construction costs.

 Maintenance costs will also be higher both for snow removal and for repaving. If left-turn lanes were needed to accommodate turning traffic at high-volume driveways and side streets, installation of a TWLTL could reduce the need for repeated widening and then narrowing of the road cross section; however, the analysis does not indicate the need for turn lanes at the unsignalized intersections.

For Hemmer Road, because the benefits of a TWLTL to vehicle operations and safety are minimal and the impacts to pedestrian delay and overall costs are more significant, a 2-lane typical section is recommended. As described in Section 5.6.1 Pedestrian Pathway, shared pathways are recommended on both sides of Hemmer Road between Palmer-Wasilla Highway and Palmer Moose Drive. Between Palmer Moose Drive and Bogard Road, a shared pathway is desirable for both sides of Hemmer Road, but a shared path on one side of the road would be adequate.

6 References

Alaska Traffic Data, DOT&PF, 2022. Retrieved from http://dot.alaska.gov/stwdplng/transdata/traffic.shtml.

Alaska Highway Preconstruction Manual, DOT&PF, 2022.

Alaska Highway Safety Improvement Program Handbook, DOT&PF, 2018 and 2022.

Alaska Traffic Manual, DOT&PF and FHWA, 2016.

Bikeway Selection Guide, FHWA, 2019.

Guide for the Development of Bicycle Facilities, AASHTO, 2012.

Highway Capacity Manual, Transportation Research Board, 2010.

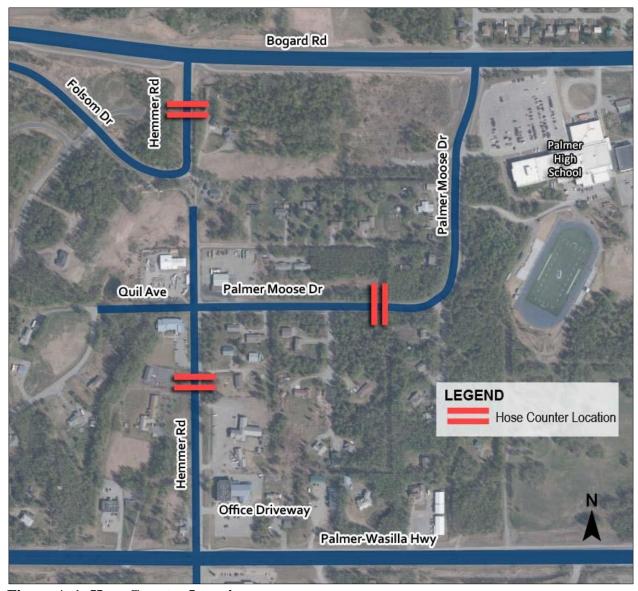
Manual on Uniform Traffic Control Devices for Streets and Highways, U.S. Department of Transportation, FHWA, 2009.

MSB Safe Routes to School Walk Zone Inventory and Recommendations, MSB, 2014.

MSB 2035 Long Range Transportation Plan, MSB, 2017.

NCHRP Report 279: *Intersection Channelization Design Guide*, Neuman; Transportation Research Board, 1985.

NCHRP Report 457: Evaluating Intersection Improvements: An Engineering Study Guide, Bonneson and Fontaine; Transportation Research Board, 2001.


NCHRP Report 765: *Highway Analytical Travel Forecasting Approaches for Project-Level Planning and Design*, Pederson and Samdahl; Transportation Research Board, 2014.

NCHRP Web-Only Document 284: Decision-Making Guide for Traffic Signal Phasing, Transportation Research Board, 2020.

A Policy on Geometric Design of Streets and Highways, AASHTO, 2011.

Appendix A 24-Hour Counts

Three hose counters were deployed on Hemmer Road and on Palmer Moose Drive in October 2022 to gather 24-hour volumes. Figure A-1 presents the hose counter locations.

Figure A-1: Hose Counter Locations

Table A-1 through Table A-3 present the hourly volumes recorded at each hose counter location. The data indicates that the AM peak has the highest volumes, making up an average of about 15% of the daily traffic during the weekdays at the southern Hemmer Road location and at the Palmer Moose Drive location. The AM peak contains both morning commute traffic and Palmer High School arrival traffic.

Table A-1: Hourly Hose Count Volumes on Hemmer Road south of Palmer Moose Drive

		Thursday, October 6, 2022		Friday, October 7, 2022		Saturday, October 8, 2022		Sunday, October 9, 2022		Monday, October 10, 2022	- E	Tuesday, October 11, 2022		Wednesday, October 12, 2022	-	I hursday, October 15, 2022		Friday, October 14, 2022
Hour	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB
12:00 AM			3	0	2	5	1	2	0	1	2	0	2	1	1	0	1	0
1:00 AM			1	1	0	2	3	3	2	1	2	1	1	2	3	1	1	1
2:00 AM			1	0	2	0	3	1	1	1	0	0	2	1	0	0	0	0
3:00 AM			1	1	0	0	1	2	0	0	0	1	1	1	1	1	0	1
4:00 AM			2	1	0	1	2	2	1	2	0	1	0	1	0	0	1	4
5:00 AM			1	5	2	1	1	5	1	5	3	8	5	6	3	6	3	5
6:00 AM			13	8	2	3	2	1	10	9	9	10	12	13	14	11	11	10
7:00 AM			108	68	2	10	8	6	26	18	117	79	113	68	108	53	121	51
8:00 AM			23	32	6	11	23	10	88	60	29	44	21	26	24	30	35	30
9:00 AM			19	17	15	20	27	8	42	41	23	28	23	32	20	19	27	29
10:00 AM			30	28	11	21	19	25	32	45	39	32	35	30	39	28		
11:00 AM			42	49	18	29	15	27	43	36	37	39	36	37	35	39		

June 2023

		Thursday, October 6, 2022		Friday, October 7, 2022		Saturday, October 8, 2022	-	Sunday, October 9, 2022		Monday, October 10, 2022	-	Tuesday, October 11, 2022	COOC C1 1-2 O 1-2 TX	Wednesday, October 12, 2022	-	Thursday, October 13, 2022		Friday, October 14, 2022
Hour	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB
12:00 PM			33	28	16	29	26	28	46	41	30	32	34	34	39	35		
1:00 PM			55	57	30	16	23	17	48	34	56	47	59	44	51	49		
2:00 PM			71	82	29	21	15	18	96	117	97	106	81	89	85	98		
3:00 PM	8	8	55	41	31	22	20	17	36	53	48	47	45	36	39	43		
4:00 PM	46	42	52	37	21	27	19	15	59	25	55	42	43	29	40	24		
5:00 PM	43	35	53	42	25	20	13	11	39	28	54	26	69	33	47	29		
6:00 PM	45	27	33	21	21	18	17	19	26	49	34	14	35	24	30	34		
7:00 PM	25	20	27	11	17	12	16	14	16	6	15	34	22	20	26	23		
8:00 PM	25	15	13	10	15	8	7	15	25	9	12	8	14	18	28	14		
9:00 PM	6	5	14	7	8	5	8	2	8	4	5	12	5	13	7	13		
10:00 PM	8	3	9	6	7	6	5	3	3	4	7	3	0	1	4	1		
11:00 PM	2	4	6	5	5	4	1	2	2	5	1	3	4	1	1	4		

Table A-2: Hourly Hose Count Volumes on Hemmer Road south of Bogard Road

Table A-2. Ho		I hursday, October 6, 2022		Friday, October 1, 2022		Saturday, October 8, 2022		Sunday, October 9, 2022		Monday, October 10, 2022		l uesday, October 11, 2022		wednesday, October 12, 2022		I nursday, October 13, 2022		Friday, October 14, 2022
Hour	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB
12:00 AM			0	2	0	0	0	1	2	2	1	0	0	0	1	1	0	0
1:00 AM			0	1	1	0	2	0	0	0	0	0	0	1	0	0	0	0
2:00 AM			0	2	0	0	0	0	0	1	1	0	0	0	0	0	0	0
3:00 AM			1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
4:00 AM			0	1	0	0	1	1	1	0	2	1	1	0	2	1	1	0
5:00 AM			3	0	1	0	0	0	0	0	2	0	2	0	0	0	0	1
6:00 AM			2	2	0	0	2	0	5	2	5	4	4	4	6	1	6	1
7:00 AM			26	9	3	2	3	1	15	7	23	10	17	10	22	15	27	9
8:00 AM			17	9	5	5	14	0	29	15	19	4	17	9	17	7	20	5
9:00 AM			13	9	20	9	5	3	20	12	12	12	20	14	9	11	16	16
10:00 AM			17	8	14	14	10	6	13	20	9	4	12	5	13	9	7	9
11:00 AM			15	13	15	6	8	10	13	8	8	9	11	13	10	12		

June 2023

		Thursday, October 6, 2022		Friday, October 7, 2022		Saturday, October 8, 2022		Sunday, October 9, 2022		Monday, October 10, 2022	-	Tuesday, October 11, 2022	COOC C1 1-2 O 1-2 TX	wednesday, October 12, 2022	-	Thursday, October 13, 2022		Friday, October 14, 2022
Hour	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB	NB	SB
12:00 PM			24	11	13	18	15	12	20	17	19	19	15	17	23	14		
1:00 PM			21	19	16	17	9	7	14	18	24	21	16	15	20	22		
2:00 PM			22	21	14	15	6	12	27	30	25	25	29	20	20	16		
3:00 PM			23	27	14	10	9	6	28	25	30	28	13	13	13	17		
4:00 PM			17	19	10	7	10	7	18	18	15	22	15	20	17	19		
5:00 PM	1	7	26	29	15	13	8	14	14	21	19	21	16	19	10	20		
6:00 PM	22	14	15	16	12	7	10	9	14	13	11	11	12	10	12	16		
7:00 PM	5	10	5	5	8	8	7	5	9	5	5	21	11	10	12	18		
8:00 PM	5	8	6	8	5	10	7	4	3	10	7	4	7	11	3	6		
9:00 PM	3	2	4	7	1	5	4	5	4	6	0	6	2	5	3	5		
10:00 PM	0	5	4	6	4	3	3	2	0	1	1	1	3	3	0	2		
11:00 PM	1	0	5	2	2	2	0	3	1	2	3	0	0	1	0	0		

Table A-3: Hourly Hose Count Volumes on Palmer Moose Drive west of curve

	-	Thursday, October 6, 2022		Friday, October 7, 2022		Saturday, October 8, 2022	-	Sunday, October 9, 2022		Monday, October 10, 2022	E	Tuesday, October 11, 2022	0000 C1 - 1 - 7 O F F - 7 X	wednesday, October 12, 2022
Hour	EB	WB	EB	WB	EB	WB	EB	WB	EB	WB	EB	WB	EB	WB
12:00 AM			3	0	2	2	2	2	0	1	2	0	1	0
1:00 AM			1	1	0	2	3	3	2	1	2	1	1	1
2:00 AM			1	0	1	0	3	0	1	1	0	1	1	0
3:00 AM			1	1	0	0	1	1	0	0	0	1	1	2
4:00 AM			2	1	0	1	2	4	1	2	0	1	0	1
5:00 AM			1	6	2	0	1	4	1	4	3	5	5	5
6:00 AM			11	5	2	2	2	1	10	8	9	8	11	11
7:00 AM			112	60	2	10	1	3	28	17	116	78	117	59
8:00 AM			23	29	8	11	13	12	90	58	28	39	21	24
9:00 AM			21	17	9	14	12	9	40	34	18	25	20	27
10:00 AM			28	26	9	19	18	14	28	39	34	28	28	31
11:00 AM			39	39	18	22	20	10	41	30	34	34	33	28

June	20	23
June	~0	40

		Inursday, October 6, 2022	Hriday, October 7, 2022 RA BA Saturday, October 8, 2022 BA Saturday, October 8, 2022					Sunday, October 9, 2022		Monday, October 10, 2022		Tuesday, October 11, 2022	Wednesday, October 12, 2022		
Hour	EB	WB	EB	WB	EB	WB	EB	WB	EB	WB	EB	WB	EB	WB	
12:00 PM			30	35	13	22	21	21	38	38	26	23	28	32	
1:00 PM			53	46	28	12	19	11	45	26	44	42	56	40	
2:00 PM			65	79	24	18	12	20	88	122	88	101	72	84	
3:00 PM			42	36	29	23	18	11	29	43	52	43	44	34	
4:00 PM	16	19	44	26	17	22	16	12	58	25	52	45	46	34	
5:00 PM	34	31	47	37	20	16	11	8	37	26	53	29	60	38	
6:00 PM	36	27	22	16	20	22	15	17	21	48	38	21	35	26	
7:00 PM	24	20	21	11	13	12	11	13	11	6	14	34	21	19	
8:00 PM	25	16	9	11	11	7	5	11	22	7	8	11	13	21	
9:00 PM	4	6	13	6	6	4	8	2	6	4	4	6	1	8	
10:00 PM	6	2	9	5	6	6	1	1	2	4	5	3	1	2	
11:00 PM	2	4	2	5	4	3	2	3	2	4	1	3	0	0	

Appendix B Existing Traffic Operations

Intersection						
Int Delay, s/veh	0.7					
		EDD	MDI	MOT	ND	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	7	ሻ	↑	N/	
Traffic Vol, veh/h	356	5	12	312	7	21
Future Vol, veh/h	356	5	12	312	7	21
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	200	300	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	78	78	78	78	78	78
Heavy Vehicles, %	5	2	2	5	25	25
Mvmt Flow	456	6	15	400	9	27
WWW.CT IOW	100		10	100	J	
	lajor1		Major2		Minor1	
Conflicting Flow All	0	0	462	0	886	456
Stage 1	-	-	-	-	456	-
Stage 2	-	-	-	-	430	-
Critical Hdwy	-	-	4.12	-	6.65	6.45
Critical Hdwy Stg 1	-	-	-	-	5.65	-
Critical Hdwy Stg 2	_	_	_	-	5.65	_
Follow-up Hdwy	_	_	2.218	_		3.525
Pot Cap-1 Maneuver	_	_	1099	_	287	559
Stage 1	_	_	-	_	593	-
Stage 2	_	_	_	_	610	_
Platoon blocked, %				_	010	_
Mov Cap-1 Maneuver		-	1099	-	283	559
	-	-			283	
Mov Cap-2 Maneuver	-	-	-	-		-
Stage 1	-	-	-	-	593	-
Stage 2	-	-	-	-	601	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.3		13.7	
HCM LOS	- 0		0.0		В	
TIOIVI LOO					U	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		449	-	-	1099	-
HCM Lane V/C Ratio		0.08	-		0.014	-
HCM Control Delay (s)		13.7	_	-	8.3	-
HCM Lane LOS		В	-	-	A	-
HCM 95th %tile Q(veh)		0.3	_	-	0	-
		3.0				

Intersection												
Int Delay, s/veh	2.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	^	7	ħ	ĵ.			4			4	
Traffic Vol, veh/h	0	330	47	65	281	2	26	1	24	5	7	17
Future Vol, veh/h	0	330	47	65	281	2	26	1	24	5	7	17
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	325	-	325	250	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	_	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	83	83	83	83	83	83	83	83	83	83	83	83
Heavy Vehicles, %	2	5	2	2	5	2	13	2	13	2	2	2
Mvmt Flow	0	398	57	78	339	2	31	1	29	6	8	20
Major/Minor	Major1		ı	Major2			Minor1			Minor2		
Conflicting Flow All	341	0	0	455	0	0	908	895	398	938	951	340
Stage 1	-	-	-	-	-	-	398	398	-	496	496	-
Stage 2	_	_	_	_	_	-	510	497	_	442	455	_
Critical Hdwy	4.12	-	_	4.12	_	_	7.23	6.52	6.33	7.12	6.52	6.22
Critical Hdwy Stg 1	-	_	_	-	_	_	6.23	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.23	5.52	-		5.52	-
Follow-up Hdwy	2.218	_	_	2.218	_	_			3.417	3.518	4.018	3.318
Pot Cap-1 Maneuver	1218	_	_	1106	_	_	245	280	628	244	260	702
Stage 1		_	_	-	_	_	606	603	-	556	545	-
Stage 2	_	_	_	-	_	_	526	545	-	594	569	_
Platoon blocked, %		_	-		-	-	-					
Mov Cap-1 Maneuver	1218	-	-	1106	-	-	219	260	628	219	242	702
Mov Cap-2 Maneuver	-	-	-	-	-	-	219	260	-	219	242	-
Stage 1	-	-	-	-	-	-	606	603	-		506	-
Stage 2	-	-	-	-	-	-	467	506	-	566	569	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0			1.6			19.1			15.4		
HCM LOS							С			С		
Minor Lane/Major Mvm	nt N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		317	1218	-	-	1106			382			
HCM Lane V/C Ratio		0.194	-	-		0.071	-	-	0.091			
HCM Control Delay (s)		19.1	0	-	-	8.5	-	-	15.4			
HCM Lane LOS		С	A	-	-	Α	-	-	С			
HCM 95th %tile Q(veh))	0.7	0	-	-	0.2	-	-	0.3			

Intersection	
Intersection Delay, s/veh	7.9
Intersection LOS	Α

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	1	0	85	1	1	0	2	131	2	6	0
Future Vol, veh/h	0	1	0	85	1	1	0	2	131	2	6	0
Peak Hour Factor	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
Heavy Vehicles, %	2	2	2	13	2	2	2	2	17	2	2	2
Mvmt Flow	0	1	0	120	1	1	0	3	185	3	8	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach		EB		WB				NB		SB		
Opposing Approach		WB		EB				SB		NB		
Opposing Lanes		1		1				1		1		
Conflicting Approach Left		SB		NB				EB		WB		
Conflicting Lanes Left		1		1				1		1		
Conflicting Approach Right		NB		SB				WB		EB		
Conflicting Lanes Right		1		1				1		1		
HCM Control Delay		7.5		8.6				7.5		7.5		
HCM LOS		Α		Α				Α		Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	98%	25%	
Vol Thru, %	2%	100%	1%	75%	
Vol Right, %	98%	0%	1%	0%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	133	1	87	8	
LT Vol	0	0	85	2	
Through Vol	2	1	1	6	
RT Vol	131	0	1	0	
Lane Flow Rate	187	1	123	11	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.191	0.002	0.159	0.014	
Departure Headway (Hd)	3.669	4.481	4.657	4.468	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	983	803	766	805	
Service Time	1.669	2.481	2.713	2.472	
HCM Lane V/C Ratio	0.19	0.001	0.161	0.014	
HCM Control Delay	7.5	7.5	8.6	7.5	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.7	0	0.6	0	

Intersection Int Delay, s/veh 0.1 Movement WBL WBR NBT NBR SBL SB Lane Configurations ↑ ↓
nt Delay, s/veh 0.1 Movement WBL WBR NBT NBR SBL SB Lane Configurations
Lane Configurations Y Lane Configurations Y Lane Configurations Fraffic Vol, veh/h 2 0 115 5 0 7 Future Vol, veh/h 2 0 115 5 0 7
Lane Configurations Y Lane Configurations Y Lane Configurations Fraffic Vol, veh/h 2 0 115 5 0 7 Future Vol, veh/h 2 0 115 5 0 7
Traffic Vol, veh/h 2 0 115 5 0 7 Future Vol, veh/h 2 0 115 5 0 7
Future Vol, veh/h 2 0 115 5 0 7
· · · · · · · · · · · · · · · · · · ·
JUHHIGHING F GUS. #/HI
Sign Control Stop Stop Free Free Free
RT Channelized - None - None - None
Storage Length 0
/eh in Median Storage, # 0 - 0
Grade, % 0 - 0
Peak Hour Factor 68 68 68 68 68 6
Heavy Vehicles, % 2 2 17 2 2 1
Mvmt Flow 3 0 169 7 0 11
Major/Minor Minor1 Major1 Major2
Conflicting Flow All 285 173 0 0 176
Stage 1 173
Stage 2 112
Critical Hdwy 6.42 6.22 4.12
Critical Hdwy Stg 1 5.42
Critical Hdwy Stg 2 5.42
Follow-up Hdwy 3.518 3.318 2.218
Pot Cap-1 Maneuver 705 871 1400
Stage 1 857
Stage 2 913
Platoon blocked, %
Mov Cap-1 Maneuver 705 871 1400
Mov Cap-1 Maneuver 705 071 - 1400 - 1400 - 1400 - 1400 - 1400
o; , , o
3
Stage 2 913
Approach WB NB SB
HCM Control Delay, s 10.1 0 0
HCM Control Delay, s 10.1 0 0 HCM LOS B
HCM Control Delay, s 10.1 0 0 HCM LOS B Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SB
HCM Control Delay, s 10.1 0 0 HCM LOS B Minor Lane/Major Mvmt NBT NBRWBLn1 SBL SB Capacity (veh/h) - 705 1400
Capacity (veh/h)
Capacity (veh/h)
Capacity (veh/h)

	٠	→	1	•	•	4	†	-	ļ
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	71	598	18	418	63	22	25	14	88
v/c Ratio	0.11	0.50	0.03	0.37	0.06	0.10	0.10	0.07	0.40
Control Delay	7.3	16.0	7.9	14.8	0.1	28.1	30.9	26.7	15.7
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	7.3	16.0	7.9	14.8	0.1	28.1	30.9	26.7	15.7
Queue Length 50th (ft)	6	82	1	95	0	13	14	8	7
Queue Length 95th (ft)	36	#419	13	250	0	19	26	15	29
Internal Link Dist (ft)		520		977			186		159
Turn Bay Length (ft)	300		125		125			100	
Base Capacity (vph)	662	1208	541	1128	1002	214	474	203	411
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.11	0.50	0.03	0.37	0.06	0.10	0.05	0.07	0.21
Intersection Summary									

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	1	+	•	1	†	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	ĵ.		7	^	7	7	7		7	7	
Traffic Volume (veh/h)	54	427	27	14	318	48	17	18	1	11	9	58
Future Volume (veh/h)	54	427	27	14	318	48	17	18	1	11	9	58
Number	5	2	12	1	6	16	7	4	14	3	8	18
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	0.95		1.00	0.96		0.95
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1814	1749	1850	1814	1745	1814	1814	1814	1850	1581	1609	1850
Adj Flow Rate, veh/h	71	562	33	18	418	35	22	24	0	14	12	8
Adj No. of Lanes	1	1	0	1	1	1	1	1	0	1	1	0
Peak Hour Factor	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76	0.76
Percent Heavy Veh, %	2	6	2	2	6	2	2	2	2	17	2	17
Cap, veh/h	595	996	59	455	1003	878	246	197	0	221	87	58
Arrive On Green	0.06	0.61	0.61	0.03	0.57	0.57	0.03	0.11	0.00	0.02	0.10	0.10
Sat Flow, veh/h	1727	1635	96	1727	1745	1528	1727	1814	0	1506	881	588
Grp Volume(v), veh/h	71	0	595	18	418	35	22	24	0	14	0	20
Grp Sat Flow(s),veh/h/ln	1727	0	1731	1727	1745	1528	1727	1814	0	1506	0	1469
Q Serve(g_s), s	1.5	0.0	19.4	0.4	12.7	0.9	1.1	1.1	0.0	0.8	0.0	1.2
Cycle Q Clear(g_c), s	1.5	0.0	19.4	0.4	12.7	0.9	1.1	1.1	0.0	0.8	0.0	1.2
Prop In Lane	1.00		0.06	1.00		1.00	1.00		0.00	1.00		0.40
Lane Grp Cap(c), veh/h	595	0	1055	455	1003	878	246	197	0	221	0	145
V/C Ratio(X)	0.12	0.00	0.56	0.04	0.42	0.04	0.09	0.12	0.00	0.06	0.00	0.14
Avail Cap(c_a), veh/h	614	0	1055	535	1003	878	317	477	0	298	0	387
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	7.4	0.0	11.0	8.4	11.3	8.8	36.3	38.3	0.0	36.2	0.0	39.1
Incr Delay (d2), s/veh	0.1	0.0	2.2	0.0	1.3	0.1	0.2	0.3	0.0	0.1	0.0	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.7	0.0	9.9	0.2	6.4	0.4	0.5	0.6	0.0	0.3	0.0	0.5
LnGrp Delay(d),s/veh	7.5	0.0	13.2	8.4	12.6	8.9	36.5	38.5	0.0	36.3	0.0	39.5
LnGrp LOS	Α		В	Α	В	Α	D	D		D		D
Approach Vol, veh/h		666			471			46			34	
Approach Delay, s/veh		12.6			12.1			37.5			38.2	
Approach LOS		В			В			D			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.6	64.9	7.2	15.3	10.9	61.6	8.1	14.4				
Change Period (Y+Rc), s	5.0	7.0	5.0	5.0	5.0	7.0	5.0	5.0				
Max Green Setting (Gmax), s	7.0	34.0	7.0	25.0	7.0	34.0	7.0	25.0				
Max Q Clear Time (g_c+l1), s	2.4	21.4	2.8	3.1	3.5	14.7	3.1	3.2				
Green Ext Time (p_c), s	0.0	2.9	0.0	0.1	0.0	2.3	0.0	0.0				
Intersection Summary												
HCM 2010 Ctrl Delay			14.1									
HCM 2010 LOS			В									
110.11 20 10 200												

Intersection						
Int Delay, s/veh	0.7					
		ED5	14/5	14/5-	No	NES
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	•	7	*	†	Y	
Traffic Vol, veh/h	260	8	10	266	9	19
Future Vol, veh/h	260	8	10	266	9	19
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	200	300	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	5	2	2	5	25	25
Mvmt Flow	277	9	11	283	10	20
minici ion				200	10	
	lajor1		Major2		Minor1	
Conflicting Flow All	0	0	286	0	582	277
Stage 1	-	-	-	-	277	-
Stage 2	-	-	-	-	305	-
Critical Hdwy	-	-	4.12	-	6.65	6.45
Critical Hdwy Stg 1	-	-	-	-	5.65	-
Critical Hdwy Stg 2	-	-	-	-	5.65	-
Follow-up Hdwy	-	_	2.218	-		3.525
Pot Cap-1 Maneuver	-	-	1276	-	439	710
Stage 1	_	_	-	_	720	-
Stage 2	_	_	_	_	698	_
Platoon blocked, %	_	_		<u>-</u>	555	
Mov Cap-1 Maneuver	_	_	1276		435	710
Mov Cap-1 Maneuver	-	_	1210	-	435	-
Stage 1	_		-	-	720	<u>-</u>
			-		692	
Stage 2	-	-	-	-	092	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.3		11.4	
HCM LOS					В	
Minor Lane/Major Mvmt	<u> </u>	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		590	-		1276	-
HCM Lane V/C Ratio		0.05	-	-	0.008	-
HCM Control Delay (s)		11.4	-	-	7.8	-
HCM Lane LOS		В	-	-	Α	-
HCM 95th %tile Q(veh)		0.2	-	-	0	-
11.						

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBR SBR Cance Configurations Tarffic Vol, veh/h 4 255 20 17 254 3 16 2 24 2 2 6 Conflicting Peds, #hr 0 0 0 0 0 0 0 0 0													
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBR SBR SBR SBR Configurations Traffic Vol., veh/h	Intersection												
Lane Configurations	Int Delay, s/veh	1.3											
Lane Configurations	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	Lane Configurations	*	^	7		1>			44			44	
Future Vol, veh/h Conflicting Peds, #hr O O O O O O O O O O O O O O O O O O O		4					3	16		24	2		6
Sign Control Free Free	Future Vol, veh/h	4	255	20	17	254	3	16	2	24	2	2	6
RT Channelized	Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Storage Length 325	Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
Veh in Median Storage, # - 0	RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Grade, % - 0 0 0 0 0 - 0 0 0 0 0 0 0 0	Storage Length	325	-	325	250	-	-	-	-	-	-	-	-
Peak Hour Factor	Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Heavy Vehicles, % 2 5 2 2 5 2 13 2 13 2 2 2 2 2 2 2 2 2	Grade, %		-						-				
Mynt Flow 4 266 21 18 265 3 17 2 25 2 2 6 Major/Minor Major1 Major2 Minor1 Minor2 Conflicting Flow All 268 0 0 287 0 0 581 578 266 601 598 267 Stage 1 - - - - - 274 274 - 303 303 - Stage 2 - - - - - 274 274 - 303 303 - Critical Howy Stg 1 - - - - 6.23 5.52 - 6.12 5.52 - Critical Howy Stg 2 - - - - 6.23 5.52 - 6.12 5.52 - Critical Howy Stg 2 - - - - 6.23 5.52 - 6.12 5.52 - 6.12 <	Peak Hour Factor	96	96	96	96	96	96		96		96		
Major/Minor Major1	Heavy Vehicles, %												
Conflicting Flow All 268 0 0 287 0 0 581 578 266 601 598 267 Stage 1 274 274 - 303 303 - Stage 2 4.12 - 307 304 - 298 295 - Critical Hdwy 4.12 - 4.12 4.12 7.23 6.52 6.33 7.12 6.52 6.22 Critical Hdwy Stg 1 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2	Mvmt Flow	4	266	21	18	265	3	17	2	25	2	2	6
Conflicting Flow All 268 0 0 287 0 0 581 578 266 601 598 267 Stage 1 274 274 - 303 303 - Stage 2 4.12 - 307 304 - 298 295 - Critical Hdwy 4.12 - 4.12 4.12 7.23 6.52 6.33 7.12 6.52 6.22 Critical Hdwy Stg 1 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2													
Conflicting Flow All 268 0 0 287 0 0 581 578 266 601 598 267 Stage 1 274 274 - 303 303 - Stage 2 4.12 - 307 304 - 298 295 - Critical Hdwy 4.12 - 4.12 4.12 7.23 6.52 6.33 7.12 6.52 6.22 Critical Hdwy Stg 1 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2	Major/Minor	Major1		_	Maior2			Minor1			Minor2		
Stage 1 - - - - 274 274 - 303 303 - Stage 2 - - - - - 307 304 - 298 295 - Critical Hdwy 4.12 - - 4.12 - - 7.23 6.52 6.33 7.12 6.52 6.22 Critical Hdwy Stg 1 - - - - 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 - - - - 6.23 5.52 - 6.12 5.52 - Follow-up Hdwy 2.218 - 2.218 - 3.617 4.018 3.417 3.518 4.018 3.318 Pot Cap-1 Maneuver 1296 - 1275 - 409 427 747 412 416 772 Stage 1 - - - - - - - - - - - - - - - - - -			n			n			578			502	267
Stage 2					201								
Critical Hdwy 4.12 - 4.12 - - 7.23 6.52 6.33 7.12 6.52 6.22 Critical Hdwy Stg 1 - - - - - 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 - - - - - 6.23 5.52 - 6.12 5.52 - Follow-up Hdwy 2.218 - - 2.218 - - 3.617 4.018 3.417 3.518 4.018 3.318 Pot Cap-1 Maneuver 1296 - 1275 - 409 427 747 412 416 772 Stage 1 - - - - - 680 663 - 711 669 - Platoon blocked, % - - - 1275 - 399 420 747 391 409 772 Mov Cap-1 Maneuver 1296 - 1275 - 399 420 747 391 409 772	•			_	_								
Critical Hdwy Stg 1 - - - - 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 - - - - 6.23 5.52 - 6.12 5.52 - Follow-up Hdwy 2.218 - - 2.218 - - 3.617 4.018 3.417 3.518 4.018 3.318 Pot Cap-1 Maneuver 1296 - - 1275 - 409 427 747 412 416 772 Stage 1 -				_	4 12								
Critical Hdwy Stg 2 - - - - 6.23 5.52 - 6.12 5.52 - Follow-up Hdwy 2.218 - - 2.218 - - 3.617 4.018 3.417 3.518 4.018 3.318 Pot Cap-1 Maneuver 1296 - - 1275 - 409 427 747 412 416 772 Stage 1 - - - - - 680 663 - 711 669 - Platoon blocked, % -				-	- 1.12								
Follow-up Hdwy 2.218 2.218 3.617 4.018 3.417 3.518 4.018 3.318 Pot Cap-1 Maneuver 1296 1275 409 427 747 412 416 772 Stage 1				_	_								
Pot Cap-1 Maneuver 1296		2,218		_	2.218								3,318
Stage 1 - - - - 709 683 - 706 664 - Stage 2 - - - - - 680 663 - 711 669 - Platoon blocked, % -<				-									
Stage 2 - - - - 680 663 - 711 669 - Platoon blocked, % - <	•		_	_	-	_	_						
Platoon blocked, % -		-	-	_	-	_	-			_			-
Mov Cap-1 Maneuver 1296 - - 1275 - - 399 420 747 391 409 772 Mov Cap-2 Maneuver - - - - - - 399 420 - 391 409 - Stage 1 - - - - - 707 681 - 704 655 - Stage 2 - - - - - 663 654 - 683 667 - Approach EB WB WB NB SB HCM Control Delay, s 0.1 0.5 12.2 11.5 HCM Lane V/C Ratio NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 546 1296 - - 1275 - - 563 HCM Lane V/C Ratio 0.08 0.003 - - 0.014	Platoon blocked, %		-	-		-	-						
Mov Cap-2 Maneuver - - - - - 399 420 - 391 409 - Stage 1 - - - - - 707 681 - 704 655 - Stage 2 - - - - 663 654 - 683 667 - Approach EB WB NB NB SB HCM Control Delay, s 0.1 0.5 12.2 11.5 HCM Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 546 1296 - - 1275 - - 563 HCM Lane V/C Ratio 0.08 0.003 - - 0.014 - - 0.019 HCM Lane LOS B A - - A - - B		1296	-	-	1275	-	-	399	420	747	391	409	772
Stage 1 - - - - 707 681 - 704 655 - Stage 2 - - - - - 663 654 - 683 667 - Approach EB WB NB NB SB HCM Control Delay, s 0.1 0.5 12.2 11.5 HCM LOS B B B B Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 546 1296 - - 1275 - - 563 HCM Lane V/C Ratio 0.08 0.003 - - 0.014 - - 0.019 HCM Control Delay (s) 12.2 7.8 - - 7.9 - - 11.5 HCM Lane LOS B A - - A - - B	Mov Cap-2 Maneuver		-	-	-	-	-						
Stage 2 - - - - - 663 654 - 683 667 - Approach EB WB NB SB HCM Control Delay, s 0.1 0.5 12.2 11.5 HCM LOS B B B Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 546 1296 - - 1275 - - 563 HCM Lane V/C Ratio 0.08 0.003 - - 0.014 - - 0.019 HCM Control Delay (s) 12.2 7.8 - - 7.9 - - 11.5 HCM Lane LOS B A - A - B	·	-	-	-	-	-	-			-			-
Approach EB WB NB SB HCM Control Delay, s 0.1 0.5 12.2 11.5 HCM LOS B B B Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 546 1296 - - 1275 - 563 HCM Lane V/C Ratio 0.08 0.003 - - 0.014 - - 0.019 HCM Control Delay (s) 12.2 7.8 - - 7.9 - - 11.5 HCM Lane LOS B A - - A - - B	•	-	-	-	-	-	-		654	-	683	667	-
HCM Control Delay, s													
HCM Control Delay, s	Annroach	ED			\\/D			NID			QD.		
Minor Lane/Major Mvmt NBLn1 EBL EBR WBL WBT WBR SBLn1 Capacity (veh/h) 546 1296 - - 1275 - - 563 HCM Lane V/C Ratio 0.08 0.003 - - 0.014 - - 0.019 HCM Control Delay (s) 12.2 7.8 - - 7.9 - - 11.5 HCM Lane LOS B A - A - B													
Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 546 1296 - - 1275 - - 563 HCM Lane V/C Ratio 0.08 0.003 - - 0.014 - - 0.019 HCM Control Delay (s) 12.2 7.8 - - 7.9 - - 11.5 HCM Lane LOS B A - - A - B		0.1			0.5								
Capacity (veh/h) 546 1296 - - 1275 - - 563 HCM Lane V/C Ratio 0.08 0.003 - - 0.014 - - 0.019 HCM Control Delay (s) 12.2 7.8 - - 7.9 - - 11.5 HCM Lane LOS B A - A - B	UCM FOS							В			В		
Capacity (veh/h) 546 1296 - - 1275 - - 563 HCM Lane V/C Ratio 0.08 0.003 - - 0.014 - - 0.019 HCM Control Delay (s) 12.2 7.8 - - 7.9 - - 11.5 HCM Lane LOS B A - A - B													
HCM Lane V/C Ratio 0.08 0.003 - - 0.014 - - 0.019 HCM Control Delay (s) 12.2 7.8 - - 7.9 - - 11.5 HCM Lane LOS B A - A - B	Minor Lane/Major Mvn	nt N	NBLn1	EBL	EBT			WBT	WBR	SBLn1			
HCM Control Delay (s) 12.2 7.8 7.9 11.5 HCM Lane LOS B A A B	Capacity (veh/h)		546	1296	-	-	1275	-	-	563			
HCM Lane LOS B A A B	HCM Lane V/C Ratio			0.003	-	-		-	-				
)		7.8	-	-	7.9	-	-	11.5			
HCM 95th %tile Q(veh) 0.3 0 0 0.1	HCM Lane LOS			Α	-	-		-	-				
	HCM 95th %tile Q(veh)	0.3	0	-	-	0	-	-	0.1			

Intersection			
Intersection Delay, s/veh	0		
Intersection LOS	-		

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	0	0	0	0	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour Factor	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Heavy Vehicles, %	2	2	2	13	2	2	2	2	17	2	2	2
Mvmt Flow	0	0	0	0	0	0	0	0	0	0	0	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach		EB			WB			NB			SB	
Opposing Approach		WB			EB			SB			NB	
Opposing Lanes		1			1			1			1	
Conflicting Approach Left		SB			NB			EB			WB	
Conflicting Lanes Left		1			1			1			1	
Conflicting Approach Right		NB			SB			WB			EB	
Conflicting Lanes Right		1			1			1			1	
HCM Control Delay		0			0			0			0	
HCM LOS		-			-			-			-	

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	0%	0%	·
Vol Thru, %	100%	100%	100%	100%	
Vol Right, %	0%	0%	0%	0%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	0	0	0	0	
LT Vol	0	0	0	0	
Through Vol	0	0	0	0	
RT Vol	0	0	0	0	
Lane Flow Rate	0	0	0	0	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0	0	0	0	
Departure Headway (Hd)	3.934	3.934	3.934	3.934	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	0	0	0	0	
Service Time	1.934	1.934	1.934	1.934	
HCM Lane V/C Ratio	0	0	0	0	
HCM Control Delay	6.9	6.9	6.9	6.9	
HCM Lane LOS	N	N	N	N	
HCM 95th-tile Q	0	0	0	0	

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥		1			4
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-			None	-	
Storage Length	0	-	_	-	_	-
Veh in Median Storag		_	0	-	_	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	25	25	25	25	25	25
Heavy Vehicles, %	2	2	17	2	2	17
Mvmt Flow	0	0	0	0	0	0
IVIVIIIL I IOW	U	U	U	U	U	U
Major/Minor	Minor1	N	Major1	1	Major2	
Conflicting Flow All	4	0	0	0	0	0
Stage 1	0	-	-	-	-	-
Stage 2	4	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	1018	-	-	-	_	-
Stage 1	-	_	_	_	-	-
Stage 2	1019	_	_	_	_	_
Platoon blocked, %	1010		_	_		_
Mov Cap-1 Maneuver	1018	_	_	_	_	_
Mov Cap-1 Maneuver		-	_	_	_	<u>-</u>
Stage 1	1010	-		-	-	-
Stage 2	1019	-	-	-	-	_
Staye 2	1019	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	Α					
Min I /M - i M - i		NDT	NDDV	VDI 4	ODI	ODT
Minor Lane/Major Mv	mt	NBT	NRKA	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	-	-	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s	s)	-	-	0	0	-
HCM Lane LOS		-	-	Α	Α	-
HCM 95th %tile Q(vel	h)	-	-	-	-	-

	۶	→	•	•	•	4	†	1	↓
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	29	690	17	586	22	29	22	23	21
v/c Ratio	0.05	0.56	0.04	0.49	0.02	0.12	0.10	0.11	0.12
Control Delay	7.9	17.6	8.2	17.5	0.0	27.4	14.4	26.8	19.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	7.9	17.6	8.2	17.5	0.0	27.4	14.4	26.8	19.1
Queue Length 50th (ft)	5	198	3	227	0	14	1	11	3
Queue Length 95th (ft)	23	#699	16	#551	0	29	19	25	20
Internal Link Dist (ft)		520		977			186		159
Turn Bay Length (ft)	300		125		125			100	
Base Capacity (vph)	540	1241	472	1205	1061	235	409	217	379
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.05	0.56	0.04	0.49	0.02	0.12	0.05	0.11	0.06

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	•	•	4	†	~	-	ļ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	7		*	↑	7	*	7		*	7	
Traffic Volume (veh/h)	27	620	28	16	551	21	27	1	20	22	5	15
Future Volume (veh/h)	27	620	28	16	551	21	27	1	20	22	5	15
Number	5	2	12	1	6	16	7	4	14	3	8	18
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	0.95		0.95	0.95		0.95
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1814	1748	1850	1814	1745	1814	1814	1814	1850	1581	1631	1850
Adj Flow Rate, veh/h	29	660	29	17	586	13	29	1	2	23	5	1
Adj No. of Lanes	1	1	0	1	1	1	1	1	0	1	1	0
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	6	2	2	6	2	2	2	2	17	2	17
Cap, veh/h	466	1014	45	387	1043	914	261	51	102	238	120	24
Arrive On Green	0.04	0.61	0.61	0.03	0.60	0.60	0.04	0.10	0.10	0.03	0.09	0.09
Sat Flow, veh/h	1727	1662	73	1727	1745	1529	1727	521	1042	1506	1306	261
Grp Volume(v), veh/h	29	0	689	17	586	13	29	0	3	23	0	6
Grp Sat Flow(s),veh/h/ln	1727	0	1735	1727	1745	1529	1727	0	1564	1506	0	1567
Q Serve(g_s), s	0.6	0.0	24.4	0.3	19.3	0.3	1.4	0.0	0.2	1.3	0.0	0.3
Cycle Q Clear(g_c), s	0.6	0.0	24.4	0.3	19.3	0.3	1.4	0.0	0.2	1.3	0.0	0.3
Prop In Lane	1.00		0.04	1.00		1.00	1.00		0.67	1.00		0.17
Lane Grp Cap(c), veh/h	466	0	1059	387	1043	914	261	0	153	238	0	144
V/C Ratio(X)	0.06	0.00	0.65	0.04	0.56	0.01	0.11	0.00	0.02	0.10	0.00	0.04
Avail Cap(c_a), veh/h	525	0	1059	469	1043	914	321	0	411	299	0	412
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	8.4	0.0	12.0	9.5	11.6	7.8	36.5	0.0	38.7	36.4	0.0	39.3
Incr Delay (d2), s/veh	0.1	0.0	3.1	0.0	2.2	0.0	0.2	0.0	0.1	0.2	0.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.3	0.0	12.4	0.2	9.9	0.1	0.7	0.0	0.1	0.5	0.0	0.1
LnGrp Delay(d),s/veh	8.5	0.0	15.1	9.6	13.8	7.8	36.6	0.0	38.8	36.6	0.0	39.4
LnGrp LOS	Α		В	Α	В	Α	D		D	D		D
Approach Vol, veh/h		718			616			32			29	
Approach Delay, s/veh		14.8			13.5			36.8			37.2	
Approach LOS		В			В			D			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.5	65.0	8.2	14.3	8.7	63.8	8.7	13.7				
Change Period (Y+Rc), s	5.0	7.0	5.0	5.0	5.0	7.0	5.0	5.0				
Max Green Setting (Gmax), s	7.0	34.0	7.0	25.0	7.0	34.0	7.0	25.0				
Max Q Clear Time (g c+l1), s	2.3	26.4	3.3	2.2	2.6	21.3	3.4	2.3				
Green Ext Time (p_c), s	0.0	2.6	0.0	0.0	0.0	2.9	0.0	0.0				
	0.0	2.0	0.0	0.0	0.0	۷.5	0.0	0.0				
Intersection Summary HCM 2010 Ctrl Delay			15.2									
HCM 2010 LOS			В									

Intersection						
Int Delay, s/veh	0.5					
		EDD	WDI	WDT	ND	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	7	ሻ	↑	A	
Traffic Vol, veh/h	425	7	20	432	9	11
Future Vol, veh/h	425	7	20	432	9	11
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	200	300	-	0	-
Veh in Median Storag	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	5	2	2	5	25	25
Mvmt Flow	462	8	22	470	10	12
	.,,_	_				
				-		
Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	470	0	976	462
Stage 1	-	-	-	-	462	-
Stage 2	-	-	-	-	514	-
Critical Hdwy	-	-	4.12	-	6.65	6.45
Critical Hdwy Stg 1	-	-	-	-	5.65	-
Critical Hdwy Stg 2	-	-	-	-	5.65	-
Follow-up Hdwy	-	-	2.218	-	3.725	3.525
Pot Cap-1 Maneuver	-	-	1092	_	253	555
Stage 1	_	_		-	589	-
Stage 2	_	_	_	_	556	_
Platoon blocked, %	<u>-</u>	_		_	000	
Mov Cap-1 Maneuver		_	1092	_	248	555
Mov Cap-1 Maneuver		_			248	- 555
		-	-	-		
Stage 1	-	-	-	-	589	-
Stage 2	-	-	-	-	545	-
Approach	EB		WB		NB	
HCM Control Delay, s			0.4		15.8	
HCM LOS	· ·		0.1		С	
HOW LOO					J	
Minor Lane/Major Mvr	nt l	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		356	-	-	1092	-
HCM Lane V/C Ratio		0.061	-	-	0.02	-
HCM Control Delay (s	i)	15.8	-	-	8.4	-
HCM Lane LOS		С	-	-	Α	-
HCM 95th %tile Q(veh	1)	0.2	_	_	0.1	_
	')	7.2			J. 1	

Intersection												
Int Delay, s/veh	1.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	۲	1→			4			4	
Traffic Vol, veh/h	12	400	24	14	429	3	17	8	15	4	0	6
Future Vol, veh/h	12	400	24	14	429	3	17	8	15	4	0	6
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	325	-	325	250	-	-	-	-	-	-	-	-
Veh in Median Storage	е,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	81	81	81	81	81	81	81	81	81	81	81	81
Heavy Vehicles, %	2	5	2	2	5	2	13	2	13	2	2	2
Mvmt Flow	15	494	30	17	530	4	21	10	19	5	0	7
Major/Minor	Major1		ı	Major2			Minor1			Minor2		
Conflicting Flow All	534	0	0	524	0	0	1094	1092	494	1120	1120	532
Stage 1	-	-	-	-	-	-	524	524	-	566	566	-
Stage 2	-	-	-	-	-	-	570	568	-	554	554	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.23	6.52	6.33	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.23	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.23	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.617		3.417	3.518	4.018	
Pot Cap-1 Maneuver	1034	-	-	1043	-	-	182	215	554	184	206	547
Stage 1	-	-	-	-	-	-	517	530	-	509	507	-
Stage 2	-	-	-	-	-	-	488	506	-	517	514	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1034	-	-	1043	-	-	175	208	554	167	200	547
Mov Cap-2 Maneuver	-	-	-	-	-	-	175	208	-	167	200	-
Stage 1	-	-	-	-	-	-	509	522	-	501	499	-
Stage 2	-	-	-	-	-	-	474	498	-	483	506	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.2			0.3			23.3			18.2		
HCM LOS							С			С		
Minor Lane/Major Mvn	nt I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		246	1034	-		1043	-	-	286			
HCM Lane V/C Ratio			0.014	-		0.017	-	-	0.043			
HCM Control Delay (s)	23.3	8.5	-	-	8.5	-	-				
HCM Lane LOS		С	Α	-	-	Α	-	-	С			
HCM 95th %tile Q(veh)	0.7	0	-	-	0.1	-	-	0.1			
	•											

Intersection	
Intersection Delay, s/veh Intersection LOS	7.3
Intersection LOS	Α

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	1	48	0	2	2	4	49	4	3	0
Future Vol, veh/h	0	0	1	48	0	2	2	4	49	4	3	0
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Heavy Vehicles, %	2	2	2	13	2	2	2	2	17	2	2	2
Mvmt Flow	0	0	1	58	0	2	2	5	59	5	4	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach		EB		WB			NB			SB		
Opposing Approach		WB		EB			SB			NB		
Opposing Lanes		1		1			1			1		
Conflicting Approach Left		SB		NB			EB			WB		
Conflicting Lanes Left		1		1			1			1		
Conflicting Approach Right		NB		SB			WB			EB		
Conflicting Lanes Right		1		1			1			1		
HCM Control Delay		6.5		7.8			6.8			7.3		
HCM LOS		Α		Α			Α			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	4%	0%	96%	57%	
Vol Thru, %	7%	0%	0%	43%	
Vol Right, %	89%	100%	4%	0%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	55	1	50	7	
LT Vol	2	0	48	4	
Through Vol	4	0	0	3	
RT Vol	49	1	2	0	
Lane Flow Rate	66	1	60	8	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.065	0.001	0.074	0.01	
Departure Headway (Hd)	3.52	3.509	4.419	4.207	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	1012	1016	812	847	
Service Time	1.562	1.543	2.437	2.252	
HCM Lane V/C Ratio	0.065	0.001	0.074	0.009	
HCM Control Delay	6.8	6.5	7.8	7.3	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.2	0	0.2	0	

Intersection						
Int Delay, s/veh	1.1					
		WED	Not	NDD	051	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		f)			ન
Traffic Vol, veh/h	13	1	61	8	2	45
Future Vol, veh/h	13	1	61	8	2	45
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	2	2	17	2	2	17
Mymt Flow	15	1	71	9	2	52
WINITE IOW	10	ı		J		UL
Major/Minor	Minor1	N	Major1	ا	Major2	
Conflicting Flow All	132	76	0	0	80	0
Stage 1	76	-	-	-	-	-
Stage 2	56	-	-	_	-	-
Critical Hdwy	6.42	6.22	_	_	4.12	-
Critical Hdwy Stg 1	5.42	-	_	_	-	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518	3.318	_	_	2.218	_
Pot Cap-1 Maneuver	862	985	_	_	1518	_
	947	-		_	1310	
Stage 1			-	-	-	
Stage 2	967	-	-	-	-	-
Platoon blocked, %	221		-	-		-
Mov Cap-1 Maneuver	861	985	-	-	1518	-
Mov Cap-2 Maneuver	861	-	-	-	-	-
Stage 1	947	-	-	-	-	-
Stage 2	966	-	-	-	-	-
Annroach	WB		NB		CD	
Approach					SB	
	9.2		0		0.3	
HCM Control Delay, s						
HCM LOS	A					
HCM LOS	A	NRT	NRRV	VBI n1	SRI	SRT
HCM LOS Minor Lane/Major Mvn	A	NBT		VBLn1	SBL 1518	SBT
Minor Lane/Major Mvn Capacity (veh/h)	A	NBT -	-	869	1518	-
Minor Lane/Major Mvn Capacity (veh/h) HCM Lane V/C Ratio	A nt	NBT - -	-	869 0.019	1518 0.002	-
Minor Lane/Major Mvn Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	A nt	- - -	- - -	869 0.019 9.2	1518 0.002 7.4	- - 0
Minor Lane/Major Mvn Capacity (veh/h) HCM Lane V/C Ratio	A	NBT - - -	-	869 0.019	1518 0.002	-

	۶	→	1	•	*	4	†	/	Ţ
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	44	627	10	710	29	46	21	21	43
v/c Ratio	0.10	0.49	0.02	0.59	0.03	0.20	0.09	0.10	0.23
Control Delay	8.0	14.8	8.6	19.8	0.0	29.1	16.3	26.4	14.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	8.0	14.8	8.6	19.8	0.0	29.1	16.3	26.4	14.6
Queue Length 50th (ft)	7	170	2	307	0	23	2	10	2
Queue Length 95th (ft)	30	#613	11	#720	0	40	19	23	27
Internal Link Dist (ft)		520		977			186		159
Turn Bay Length (ft)	300		125		125			100	
Base Capacity (vph)	439	1286	537	1204	1060	233	415	218	376
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.10	0.49	0.02	0.59	0.03	0.20	0.05	0.10	0.11
Intersection Summary									

^{# 95}th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

	۶	→	•	•	-	•	1	†	~	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	7		7	^	7	7	7		7	7	
Traffic Volume (veh/h)	40	552	18	9	646	26	42	3	16	19	3	36
Future Volume (veh/h)	40	552	18	9	646	26	42	3	16	19	3	36
Number	5	2	12	1	6	16	7	4	14	3	8	18
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	0.94		0.95	0.95		0.94
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1814	1747	1850	1814	1745	1814	1814	1814	1850	1581	1595	1850
Adj Flow Rate, veh/h	44	607	19	10	710	17	46	3	2	21	3	4
Adj No. of Lanes	1	1	0	1	1	1	1	1	0	1	1	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	2	6	2	2	6	2	2	2	2	17	2	17
Cap, veh/h	375	1034	32	421	1013	887	273	106	70	244	51	68
Arrive On Green	0.05	0.61	0.61	0.02	0.58	0.58	0.05	0.11	0.11	0.03	0.09	0.09
Sat Flow, veh/h	1727	1685	53	1727	1745	1528	1727	995	663	1506	599	798
Grp Volume(v), veh/h	44	0	626	10	710	17	46	0	5	21	0	7
Grp Sat Flow(s),veh/h/ln	1727	0	1738	1727	1745	1528	1727	0	1658	1506	0	1397
Q Serve(g_s), s	0.9	0.0	20.7	0.2	27.3	0.4	2.2	0.0	0.3	1.2	0.0	0.4
Cycle Q Clear(g_c), s	0.9	0.0	20.7	0.2	27.3	0.4	2.2	0.0	0.3	1.2	0.0	0.4
Prop In Lane	1.00		0.03	1.00		1.00	1.00		0.40	1.00		0.57
Lane Grp Cap(c), veh/h	375	0	1066	421	1013	887	273	0	176	244	0	120
V/C Ratio(X)	0.12	0.00	0.59	0.02	0.70	0.02	0.17	0.00	0.03	0.09	0.00	0.06
Avail Cap(c_a), veh/h	415	0	1066	518	1013	887	311	0	436	308	0	368
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	10.8	0.0	11.1	8.8	14.1	8.5	36.3	0.0	38.1	35.8	0.0	39.9
Incr Delay (d2), s/veh	0.1	0.0	2.4	0.0	4.0	0.0	0.3	0.0	0.1	0.2	0.0	0.2
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.4	0.0	10.4	0.1	14.2	0.2	1.1	0.0	0.1	0.5	0.0	0.2
LnGrp Delay(d),s/veh	11.0	0.0	13.4	8.8	18.2	8.5	36.6	0.0	38.1	36.0	0.0	40.1
LnGrp LOS	В		В	Α	В	Α	D		D	D		D
Approach Vol, veh/h		670			737			51			28	
Approach Delay, s/veh		13.3			17.8			36.7			37.0	
Approach LOS		В			В			D			D	
Timer	1	2	3	4	5	6	7	8				
	1						7					
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	6.6	65.3	8.0	15.1	9.8	62.1	9.9	13.1				
Change Period (Y+Rc), s	5.0	7.0	5.0	5.0	5.0	7.0	5.0	5.0				
Max Green Setting (Gmax), s	7.0	34.0	7.0	25.0	7.0	34.0	7.0	25.0				
Max Q Clear Time (g_c+l1), s	2.2	22.7	3.2	2.3	2.9	29.3	4.2	2.4				
Green Ext Time (p_c), s	0.0	2.9	0.0	0.0	0.0	1.9	0.0	0.0				
Intersection Summary			40.0									
HCM 2010 Ctrl Delay			16.8									
HCM 2010 LOS			В									

Hemmer Road Extension & Upgrade: Palmer-Wasilla Highway to Bogard Road CFHWY00885/0001743
Traffic Analysis Report
June 2023

Appendix C 2045 No Build Traffic Operations

Intersection						
Int Delay, s/veh	0.7					
		EDD	MDI	WET	ND	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^	7	ሻ	†	N/	
Traffic Vol, veh/h	430	5	10	355	10	20
Future Vol, veh/h	430	5	10	355	10	20
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	200	300	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	78	78	78	78	78	78
Heavy Vehicles, %	5	2	2	5	25	25
Mvmt Flow	551	6	13	455	13	26
			_			
	/lajor1		Major2		Minor1	
Conflicting Flow All	0	0	557	0	1032	551
Stage 1	-	-	-	-	551	-
Stage 2	-	-	-	-	481	-
Critical Hdwy	-	-	4.12	-	6.65	6.45
Critical Hdwy Stg 1	-	-	-	-	5.65	-
Critical Hdwy Stg 2	-	-	-	-	5.65	-
Follow-up Hdwy	-	-	2.218	_		3.525
Pot Cap-1 Maneuver	_	_	1014	_	234	492
Stage 1	_	-	-	_	534	-
Stage 2	_	-	_	_	577	_
Platoon blocked, %	_	_		_	011	
Mov Cap-1 Maneuver	_	_	1014	_	231	492
Mov Cap-1 Maneuver	-		-	_	231	432
		-			534	
Stage 1	-	-	-	-		-
Stage 2	-	-	-	-	569	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.2		16.3	
HCM LOS					С	
Minor Lane/Major Mvm	t I	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		357	-		1014	-
HCM Lane V/C Ratio		0.108	-	-	0.013	-
HCM Control Delay (s)		16.3	-	-	8.6	-
HCM Lane LOS		С	-	-	Α	-
HCM 95th %tile Q(veh)		0.4	-	-	0	-
, ,						

Int Delay, s/veh 3 SBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations Traffic Vol, veh/h 2 385 65 80 315 2 35 1 30 5 5 15 15
Movement
Lane Configurations
Traffic Vol, veh/h
Traffic Vol, veh/h
Conflicting Peds, #hr
Sign Control Free RTCHannelized Free RTCHANNELIZED Free RTCHANNELIZED Free RTCHANNELIZED Free RTCHANNELIZED Free RTCHANNELIZED Stop RTCHANNE
RT Channelized
Storage Length 325 - 325 250 - - - - - - - - -
Veh in Median Storage, # 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Grade, % - 0 - 2 3 3 1 3 1 1<
Peak Hour Factor
Heavy Vehicles, % 2 5 2 2 5 2 13 2 13 2 2 2 2 2 2 2 2 2
Mymt Flow 2 464 78 96 380 2 42 1 36 6 6 18 Major/Minor Major1 Major2 Minor1 Minor2 Conflicting Flow All 382 0 0 542 0 0 1053 1042 464 1099 1119 381 Stage 1 - - - - - 468 468 - 573 573 - Stage 2 - - - - 585 574 - 526 546 - Critical Hdwy 4.12 - - - - 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 1 - - - - 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 - - - - 6.23 5.52 - 6.12 5.52 - <t< td=""></t<>
Major/Minor Major1 Major2 Minor1 Minor2 Conflicting Flow All 382 0 0 542 0 0 1053 1042 464 1099 1119 381 Stage 1 - - - - - 468 468 - 573 573 - Stage 2 - - - - 585 574 - 526 546 - Critical Hdwy 4.12 - - - 6.23 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12 5.52 - 6.12
Conflicting Flow All 382 0 0 542 0 0 1053 1042 464 1099 1119 381 Stage 1 - - - - - - 468 468 - 573 573 - Stage 2 - - - - - 585 574 - 526 546 - Critical Hdwy 4.12 - - 4.12 - - 7.23 6.52 6.33 7.12 6.52 6.22 Critical Hdwy Stg 1 - - - - - 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 - - - - 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 - - - 2.018 - 3.617 4.018 3.417 3.518 4.018 3.318 Pot Cap-1 Maneuver 1176
Conflicting Flow All 382 0 0 542 0 0 1053 1042 464 1099 1119 381 Stage 1 - - - - - 468 468 - 573 573 - Stage 2 - - - - - 585 574 - 526 546 - Critical Hdwy 4.12 - - 4.12 - 7.23 6.52 6.33 7.12 6.52 6.22 Critical Hdwy Stg 1 - - - - - 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 - - - - 6.23 5.52 - 6.12 5.52 - Follow-up Hdwy 2.218 - - 2.218 - 3.617 4.018 3.417 3.518 4.018 3.318 Pot Cap-1 Maneuver 1176 - -
Conflicting Flow All 382 0 0 542 0 0 1053 1042 464 1099 1119 381 Stage 1 - - - - - - 468 468 - 573 573 - Stage 2 - - - - - 585 574 - 526 546 - Critical Hdwy 4.12 - - 4.12 - 7.23 6.52 6.33 7.12 6.52 6.22 Critical Hdwy Stg 1 - - - - 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 - - - - 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 - - - 2.218 - 2.617 4.018 3.417 3.518 4.018 3.318 Pot Cap-1 Maneuver Intresease - -<
Stage 1 - - - - - 468 468 - 573 573 - Stage 2 - - - - - 585 574 - 526 546 - Critical Hdwy 4.12 - - 4.12 - - 7.23 6.52 6.33 7.12 6.52 6.22 Critical Hdwy Stg 1 - - - - 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 - - - - 6.23 5.52 - 6.12 5.52 - Follow-up Hdwy 2.218 - - 2.218 - - 3.617 4.018 3.417 3.518 4.018 3.318 Pot Cap-1 Maneuver 1176 - 1027 - 195 230 576 190 207 666 Stage 2 - - - - - - - - 505 504 - - -
Stage 2 - - - - 585 574 - 526 546 - Critical Hdwy 4.12 - 4.12 - 7.23 6.52 6.33 7.12 6.52 6.22 Critical Hdwy Stg 1 - - - - 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 - - - - 6.23 5.52 - 6.12 5.52 - Follow-up Hdwy 2.218 - 2.218 - 3.617 4.018 3.417 3.518 4.018 3.318 Pot Cap-1 Maneuver 1176 - 1027 - 195 230 576 190 207 666 Stage 1 - - - - 555 561 - 505 504 - Stage 2 - - - - - 478 503 - 535 518 - Platoon blocked, % - - - - 172 <td< td=""></td<>
Critical Hdwy 4.12 - - 4.12 - - 7.23 6.52 6.33 7.12 6.52 6.22 Critical Hdwy Stg 1 - - - - - 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 - - - - 6.23 5.52 - 6.12 5.52 - Follow-up Hdwy 2.218 - - - 6.23 5.52 - 6.12 5.52 - Follow-up Hdwy 2.218 - - 2.218 - - 6.23 5.52 - 6.12 5.52 - Follow-up Hdwy 2.218 - - 1027 - 195 230 576 190 207 666 Stage 1 - - - - - 555 561 - 505 504 - Platoon blocked, % - - - - 172 208 576 164 187 - - - 17
Critical Hdwy Stg 1 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 6.23 5.52 - 6.12 5.52 - Follow-up Hdwy 2.218 - 2.218 - 3.617 4.018 3.417 3.518 4.018 3.318 Pot Cap-1 Maneuver 1176 - 1027 - 195 230 576 190 207 666 Stage 1 555 561 - 505 504 - Stage 2 478 503 - 535 518 - Platoon blocked, % 172 208 576 164 187 666 Mov Cap-2 Maneuver 1176 - 1027 - 172 208 576 164 187 - Stage 1 554 560 - 504 457 - Stage 2 416 456 - 499 517 - Stage 2 416 456 - 499 517 - CAPPORAGE EB WB NB SB HCM Control Delay, s 0 1.8 25.6 17.7 HCM LOS D C
Follow-up Hdwy 2.218 2.218 3.617 4.018 3.417 3.518 4.018 3.318 Pot Cap-1 Maneuver 1176 - 1027 - 195 230 576 190 207 666 Stage 1 555 561 - 505 504
Pot Cap-1 Maneuver 1176 - - 1027 - - 195 230 576 190 207 666 Stage 1 - - - - - 555 561 - 505 504 - Stage 2 - - - - - 478 503 - 535 518 - Platoon blocked, % - - - - - - - - - - 355 518 - - - - - - - - - 355 518 - <
Stage 1 - - - - 555 561 - 505 504 - Stage 2 - - - - - 478 503 - 535 518 - Platoon blocked, % -
Stage 2 - - - - 478 503 - 535 518 - Platoon blocked, % - <t< td=""></t<>
Platoon blocked, % -
Mov Cap-1 Maneuver 1176 - - 1027 - - 172 208 576 164 187 666 Mov Cap-2 Maneuver - - - - - 172 208 - 164 187 - Stage 1 - - - - - 554 560 - 504 457 - Stage 2 - - - - - 416 456 - 499 517 - Approach EB WB NB SB SB HCM Control Delay, s 0 1.8 25.6 17.7 HCM LOS D C C
Mov Cap-2 Maneuver - - - - 172 208 - 164 187 - Stage 1 - - - - 554 560 - 504 457 - Stage 2 - - - - 416 456 - 499 517 - Approach EB WB NB SB HCM Control Delay, s 0 1.8 25.6 17.7 HCM LOS D C
Stage 1 - - - - 554 560 - 504 457 - Stage 2 - - - - - 416 456 - 499 517 - Approach EB WB NB SB HCM Control Delay, s 0 1.8 25.6 17.7 HCM LOS D C
Stage 2 - - - - 416 456 - 499 517 - Approach EB WB NB SB HCM Control Delay, s 0 1.8 25.6 17.7 HCM LOS D C
Approach EB WB NB SB HCM Control Delay, s 0 1.8 25.6 17.7 HCM LOS D C
HCM Control Delay, s 0 1.8 25.6 17.7 HCM LOS D C
HCM Control Delay, s 0 1.8 25.6 17.7 HCM LOS D C
HCM LOS D C
HCM LOS D C
Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1
Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1
Capacity (veh/h) 253 1176 1027 313
HCM Lane V/C Ratio 0.314 0.002 0.094 0.096
HCM Control Delay (s) 25.6 8.1 8.9 17.7
HCM Lane LOS D A A C
HCM 95th %tile Q(veh) 1.3 0 0.3 0.3

ntersection Delay, s/veh 7.9 ntersection LOS A	Intersection	
atersection LOS A	Intersection Delay, s/veh	7.9
itersection Loo	Intersection LOS	Α

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	1	1	1	85	1	1	1	2	130	2	5	1
Future Vol, veh/h	1	1	1	85	1	1	1	2	130	2	5	1
Peak Hour Factor	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.71
Heavy Vehicles, %	2	2	2	13	2	2	2	2	17	2	2	2
Mvmt Flow	1	1	1	120	1	1	1	3	183	3	7	1
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	7.4			8.6			7.5			7.5		
HCM LOS	Α			Α			Α			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	1%	33%	98%	25%	
Vol Thru, %	2%	33%	1%	62%	
Vol Right, %	98%	33%	1%	12%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	133	3	87	8	
LT Vol	1	1	85	2	
Through Vol	2	1	1	5	
RT Vol	130	1	1	1	
Lane Flow Rate	187	4	123	11	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.191	0.005	0.159	0.014	
Departure Headway (Hd)	3.68	4.347	4.66	4.398	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	982	828	765	818	
Service Time	1.681	2.347	2.716	2.403	
HCM Lane V/C Ratio	0.19	0.005	0.161	0.013	
HCM Control Delay	7.5	7.4	8.6	7.5	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.7	0	0.6	0	

Intersection						
Int Delay, s/veh	0.2					
		WDD	NDT	NDD	ODI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		^	_	4	र्स
Traffic Vol, veh/h	2	1	135	5	1	90
Future Vol, veh/h	2	1	135	5	1	90
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag	je, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	68	68	68	68	68	68
Heavy Vehicles, %	2	2	17	2	2	17
Mvmt Flow	3	1	199	7	1	132
WWW. TOW	U	•	100	•		102
Major/Minor	Minor1	N	Major1		Major2	
Conflicting Flow All	337	203	0	0	206	0
Stage 1	203	-	-	-	-	-
Stage 2	134	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	_	4.12	_
Critical Hdwy Stg 1	5.42	-	_	_	_	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518		_	_	2.218	_
Pot Cap-1 Maneuver		838	_	_	1365	_
Stage 1	831	- 000		_	1000	_
	892	_	_			
Stage 2	092	-	-	-	-	
Platoon blocked, %	057	000	-	-	4005	-
Mov Cap-1 Maneuver		838	-	-	1365	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	831	-	-	-	-	-
Stage 2	891	-	-	-	-	-
Annroach	WB		NB		SB	
Approach			0 NB			
LIOM O. T. LD.	101				0.1	
HCM Control Delay, s			U			
HCM Control Delay, s HCM LOS	10.1 B		U			
HCM LOS	В	NRT		VRI n1	SBI	SRT
HCM LOS Minor Lane/Major Mvi	В	NBT		VBLn1 708	SBL 1365	SBT
Minor Lane/Major Mvi Capacity (veh/h)	B mt	-	NBRV -	708	1365	-
Minor Lane/Major Mvi Capacity (veh/h) HCM Lane V/C Ratio	B mt		NBRV - -	708 0.006	1365 0.001	-
Minor Lane/Major Mvi Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s	B mt	- -	NBRV - - -	708 0.006 10.1	1365 0.001 7.6	- - 0
Minor Lane/Major Mvi Capacity (veh/h) HCM Lane V/C Ratio	mt s)	-	NBRV - -	708 0.006	1365 0.001	-

	•	-	1	•	•	4	†	-	ļ
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	6	1006	88	729	135	18	48	82	24
v/c Ratio	0.01	0.96	0.42	0.63	0.14	0.10	0.29	0.53	0.15
Control Delay	7.2	45.5	12.2	16.4	4.1	45.7	36.3	63.8	27.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	7.2	45.5	12.2	16.4	4.1	45.7	36.3	63.8	27.5
Queue Length 50th (ft)	1	789	15	244	8	15	22	72	6
Queue Length 95th (ft)	6	#1218	44	636	44	33	54	105	29
Internal Link Dist (ft)		520		977			186		159
Turn Bay Length (ft)	300		125		125			100	
Base Capacity (vph)	421	1043	212	1155	987	187	273	155	230
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.01	0.96	0.42	0.63	0.14	0.10	0.18	0.53	0.10
1.1									

Intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	۶	→	•	•	—	•	1	†	<i>></i>	/	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	13		7	↑	7	7	1→		7	₽	
Traffic Volume (veh/h)	5	850	5	75	620	115	15	20	20	70	5	15
Future Volume (veh/h)	5	850	5	75	620	115	15	20	20	70	5	15
Number	5	2	12	1	6	16	7	4	14	3	8	18
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	0.96		0.94	0.95		0.95
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1632	1571	1665	1632	1571	1632	1632	1632	1665	1423	1470	1665
Adj Flow Rate, veh/h	6	1000	6	88	729	107	18	24	2	82	6	2
Adj No. of Lanes	1	1	0	1	1	1	1	1	0	1	1	0
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Percent Heavy Veh, %	2	6	2	2	6	2	2	2	2	17	2	17
Cap, veh/h	329	1040	6	159	1105	969	214	127	11	188	114	38
Arrive On Green	0.01	0.67	0.67	0.05	0.70	0.70	0.02	0.09	0.09	0.05	0.11	0.11
Sat Flow, veh/h	1555	1560	9	1555	1571	1378	1555	1478	123	1355	1042	347
Grp Volume(v), veh/h	6	0	1006	88	729	107	18	0	26	82	0	8
Grp Sat Flow(s),veh/h/ln	1555	0	1569	1555	1571	1378	1555	0	1602	1355	0	1389
Q Serve(g_s), s	0.2	0.0	86.2	2.5	37.2	3.6	1.5	0.0	2.2	7.0	0.0	0.7
Cycle Q Clear(g_c), s	0.2	0.0	86.2	2.5	37.2	3.6	1.5	0.0	2.2	7.0	0.0	0.7
Prop In Lane	1.00		0.01	1.00		1.00	1.00		0.08	1.00		0.25
Lane Grp Cap(c), veh/h	329	0	1047	159	1105	969	214	0	138	188	0	152
V/C Ratio(X)	0.02	0.00	0.96	0.55	0.66	0.11	0.08	0.00	0.19	0.44	0.00	0.05
Avail Cap(c_a), veh/h	388	0	1047	161	1105	969	251	0	276	188	0	240
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	10.8	0.0	22.4	36.4	11.9	6.9	55.0	0.0	61.5	58.1	0.0	57.8
Incr Delay (d2), s/veh	0.0	0.0	19.9	4.0	3.1	0.2	0.2	0.0	0.7	1.6	0.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.1	0.0	42.7	2.5	16.9	1.4	0.6	0.0	1.0	3.1	0.0	0.3
LnGrp Delay(d),s/veh	10.8	0.0	42.3	40.4	15.0	7.1	55.1	0.0	62.2	59.7	0.0	58.0
LnGrp LOS	В		D	D	В	A	E		E	E		E
Approach Vol, veh/h		1012			924			44			90	
Approach Delay, s/veh		42.1			16.5			59.3			59.6	
Approach LOS		D			В			Е			E	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	11.8	103.7	12.0	17.5	6.5	109.0	8.6	20.9				
Change Period (Y+Rc), s	5.0	7.0	5.0	5.0	5.0	7.0	5.0	5.0				
Max Green Setting (Gmax), s	7.0	84.0	7.0	25.0	7.0	84.0	7.0	25.0				
Max Q Clear Time (g_c+I1), s	4.5	88.2	9.0	4.2	2.2	39.2	3.5	2.7				
Green Ext Time (p_c), s	0.0	0.0	0.0	0.1	0.0	5.8	0.0	0.0				
Intersection Summary												
HCM 2010 Ctrl Delay			31.8									
HCM 2010 LOS			С									

Intersection						
Int Delay, s/veh	0.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^	7	ኘ	†	¥	TIDIT.
Traffic Vol, veh/h	320	10	10	335	10	20
Future Vol, veh/h	320	10	10	335	10	20
·	0	0	0	0	0	0
Conflicting Peds, #/hr			Free			
	Free	Free		Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	200	300	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	5	2	2	5	25	25
Mvmt Flow	340	11	11	356	11	21
N.A. '. (N.A.)			4 . 0			
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	351	0	718	340
Stage 1	-	-	-	-	340	-
Stage 2	-	-	-	-	378	-
Critical Hdwy	-	-	4.12	-	6.65	6.45
Critical Hdwy Stg 1	-	-	-	-	5.65	-
Critical Hdwy Stg 2	-	-	-	-	5.65	-
Follow-up Hdwy	-	-	2.218	-	3.725	3.525
Pot Cap-1 Maneuver	-	_	1208	-	364	653
Stage 1	_	_	-	_	672	-
Stage 2	_	_	_	_	645	_
Platoon blocked, %	_	_		<u>-</u>	040	
· · · · · · · · · · · · · · · · · · ·			1200		261	653
Mov Cap-1 Maneuver	-	-	1208	-	361	
Mov Cap-2 Maneuver	-	-	-	-	361	-
Stage 1	-	-	-	-	672	-
Stage 2	-	-	-	-	639	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.2		12.5	
	U		U.Z		12.5 B	
HCM LOS					В	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		514	-	-	1208	_
HCM Lane V/C Ratio		0.062	_		0.009	_
HCM Control Delay (s)		12.5	_	_	8	_
HCM Lane LOS		12.3 B	_	_	A	<u> </u>
HCM 95th %tile Q(veh)		0.2			0	
HOW 95th Wille Q(ven)		U.Z	-	-	U	-

Intersection												
Int Delay, s/veh	1.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	*	1			4			4	
Traffic Vol, veh/h	5	315	20	20	325	5	15	2	25	2	2	5
Future Vol, veh/h	5	315	20	20	325	5	15	2	25	2	2	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	_	-	None	_	-	None	-	-	None	-	-	None
Storage Length	325	-	325	250	-	-	-	-	-	-	_	_
Veh in Median Storage		0	-	-	0	_	-	0	_	_	0	_
Grade, %	-,	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	2	5	2	2	5	2	13	2	13	2	2	2
Mvmt Flow	5	328	21	21	339	5	16	2	26	2		5
Major/Minor	Major1		ı	Major2			Minor1			Minor2		
Conflicting Flow All	344	0	0	349	0	0	725	724	328	747	743	342
Stage 1	344	-	-	349	-	-	338	338	320	384	384	342
Stage 2		_			_	_	387	386	_	363	359	
Critical Hdwy	4.12	-	_	4.12	-	-	7.23	6.52	6.33	7.12	6.52	6.22
Critical Hdwy Stg 1	7.12			7.12	_		6.23	5.52	0.55	6.12	5.52	0.22
Critical Hdwy Stg 1			_		_	_	6.23	5.52	_	6.12	5.52	_
Follow-up Hdwy	2.218	_	_	2.218	_	_	3.617	4.018	3.417	3.518	4.018	3.318
Pot Cap-1 Maneuver	1215	_	_	1210	_	_	327	352	689	329	343	701
Stage 1	- 12 10	_	_	-1210	_	_	654	641	-	639	611	-
Stage 2	_	_	_	_	_	_	615	610	_	656	627	_
Platoon blocked, %		_	_		_	_	310	310		300	JLI	
Mov Cap-1 Maneuver	1215	_	_	1210	_	_	318	345	689	310	336	701
Mov Cap-2 Maneuver		_	_		_	_	318	345	-	310	336	-
Stage 1	-	-	-	-	-	-	651	638	-	636	601	-
Stage 2	_	-	_	_	_	-	598	600	_	627	624	_
<u>-</u>							300	3.0		J	, <u> </u>	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0.5			13.4			13		
HCM LOS	0.1			0.0			13.4 B			B		
TOW LOO							ט			U		
Minor Lane/Major Mvm	nt I	NBLn1	EBL	EBT	EBR	WBL	WBT	WDD	SBLn1			
	IL I						VVDI	WDIX.				
Capacity (veh/h)		471	1215	-		1210	-	-	461			
HCM Control Doloy (a)		0.093		-	-	0.017	-	-	0.02			
HCM Long LOS		13.4	8	-	-	8	-	-	13			
HCM Of the % tills O(yeah	١	В	A	-	-	Α	-	-	B			
HCM 95th %tile Q(veh)	0.3	0	-	-	0.1	-	-	0.1			

Intersection			
Intersection Delay, s/veh	0		
Intersection LOS	-		

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	0	0	0	0	0	0	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour Factor	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Heavy Vehicles, %	2	2	2	13	2	2	2	2	17	2	2	2
Mvmt Flow	0	0	0	0	0	0	0	0	0	0	0	0
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach		EB			WB			NB			SB	
Opposing Approach		WB			EB			SB			NB	
Opposing Lanes		1			1			1			1	
Conflicting Approach Left		SB			NB			EB			WB	
Conflicting Lanes Left		1			1			1			1	
Conflicting Approach Right		NB			SB			WB			EB	
Conflicting Lanes Right		1			1			1			1	
HCM Control Delay		0			0			0			0	
HCM LOS		_			_			-			_	

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	0%	0%	0%	0%	
Vol Thru, %	100%	100%	100%	100%	
Vol Right, %	0%	0%	0%	0%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	0	0	0	0	
LT Vol	0	0	0	0	
Through Vol	0	0	0	0	
RT Vol	0	0	0	0	
Lane Flow Rate	0	0	0	0	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0	0	0	0	
Departure Headway (Hd)	3.934	3.934	3.934	3.934	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	0	0	0	0	
Service Time	1.934	1.934	1.934	1.934	
HCM Lane V/C Ratio	0	0	0	0	
HCM Control Delay	6.9	6.9	6.9	6.9	
HCM Lane LOS	N	N	N	N	
HCM 95th-tile Q	0	0	0	0	

Intersection						
Int Delay, s/veh	0					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	¥	וטייי	1	ווטוז	ODL	<u>अ</u>
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
			Free	Free	Free	Free
Sign Control	Stop	Stop				
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	25	25	25	25	25	25
Heavy Vehicles, %	2	2	25	2	2	17
Mvmt Flow	0	0	0	0	0	0
Majay/Minay	Minaut		1-1-1		AnineO	
	Minor1		Major1		Major2	
Conflicting Flow All	4	0	0	0	0	0
Stage 1	0	-	-	-	-	-
Stage 2	4	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	1018	-	-	-	-	_
Stage 1	_	_	_	_	-	-
Stage 2	1019	_	_	_	_	_
Platoon blocked, %	1013		_	_		_
Mov Cap-1 Maneuver	1018	_	_	_	_	_
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	1019	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s			0		0	
HCM LOS	A		U		U	
HCIVI LOS	A					
Minor Lane/Major Mvr	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		_	_	_	_	
HCM Lane V/C Ratio		_	-	_	-	_
HCM Control Delay (s)	_	_	0	0	_
HCM Lane LOS	1	_	-	A	A	_
HCM 95th %tile Q(veh	1)					_
HOW BOTH WITE CLASS	1)	_	-	_	_	_

	•	-	1	•		1	†	-	ļ
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	5	872	53	761	53	5	54	43	2
v/c Ratio	0.01	0.83	0.19	0.66	0.05	0.02	0.32	0.26	0.01
Control Delay	7.2	28.8	8.1	17.4	0.1	33.0	16.6	40.0	31.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	7.2	28.8	8.1	17.4	0.1	33.0	16.6	40.0	31.5
Queue Length 50th (ft)	1	505	9	257	0	3	1	28	1
Queue Length 95th (ft)	7	#1021	33	#841	0	12	35	50	8
Internal Link Dist (ft)		520		977			186		159
Turn Bay Length (ft)	300		125		125			100	
Base Capacity (vph)	383	1049	272	1148	996	222	331	163	299
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.01	0.83	0.19	0.66	0.05	0.02	0.16	0.26	0.01
Intersection Summary									

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	۶	→	•	•	•	•	1	†	~	/	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	₽		7	↑	7	7	₽		7	1→	
Traffic Volume (veh/h)	5	815	5	50	715	50	5	1	50	40	1	1
Future Volume (veh/h)	5	815	5	50	715	50	5	1	50	40	1	1
Number	5	2	12	1	6	16	7	4	14	3	8	18
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	0.96		0.93	0.94		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1632	1571	1665	1632	1571	1632	1632	1632	1665	1423	1521	1665
Adj Flow Rate, veh/h	5	867	5	53	761	34	5	1	6	43	1	0
Adj No. of Lanes	1	1	0	1	1	1	1	1	0	1	1	0
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	6	2	2	6	2	2	2	2	17	2	17
Cap, veh/h	307	996	6	246	1066	935	212	14	86	197	170	0
Arrive On Green	0.01	0.64	0.64	0.05	0.68	0.68	0.01	0.08	0.08	0.05	0.11	0.00
Sat Flow, veh/h	1555	1560	9	1555	1571	1377	1555	191	1144	1355	1521	0
Grp Volume(v), veh/h	5	0	872	53	761	34	5	0	7	43	1	0
Grp Sat Flow(s),veh/h/ln	1555	0	1569	1555	1571	1377	1555	0	1335	1355	1521	0
Q Serve(g_s), s	0.1	0.0	52.0	1.3	34.7	0.9	0.3	0.0	0.6	3.3	0.1	0.0
Cycle Q Clear(g_c), s	0.1	0.0	52.0	1.3	34.7	0.9	0.3	0.0	0.6	3.3	0.1	0.0
Prop In Lane	1.00		0.01	1.00		1.00	1.00		0.86	1.00		0.00
Lane Grp Cap(c), veh/h	307	0	1002	246	1066	935	212	0	101	197	170	0
V/C Ratio(X)	0.02	0.00	0.87	0.22	0.71	0.04	0.02	0.00	0.07	0.22	0.01	0.00
Avail Cap(c_a), veh/h	388	0	1002	263	1066	935	292	0	290	218	331	0
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	0.00
Uniform Delay (d), s/veh	10.9	0.0	16.9	18.8	11.5	6.1	44.6	0.0	49.4	45.9	45.4	0.0
Incr Delay (d2), s/veh	0.0	0.0	10.3	0.4	4.1	0.1	0.0	0.0	0.3	0.6	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.1	0.0	25.1	0.9	16.0	0.4	0.1	0.0	0.2	1.3	0.0	0.0
LnGrp Delay(d),s/veh	10.9	0.0	27.2	19.2	15.6	6.2	44.6	0.0	49.7	46.5	45.4	0.0
LnGrp LOS	В		С	В	В	Α	D		D	D	D	
Approach Vol, veh/h		877			848			12			44	
Approach Delay, s/veh		27.1			15.4			47.6			46.4	
Approach LOS		С			В			D			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	10.7	80.4	10.2	13.7	6.0	85.1	6.0	17.9				
Change Period (Y+Rc), s	5.0	7.0	5.0	5.0	5.0	7.0	5.0	5.0				
Max Green Setting (Gmax), s	7.0	54.0	7.0	25.0	7.0	54.0	7.0	25.0				
Max Q Clear Time (g_c+l1), s	3.3	54.0	5.3	2.6	2.1	36.7	2.3	2.1				
Green Ext Time (p_c), s	0.0	0.0	0.0	0.0	0.0	4.7	0.0	0.0				
Intersection Summary												
HCM 2010 Ctrl Delay			22.2									
HCM 2010 LOS			С									

Intersection						
Int Delay, s/veh	0.5					
	CDT	EDD	WDI	WDT	NDI	NDD
	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	7	ሻ	†	¥	40
Traffic Vol, veh/h	490	10	20	530	10	10
Future Vol, veh/h	490	10	20	530	10	10
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	200	300	-	0	-
Veh in Median Storage, #	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	5	2	2	5	25	25
Mvmt Flow	533	11	22	576	11	11
	ajor1		Major2		Minor1	
Conflicting Flow All	0	0	544	0	1153	533
Stage 1	-	-	-	-	533	-
Stage 2	-	-	-	-	620	-
Critical Hdwy	-	-	4.12	-	6.65	6.45
Critical Hdwy Stg 1	-	-	-	-	5.65	-
Critical Hdwy Stg 2	-	-	_	_	5.65	-
Follow-up Hdwy	_	-	2.218	-		3.525
Pot Cap-1 Maneuver	-	_	1025	_	197	504
Stage 1	_	_	-	_	545	-
Stage 2	_	_	_	_	495	_
Platoon blocked, %				_	700	
Mov Cap-1 Maneuver	-	<u>-</u>	1025	_	193	504
Mov Cap-1 Maneuver			1023	-	193	504
	-	-	-			
Stage 1	-	-	-	-	545	-
Stage 2	-	-	-	-	485	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.3		19	
HCM LOS	U		0.0		C	
TIOIVI LOG					U	
Minor Lane/Major Mvmt	1	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		279	-	-	1025	-
HCM Lane V/C Ratio		0.078	_		0.021	-
HCM Control Delay (s)		19	-	-	8.6	-
HCM Lane LOS		C	-	-	A	-
HCM 95th %tile Q(veh)		0.3	-	_	0.1	-
(0011 /0110 ((1011)		0.5			V. 1	

Int Delay, s/veh													
Int Delay, s/veh	Intersection												
Traffic Vol, veh/h		2.1											
Traffic Vol, veh/h	Movement		EBT			WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h	Lane Configurations	7	^	7	7	1			4			4	
Conflicting Peds, #hr Free Stop Stop	Traffic Vol, veh/h	10	460	30	20		5	20		25	5		5
Sign Control Free None Stop Storage Control Storage Length 325	Future Vol, veh/h	10	460	30	20	525	5	20	10	25	5	1	5
RT Channelized	Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
RT Channelized	Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
Veh in Median Storage, # - 0	RT Channelized	-	-	None	-	-	None		-	None	-	-	None
Grade, %	Storage Length	325	-	325	250	-	-	-	-	-	-	-	-
Peak Hour Factor		e, # -	0	-	-	0	-	-	0	-	-	0	-
Heavy Vehicles, % 2 5 2 2 5 2 13 2 13 2 2 2 2 2 2 2 2 2	Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Mymit Flow 12 568 37 25 648 6 25 12 31 6 1 6 Major/Minor Major1 Major2 Minor1 Minor2 Conflicting Flow All 654 0 0 605 0 0 1297 1296 568 1333 1330 651 Stage 1 - - - - - 592 592 - 701 701 - Stage 2 - - - - - 705 704 - 632 629 - Critical Hdwy Stg 1 - - - - 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 - - - - 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 - - - - 6.23 5.52 - 6.12 5.52 -	Peak Hour Factor	81	81	81	81	81	81	81	81	81	81	81	81
Major/Minor Major1 Major2 Minor1 Minor2 Conflicting Flow All 654 0 0 605 0 0 1297 1296 568 1333 1330 651 Stage 1 - - - - - 592 592 - 701 701 - Stage 2 - - - - 705 704 - 632 629 - Critical Hdwy Stg 1 - - - - 6.23 5.52 - 6.12 5.52 - Follow-up Hdwy 2.218 - - 2.218 - 3.617 4.018 3.417 3.518 4.018 3.318 Pot Cap-1 Maneuver 933 - 973 - 132 162 502 131 155 469 Stage 1 - - - - - 410 440 - 428 441 - <t< td=""><td>Heavy Vehicles, %</td><td></td><td>5</td><td>2</td><td>2</td><td>5</td><td>2</td><td>13</td><td></td><td></td><td>2</td><td>2</td><td>2</td></t<>	Heavy Vehicles, %		5	2	2	5	2	13			2	2	2
Conflicting Flow All	Mvmt Flow	12	568	37	25	648	6	25	12	31	6	1	6
Conflicting Flow All													
Stage 1 - - - - 592 592 - 701 701 - Stage 2 - - - - - 705 704 - 632 629 - Critical Hdwy 4.12 - - 4.12 - - 7.23 6.52 6.33 7.12 6.52 6.22 Critical Hdwy Stg 1 - - - - 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 1 - - - - 6.23 5.52 - 6.12 5.52 - Follow-up Hdwy 2.218 - 2.218 - 3.617 4.018 3.417 3.518 4.018 3.318 Pot Cap-1 Maneuver 933 - - 973 - - 126 156 502 112 149 469 Mov Cap-1 Maneuver 933 - - - <td< td=""><td>Major/Minor I</td><td>Major1</td><td></td><td></td><td>Major2</td><td></td><td></td><td>Minor1</td><td></td><td></td><td>Minor2</td><td></td><td></td></td<>	Major/Minor I	Major1			Major2			Minor1			Minor2		
Stage 1 - - - - 592 592 - 701 701 - Stage 2 - - - - - 705 704 - 632 629 - Critical Hdwy 4.12 - - 4.12 - - 7.23 6.52 6.33 7.12 6.52 6.22 Critical Hdwy Stg 1 - - - - 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 - - - - 6.23 5.52 - 6.12 5.52 - Follow-up Hdwy 2.218 - 2.218 - 3.617 4.018 3.417 3.518 4.018 3.318 Pot Cap-1 Maneuver 933 - - 973 - - 126 156 502 111 149 469 Mov Cap-1 Maneuver 933 - - - - <	Conflicting Flow All	654	0	0	605	0	0	1297	1296	568	1333	1330	651
Stage 2 - - - - 705 704 - 632 629 - Critical Hdwy 4.12 - 4.12 - 7.23 6.52 6.33 7.12 6.52 6.22 Critical Hdwy Stg 1 - - - - 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 - - - - 6.23 5.52 - 6.12 5.52 - Follow-up Hdwy 2.218 - 2.218 - 3.617 4.018 3.417 3.518 4.018 3.318 Pot Cap-1 Maneuver 933 - - 973 - 132 162 502 131 155 469 Stage 1 - - - - - 410 440 - 468 475 - Platoon blocked, % - - - - - 126 156 502		-	-	-	-	-	-	592	592	-	701	701	_
Critical Hdwy 4.12 - 4.12 - - 7.23 6.52 6.33 7.12 6.52 6.22 Critical Hdwy Stg 1 - - - - - 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 - - - - 6.23 5.52 - 6.12 5.52 - Follow-up Hdwy 2.218 - - 2.218 - - 3.617 4.018 3.417 3.518 4.018 3.318 Pot Cap-1 Maneuver 933 - - 973 - 132 162 502 131 155 469 Stage 1 - - - - - 410 440 - 468 475 - Platoon blocked, % - - - - 126 156 502 112 149 469 Mov Cap-2 Maneuver - - - - - 126 156 502 112 149 - - -	ŭ	-	-	-	-	-	-			-			-
Critical Hdwy Stg 1 - - - - 6.23 5.52 - 6.12 5.52 - Critical Hdwy Stg 2 - - - - 6.23 5.52 - 6.12 5.52 - Follow-up Hdwy 2.218 - - 2.218 - - 3.617 4.018 3.417 3.518 4.018 3.318 Pot Cap-1 Maneuver 933 - - 973 - - 132 162 502 131 155 469 Stage 1 - - - - 410 440 - 468 475 - Platoon blocked, % - - - - - - - - 469 469 469 469 Mov Cap-1 Maneuver 933 - 973 - 126 156 502 112 149 469 Mov Cap-1 Maneuver 933 - - - -		4.12	-	-	4.12	-	-	7.23	6.52	6.33	7.12	6.52	6.22
Critical Hdwy Stg 2 - - - - 6.23 5.52 - 6.12 5.52 - Follow-up Hdwy 2.218 - - 2.218 - - 3.617 4.018 3.417 3.518 4.018 3.318 Pot Cap-1 Maneuver 933 - - 973 - - 132 162 502 131 155 469 Stage 1 - - - - - 474 494 - 429 441 - Stage 2 - - - - - 410 440 - 468 475 - Platoon blocked, % - - - - - - - 469 469 469 Mov Cap-1 Maneuver 933 - - 973 - - 126 156 502 112 149 - 149 - 312 459 - - </td <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>6.23</td> <td>5.52</td> <td>-</td> <td>6.12</td> <td>5.52</td> <td>-</td>		-	-	-	-	-	-	6.23	5.52	-	6.12	5.52	-
Pot Cap-1 Maneuver 933			-	-		-	-	6.23	5.52	-	6.12	5.52	-
Stage 1 - - - - 474 494 - 429 441 - Stage 2 - - - - - 410 440 - 468 475 - Platoon blocked, % -<	Follow-up Hdwy		-	-		-	-						3.318
Stage 2 - - - - 410 440 - 468 475 - Platoon blocked, % - <	Pot Cap-1 Maneuver	933	-	-	973	-	-			502			469
Platoon blocked, %		-	-	-	-	-	-			-			-
Mov Cap-1 Maneuver 933 - 973 - - 126 156 502 112 149 469 Mov Cap-2 Maneuver - - - - - - 126 156 - 112 149 - Stage 1 - - - - - 468 488 - 423 430 - Stage 2 - - - - - 393 429 - 423 469 - Approach EB WB NB SB SB HCM Control Delay, s 0.2 0.3 31.6 27 HCM Los D D D Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 202 933 - - 973 - - 177 HCM Lane V/C Ratio 0.336 0.013 - - <		-	-	-	-	-	-	410	440	-	468	475	-
Mov Cap-2 Maneuver - - - - 126 156 - 112 149 - Stage 1 - - - - - 468 488 - 423 430 - Stage 2 - - - - - 393 429 - 423 469 - Approach EB WB NB NB SB HCM Control Delay, s 0.2 0.3 31.6 27 HCM Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 202 933 - - 973 - - 177 HCM Lane V/C Ratio 0.336 0.013 - - 0.025 - - 0.077 HCM Control Delay (s) 31.6 8.9 - - 8.8 - - 27 HCM Lane LOS D			-	-		-	-						
Stage 1 - - - - 468 488 - 423 430 - Stage 2 - - - - - 393 429 - 423 469 - Approach EB WB NB NB SB HCM Control Delay, s 0.2 0.3 31.6 27 HCM LOS D D D D Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 202 933 - - 973 - - 177 HCM Lane V/C Ratio 0.336 0.013 - - 0.025 - - 0.077 HCM Control Delay (s) 31.6 8.9 - - 8.8 - - 27 HCM Lane LOS D A - A - - D	•	933	-	-	973	-	-			502			469
Stage 2 - - - - - 393 429 - 423 469 - Approach EB WB NB SB HCM Control Delay, s 0.2 0.3 31.6 27 HCM LOS D D D Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 202 933 - - 973 - - 177 HCM Lane V/C Ratio 0.336 0.013 - - 0.025 - - 0.077 HCM Control Delay (s) 31.6 8.9 - - 8.8 - - 27 HCM Lane LOS D A - A - - D		-	-	-	-	-	-			-			-
Approach EB WB NB SB HCM Control Delay, s 0.2 0.3 31.6 27 HCM LOS D D D Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1 Capacity (veh/h) 202 933 - - 973 - - 177 HCM Lane V/C Ratio 0.336 0.013 - - 0.025 - - 0.077 HCM Control Delay (s) 31.6 8.9 - - 8.8 - - 27 HCM Lane LOS D A - A - - D		-	-	-	-	-	-			-			-
HCM Control Delay, s 0.2 0.3 31.6 27 HCM LOS	Stage 2	-	-	-	-	-	-	393	429	-	423	469	-
HCM Control Delay, s 0.2 0.3 31.6 27 HCM LOS													
Minor Lane/Major Mvmt NBLn1 EBL EBR WBL WBT WBR SBLn1 Capacity (veh/h) 202 933 - - 973 - - 177 HCM Lane V/C Ratio 0.336 0.013 - - 0.025 - - 0.077 HCM Control Delay (s) 31.6 8.9 - - 8.8 - - 27 HCM Lane LOS D A - A - D D	Approach_	EB			WB			NB			SB		
Minor Lane/Major Mvmt NBLn1 EBL EBR WBL WBT WBR SBLn1 Capacity (veh/h) 202 933 - - 973 - - 177 HCM Lane V/C Ratio 0.336 0.013 - - 0.025 - - 0.077 HCM Control Delay (s) 31.6 8.9 - - 8.8 - - 27 HCM Lane LOS D A - A - D D	HCM Control Delay, s	0.2			0.3			31.6			27		
Capacity (veh/h) 202 933 - - 973 - - 177 HCM Lane V/C Ratio 0.336 0.013 - - 0.025 - - 0.077 HCM Control Delay (s) 31.6 8.9 - - 8.8 - - 27 HCM Lane LOS D A - A - D D													
Capacity (veh/h) 202 933 - - 973 - - 177 HCM Lane V/C Ratio 0.336 0.013 - - 0.025 - - 0.077 HCM Control Delay (s) 31.6 8.9 - - 8.8 - - 27 HCM Lane LOS D A - A - D D													
Capacity (veh/h) 202 933 - - 973 - - 177 HCM Lane V/C Ratio 0.336 0.013 - - 0.025 - - 0.077 HCM Control Delay (s) 31.6 8.9 - - 8.8 - - 27 HCM Lane LOS D A - A - D D	Minor Lane/Major Mvm	nt 1	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
HCM Lane V/C Ratio 0.336 0.013 - - 0.025 - - 0.077 HCM Control Delay (s) 31.6 8.9 - - 8.8 - - 27 HCM Lane LOS D A - - A - - D	Capacity (veh/h)		202	933		-	973		-	177			
HCM Control Delay (s) 31.6 8.9 - - 8.8 - - 27 HCM Lane LOS D A - - A - - D	. , ,				-	-		-	-				
HCM Lane LOS D A A D					-			-	-				
					-	-		-	-				
1.4 0 0.1 0.2	HCM 95th %tile Q(veh))	1.4	0	-	-	0.1	-	-	0.2			

1. ((D)
Intersection Delay, s/ven 7.2
Intersection Delay, s/veh 7.2 Intersection LOS A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	1	1	1	45	1	2	2	5	50	5	5	1
Future Vol, veh/h	1	1	1	45	1	2	2	5	50	5	5	1
Peak Hour Factor	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83	0.83
Heavy Vehicles, %	2	2	2	13	2	2	2	2	17	2	2	2
Mvmt Flow	1	1	1	54	1	2	2	6	60	6	6	1
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	7			7.8			6.8			7.2		
HCM LOS	Α			Α			Α			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	4%	33%	94%	45%	
Vol Thru, %	9%	33%	2%	45%	
Vol Right, %	88%	33%	4%	9%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	57	3	48	11	
LT Vol	2	1	45	5	
Through Vol	5	1	1	5	
RT Vol	50	1	2	1	
Lane Flow Rate	69	4	58	13	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.067	0.004	0.071	0.015	
Departure Headway (Hd)	3.53	3.987	4.429	4.128	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	1008	895	810	863	
Service Time	1.574	2.022	2.448	2.175	
HCM Lane V/C Ratio	0.068	0.004	0.072	0.015	
HCM Control Delay	6.8	7	7.8	7.2	
HCM Lane LOS	Α	Α	Α	Α	
HCM 95th-tile Q	0.2	0	0.2	0	

Intersection						
Int Delay, s/veh	1.3					
		WDD	NDT	NDD	CDI	CDT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M	_	7	_	_	ન
Traffic Vol, veh/h	10	5	60	5	5	45
Future Vol, veh/h	10	5	60	5	5	45
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag	e,# 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	2	2	17	2	2	17
Mvmt Flow	12	6	70	6	6	52
				·		02
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	137	73	0	0	76	0
Stage 1	73	-	-	-	-	-
Stage 2	64	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	856	989	-	-	1523	_
Stage 1	950	-	_	_	-	_
Stage 2	959	_	_	_	_	_
Platoon blocked, %	333		_	_		_
Mov Cap-1 Maneuver	853	989	_		1523	_
				-		
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	950	-	-	-	-	-
Stage 2	955	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s			0		0.7	
HCM LOS	A		U		0.1	
TIOWI LOO	٨					
Minor Lane/Major Mv	mt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	894	1523	-
HCM Lane V/C Ratio		-	_		0.004	-
HCM Control Delay (s	s)	-	-	9.1	7.4	0
HCM Lane LOS	,	_	_	Α	Α	A
HCM 95th %tile Q(vel	ո)	_	_	0.1	0	-
115W 55W 70W Q(VE	'/			0.1	U	

	٠	→	•	←	*	4	†	-	Į.
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	5	952	42	1137	63	5	80	53	6
v/c Ratio	0.03	0.88	0.17	0.98	0.06	0.02	0.40	0.36	0.03
Control Delay	7.4	33.1	8.0	43.3	1.1	43.0	16.6	55.3	30.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	7.4	33.1	8.0	43.3	1.1	43.0	16.6	55.3	30.2
Queue Length 50th (ft)	1	622	7	717	0	4	1	46	1
Queue Length 95th (ft)	6	#1235	26	#1600	10	15	49	78	15
Internal Link Dist (ft)		520		977			186		159
Turn Bay Length (ft)	300		125		125			100	
Base Capacity (vph)	157	1077	244	1157	988	204	293	146	233
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.03	0.88	0.17	0.98	0.06	0.02	0.27	0.36	0.03
Intersection Summary									

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	۶	→	•	•	←	•	1	†	<i>></i>	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	13		7	↑	7	*	7		7	1	
Traffic Volume (veh/h)	5	900	5	40	1080	60	5	1	75	50	1	5
Future Volume (veh/h)	5	900	5	40	1080	60	5	1	75	50	1	5
Number	5	2	12	1	6	16	7	4	14	3	8	18
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	0.95		0.93	0.94		0.95
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1632	1571	1665	1632	1571	1632	1632	1632	1665	1423	1454	1665
Adj Flow Rate, veh/h	5	947	5	42	1137	42	5	1	8	53	1	1
Adj No. of Lanes	1	1	0	1	1	1	1	1	0	1	1	0
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	2	6	2	2	6	2	2	2	2	17	2	17
Cap, veh/h	63	1080	6	225	1135	995	193	11	86	178	71	71
Arrive On Green	0.01	0.69	0.69	0.04	0.72	0.72	0.01	0.07	0.07	0.04	0.11	0.11
Sat Flow, veh/h	1555	1561	8	1555	1571	1378	1555	147	1176	1355	651	651
Grp Volume(v), veh/h	5	0	952	42	1137	42	5	0	9	53	0	2
Grp Sat Flow(s),veh/h/ln	1555	0	1570	1555	1571	1378	1555	0	1323	1355	0	1302
Q Serve(g_s), s	0.1	0.0	68.9	1.1	104.7	1.3	0.4	0.0	0.9	5.2	0.0	0.2
Cycle Q Clear(g_c), s	0.1	0.0	68.9	1.1	104.7	1.3	0.4	0.0	0.9	5.2	0.0	0.2
Prop In Lane	1.00		0.01	1.00		1.00	1.00		0.89	1.00		0.50
Lane Grp Cap(c), veh/h	63	0	1086	225	1135	995	193	0	97	178	0	141
V/C Ratio(X)	0.08	0.00	0.88	0.19	1.00	0.04	0.03	0.00	0.09	0.30	0.00	0.01
Avail Cap(c_a), veh/h	125	0	1086	239	1135	995	254	0	228	184	0	225
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	43.1	0.0	17.5	23.2	20.1	5.8	56.7	0.0	62.7	58.8	0.0	57.7
Incr Delay (d2), s/veh	0.5	0.0	10.0	0.4	27.2	0.1	0.1	0.0	0.4	0.9	0.0	0.0
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.2	0.0	32.6	0.9	53.3	0.5	0.2	0.0	0.3	2.0	0.0	0.1
LnGrp Delay(d),s/veh	43.6	0.0	27.5	23.6	47.4	5.8	56.7	0.0	63.1	59.7	0.0	57.8
LnGrp LOS	<u>D</u>		С	С	F	A	E		E	<u>E</u>		E
Approach Vol, veh/h		957			1221			14			55	
Approach Delay, s/veh		27.6			45.1			60.8			59.7	
Approach LOS		С			D			Е			Е	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	10.7	107.3	11.4	15.6	6.3	111.7	6.3	20.7				
Change Period (Y+Rc), s	5.0	7.0	5.0	5.0	5.0	7.0	5.0	5.0				
Max Green Setting (Gmax), s	7.0	84.0	7.0	25.0	7.0	84.0	7.0	25.0				
Max Q Clear Time (g_c+l1), s	3.1	70.9	7.2	2.9	2.1	106.7	2.4	2.2				
Green Ext Time (p_c), s	0.0	5.5	0.0	0.0	0.0	0.0	0.0	0.0				
Intersection Summary												
HCM 2010 Ctrl Delay			38.1									
HCM 2010 LOS			D									

Hemmer Road Extension & Upgrade: Palmer-Wasilla Highway to Bogard Road CFHWY00885/0001743
Traffic Analysis Report
June 2023

Appendix D 2045 Build Traffic Operations

Queues

1: Hemmer Rd & Bogard Rd, 2045 Build AM

	-	*	1	•	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Group Flow (vph)	474	90	90	404	83	96
v/c Ratio	0.43	0.09	0.14	0.31	0.37	0.35
Control Delay	13.7	3.6	5.3	6.4	32.9	9.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	13.7	3.6	5.3	6.4	32.9	9.3
Queue Length 50th (ft)	125	0	9	58	39	0
Queue Length 95th (ft)	238	19	32	141	55	23
Internal Link Dist (ft)	407			1427	518	
Turn Bay Length (ft)		200	300			100
Base Capacity (vph)	1103	967	639	1315	450	455
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.43	0.09	0.14	0.31	0.18	0.21
Intersection Summary						

	800	_		+	•	<u></u>
	000000	*	*		,	
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑	7	*	↑	7	7
Traffic Volume (veh/h)	370	70	70	315	65	75
Future Volume (veh/h)	370	70	70	315	65	75
Number	2	12	1	6	7	14
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		0.99	1.00		1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1762	1814	1814	1762	1581	1581
Adj Flow Rate, veh/h	474	53	90	404	83	11
Adj No. of Lanes	1	1	1	1	1	1
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78
Percent Heavy Veh, %	5	2	2	5	17	17
Cap, veh/h	1119	972	657	1363	115	103
Arrive On Green	0.64	0.64	0.08	0.77	0.08	0.08
Sat Flow, veh/h	1762	1530	1727	1762	1506	1344
Grp Volume(v), veh/h	474	53	90	404	83	11
Grp Sat Flow(s), veh/h/ln	1762	1530	1727	1762	1506	1344
Q Serve(g_s), s	10.7	1.0	1.3	5.4	4.3	0.6
Cycle Q Clear(g_c), s	10.7	1.0	1.3	5.4	4.3	0.6
Prop In Lane	10.1	1.00	1.00	0.1	1.00	1.00
Lane Grp Cap(c), veh/h	1119	972	657	1363	115	103
V/C Ratio(X)	0.42	0.05	0.14	0.30	0.72	0.11
Avail Cap(c_a), veh/h	1119	972	677	1363	452	403
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	7.3	5.5	4.3	2.7	36.1	34.4
Incr Delay (d2), s/veh	1.2	0.1	0.1	0.6	8.1	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln		0.0	0.0	2.8	2.1	0.0
, , , , , , , , , , , , , , , , , , ,	5.5		4.4	3.2	44.2	
LnGrp Delay(d),s/veh	8.5	5.6				34.8
LnGrp LOS	A	A	A	A 404	D 04	С
Approach Vol, veh/h	527			494	94	
Approach Delay, s/veh	8.2			3.4	43.1	
Approach LOS	Α			Α	D	
Timer	1	2	3	4	5	6
Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc), s	11.1	57.8		11.1		68.9
Change Period (Y+Rc), s	5.0	7.0		5.0		7.0
Max Green Setting (Gmax), s	7.0	32.0		24.0		44.0
Max Q Clear Time (g_c+l1), s	3.3	12.7		6.3		7.4
Green Ext Time (p_c), s	0.1	2.7		0.3		2.4
	U. I	۷.۱		U.Z		2.4
Intersection Summary						
HCM 2010 Ctrl Delay			9.0			
HCM 2010 LOS			Α			

Intersection												
Int Delay, s/veh	2.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	†	7	*	₽			4			4	
Traffic Vol, veh/h	2	405	40	55	345	2	20	1	25	5	5	20
Future Vol, veh/h	2	405	40	55	345	2	20	1	25	5	5	20
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	325	-	325	250	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	83	83	83	83	83	83	83	83	83	83	83	83
Heavy Vehicles, %	2	5	2	2	5	2	2	3	2	2	2	2
Mvmt Flow	2	488	48	66	416	2	24	1	30	6	6	24
Major/Minor	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	418	0	0	536	0	0	1056	1042	488	1081	1089	417
Stage 1	410	-	-	-	-	-	492	492	400	549	549	417
Stage 2	_	_	_	_	_	_	564	550	_	532	540	_
Critical Hdwy	4.12	_		4.12	_	_	7.12	6.53	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1		_	_	- 1.12	_	_	6.12	5.53	0.22	6.12	5.52	-
Critical Hdwy Stg 2	-	_	_	-	_	_	6.12	5.53	_	6.12	5.52	-
Follow-up Hdwy	2.218	_	_	2.218	_	_	3.518		3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1141	-	-	1032	_	-	203	229	580	195	215	636
Stage 1	_	-	_	-	_	-	558	546	-	520	516	
Stage 2	-	-	-	-	-	-	510	514	-	531	521	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1141	-	-	1032	-	-	181	214	580	175	201	636
Mov Cap-2 Maneuver	-	-	-	-	-	-	181	214	-	175	201	-
Stage 1	-	-	-	-	-	-	557	545	-	519	483	-
Stage 2	-	-	-	-	-	-	454	481	-	501	520	-
Approach	EB			WB			NB			SB		
	0			1.2			20.3			16.4		
HCM Control Delay, s HCM LOS	U			1.2			20.3 C			16.4 C		
I IOW LOS							U			U		
Minor Lane/Major Mvm	nt N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		291	1141	-	-	1032	-	-	353			
HCM Lane V/C Ratio		0.19	0.002	-	-	0.064	-	-	0.102			
HCM Control Delay (s)		20.3	8.2	-	-	8.7	-	-	16.4			
HCM Lane LOS		С	Α	-	-	Α	-	-	С			
HCM 95th %tile Q(veh)		0.7	0	-	-	0.2	-	-	0.3			

Lane Configurations 4 4 4 4 Traffic Vol, veh/h 1 1 1 35 1 5 5 155 130 5 175 1 Future Vol, veh/h 1 1 1 35 1 5 5 155 130 5 175 1	EBL EBT EBR WI								
Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBF Lane Configurations 4 <t< td=""><td>EBL EBT EBR WI</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	EBL EBT EBR WI								
Lane Configurations 4 4 4 4 Traffic Vol, veh/h 1 1 1 35 1 5 5 155 130 5 175 1 Future Vol, veh/h 1 1 1 35 1 5 5 155 130 5 175 1									
Traffic Vol, veh/h 1 1 1 35 1 5 5 155 130 5 175 1 1 1 1 35 1 5 5 155 130 5 175 1 1 1 1 1 35 1 5 155 130 5 175 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rotions •	/BL WBT \	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Vol, veh/h 1 1 1 35 1 5 5 155 130 5 175 1 1 1 1 35 1 5 5 155 130 5 175 1 1 1 1 1 35 1 5 155 130 5 175 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	urations 🚻	4			4			4	
· · · · · · · · · · · · · · · · · · ·	eh/h 1 1 1		5	5		130	5		1
·	reh/h 1 1 1 :	35 1	5	5	155	130	5	175	1
Conflicting Peds, #/hr 0 0 0 0 0 0 0 0 0 0 0 0		0 0	0	0		0	0	0	0
Sign Control Stop Stop Stop Stop Stop Stop Free Free Free Free Free Free	Stop Stop Stop St	top Stop	Stop	Free	Free	Free	Free	Free	Free
			None	-	-	None	-	-	None
Storage Length	gth		-	-	-	-	-	-	-
Veh in Median Storage, # - 0 0 0	an Storage, # - 0 -	- 0	-	-	0	-	-	0	-
Grade, % - 0 0 0	- 0 -	- 0	-	-	0	-	-	0	-
Peak Hour Factor 71 71 71 71 71 71 71 71 71 71 71 71 71	actor 71 71 71	71 71	71	71	71	71	71	71	71
	les, % 2 2 2	3 2	2			3	2		2
		49 1	7	7	218	183	7	246	1
Major/Minor Minor2 Minor1 Major1 Major2	Minor2 Mino	or1		Maior1		N	Maior2		
, ,			310		0			0	0
0, 4 004 004 004									-
0.000 445 000 004			_	-	_	_	_	_	_
· . · · · · · · · · · · · · · · ·			6.22	4.12	-	-	4.12	-	-
0.11. 11.1. 0.1.4. 0.40 5.50 0.40 5.50			-		-	-		-	-
	•		-	-	_	-	-	-	-
- II	•		3.318	2.218	-	-	2.218	-	-
	•	120 423	730	1319	-	-	1158	-	-
·		686 650	-	-	-	-	-	-	-
2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2		741 692	-	-	-	-	-	-	-
Platoon blocked, %	ked, %				-	-		-	-
Mov Cap-1 Maneuver 410 370 792 414 417 730 1319 1158 -	Maneuver 410 370 792 4	114 417	730	1319	-	-	1158	-	-
mov dap 2 mandavor 110 ord 111 111			-	-	-	-	-	-	-
etage i rece cor cor			-	-	-	-	-	-	-
Stage 2 672 588 - 733 687	2 672 588 - 7	733 687	-	-	-	-	-	-	-
Approach EB WB NB SB	EB V	WB		NB			SB		
HCM Control Delay, s 12.8 14.5 0.1 0.2							0.2		
HCM LOS B B	•								
Minor Lane/Major Mvmt NBL NBT NBR EBLn1WBLn1 SBL SBT SBR	Maior Mymt NRI NRT NF	BR FBI n1WI	VBI n1	SBL SBT	SBR				
Capacity (veh/h) 1319 468 437 1158									
HCM Lane V/C Ratio 0.005 0.009 0.132 0.006	•				_				
HCM Control Delay (s) 7.7 0 - 12.8 14.5 8.1 0 -					_				
HCM Lane LOS A A - B B A A -					_				
HCM 95th %tile Q(veh) 0 0 0.5 0									

Intersection						
Int Delay, s/veh	0.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
		WDK		NDK	ODL	
Lane Configurations	M	4	205	F	- 1	વ
Traffic Vol, veh/h	2	1	325	5	1	215
Future Vol, veh/h	2	1	325	5	1	215
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	68	68	68	68	68	68
Heavy Vehicles, %	2	2	17	2	2	17
Mymt Flow	3	1	478	7	1	316
WWW.CT IOW	Ū	•	110	•	•	010
Major/Minor	Minor1	N	Major1		Major2	
Conflicting Flow All	800	482	0	0	485	0
Stage 1	482	-	-	-	-	-
Stage 2	318	-	-	-	-	-
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	-	_	_	-	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy			_	_	2.218	
	354	584	-	_	1078	
Pot Cap-1 Maneuver			-	-	1076	
Stage 1	621	-	-	_		-
Stage 2	738	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	354	584	-	-	1078	-
Mov Cap-2 Maneuver	354	-	-	-	-	-
Stage 1	621	-	-	-	-	-
Stage 2	737	-	-	_	-	-
5g5 =						
Approach	WB		NB		SB	
HCM Control Delay, s	13.9		0		0	
HCM LOS	В					
Minardan I ana /Maian Mon	-1	NDT	MDDW	VDI 4	CDI	ODT
Minor Lane/Major Mvn	nt	NBT	NRKA	VBLn1	SBL	SBT
Capacity (veh/h)		-	-	407	1078	-
HCM Lane V/C Ratio		-	-	0.011		-
HCM Control Delay (s		-	-	13.9	8.3	0
HCM Lane LOS		-	-	В	Α	Α
HCM 95th %tile Q(veh)	-	-	0	0	-

	•	-	1	←	*	1	†	-	↓	
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT	
Lane Group Flow (vph)	35	965	65	641	306	18	59	153	105	
v/c Ratio	0.07	0.85	0.27	0.54	0.29	0.09	0.34	0.86	0.42	
Control Delay	6.6	28.7	8.9	16.1	6.1	38.8	48.2	87.8	21.6	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	6.6	28.7	8.9	16.1	6.1	38.8	48.2	87.8	21.6	
Queue Length 50th (ft)	6	586	12	275	41	12	39	116	20	
Queue Length 95th (ft)	22	#1024	35	485	106	28	69	149	63	
Internal Link Dist (ft)		848		933			281		173	
Turn Bay Length (ft)	300		125		125			100		
Base Capacity (vph)	490	1141	243	1177	1043	205	355	177	342	
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	
Reduced v/c Ratio	0.07	0.85	0.27	0.54	0.29	0.09	0.17	0.86	0.31	
Intersection Summary										

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	۶	→	•	•	•	•	1	†	~	-	Ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		7	↑	7	7	₽		7	1→	
Traffic Volume (veh/h)	30	810	10	55	545	260	15	40	10	130	25	65
Future Volume (veh/h)	30	810	10	55	545	260	15	40	10	130	25	65
Number	5	2	12	1	6	16	7	4	14	3	8	18
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	0.97		0.95	0.96		0.96
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1814	1746	1850	1814	1745	1814	1814	1814	1850	1581	1639	1850
Adj Flow Rate, veh/h	35	953	12	65	641	244	18	47	4	153	29	10
Adj No. of Lanes	1	1	0	1	1	1	1	1	0	1	1	0
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Percent Heavy Veh, %	2	6	2	2	6	2	2	2	2	17	2	17
Cap, veh/h	386	1066	13	230	1101	964	241	161	14	222	148	51
Arrive On Green	0.04	0.62	0.62	0.05	0.63	0.63	0.03	0.10	0.10	0.06	0.13	0.13
Sat Flow, veh/h	1727	1720	22	1727	1745	1529	1727	1641	140	1506	1153	397
Grp Volume(v), veh/h	35	0	965	65	641	244	18	0	51	153	0	39
Grp Sat Flow(s),veh/h/ln	1727	0	1742	1727	1745	1529	1727	0	1780	1506	0	1550
Q Serve(g_s), s	0.9	0.0	59.0	1.6	26.8	8.8	1.1	0.0	3.3	7.0	0.0	2.8
Cycle Q Clear(g_c), s	0.9	0.0	59.0	1.6	26.8	8.8	1.1	0.0	3.3	7.0	0.0	2.8
Prop In Lane	1.00		0.01	1.00		1.00	1.00		0.08	1.00		0.26
Lane Grp Cap(c), veh/h	386	0	1080	230	1101	964	241	0	175	222	0	198
V/C Ratio(X)	0.09	0.00	0.89	0.28	0.58	0.25	0.07	0.00	0.29	0.69	0.00	0.20
Avail Cap(c_a), veh/h	414	0	1080	240	1101	964	293	0	356	222	0	310
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	10.0	0.0	20.2	22.8	13.5	10.1	45.2	0.0	52.3	51.5	0.0	48.8
Incr Delay (d2), s/veh	0.1	0.0	11.3	0.7	2.3	0.6	0.1	0.0	0.9	8.6	0.0	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.4	0.0	31.5	1.2	13.5	3.8	0.5	0.0	1.7	5.2	0.0	1.2
LnGrp Delay(d),s/veh	10.1	0.0	31.6	23.4	15.7	10.8	45.4	0.0	53.3	60.1	0.0	49.2
LnGrp LOS	В		С	С	В	В	D		D	Е		D
Approach Vol, veh/h		1000			950			69			192	
Approach Delay, s/veh		30.8			15.0			51.2			57.9	
Approach LOS		С			В			D			E	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	11.3	84.5	12.0	17.3	9.9	85.8	8.3	21.0				
Change Period (Y+Rc), s	5.0	7.0	5.0	5.0	5.0	7.0	5.0	5.0				
Max Green Setting (Gmax), s	7.0	64.0	7.0	25.0	7.0	64.0	7.0	25.0				
Max Q Clear Time (g_c+l1), s	3.6	61.0	9.0	5.3	2.9	28.8	3.1	4.8				
Green Ext Time (p_c), s	0.0	1.8	0.0	0.2	0.0	5.3	0.0	0.1				
Intersection Summary												
HCM 2010 Ctrl Delay			27.0									
HCM 2010 LOS			C C									
110111 20 10 200												

Intersection						
Int Delay, s/veh	1.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	₩.	LDI	NDL	4 4) }	אומט
Traffic Vol, veh/h	15	20	10	125	130	10
Future Vol, veh/h	15 0	20	10	125 0	130	10
Conflicting Peds, #/hr					0 Free	0 Free
Sign Control	Stop	Stop	Free	Free		
RT Channelized	-		-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	78	78	78	78	78	78
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	19	26	13	160	167	13
Major/Minor	Minor2		Major1	N	/lajor2	
						0
Conflicting Flow All	360	174	180	0	-	0
Stage 1	174	-	-	-	-	-
Stage 2	186	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy				-	-	-
Pot Cap-1 Maneuver	639	869	1396	-	-	-
Stage 1	856	-	-	-	-	-
Stage 2	846	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	633	869	1396	-	_	-
Mov Cap-2 Maneuver	633	-	-	_	_	_
Stage 1	847	_	_	_	_	_
Stage 2	846	_	_	_	_	_
Staye 2	040					
Approach	EB		NB		SB	
HCM Control Delay, s	10.1		0.6		0	
HCM LOS	В					
Minardan I ana /Maian Mon	-1	NDI	NDT	EDL 4	ODT	CDD
Minor Lane/Major Mvn	nt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)		1396	-	749	-	-
HCM Lane V/C Ratio		0.009	-	0.06	-	-
HCM Control Delay (s)	7.6	0	10.1	-	-
HCM Lane LOS		Α	Α	В	-	-
HCM 95th %tile Q(veh	1)	0	-	0.2	-	-

Queues

1: Hemmer Rd & Bogard Rd, 2045 Build MID

	-	*	1	•	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Group Flow (vph)	271	64	53	309	74	90
v/c Ratio	0.23	0.06	0.06	0.23	0.33	0.34
Control Delay	10.5	4.0	5.0	5.8	32.3	9.5
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	10.5	4.0	5.0	5.8	32.3	9.5
Queue Length 50th (ft)	61	0	5	40	35	0
Queue Length 95th (ft)	155	22	25	127	59	32
Internal Link Dist (ft)	407			1427	518	
Turn Bay Length (ft)		200	300			100
Base Capacity (vph)	1163	1006	825	1322	450	451
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.23	0.06	0.06	0.23	0.16	0.20
Intersection Summary						

	Sen <u>e</u> re	_		—	•	
	0.000	*	•	C2/12/2012	1	_
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^	7	7	↑	7	7
Traffic Volume (veh/h)	255	60	50	290	70	85
Future Volume (veh/h)	255	60	50	290	70	85
Number	2	12	1	6	7	14
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		0.99	1.00		1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1762	1814	1814	1762	1581	1581
Adj Flow Rate, veh/h	271	38	53	309	74	12
Adj No. of Lanes	1	1	1	1	1	1
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	5	2	2	5	17	17
Cap, veh/h	1149	998	820	1366	112	100
Arrive On Green	0.65	0.65	0.06	0.78	0.07	0.07
Sat Flow, veh/h	1762	1530	1727	1762	1506	1344
Grp Volume(v), veh/h	271	38	53	309	74	12
Grp Sat Flow(s), veh/h/ln	1762	1530	1727	1762	1506	1344
	5.1	0.7	0.7	3.8	3.8	0.7
Q Serve(g_s), s Cycle Q Clear(g_c), s	5.1	0.7	0.7	3.8	3.8	0.7
	5.1	1.00	1.00	ა.0	1.00	1.00
Prop In Lane	1110			1266	1.00	1.00
Lane Grp Cap(c), veh/h	1149	998	820	1366		
V/C Ratio(X)	0.24	0.04	0.06	0.23	0.66	0.12
Avail Cap(c_a), veh/h	1149	998	867	1366	452	403
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	5.7	5.0	3.6	2.4	36.0	34.6
Incr Delay (d2), s/veh	0.5	0.1	0.0	0.4	6.4	0.5
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	2.6	0.3	0.3	1.9	1.8	0.3
LnGrp Delay(d),s/veh	6.2	5.0	3.6	2.8	42.5	35.1
LnGrp LOS	Α	Α	Α	Α	D	D
Approach Vol, veh/h	309			362	86	
Approach Delay, s/veh	6.1			2.9	41.4	
Approach LOS	Α			Α	D	
Timor	1	2	3	4	5	6
Timer		2	<u>ა</u>		ე	
Assigned Phs	1	2		4		6
Phs Duration (G+Y+Rc), s	9.8	59.2		11.0		69.0
Change Period (Y+Rc), s	5.0	7.0		5.0		7.0
Max Green Setting (Gmax), s	7.0	32.0		24.0		44.0
Max Q Clear Time (g_c+l1), s	2.7	7.1		5.8		5.8
Green Ext Time (p_c), s	0.0	1.5		0.2		1.7
Intersection Summary						
HCM 2010 Ctrl Delay			8.6			
HCM 2010 LOS			A			
110111 20 10 200			\sim			

Intersection												
Int Delay, s/veh	8.0											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7	*	\$			4			4	
Traffic Vol, veh/h	5	320	15	10	325	5	10	1	15	2	1	5
Future Vol, veh/h	5	320	15	10	325	5	10	1	15	2	1	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	325	-	325	250	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	96	96	96	96	96	96	96	96	96	96	96	96
Heavy Vehicles, %	2	5	2	2	5	2	13	2	13	2	2	2
Mvmt Flow	5	333	16	10	339	5	10	1	16	2	1	5
Major/Minor	Major1			Major2			Minor1			Minor2		
	344	0		349	0		708	707	333	722	721	342
Conflicting Flow All		0	0		0	0	343	343		362	362	
Stage 1	-	-	-	-	-	-	365	364	-	360	359	-
Stage 2 Critical Hdwy	4.12	-	-	4.12	-	-	7.23	6.52	6.33	7.12	6.52	6.22
Critical Hdwy Stg 1	4.12	-	-	4.12	-	-	6.23	5.52	0.33	6.12	5.52	0.22
Critical Hdwy Stg 2	-	-	-	-	-	-	6.23	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-		2.218	-	-	3.617		3.417		4.018	
Pot Cap-1 Maneuver	1215	_	_	1010	_	_	336	360	684	342	353	701
Stage 1	1215	-	_	1210	-	-	650	637	- 004	657	625	701
Stage 2	-	-		_	-	_	632	624	-		627	_
Platoon blocked, %		_	_		_	_	002	024	_	000	ULI	
Mov Cap-1 Maneuver	1215	_	_	1210	_	_	330	356	684	330	349	701
Mov Cap-1 Maneuver	1215	_	_	-	_	_	330	356	-	330	349	-
Stage 1		_	_	_	_		647	634			620	-
Stage 2	_	_	_	_	_	_	621	619	_	639	624	_
Olugo Z							JE 1	313		303	J <i>L</i> -f	
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.1			0.2			13.1			12.4		
HCM LOS							В			В		
Minor Lane/Major Mvn	nt I	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)			1215			1210	-	-	498			
HCM Lane V/C Ratio			0.004	_		0.009	_		0.017			
HCM Control Delay (s)		13.1	8	_	_	8	_	_				
HCM Lane LOS		В	A	_	_	A	_	_	В			
HCM 95th %tile Q(veh)	0.2	0	_	_	0	-	-	0.1			
Sivi ootii 70tiio Q(Voii	1	J.L	- 0			- 3			0.1			

Intersection													
Int Delay, s/veh	0												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NB	L	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4				4			4	
Traffic Vol, veh/h	0	0	0	0	0	0		0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0		0	0	0	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0		0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Fre	е	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None		-	-	None	-	-	None
Storage Length	-	-	-	-	-	-		-	-	-	-	-	-
Veh in Median Storage	е,# -	0	-	-	0	-		-	0	-	-	0	-
Grade, %	-	0	-	-	0	-		-	0	-	-	0	-
Peak Hour Factor	25	25	25	25	25	25	2	5	25	25	25	25	25
Heavy Vehicles, %	2	2	2	3	2	2		2	17	3	2	17	2
Mvmt Flow	0	0	0	0	0	0		0	0	0	0	0	0
Major/Minor	Minor2			Minor1			Major	1		ı	Major2		
Conflicting Flow All	4	4	4	4	4	0		4	0	0	0	0	0
Stage 1	4	4		0	0	_		- -	-	-	-	-	-
Stage 2	0	0	_	4	4	_		_	_	_	_	_	_
Critical Hdwy	7.12	6.52	6.22	7.13	6.52	6.22	4.1	2	_	_	4.12	_	_
Critical Hdwy Stg 1	6.12	5.52	-	6.13	5.52	-		_	_	_		_	_
Critical Hdwy Stg 2	6.12	5.52	-	6.13	5.52	-		_	-	-	-	-	_
Follow-up Hdwy	3.518	4.018	3.318			3.318	2.21	8	-	-	2.218	-	-
Pot Cap-1 Maneuver	1017	891	1080	1015	891	-	161		-	-	_	-	-
Stage 1	1018	892	-	-	-	-		-	-	-	-	-	-
Stage 2	-	-	-	1016	892	-		-	-	-	-	-	-
Platoon blocked, %									-	-		-	-
Mov Cap-1 Maneuver	-	891	1080	1015	891	-	161	8	-	-	-	-	-
Mov Cap-2 Maneuver	-	891	-	1015	891	-		-	-	-	-	-	-
Stage 1	1018	892	-	-	-	-		-	-	-	-	-	-
Stage 2	-	-	-	1016	892	-		-	-	-	-	-	-
Approach	EB			WB			N	В			SB		
HCM Control Delay, s	0			0				0			0		
HCM LOS	A			A				•					
Minor Lane/Major Mvn	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL SB	Т	SBR				
Capacity (veh/h)		1618	-	-	-	-	-	-	-				
HCM Lane V/C Ratio		-	-	-	-	-	-	_	_				
HCM Control Delay (s)		0	_	-	0	0	0	-	-				
HCM Lane LOS		A	-	-	A	A	A	-	-				
HCM 95th %tile Q(veh)	0	-	-	-	-	-	-	-				
.,													

Intersection						
Int Delay, s/veh	0					
		WEE	Not	NDD	051	057
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		₽			4
Traffic Vol, veh/h	0	0	0	0	0	0
Future Vol, veh/h	0	0	0	0	0	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,# 0	-	0	_	-	0
Grade, %	0	-	0	_	-	0
Peak Hour Factor	25	25	25	25	25	25
Heavy Vehicles, %	2	2	17	2	2	17
Mvmt Flow	0	0	0	0	0	0
IVIVIII(I IOW	U	U	U	U	U	U
Major/Minor	Minor1	N	Major1	N	Major2	
Conflicting Flow All	4	0	0	0	0	0
Stage 1	0	-	-	-	-	-
Stage 2	4	-	_	_	-	-
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	-	_	_		_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518		_		2.218	_
Pot Cap-1 Maneuver	1018	-	_	_	2.210	_
	1010			_	_	
Stage 1	4040	-	-	-		-
Stage 2	1019	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver		-	-	-	-	-
Mov Cap-2 Maneuver	1018	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	1019	-	-	-	-	-
A	\A/D		МВ		OB	
Approach	WB		NB		SB	
HCM Control Delay, s	0		0		0	
HCM LOS	Α					
Minor Lane/Major Mvr	nt	NBT	NIRDV	VBLn1	SBL	SBT
	iit.	INDT	NDRV			ODT
Capacity (veh/h)		-	-	-	-	-
HCM Lane V/C Ratio		-	-	-	-	-
HCM Control Delay (s)	-	-	0	0	-
HCM Lane LOS		-	-	Α	Α	-
HCM 95th %tile Q(veh	1)	-	-	-	-	-

	•	→	1	+	•	4	†	1	ļ
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	16	840	48	729	112	5	49	101	10
v/c Ratio	0.04	0.76	0.16	0.62	0.11	0.02	0.27	0.55	0.04
Control Delay	6.9	24.0	7.6	17.3	2.9	33.0	16.0	51.5	28.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	6.9	24.0	7.6	17.3	2.9	33.0	16.0	51.5	28.3
Queue Length 50th (ft)	3	417	8	218	0	3	1	68	3
Queue Length 95th (ft)	14	#905	31	#725	30	12	33	98	18
Internal Link Dist (ft)		848		933			281		173
Turn Bay Length (ft)	300		125		125			100	
Base Capacity (vph)	417	1107	307	1181	1029	247	359	183	335
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.04	0.76	0.16	0.62	0.11	0.02	0.14	0.55	0.03
Intersection Summary									

intersection Summary

^{# 95}th percentile volume exceeds capacity, queue may be longer.

	۶	→	•	•	←	•	1	1	<i>></i>	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1		7	^	7	1	7		7	₽	
Traffic Volume (veh/h)	15	785	5	45	685	105	5	1	45	95	5	5
Future Volume (veh/h)	15	785	5	45	685	105	5	1	45	95	5	5
Number	5	2	12	1	6	16	7	4	14	3	8	18
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	0.96		0.94	0.94		0.96
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1814	1746	1850	1814	1745	1814	1814	1814	1850	1581	1689	1850
Adj Flow Rate, veh/h	16	835	5	48	729	69	5	1	5	101	5	1
Adj No. of Lanes	1	1	0	1	1	1	1	1	0	1	1	0
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	2	6	2	2	6	2	2	2	2	17	2	17
Cap, veh/h	369	1077	6	321	1125	986	250	20	98	241	177	35
Arrive On Green	0.02	0.62	0.62	0.05	0.64	0.64	0.01	0.08	0.08	0.06	0.13	0.13
Sat Flow, veh/h	1727	1733	10	1727	1745	1530	1727	249	1246	1506	1357	271
Grp Volume(v), veh/h	16	0	840	48	729	69	5	0	6	101	0	6
Grp Sat Flow(s),veh/h/ln	1727	0	1744	1727	1745	1530	1727	0	1495	1506	0	1629
Q Serve(g_s), s	0.4	0.0	40.5	1.1	29.3	1.9	0.3	0.0	0.4	7.0	0.0	0.4
Cycle Q Clear(g_c), s	0.4	0.0	40.5	1.1	29.3	1.9	0.3	0.0	0.4	7.0	0.0	0.4
Prop In Lane	1.00		0.01	1.00		1.00	1.00		0.83	1.00		0.17
Lane Grp Cap(c), veh/h	369	0	1083	321	1125	986	250	0	118	241	0	213
V/C Ratio(X)	0.04	0.00	0.78	0.15	0.65	0.07	0.02	0.00	0.05	0.42	0.00	0.03
Avail Cap(c_a), veh/h	432	0	1083	343	1125	986	340	0	325	241	0	354
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	10.2	0.0	15.9	14.2	12.5	7.6	42.7	0.0	49.0	45.6	0.0	43.6
Incr Delay (d2), s/veh	0.0	0.0	5.4	0.2	2.9	0.1	0.0	0.0	0.2	1.2	0.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.2	0.0	21.0	0.6	14.9	0.8	0.1	0.0	0.2	3.0	0.0	0.2
LnGrp Delay(d),s/veh	10.2	0.0	21.4	14.4	15.4	7.7	42.7	0.0	49.2	46.8	0.0	43.7
LnGrp LOS	В		С	В	В	A	D		D	D		<u>D</u>
Approach Vol, veh/h		856			846			11			107	
Approach Delay, s/veh		21.2			14.7			46.2			46.6	
Approach LOS		С			В			D			D	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	10.5	78.4	12.0	14.1	7.8	81.1	6.0	20.0				
Change Period (Y+Rc), s	5.0	7.0	5.0	5.0	5.0	7.0	5.0	5.0				
Max Green Setting (Gmax), s	7.0	54.0	7.0	25.0	7.0	54.0	7.0	25.0				
Max Q Clear Time (g_c+l1), s	3.1	42.5	9.0	2.4	2.4	31.3	2.3	2.4				
Green Ext Time (p_c), s	0.0	4.3	0.0	0.0	0.0	5.0	0.0	0.0				
Intersection Summary												
HCM 2010 Ctrl Delay			19.8									
HCM 2010 LOS			В									

Intersection						
Int Delay, s/veh	1.3					
		E22	ND	NET	057	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	₽	
Traffic Vol, veh/h	15	15	10	140	100	10
Future Vol, veh/h	15	15	10	140	100	10
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	94	94	94	94	94	94
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	16	16	11	149	106	11
	Minor2		Major1		//ajor2	
Conflicting Flow All	283	112	117	0	-	0
Stage 1	112	-	-	-	-	-
Stage 2	171	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	_	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	707	941	1471	-	-	_
Stage 1	913	-	-	_	_	_
Stage 2	859	_	_	_	_	_
Platoon blocked, %	000			_	_	_
Mov Cap-1 Maneuver	701	941	1471	_	_	_
Mov Cap-1 Maneuver	701	941	14/1			-
			-	-	-	-
Stage 1	906	-	-	-	-	-
Stage 2	859	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.7		0.5		0	
HCM LOS	A		0.0			
1.0 200	/\					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1471	-		-	-
HCM Lane V/C Ratio		0.007	-	0.04	-	-
HCM Control Delay (s)		7.5	0	9.7	-	-
HCM Lane LOS		Α	Α	Α	-	-
HCM 95th %tile Q(veh)	0	_	0.1	-	-
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	,					

Queues

1: Hemmer Rd & Bogard Rd, 2045 Build PM

	-	*	1	•	4	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Group Flow (vph)	489	65	103	505	76	49
v/c Ratio	0.44	0.07	0.16	0.38	0.34	0.21
Control Delay	13.7	4.0	5.3	7.0	32.5	9.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	13.7	4.0	5.3	7.0	32.5	9.8
Queue Length 50th (ft)	129	0	10	76	36	0
Queue Length 95th (ft)	308	23	43	230	60	23
Internal Link Dist (ft)	407			1427	518	
Turn Bay Length (ft)		200	300			100
Base Capacity (vph)	1107	961	632	1320	450	422
Starvation Cap Reductn	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0
Reduced v/c Ratio	0.44	0.07	0.16	0.38	0.17	0.12
Intersection Summary						

	800	_		+	•	<u></u>
	0.00000	*	*		1	
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑	7	*	↑	7	7
Traffic Volume (veh/h)	450	60	95	465	70	45
Future Volume (veh/h)	450	60	95	465	70	45
Number	2	12	1	6	7	14
Initial Q (Qb), veh	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)		0.99	1.00		1.00	1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1762	1814	1814	1762	1581	1581
Adj Flow Rate, veh/h	489	38	103	505	76	6
Adj No. of Lanes	1	1	1	1	1	1
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Percent Heavy Veh, %	5	2	2	5	17	17
Cap, veh/h	1120	972	657	1368	110	99
Arrive On Green	0.64	0.64	0.08	0.78	0.07	0.07
Sat Flow, veh/h	1762	1530	1727	1762	1506	1344
Grp Volume(v), veh/h	489	38	103	505	76	6
Grp Sat Flow(s), veh/h/ln	1762	1530	1727	1762	1506	1344
Q Serve(g_s), s	11.2	0.7	1.5	7.2	3.9	0.3
Cycle Q Clear(g_c), s	11.2	0.7	1.5	7.2	3.9	0.3
Prop In Lane	11.2	1.00	1.00	1.2	1.00	1.00
	1120	972	657	1368	110	99
Lane Grp Cap(c), veh/h	0.44	0.04	0.16	0.37	0.69	0.06
V/C Ratio(X)						403
Avail Cap(c_a), veh/h	1120	972	672	1368	452	
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	7.4	5.4	4.4	2.8	36.2	34.5
Incr Delay (d2), s/veh	1.2	0.1	0.1	8.0	7.4	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	5.8	0.3	0.7	3.7	1.9	0.1
LnGrp Delay(d),s/veh	8.6	5.5	4.5	3.6	43.5	34.8
LnGrp LOS	A	Α	Α	Α	D	С
Approach Vol, veh/h	527			608	82	
Approach Delay, s/veh	8.4			3.7	42.9	
Approach LOS	Α			Α	D	
Timer	1	2	3	4	5	6
Assigned Phs	<u> </u>	2	<u> </u>	4		6
	11.3					
Phs Duration (G+Y+Rc), s	5.0	57.8		10.9		69.1 7.0
Change Period (Y+Rc), s		7.0		5.0		
Max Green Setting (Gmax), s	7.0	32.0		24.0		44.0
Max Q Clear Time (g_c+l1), s	3.5	13.2		5.9		9.2
Green Ext Time (p_c), s	0.1	2.8		0.2		3.1
Intersection Summary						
HCM 2010 Ctrl Delay			8.4			
HCM 2010 LOS			Α			

Intersection												
Int Delay, s/veh	1.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	^	7		î,			4			4	
Traffic Vol, veh/h	10	470	15	15	545	5	10	5	15	5	1	5
Future Vol, veh/h	10	470	15	15	545	5	10	5	15	5	1	5
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	_	-	None	-	_	None	-	-	None	-	-	None
Storage Length	325	_	325	250	_	-	-	-	-	-	_	_
Veh in Median Storage		0	-	_	0	_	-	0	_	_	0	-
Grade, %	-, -	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	81	81	81	81	81	81	81	81	81	81	81	81
Heavy Vehicles, %	2	5	2	2	5	2	13	2	13	2	2	2
Mvmt Flow	12	580	19	19	673	6	12	6	19	6	1	6
Major/Minor	Major1		ı	Major2			Minor1			Minor2		
Conflicting Flow All	679	0	0	599	0	0	1322	1321	580	1340	1337	676
Stage 1	0/9	-		599	-		604	604	500	714	714	
Stage 2	-	-	-	-	-	-	718	717	-	626	623	-
Critical Hdwy	4.12	-	-	4.12	-	-	7.23	6.52	6.33	7.12	6.52	6.22
Critical Hdwy Stg 1	4.12	_		4 .12	_		6.23	5.52	0.55	6.12	5.52	0.22
Critical Hdwy Stg 2	-	-	-	<u>-</u>	-	-	6.23	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	_	_	2.218	_	_	3.617	4.018	3.417	3.518	4.018	3.318
Pot Cap-1 Maneuver	913		_	978		_	126	157	494	130	153	453
Stage 1	J 13		_	-	_	_	467	488	434	422	435	-
Stage 2	_	_	_	_	_	_	403	434		472	478	_
Platoon blocked, %		_	_		_	_	700	707		712	-110	
Mov Cap-1 Maneuver	913	_	_	978	_	_	120	152	494	118	148	453
Mov Cap-2 Maneuver	-	_	_	-	_	_	120	152	-	118	148	00
Stage 1	_	_	_	_	_	_	461	482	_	417	427	-
Stage 2	_	_	_	_	_	_	389	426	_	443	472	_
2.030 2							300	0				
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.2			0.2			26.4			26.2		
HCM LOS	U.Z			U.Z			20.4 D			20.2 D		
I IOWI LOS							U			U		
Minor Long/Marian M		NIDL 4	EDI	EDT	EDD	///DI	MOT	WDD	ODL 4			
Minor Lane/Major Mvm	IL	NBLn1	EBL	EBT	EBR	WBL	WBT		SBLn1			
Capacity (veh/h)		205	913	-	-	978	-	-	183			
HCM Caretral Dalace (a)		0.181		-	-	0.019	-		0.074			
HCM Control Delay (s)		26.4	9	-	-	8.8	-	-	26.2			
HCM Lane LOS	\	D	A	-	-	Α	-	-	D			
HCM 95th %tile Q(veh)	0.6	0	-	-	0.1	-	-	0.2			

Intersection													
Int Delay, s/veh	1.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR		NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4				4			4	
Traffic Vol, veh/h	1	1	1	15	1	15		2	120	10	25	110	1
Future Vol, veh/h	1	1	1	15	1	15		2	120	10	25	110	1
Conflicting Peds, #/hr	0	0	0	0	0	0		0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop		Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	_	-	None		-	-	None	-	-	None
Storage Length	-	-	-	-	-	-		-	-	-	-	_	-
Veh in Median Storage	e,# -	0	-	-	0	-		-	0	-	-	0	-
Grade, %	_	0	-	-	0	-		-	0	-	-	0	-
Peak Hour Factor	83	83	83	83	83	83		83	83	83	83	83	83
Heavy Vehicles, %	2	2	2	3	2	2		2	17	3	2	17	2
Mvmt Flow	1	1	1	18	1	18		2	145	12	30	133	1
Majay/Mina	N Alimania			Min = =4			р. 4	la:a::4			4-10		
	Minor2	055		Minor1	0.10	454	IVI	lajor1			Major2		
Conflicting Flow All	359	355	134	350	349	151		134	0	0	157	0	0
Stage 1	194	194	-	155	155	-		-	-	-	-	-	-
Stage 2	165	161	-	195	194	-		- 4.40	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.13	6.52	6.22		4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.13	5.52	-		-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.13	5.52	-		-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.527	4.018	3.318		2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	596	571	915	603	575	895		1451	-	-	1423	-	-
Stage 1	808	740	-	845	769	-		-	-	-	-	-	-
Stage 2	837	765	-	804	740	-		-	-	-	-	-	-
Platoon blocked, %								445	-	-	44	-	-
Mov Cap-1 Maneuver	572	557	915	590	561	895		1451	-	-	1423	-	-
Mov Cap-2 Maneuver	572	557	-	590	561	-		-	-	-	-	-	-
Stage 1	806	723	-	843	767	-		-	-	-	-	-	-
Stage 2	817	763	-	783	723	-		-	-	-	-	-	-
Approach	EB			WB				NB			SB		
HCM Control Delay, s	10.6			10.4				0.1			1.4		
HCM LOS	В			В									
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR				
Capacity (veh/h)		1451	-		647	705	1423	_	_				
HCM Lane V/C Ratio		0.002	_	_		0.053		_	_				
HCM Control Delay (s)		7.5	0	_	10.6	10.4	7.6	0	_				
HCM Lane LOS		Α.	A	_	В	В	Α.	A	_				
HCM 95th %tile Q(veh))	0	-	_	0	0.2	0.1	-	_				
TOWN COURT FOUND CONTROL	,	- 0			- 0	0.2	V. 1						

Intersection						
Int Delay, s/veh	0.6					
	WDI	WDD	NDT	NDD	CDI	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y	•	^	_	_	4
Traffic Vol, veh/h	10	2	135	5	5	120
Future Vol, veh/h	10	2	135	5	5	120
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	86	86	86	86	86	86
Heavy Vehicles, %	2	2	17	2	2	17
Mvmt Flow	12	2	157	6	6	140
IVIVIIIL I IOW	12	Z	101	U	U	140
Major/Minor	Minor1	N	Major1		Major2	
Conflicting Flow All	312	160	0	0	163	0
Stage 1	160	-	-	-	-	-
Stage 2	152	-	-	_	-	_
Critical Hdwy	6.42	6.22	_	-	4.12	-
Critical Hdwy Stg 1	5.42	-	_	_	-	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518	3.318	_	_	2.218	_
Pot Cap-1 Maneuver	681	885	_	_	1416	
	869		-	-	1410	
Stage 1		-	-	-	-	-
Stage 2	876	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	678	885	-	-	1416	-
Mov Cap-2 Maneuver	678	-	-	-	-	-
Stage 1	869	-	-	-	-	-
Stage 2	872	-	-	-	-	-
Λ	\A/D		NE		0.0	
Approach	WB		NB		SB	
HCM Control Delay, s	10.2		0		0.3	
HCM LOS	В					
Minor Lane/Major Mvr	ot	NBT	NIPDV	VBLn1	SBL	SBT
	IIL	INDI				
Capacity (veh/h)		-	-		1416	-
HCM Lane V/C Ratio		-	-		0.004	-
HCM Control Delay (s		-	-	10.2	7.6	0
HCM Lane LOS		-	-	В	Α	Α
HCM 95th %tile Q(veh)	-	-	0.1	0	-
· · · · · · · · · · · · · · · · · · ·						

Queues

5: Hemmer Rd & Palmer-Wasilla Hwy, 2045 Build PM

	۶	-	1	•	*	4	†	-	ļ
Lane Group	EBL	EBT	WBL	WBT	WBR	NBL	NBT	SBL	SBT
Lane Group Flow (vph)	11	961	38	1143	143	11	79	126	13
v/c Ratio	0.08	0.82	0.15	0.93	0.14	0.05	0.37	0.73	0.06
Control Delay	7.9	27.8	7.7	35.2	4.8	44.1	16.1	77.1	26.2
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	7.9	27.8	7.7	35.2	4.8	44.1	16.1	77.1	26.2
Queue Length 50th (ft)	2	551	6	576	10	9	2	~118	2
Queue Length 95th (ft)	10	#1154	24	#1513	53	25	50	160	23
Internal Link Dist (ft)		848		933			281		173
Turn Bay Length (ft)	300		125		125			100	
Base Capacity (vph)	144	1168	250	1227	1050	238	318	173	240
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.08	0.82	0.15	0.93	0.14	0.05	0.25	0.73	0.05

Intersection Summary

Volume exceeds capacity, queue is theoretically infinite.

Queue shown is maximum after two cycles.

95th percentile volume exceeds capacity, queue may be longer.

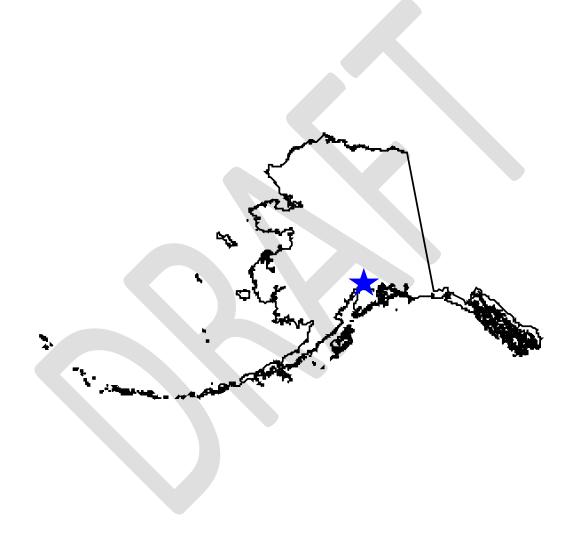
Queue shown is maximum after two cycles.

	•		120	100	10175		320	_			1	
	۶	\rightarrow	*	1		-	1	T		-	¥	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1		*	†	7	*	1€		7	1	
Traffic Volume (veh/h)	10	870	5	35	1040	130	10	2	70	115	2	10
Future Volume (veh/h)	10	870	5	35	1040	130	10	2	70	115	2	10
Number	5	2	12	1	6	16	7	4	14	3	8	18
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		0.99	1.00		0.99	0.96		0.94	0.94		0.95
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1814	1746	1850	1814	1745	1814	1814	1814	1850	1581	1613	1850
Adj Flow Rate, veh/h	11	956	5	38	1143	113	11	2	9	126	2	2
Adj No. of Lanes	1	1	0	1	1	1	1	1	0	1	1	0
Peak Hour Factor	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91	0.91
Percent Heavy Veh, %	2	6	2	2	6	2	2	2	2	17	2	17
Cap, veh/h	142	1185	6	286	1228	1077	224	22	97	205	79	79
Arrive On Green	0.02	0.68	0.68	0.04	0.70	0.70	0.02	0.08	0.08	0.05	0.11	0.11
Sat Flow, veh/h	1727	1735	9	1727	1745	1531	1727	273	1227	1506	722	722
Grp Volume(v), veh/h	11	0	961	38	1143	113	11	0	11	126	0	4
Grp Sat Flow(s),veh/h/ln	1727	0	1744	1727	1745	1531	1727	0	1500	1506	0	1445
Q Serve(g_s), s	0.3	0.0	56.4	0.9	81.5	3.4	0.8	0.0	1.0	7.0	0.0	0.4
Cycle Q Clear(g_c), s	0.3	0.0	56.4	0.9	81.5	3.4	0.8	0.0	1.0	7.0	0.0	0.4
Prop In Lane	1.00		0.01	1.00		1.00	1.00		0.82	1.00		0.50
Lane Grp Cap(c), veh/h	142	0	1192	286	1228	1077	224	0	118	205	0	159
V/C Ratio(X)	0.08	0.00	0.81	0.13	0.93	0.10	0.05	0.00	0.09	0.61	0.00	0.03
Avail Cap(c_a), veh/h	195	0	1192	305	1228	1077	277	0	259	205	0	249
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	29.2	0.0	16.2	17.5	18.4	6.9	55.6	0.0	62.0	60.9	0.0	57.6
Incr Delay (d2), s/veh	0.2	0.0	5.9	0.2	13.7	0.2	0.1	0.0	0.3	5.4	0.0	0.1
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.3	0.0	28.9	0.6	43.4	1.5	0.4	0.0	0.4	4.9	0.0	0.1
LnGrp Delay(d),s/veh	29.4	0.0	22.1	17.7	32.1	7.1	55.7	0.0	62.3	66.3	0.0	57.7
LnGrp LOS	С		С	В	С	Α	Е		Е	Е		Е
Approach Vol, veh/h		972			1294			22			130	
Approach Delay, s/veh		22.2			29.5			59.0			66.1	
Approach LOS		С			С			Е			E	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	10.5	106.1	12.0	16.4	7.5	109.1	7.5	20.9				
Change Period (Y+Rc), s	5.0	7.0	5.0	5.0	5.0	7.0	5.0	5.0				
Max Green Setting (Gmax), s	7.0	84.0	7.0	25.0	7.0	84.0	7.0	25.0				
Max Q Clear Time (g_c+l1), s	2.9	58.4	9.0	3.0	2.3	83.5	2.8	2.4				
Green Ext Time (p_c), s	0.0	7.7	0.0	0.0	0.0	0.4	0.0	0.0				
Intersection Summary												
HCM 2010 Ctrl Delay			28.8									
HCM 2010 LOS			С									

Intersection						
Int Delay, s/veh	1					
	EDI	E88	ND	NET	057	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y			4	₽	
Traffic Vol, veh/h	10	10	15	105	140	15
Future Vol, veh/h	10	10	15	105	140	15
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	11	11	16	114	152	16
	• •	• •				
	Minor2		Major1		//ajor2	
Conflicting Flow All	306	160	168	0	-	0
Stage 1	160	-	-	-	-	-
Stage 2	146	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	686	885	1410	_	-	-
Stage 1	869	-	-	_	-	-
Stage 2	881	_	-	_	_	_
Platoon blocked, %	301			_	_	_
Mov Cap-1 Maneuver	678	885	1410	_	_	_
Mov Cap-1 Maneuver	678	-	1710		_	
Stage 1	859		_		_	_
•	881	-				-
Stage 2	001	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.8		0.9		0	
HCM LOS	Α					
					055	05-
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1410	-		-	-
HCM Lane V/C Ratio		0.012	-	0.028	-	-
HCM Control Delay (s)		7.6	0	9.8	-	-
HCM Lane LOS		Α	Α	Α	-	-
HCM 95th %tile Q(veh)	0	-	0.1	-	-

The information in this report is compiled for highway safety planning purposes. Federal law prohibits its discovery or admissibility in litigation against state, tribal or local government that involves a location or locations mentioned in the collision data. 23 U.S.C. § 407; 23 U.S.C. § 148(g); *Walden v. DOT*, 27 P.3d 297, 304-305 (Alaska 2001).

APPENDIX E


Material Recommendations

GEOTECHNICAL RECOMMENDATIONS

Hemmer Road Extension and Upgrade: Palmer-Wasilla Highway to Bogard Road

Project No. 0001743 / CFHWY00885

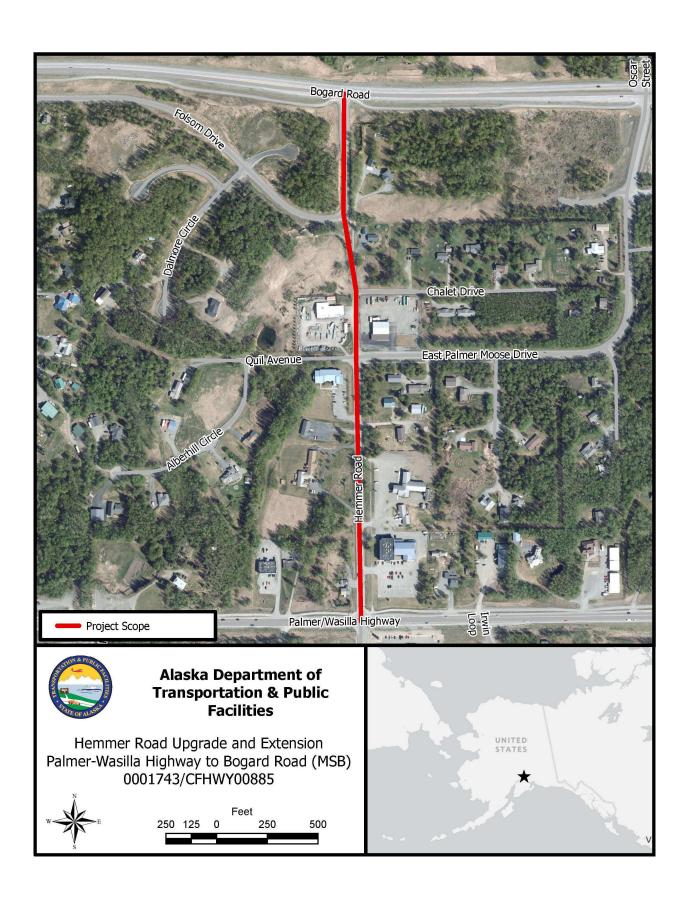
August 2024

Prepared By
ALASKA DEPARTMENT OF TRANSPORTATION & PUBLIC FACILITIES
Central Region Materials
Anchorage, Alaska

ALASKA Department of Transportation And Public Facilities

GEOTECHNICAL RECOMMENDATIONS

Hemmer Road Extension and Upgrade: Palmer-Wasilla Highway to Bogard Road


Project No.: 0001743 / CFHWY00885

August 2024

Prepared By:	Recommended for Approval By:
Stephen Wehe, E.I.T.	David Eguires-Lee, P.E. Central Region Materials
Central Region Materials	*Stamp will be added at final*
Approved By:	
Mitch Miller, P.E. Regional Geotechnical Engineer	
Negional Geolechindal Engineer	

TABLE OF CONTENTS

VICINITY MAP	ii
1.0 INTRODUCTION	1
SCOPE	1
PROJECT DESCRIPTION	1
REFERENCES	1
	۱ 1
	1
2.0 CLIMATE	
3.0 EXISTING CONDITIONS	2
STATION TO STATION DESCRIPTIONS	S2
DRAINAGE AND GROUNDWATER REC	COMMENDATIONS2
Groundwater	2
Drainage Recommendations	2
4.0 EARTHWORK	
CLEARING AND GRUBBING	2
	3
	3
GENERAL EMBANKMENT	3
	3
	3
	3
5.0 STRUCTURAL SECTION RECOMMEND	ATIONS 4
PAVEMENT AND STRUCTURAL SECT	ION DESIGN CRITERIA4
	ION RECOMMENDATION4
Alternative Recommendation	4
APPENI	DICIES
APPENDIX A	DRAFT BORE LOGS AND MAP
APPENDIX B	HISTORICAL PROJECT INFORMATION

1.0 INTRODUCTION

SCOPE

The purpose of these investigations and analyses is to gather data and provide geotechnical recommendations for the project. This report presents recommendations based on the results of the subsurface geotechnical investigation completed in May 2024 by Central Region Materials (CRM). The Final Recommendations will include the Draft Bore Logs and Map in Appendix A.

PROJECT DESCRIPTION

This project proposes to upgrade the existing section of Hemmer Road from the Palmer-Wasilla Highway north and extend Hemmer Road further north to Bogard Road adding travel lanes, turn lanes, shoulders, amenities for pedestrians, and features for drainage, safety, and roadside hardware. A traffic signal at the intersection of Hemmer Road and the Bogard Road will also be included.

REFERENCES

The following information was provided to CRM and serves as our preliminary basis for understanding the scope of the project:

• Preliminary Review F-Sheets, Hemmer Road Extension: Palmer-Wasilla Highway to Bogard Road, Project No. 0001743 / CFHWY00885, June 2024.

HISTORICAL PROJECT INFORMATION

Historical as-builts along the project corridor, along with the results of the geotechnical investigation, were used to help determine the existing structural section. This historical information is attached as Appendix B.

• As-Builts, Hemmer Road Grading, Paving & Drainage, Project No. OS – 1(008), 1976.

LIMITATIONS

This report documents subsurface geotechnical conditions based on analyses of extracted materials taken from locations on the project site, and provides interpretation of anticipated site conditions on the project. This report recommends design and construction criteria for the project based off of the information available to CRM at the time of this writing, and is only intended for the project design criteria staff.

2.0 CLIMATE

Climate data for this project was obtained from the Matanuska Agricultural Experimental Station through the Western Regional Climate Center (WRCC). Annual total precipitation averaged 15.27", with total snowfall averaging 47.7". Average temperatures ranged from 4.5°F (January) to 67.4°F (July) (see the table on the next page), with extreme temperatures from the previous 20 years ranging from -29°F (January 2009) to 88°F (July 2019).

MATANUSKA AG EXP STN, ALASKA (505733)

Period of Record Monthly Climate Summary

Period of Record: 07/04/1917 to 05/31/2016

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Average Max. Temperature (F)	21.0	27.5	34.3	46.2	58.1	65.0	67.	4 65.0	56.6	43.0	28.7	22.4	44.7
Average Min. Temperature (F)	4.5	9.8	15.8	27.3	36.3	44.:	48.	2 46.2	38.7	27.2	13.1	6.3	26.5
Average Total Precipitation (in.)	0.84	0.71	0.50	0.44	0.71	1.38	3 2.1	7 2.59	2.44	1.47	0.96	1.06	15.27
Average Total SnowFall (in.)	8.3	8.3	6.2	2.2	0.2	0.0	0.	0.0	0.1	4.0	7.9	10.6	47.7
Average Snow Depth (in.)	4	4	2	2 1	0) ()	0 () () 1	. 2	4	2

Percent of possible observations for period of record.

Max. Temp.: 96.6% Min. Temp.: 96.6% Precipitation: 96.5% Snowfall: 95.8% Snow Depth: 89%

Check Station Metadata or Metadata graphics for more detail about data completeness.

Western Regional Climate Center, wrcc@dri.edu

3.0 EXISTING CONDITIONS

STATION TO STATION DESCRIPTIONS

This section will present generalized subsurface profiles based on the bore logs and laboratory test results. At the time of this draft report, these are still being developed. The Final Recommendations will include the Station-to-Station Descriptions as well as the detailed results of the geotechnical investigation.

DRAINAGE AND GROUNDWATER RECOMMENDATIONS

Groundwater

The depth of the groundwater (GW) table is varied throughout the project area, ranging from 8' to 15.5' BGS. It is also noted that the GW table was encountered in only three of the 11 THs advanced in the project area. The full results of the drilling investigation will be presented in the Final Recommendations.

Drainage Recommendations

Surface drainage along proposed road surfaces should be designed to sheet drain towards the proposed ditch line in a manner that minimizes erosion potential. Ditch profiles should be contoured to culverts, drainage basins, etc. to move surface water away from the embankment to eliminate water ponding at the toe. Ditches should be constructed to a minimum depth of 3' below the pavement surface where design and existing conditions allow (after placement of topsoil) to promote natural drainage within the structural section and protect against frost heaving.

4.0 EARTHWORK

CLEARING AND GRUBBING

Clearing is recommended, in accordance with Section 201-3.02, in areas where the proposed final alignment of the roadway will require sight distances beyond what is currently existing to meet design standards.

Grubbing is recommended within the proposed road and pathway footprints in accordance with Section 201-3.03. Waste from grubbing should be disposed of in designated waste areas (see Waste Excavation recommendations) or hauled off the project to contractor provided waste areas. All slopes of existing embankment within the project area need to be grubbed prior to placement of any new embankment material.

EXCAVATION & EMBANKMENT

General Excavation

Project geotechnical borings show that the existing soils range from organics to gravel, with a number of potentially useable portions; therefore, it is recommended that the excavation be paid for under the 203(3) Unclassified Excavation item. See station to station descriptions for potential usability of material. All potentially useable materials should be tested to confirm conformance to specifications. Unusable excavation should be disposed of in designated or contractor provided areas.

The alignment of the extension of Hemmer Road runs through undeveloped land, approximately from Sta. 116+50 to Sta. 120+00, which consists of organic soils from the surface down to a maximum depth of 7.5' BGS. Remove this material prior to placing any new embankment material and backfill with useable Selected Material.

General Embankment

Based on the field logs of the geotechnical investigation, the existing structural section primarily consists of sands and gravels with a layer of silt with sand beneath. Off-road bore logs showed organic soil down to an average of 5.8' BGS and sand with gravel beneath. The P200 levels will be available in the Final Recommendations with the laboratory test results.

SLOPE RECOMMENDATIONS

Cut/Fill slopes should not be constructed steeper than 2H:1V. Slopes designed steeper should be further evaluated to determine if embankment stabilization is needed.

Benching is strongly recommended in accordance with Section 203-3.03, Embankment Construction. Consider adding a note to plans to ensure contractor compliance. All slopes should be vegetated by seeding or other measures to establish native vegetation, minimizing erosion potential.

WASTE EXCAVATION

Designated waste areas may be included in the project where possible (within existing right-of-way and environmental constraints) for the disposal of cleared/grubbed vegetation and unusable excavation. The following criteria are recommended for designated waste areas (when connected to the proposed embankment):

- Waste areas should be located in areas with firm thawed ground to reduce potential for subgrade failure after loaded with waste material.
- Waste areas should have a 3% (min.) cross slope from the embankment to direct drainage away from the embankment.
- Waste slopes should be restricted to no steeper than 3H:1V to eliminate shear failure.

Recommend leaving a 10' buffer between the toe of waste and ROW in order to allow access for construction and maintenance equipment

MATERIAL SOURCES

No material source investigations were performed for this project as all materials are expected to be imported from local private sources.

5.0 STRUCTURAL SECTION RECOMMENDATIONS

PAVEMENT AND STRUCTURAL SECTION DESIGN CRITERIA

• Construction Year: 2027 (per July 2024 Project Status Book)

• Design Life: 20 years

• 2019 AADT: 982 (491 per lane)

• Projected Construction Year AADT: 1,151 (633 per design lane)

Design ESALs: 237,094

PAVEMENT AND STRUCTURAL SECTION RECOMMENDATION

The following recommendations were developed using bore logs, laboratory test results, and the Mechanistic and Excess Fines Design processes in accordance with the general policies of the Alaska Flexible Pavement Design Manual, specifically "GP-6" that requires a stabilized base course. The recommendation provides a new pavement layer to support the projected traffic for a 20-year design life.

Hemmer Road

- 2" HMA, Type II, Class A, PG 52-40E
- STE-1 Asphalt for Tack Coat
- 2" ATB (or HMA, Type II, Class A, PG 52-40E)
- 6" Aggregate Base Course, Grading D-1
- 36" Selected Material, Type A
- Geotextile, Separation
- Existing embankment or Selected Material, Type C, as needed in deep fills to bottom of new embankment

Asphalt Pathway

- 2" Asphalt Pathway
- 4" Aggregate Base Course, Grading D-1
- 24" (*min) Selected Material, Type A
- Geotextile, Separation
- Selected Material, Type C as needed in deep fills to bottom of new embankment *Increase layer thickness to match bottom of adjacent roadway layer to allow better drainage within the road section where structural prisms overlap.

Alternative Recommendation

An alternative is being presented due to the possibility that the ownership of this road, upon the completion of construction, will be turned over to the Matanuska-Susitna Borough, which would fall under the exception detailed above. In this case, the following structural section is a design alternative using the same design criteria that will also support the projected traffic for a 15-year design life.

Hemmer Road

- 3" HMA, Type II, Class A, PG 52-40E
- 6" Aggregate Base Course, Grading D-1
- 36" Selected Material, Type A
- Geotextile, Separation
- Existing embankment or Selected Material, Type C, as needed in deep fills to bottom of new embankment

APPENDIX A

Draft Bore Logs and Map

PLACEHOLDER

APPENDIX B

Historical Project Data

Saved electronically

ARCTIC ARGENTS DANSON

RIVERS

ANCHORAGE

AN

STATE OF ALASKA DEPARTMENT OF HIGHWAYS

HO DUILI PLHNO

PLAN AND PROFILE
PROPOSED HIGHWAY PROJECT
GRADING, PAVING & DRAINAGE
HEMMER ROAD
OS-1 (008)

STATE PROJECT DESIGNATION YEAR SHEET TOTAL SHEETS

ALASKA OS-I(008) 76 / 4

ROUTE 136848 M.P. 0.0-0.3

Title Sheet
Typical Section
Estimate of Quantities

SHEET

PROJECT SUMN	MARY
Width of Surfacing	36'
Length of Surfacing	1350'
Length of Project	1350'

Plan Sheet

DESIGN DE	SIGNATION
ADT 1975	335
ADT 1995	1300
DHV (15%)	195
D	35/65
T	5%

Project Engineer: Charles Fletcher Contractor: Herman Bros. Co., Inc.

Contract Began: October 12, 1976

Contract Ended: June 15,1977

PROJECT LOCATION
HEMMER ROAD
(PALMER HIGH SCHOOL ROAD)

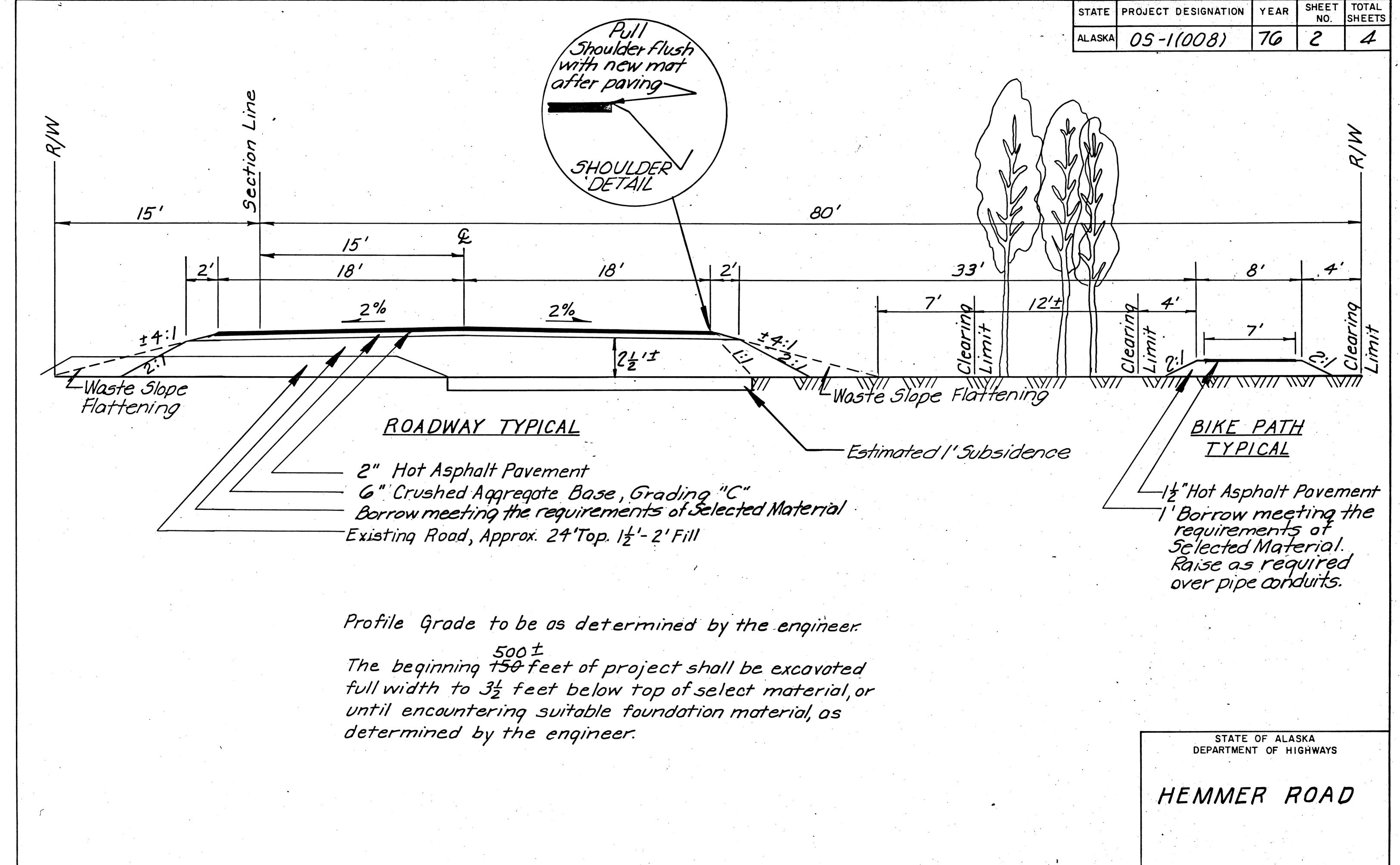
Wasilla

Wasilla

Four Palmer
Corners

Reconstant

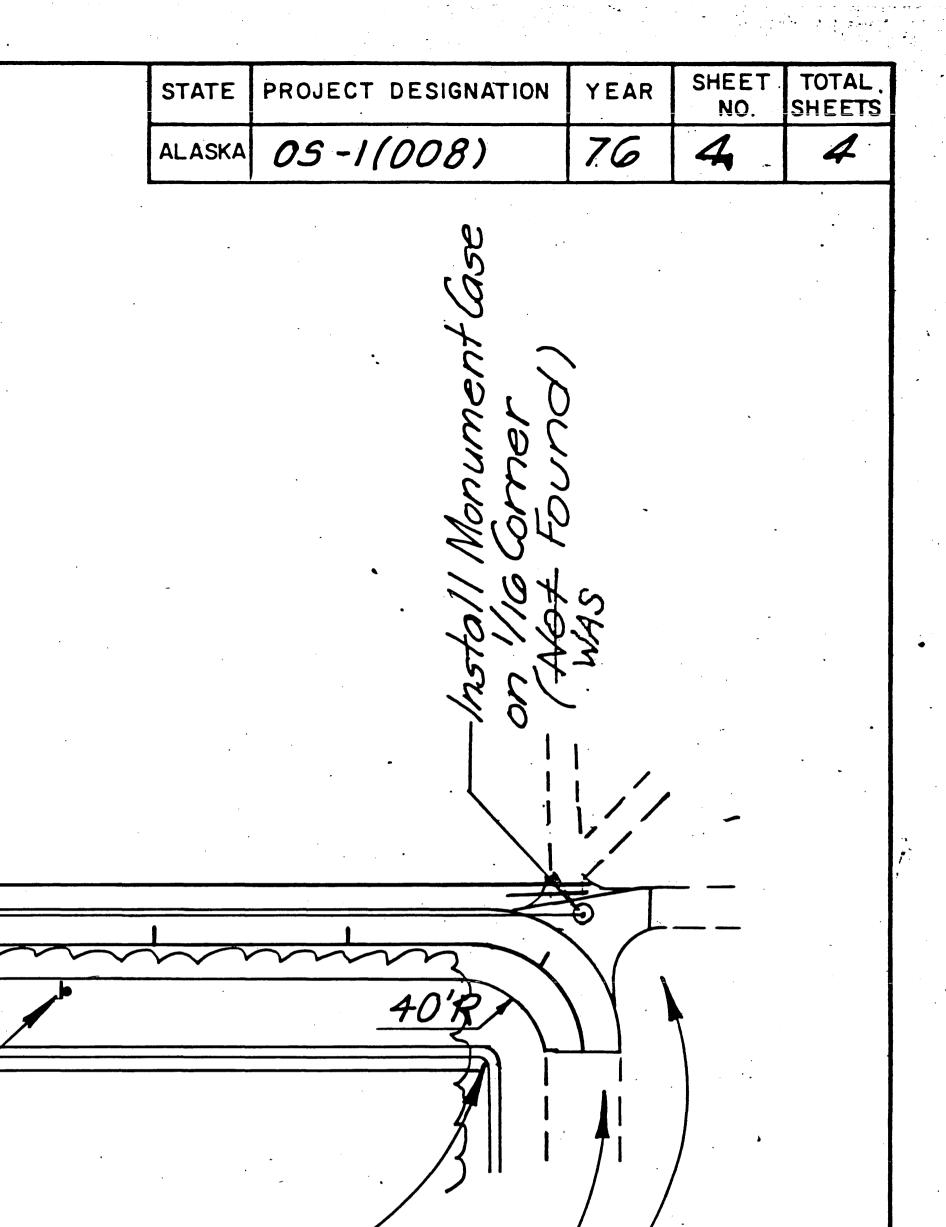
Reconst


The following STANDARD DRAWINGS apply to this project: A-1, C-00.01, C-10.00, C-11.01, D-02.02, 1-40.10, M-16.03, S-05.00, S-30.11, T-21.00.

STATE OF ALASKA
DEPARTMENT OF HIGHWAYS

RECOMMENDED FOR APPROVAL

CENTRAL DISTRICT HIGHWAY ENGINEER COMMI


Date/104274

MICROFILMED MARCH 1985

	Ε	STIMATE	OF	QUANT	ITIES						DESIGNATION	•	SHEET NO.	TOTAL SHEETS
ITEM NO.	ITEM	UNIT				SHEET N	UMBERS		AL	ASKA OS-	(008)	76 J	3	4
140.	Furnish & Maintain Engineering Facilities	L. S.				ALL REQ')	All Regd.	3					
110	Mobilization · -	L.S.				ALL REQ'	• 1.	All Regid.				5		
111(1)	Temporary Erosion & Pollution Control	C.S.				ALL REQ'		None						
113(1)	Flagging	M. H.				100		19			•			
											>			
114(1)	Construction Engineering by Contractor	L.S.				ALL REQ' [All Regd.						
201(3A)	Clearing & Grubbing	ACRE	,			. 68		1.033		:				
203(3)	Unclassified Excavation	C.Y.			• .	500		4.197						
203(5B)	Borrow	TON				_10, 800	į	11,338		•		-		
							;							
301(1)	Crushed Aggregate Base, Grading "C"	TON			•	2, 200		2,247						
401(1)	Hot Asphalt Pavement	TON				670		731-75						
401(2)	AC-2.5 Asphalt Cement (AC-5) EWO#Z	TON				44		38.94					<u> </u>	
	3) 24" Pipe Conduit	L.F.				156		154						
614(2)	Monument Cases	EACH	 			2								`
615(1)	Standard Signs	S.F.				22		22						
627(1)	Watering	M.G.				65		None						
670(1)	Painted Traffic Markings	L.S.	·			ALL REQ'D		All Regd						
633(1)	Δnnroachac	EACH				5		5					,	•
	Approaches 3(22E) 18" Pipe Conduit (EWO#1)	L.F.			•	7		66	1	HE	MMER 5TIMA	POTE	0AL)

MICROFILMED MARCH 1985

-Begin Project Sta. 0+00± Match Existing Shoulder

,40' Radii at Highway Intersection Relocate existing stop sign

Section Corner

House

Installed 18'x50' P.C.

Bike Path >.

R/W-

Installed 24"x60'P.C. -

tall Monument Case on Reference Monument

Overhead Pole Anchor to be relocated 30'Rt. of & by others

08

Installed 18"x16' P.C.

Birch Trees

WI-IR

W/3-

Match Existing Bikepath

End Pavement, Match Existing Road

Reconstruct Approach

Description of 25 Parking Road

Pove to end of 25' Radius Return End Project Sta. 13+50±

SIGN SCHEDULE

TYPE	SIZE	LEGEND	LOCATION
W3-1	36"×36"	Stop Ahead	3+00 21½ Lt.
WI-IR	36" × 36"	—	10+50 2/2 Rt.
W13-1	24" ×24"	15 M.P.H.	Mount under WI-IR

Use $2\frac{1}{2}$ " × $2\frac{1}{2}$ " square tube_post for new sign installations with sleeve type concrete foundations.

The Contractor shall be responsible for locating and arranging for preservation of any existing utilities which may be damaged by this construction.

STATE OF ALASKA
DEPARTMENT OF HIGHWAYS

HEMMER ROAD

APPENDIX G

Approved Environmental Document

State of Alaska Department of Transportation & Public Facilities

CATEGORICAL EXCLUSION DOCUMENTATION FORM

(NEPA Assignment Program Projects)

The environmental review, consultation, and other actions required by the applicable Federal environmental laws for this project are being, or have been carried out by the DOT&PF pursuant to 23 U.S.C. 327 and a Memorandum of Understanding dated April 13, 2023 and executed by FHWA and DOT&PF.

I. Project Information

A. Project Name: Hemmer Rd Extension and Upgrade, Palmer Wasilla Hwy to Bogard Rd (MSB)

B. State Project Number: CFHWY00885

C. Federal Project Number: 0001743

D. Primary/Ancillary Project Connections: N/A

E. COA Determination: Unlisted CE

F. Project Scope:

TIP or STIP: STIP

Need ID: 32721

Project Scope:

The Project will extend and upgrade approximately 0.50 miles of Hemmer Road (Rd) from the Palmer-Wasilla Highway to Bogard Road consisting of two travel lanes and a center turn lane. Improvements include a traffic signal at the Bogard Road intersection, shoulders, pedestrian and bicycle infrastructure, drainage and safety items.

G. Project Purpose And Need:

The purpose of the project is to extend and upgrade Hemmer Road to provide a new north-south road between the Palmer-Wasilla Highway and Bogard Road. There currently exists only one north-south connection constructed to collector road standards in the four mile stretch between the Glenn Highway and Trunk Road leading to congestion and a lack of north-south connectivity.

H. Project Description:

The project will reconstruct Hemmer Road from its intersection with Palmer-Wasilla Hwy north, and extend Hemmer Road north to Bogard Road. Project features include the construction of new two lane road. Also planned are a two-way-center-left-turn lane (if warranted), separated pathway for pedestrians and/or sidewalk, and a traffic signal at the intersection of Hemmer Road and Bogard Road. The road may currently be described as: paved road for the first quarter mile (from the Wasilla Highway), 0.13 miles of gravel road (about 325 feet of which currently function solely as a driveway for two homes), a gap of about 55 feet where no road exists, and paved road the remaining approximate 590 feet (East Folsom Drive) to its intersection with Bogard Road.

Additional improvements may include as needed:

- Paving
- Pathway and/or sidewalk
- Roadway lighting
- · Roadway realignment
- Signalization
- Shoulders
- Signing and striping
- Pedestrian amenities
- Roadside hardware
- · Brush clearing and grubbing
- Drainage features

Attachments

Environmental Consequences

Project Plans & Location Information

Project Plans and Location Info CFHWY00885.pdf

Right-of-Way Impacts

• Lots Table.pdf CFHWY00885.pdf

Historic Properties and Cultural Impacts

- CFHWY00885 Hemmer Road Extension and Upgrade PWH to Bogard Road_ALL.pdf CFHWY00885.pdf
- CFHWY00885 Hemmer Road Extension_FONHPA_ALL.pdf CFHWY00885.pdf
- 2023-00191_FHWA_Hemmer-Bogard-Rd-Ext_SHPO-Re-Response RVH.pdf CFHWY00885.pdf
- CFHWY00885 Hemmer Road Extension PWH to Bogard_lighting_signed_3.18.24.pdf
 CFHWY00885.pdf
- CFHWY00885 L&V and Project Area.pdf CFHWY00885.pdf
- Hemmer Road SHPO Non-Concurrence and DOT&PF Response.pdf CFHWY00885.pdf

Water Quality Impacts

DEC Drinking Water Comments - Consultation - CFHWY00885.pdf CFHWY00885.pdf

2 of 19

State Project Name: Hemmer Rd Extension and Upgrade, Palmer Wasilla Hwy to

Bogard Rd (MSB)

State Project Number: CFHWY00885 Federal Project Number: 0001743 CE Documentation Form April 2020

Noise Impacts (23 CFR 772)

• 230925 Hemmer Noise Report.pdf CFHWY00885.pdf

Comments and Coordination

Public Involvement

- Frontiersman Hemmer Road Extension and upgrade.pdf CFHWY00885.pdf
- NOI CFHWY00885 OPN.pdf CFHWY00885.pdf
- 2023-12-15_00885 Handout for Transportation Fair.pdf CFHWY00885.pdf

Agency Involvement

- Agency Scoping re CFHWY00885 sent 2-18-22.pdf CFHWY00885.pdf
- CFHWY00885ScopingDistributionList 2.18.22.pdf CFHWY00885.pdf
- Comments Compiled CFHWY00885.pdf CFHWY00885.pdf

Environmental Commitments

Environmental Commitments and Mitigation Measures [23 CFR 771.109(b)]

- dec-eh-dw-recommendations-for-general-project-activities-near-a-pws-source.pdf CFHWY00885.pdf
- DEC_PWS_Map.pdf CFHWY00885.pdf

3 of 19

State Project Name: Hemmer Rd Extension and Upgrade, Palmer Wasilla Hwy to Bogard Rd (MSB)

State Project Number: CFHWY00885 Federal Project Number: 0001743

A. Land Use and Transportation Plans	Yes	No
1. Were land use plans for this area reviewed? If yes, include source, link, and date accessed.		
Matanuska-Susitna Borough Comprehensive Development Plan		
https://matsugov.us/docs/general/14173/borough-wide-comprehensive-plan.pdf		
12/26/2023		
Matanuska-Susitna Borough Core Area Comprehensive Plan 2007 Update		
https://matsugov.us/docs/plans/14442/sandy-formatted-core-area-comp-plan1.pdf		
12/26/2023		
a. Is the project consistent with land use plan(s)?	\square	
2. Were transportation plans for this area reviewed?	Ø	
MSB 2035 Long Range Transportation Plan		
https://matsugov.us/docs/general/13985/Combined-Document.pdf		
12/26/2023		
Alaska Statewide Active Transportation Plan, Master Plan 2019		
$\underline{https://dot.alaska.gov/stwdplng/areaplans/modal\ system/docs/AK-Statewide-Active-Transportation-\underline{Plan.pdf}}$		
12/26/2023		
2022 MSB Official Streets and Highways Plan		
https://matsugov.us/docs/general/22822/OSHP-2022-Final.pdf		
12/26/2023		
a. Is the project consistent with transportation plan(s)?		
3. Would the project induce adverse indirect and cumulative effects on land use or transportation?		
Summary Summarize how the project is consistent or inconsistent with land use and transportation plan(s).		

This project is consistent with land use and transportation plans developed for the Matanuska-Susitna Borough (MSB). The project supports such concepts as improving the efficiency and safety of the existing transportation system and providing transportation choices as the MSB Comprehensive Development Plan calls for. Agreement is found with the MSB 2035 Long Range Transportation Plan and the MSB Core Area Comprehensive Plan 2007 Update. The 2022 MSB Official Streets and Highways Plan classifies Hemmer Road as a major collector in support of corridor planning. The project is anticipated by the MSB 2035 Long Range Transportation Plan. The project additionally supports principles of the Alaska Statewide Active Transportation Plan, Master Plan 2019 which indicates intent "to improve safety, increase accessibility, and promote healthy lifestyles in our communities" and "to develop a safer and more efficient active transportation network and infrastructure to encourage walking and bicycling."

5 of 19

State Project Name: Hemmer Rd Extension and Upgrade, Palmer Wasilla Hwy to

Bogard Rd (MSB)

State Project Number: CFHWY00885 Federal Project Number: 0001743

B. Right-of-Way Impacts	Yes	No
1. Are there any temporary right-of-way (ROW) impacts (e.g., Temporary Construction Easements (TCEs), Temporary Construction Permits (TCPs), utility relocates, construction staging area)?	Ø	
2. Is additional permanent ROW required?		
a. Are there any full parcel acquisitions?		\square
b. Are more than 25 partial parcel acquisitions required?		\square
c. Are business or residential relocations required?		\square
3. Will there be property transfer from a local, state, or federal agency?		\square
4. Will the project require an ANILCA Title XI approval?		\square
Summary Summarize ROW impacts, if any. Include any project-specific commitments or mitigative measures in Se	ection V.	
The project is likely to require some permanent ROW acquisition. Nine potential sliver takes have been Additionally, TCEs and/or TCPs may be required.	n identifie	d.
Attachments		
Lots Table.pdf CFHWY00885.pdf		
C. Environmental Justice Impacts (E.O. 12898)	Yes	No
1. Is there potential to affect environmental justice (EJ) populations?		
Summary Summarize EJ population impacts and mitigation, if any. Include any project-specific commitments or m measures in Section V.	itigative	
Review of the U.S. Environmental Protection Agency (EPA) Environmental Justice Screening and Map indicated no low income or minority populations within the project area. Properties in the project corric increased traffic while the larger area would benefit from reduced congestion. The absence of low incompopulations within the project area supports the anticipated outcome of no such populations adversely in project.	dor would me or mir	see nority
D. <u>Historic Properties and Cultural Impacts</u>	Yes	No
1. Is a National Register of Historic Places listed or eligible property in the proposed Area of Potential Effect (APE)?		Ø
2. Was a programmatic allowance processed for the project under the Section 106 Programmatic Agreement?		Ø
3. Was Section 106 consultation initiated or a Direct to Findings worksheet completed?	\square	
a. Was a direct to findings worksheet completed?		Ø

State Project Name: Hemmer Rd Extension and Upgrade, Palmer Wasilla Hwy to Bogard Rd (MSB)
State Project Number: CFHWY00885
Federal Project Number: 0001743

D. <u>Historic Properties and Cultural Impacts</u>	Yes	No
b. Date Consultation Initiation Letters sent		
10/9/2023		
Attachments		
 CFHWY00885 Hemmer Road Extension and Upgrade PWH to Bogard Road_ALL.pdf CFHWY00885.pdf 		
c. List consulting parties:		
Consulting parties for this project include the Mat-Su Borough, the Knik Tribe, Chickaloon Village Tribal Council, Native Village of Eklutna, Knikatnu Inc., Chickaloon-Moose Creek Native Association, Eklutna Inc., Cook Inlet Region, Incorporated, the Alaska Association for Historic Preservation, Palmer Historical Society, Wasilla-Knik Historical Society, and the State Historic Preservation Officer.		
d. Were any comments received?		
On October 10, 2023 the Knik tribe indicated no further comments for the project.		
4. Was a Section 106 "Finding of Effect" completed?	\square	
Attachments		
 CFHWY00885 Hemmer Road Extension_FONHPA_ALL.pdf CFHWY00885.pdf 		
a. Date "Finding of Effect" Letters sent:		
11/29/2023		
b. State "Finding of Effect":		
No Effect		
c. Were there any changes to consulting parties?		
d. Were any comments received?	\square	
On December 28, 2023, SHPO responded to the Finding of Effect with non-concurrence and stated a belief that Hemmer Road should be reconsidered as potentially eligible under Criterion B for association with the Hemmer family.		
on January 31, 2024 DOT&PF responded to SHPO's concerns.		
5. Date State Historic Preservation Officer (SHPO) concurred with "Finding of Effect":		
2/15/2024		
Attachments • 2023-00191_FHWA_Hemmer-Bogard-Rd-Ext_SHPO-Re-Response RVH.pdf CFHWY00885.pdf		
6. Will there be an adverse effect on a historic property?		Ø

State Project Name: Hemmer Rd Extension and Upgrade, Palmer Wasilla Hwy to Bogard Rd (MSB)
State Project Number: CFHWY00885
Federal Project Number: 0001743

Summary

Summarize impacts to historic properties and mitigation, if any. List affected sites (by AHRS number only) and any commitments or mitigative measures. Also include any project-specific commitments or mitigative measures in Section V.

A professionally qualified individual from DOT&PF, accompanied by a representative of the Chickaloon Village Tribal Council, performed a field survey of the project site. A report of investigations was submitted to the repository maintained by the Office of History and Archaeology. Initially SHPO did not concur with the DOT&PF finding of no adverse effect on a historic property, however concurrence was received from SHPO on February 15, 2024. Based upon the field work and research which identified no historic properties within the project APE that are eligible for listing, and based on SHPO concurrence, the project anticipates no effect on historic properties. No environmental commitments or mitigative measures are required for this project. A PA 106 Streamlined Project Review Screening Record was executed by a DOT&PF PQI on March 18, 2024, to include street lighting. The form indicated that the additional work included no activities which are not covered under the Appendix B Programmatic Allowances and/or which do not meet the conditions.

Attachments

- CFHWY00885 Hemmer Road Extension PWH to Bogard_lighting_signed_3.18.24.pdf CFHWY00885.pdf
- CFHWY00885 L&V and Project Area.pdf CFHWY00885.pdf
- Hemmer Road SHPO Non-Concurrence and DOT&PF Response.pdf CFHWY00885.pdf

Yes	No
Ø	
	☑
e identifie s anticipa r is prese	ated
Yes	No
	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

8 of 19

State Project Name: Hemmer Rd Extension and Upgrade, Palmer Wasilla Hwy to

Bogard Rd (MSB)

State Project Number: CFHWY00885 Federal Project Number: 0001743

F. Contaminated Sites and Hazardous Materials Impacts	Yes	No
2. Are there known or potentially contaminated sites within or adjacent to the existing ROW?		
3. Would a documented hazardous material site be acquired?		
4. Are there contaminated sites within 1,500 feet of where excavation dewatering is anticipated?		
Summary Summarize the contaminated site impacts and mitigation, if any.		
A review of the Alaska Department of Environmental Conservation (ADEC) Contaminated Sites Datab contaminated sites within, adjacent to, or within 1,500 feet of the project area. The project is anticipated minimal potential for encountering contaminated soils during construction, however should this occur, consulted for guidance.	d to have	
G. Floodplain Impacts (23 CFR 650, Subpart A)	Yes	No
1. Does the project encroach into a mapped base floodplain or a potential unmapped base floodplain?		
2. Does the project conform to local flood hazard requirements?	$\overline{\checkmark}$	
3. Is the project consistent with E.O. 11988 (Floodplain Protection)?	$\overline{\checkmark}$	
Summary Describe any encroachments into mapped and unmapped floodplains and summarize impacts. For c(26, 2 classifications describe whether encroachments are functionally dependent.	7, or 28)	CE
A review of the Federal Emergency Management Agency Flood Insurance Rate Map panels 02170C81 date 3/17/2011) indicated that the project area is located within an area of minimal flood hazard (Zone Encroachment into a floodway or a base floodplain is not anticipated as a result of the project.		ctive
H. Wetland and Waterbody Impacts	Yes	No
1. Would the project affect wetlands or other Waters of the U.S. (WOTUS), as defined by the U.S. Army Corps of Engineers (USACE) (Section 404).		☑
2. Is a USACE authorization anticipated?		
3. Will the project involve navigable waters as defined by the U.S. Coast Guard (USCG) (Section 9)?		
4. Will the project affect a designated Wild and Scenic River or land adjacent to a Wild and Scenic River, including those on the Nationwide Rivers Inventory?		
a. Estimated fill quantities below:		
Summary Summarize wetland and waterbody impacts and mitigation, if any.		
A small pond adjacent to the project area may be utilized to receive stormwater from the finished project ditch work and/or vegetation grubbing could occur in its immediate vicinity. It is anticipated there will WOTUS. Should it be necessary to work within any WOTUS, the project will be designed to minimize impacts to the extent practicable and such work would fall within the parameters of a nationwide 404 per	be no imp WOTUS	pact to

State Project Name: Hemmer Rd Extension and Upgrade, Palmer Wasilla Hwy to Bogard Rd (MSB) State Project Number: CFHWY00885 Federal Project Number: 0001743

I. Fish and Wildlife Impacts	Yes	No
1. Anadromous and resident fish habitat.		
a. Include source, link, and date accessed of databases used.		
National Oceanic and Atmospheric Administration (NOAA) Fisheries Essential Fish Habitat Mapper		
https://www.habitat.noaa.gov/apps/efhmapper/?page=page 2&views=view 34		
3/13/2024		
Alaska Department of Fish and Game (ADF&G) Alaska Fish Resource Monitor		
https://experience.arcgis.com/experience/1a4eb07b42ff4ebb8c71ba45adaedf0c/		
4/11/2024		
b. Is anadromous or resident fish habitat present in project area (Title 16.05.841 and 16.05.871)?		☑
2. Essential Fish Habitat (EFH).		
a. Include source, link, and date accessed of databases used.		
National Oceanic and Atmospheric Administration NOAA Fisheries Essential Fish Habitat Mapper		
https://www.habitat.noaa.gov/apps/efhmapper/?page=page 2&views=view 34		
3/13/2024		
b. Is EFH present in project area?		
3. Threatened and Endangered (T&E) Species		
a. Include source, link, and date accessed of databases used.		
On November 1, 2012, the USFWS issued a letter stating that there are no federally listed or proposed species, or designated or proposed critical habitat under USFWS jurisdiction in the Matanuska-Susitna or Anchorage areas. No impact to threatened or endangered species or critical habitat areas is expected as a result of the project.		
b. Are listed threatened or endangered species present in the project area?		
4. Marine Mammals.		
a. Is the project located in the marine environment?		
5. Wildlife Resources:		
a. Is the project in an area of high wildlife/vehicle accidents?		\square
b. Would the project bisect migration corridors?		
c. Would the project segment habitat?		
6. Bald and Golden Eagle Protection Act.		

State Project Name: Hemmer Rd Extension and Upgrade, Palmer Wasilla Hwy to Bogard Rd (MSB)

State Project Number: CFHWY00885 Federal Project Number: 0001743

I. Fish and Wildlife Impacts	Yes	No
a. Include source, link, and date accessed of databases used.		
Southeast Alaska GIS Library Documented Eagle Nest Sites		
https://data-seakgis.opendata.arcgis.com/datasets/seakgis::documented-eagle-nest-sites/explore?location=61.606973%2C-149.184175%2C13.37		
12/27/2023		
b. Is the project visible from an eagle nesting tree?		
c. Is the project within 330 feet of an eagle nesting tree?		
d. Is the project within 660 feet of an eagle nesting tree?		
e. Will the project require blasting or other activities that produce extreme loud noises within 1/2 a mile from an active nest?		V
f. Is an eagle permit required?		
7. Is the project consistent with the Migratory Bird Treaty Act?	$ \overline{\checkmark} $	
Summary Summarize fish and wildlife impacts and mitigation, if any.		
Fish		
Review of the NOAA Fisheries Essential Fish Habitat Mapper and the ADF&G Alaska Fish Res there are no fish streams or water bodies present within the project area, and no work is anticipated within the small pond adjacent to the project area. No impact to fish or EFH is anticipated.		
Wildlife		
Review of the ADF&G Moose-Vehicle Collisions (MVC) in Alaska MatSu webpage indicated tha 2016 the project area had one incident of MVC and two others in the vicinity. The vicinity of the demonstrated a moderate potential for MVC on the ADF&G heat map. No other wildlife species the project area are likely to cause a similar level of common driving hazard, though other wild animals may be found in the area. The project would likely result in increased traffic in the imm potentially disrupting local wildlife. It is not anticipated the potential disruption would significan habitat or migration corridors due to the many square miles of moose habitat in the surrounding addition to the viability of the region for moose habitat, special focus is made to benefit this spec Palmer Hay Flats State Game Refuge to the southwest and the nearby Matanuska Valley Moose northeast. Some wildlife may avoid the project area during construction activities, but the project cause significant adverse impacts to wildlife.	e project s found with or domest dediate are ntly alter v g area. In ies in the i Range to	thin ic ea, thus wildlife nearby the
Migratory Birds and Eagle Nests		
Review of the USFWS Information for Planning and Consultation (IPAC) system indicated that migrate through and may nest within the project area and could be disturbed by clearing operat clearing would be avoided from May 1 through July 15, as recommended by the USFWS guideli Golden eagles are found within the project area according to IPAC. Prior to construction, DOT conduct a survey of the project area to determine if active eagle nests occur within the primary (tions. Vege nes. Bald : &PF may	etation and

secondary (660 foot) zones. If active eagle nests are identified within 660 feet of the project area prior to or

during construction, DOT&PF will seek guidance from the USFWS on how to proceed.

State Project Name: Hemmer Rd Extension and Upgrade, Palmer Wasilla Hwy to Bogard Rd (MSB)

State Project Number: CFHWY00885 Federal Project Number: 0001743 CE Documentation Form April 2020

J. <u>Invasive Species Impacts</u>	Yes	No
1. Include source, link, and date accessed of databases used.		
Alaska Exotic Plants Information Clearinghouse		
https://aknhp.uaa.alaska.edu/apps/akepic/		
3/11/2024		
2. Are invasive species present in project area?		
3. Does the project include all practicable measures to minimize the introduction or spread of invasive species, making the project consistent with E.O. 13112 (Invasive Species)?	Ø	
Summary Summarize invasive species impacts and mitigation, if any.		
A review of the University of Alaska, Anchorage Exotic Plants Information Clearinghouse Invasive Plaidentified non-native plant surveys with positive results for non-native species within or adjacent to the Ground cover disturbing activities would be minimized, and disturbed areas re-vegetated with native so minimize potential introduction of invasive species, in accordance with Executive Order 13112.	project a	rea.
K. Water Quality Impacts	Yes	No
1. Will there be temporary degradation of water quality?		
2. Is a public or private drinking water source or protection area within or adjacent to the project?	\square	
Attachments		
DEC Drinking Water Comments - Consultation - CFHWY00885.pdf CFHWY00885.pdf		
3. Would the project result in a discharge of storm water to a WOTUS? [40 CFR 230.3(o)]	\square	
4. Would the project discharge storm water into or affect an ADEC-designated Impaired Waterbody?		$\overline{\mathbf{V}}$
5. Will the project involve more than one (1) acre of ground-disturbing activities?	\square	
6. Is there a Municipal Separate Storm Sewer System (MS4) APDES permit, or will runoff be mixed with discharges from an APDES permitted industrial facility?		V
Summary Summarize the water quality impacts and mitigation, if any.		
During construction, ground disturbing activities and storm water runoff may result in temporarily incr nearby streams, wetlands, and other water bodies. A small pond is located immediately adjacent to the no other WOTUS have been identified within or adjacent to the project area. Adverse impacts to water minimized by implementing a Stormwater Pollution Prevention Plan and utilizing best management properties.	project are quality w actices du	ea, and ould be

construction. Additionally, DEC's Recommendations for General Project Activities near a PWS (public water source) will be followed as it pertains to the several PWS in the project area, thus minimizing or altogether avoiding negative impacts to those resources.

12 of 19

State Project Name: Hemmer Rd Extension and Upgrade, Palmer Wasilla Hwy to

Bogard Rd (MSB)

State Project Number: CFHWY00885 Federal Project Number: 0001743

L. Air Quality Impacts	Yes	No
1. Will there be temporary degradation of air quality?	$\overline{\checkmark}$	
2. Is the project located in an air quality maintenance area or nonattainment area (CO or PM-10 or PM-2.5)?		
Summary Summarize air quality impacts and mitigation, if any.		
A review of the EPA Air Data Air Quality Monitors web page utilizing non-attainment layers for criter indicated that the project is not located within an air quality non-attainment or maintenance area. As a and project level air quality conformity is not required. Air quality impacts from project construction a be minimal and temporary. No significant long-term impacts to air quality are anticipated as a result of	result regi re anticipa	ional ated to
M. Noice Importe (22 CED 772)	Yes	No
M. Noise Impacts (23 CFR 772)	✓	
1. Will there be temporary noise impacts?	_	_
2. Does the project involve any of the following Type I project actions listed below (23 CFR 772.5)?		
An increase in the number of through lanes.		
Construction of highway on a new location.		
3. Are any lands listed in 23 CFR 772.11(c) adjacent to the project? Identify all below.	$\overline{\mathbf{A}}$	
Category B: Residential.		
 Category C (exterior): Active sport areas, amphitheaters, auditoriums, campgrounds, cemeteries, daycare centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreation areas, Section 4(f) sites, schools, television studios, trails, and trail crossings. Category D (interior): Auditoriums, day care centers, hospitals, libraries, medical facilities, 		
places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, schools, and television studios.	_	_
4. Does the noise analysis identify a noise impact?		V
Summary Summarize noise impacts and mitigation, if any.		
Noise levels were predicted for 15 receiver sites within the project area. The predicted noise levels indirectives are expected to approach or exceed the respective noise abatement criteria under the 2045 Bu Furthermore, while some receivers are indicated to have large increases (over 10 dBA) in noise levels build conditions, the increase is below the defined 15 dBA needed to be considered a substantial impact	ild condit from exist ct.	tion.
The noise analysis concluded that there are no noise impacts under the 2045 Build condition and that n abatement measures are recommended.	o noise	

Attachments

• 230925 Hemmer Noise Report.pdf CFHWY00885.pdf

13 of 19

State Project Name: Hemmer Rd Extension and Upgrade, Palmer Wasilla Hwy to Bogard Rd (MSB)

State Project Number: CFHWY00885 Federal Project Number: 0001743

N. Social and Economic Impacts	Yes	No
1. Would the project affect neighborhoods or community cohesion?		V
2. Would the project affect school boundaries, recreation areas, churches, businesses, police and fire protection, etc.?	☑	
3. Would the project affect the elderly, handicapped, non-drivers, transit-dependent, minority and ethnic groups, or the economically disadvantaged?	Ø	
4. Would the project affect travel patterns and accessibility (e.g., vehicular, commuter, bicycle, or pedestrian)?	V	
a. Would the project include temporary delays and detours of traffic?		
5. The project will have adverse economic impacts on the regional and/or local economy, such as effects on development, tax revenues and public expenditures, employment opportunities, accessibility, and retail sales.		Ø
6. The project will adversely affect established businesses or business districts.		
a. Would the project have temporary impacts on businesses?		
Summary		

Summarize social and economic impacts and mitigation, if any.

The addition of roadway resulting in a new North/South connection between Palmer Wasilla Highway and Bogard Road will serve to reduce congestion in the vicinity. The project will not affect school boundaries, recreation areas, or neighborhood or community cohesion. Police and fire protection may experience improvements to access and response times due to the establishment of a new North/South direct route between the two arterial roadways (Bogard Road and Palmer-Wasilla Hwy). Addition of separated pathway will provide improvements for bicyclists and pedestrians. Minor impacts to a church, businesses, and travelers caused by temporary delays and detours during construction may occur. The project is anticipated to benefit the region long term through reduction of traffic congestion. Local offices, long-term care facilities and places of worship may be impacted with minor improvements in accessibility of the facilities due to improved road, and in some cases may be impacted by partial acquisitions required for road construction. No adverse social or economic impacts are anticipated. Reduction in congestion does not harm social or economic aspects of a community as no routes are removed and no access to homes, business, places of worship, or facilities for recreation is reduced.

III. Comments and Coordination

A. Public Involvement	Yes	No
1. Was public involvement for project completed?		
2. Was the project public noticed?		
a. Newspaper name and date of notice:	Ø	
Frontiersman 2/27/2022		
• Frontiersman - Hemmer Road Extension and upgrade.pdf CFHWY00885.pdf		
b. Alaska Online Public Notice date:		
2/23/2022 to 3/25/2022		
Attachments		
NOI - CFHWY00885 OPN.pdf CFHWY00885.pdf		
c. Were public notices completed for specific resource impacts (e.g., floodplain, Section 4(f))?		
3. Was a public meeting held?		
4. Is there any unresolved controversy on human, natural, or economic grounds?		
Summary Summarize public comments and coordination efforts for this project. Discuss pertinent issues raised.		
This project is not generally controversial. The project area is not heavily populated, and the overall are from another North/South connector road within the region. No public comments were received. The projects featured at the 1/25/24 Mat-Su Transportation Fair held at the Alaska State Fairgrounds, Ra Palmer, Alaska. The fair was attended by 256 individuals who signed in, and many more who did not si attendance roster. DOT&PF employees and representatives were available to answer project-related que transportation fair.	oject was ven Hall i gn the	one of
Attachments		
• 2023-12-15_00885 Handout for Transportation Fair.pdf CFHWY00885.pdf		
B. Agency Involvement	Yes	No
1. Was an agency scoping conducted?	\square	
2/18/2022		
Attachments • Agency Scoping re CFHWY00885 sent 2-18-22.pdf CFHWY00885.pdf • CFHWY00885ScopingDistributionList 2.18.22.pdf CFHWY00885.pdf		
2. Was an agency scoping meeting held?		\square
15 of 19		

State Project Name: Hemmer Rd Extension and Upgrade, Palmer Wasilla Hwy to Bogard Rd (MSB)
State Project Number: CFHWY00885
Federal Project Number: 0001743

B. Agency Involvement Yes No

3. Was a field review completed with agencies?

Summary

Summarize agency coordination efforts for this project.

Responses (attached) were received from the following agencies and their subareas:

ADEC - Air Quality - stated a conformity analysis is not required. Additionally, permitting and procedures were addressed related to open burning and other construction processes which could result in emission of particulates into ambient air.

ADEC - Public water system sources in the vicinity of the project were identified, and *Recommendations for General Project Activities near a PWS* was attached.

ADEC - Solid Waste - expressed no concerns related to this project.

ADF&G - Expressed that a fish habitat permit is not required at this time.

Chickaloon Village Traditional Council requested a project level meeting, notes attached.

Alaska Department of Natural Resources - State Historic Preservation Officer (SHPO) expressed an expectation to address concerns or issues through the Section 106 consultation process.

Attachments

• Comments Compiled CFHWY00885.pdf CFHWY00885.pdf

IV. Permits and Authorizations

16 of 19

State Project Name: Hemmer Rd Extension and Upgrade, Palmer Wasilla Hwy to Bogard Rd (MSB)

State Project Number: CFHWY00885 Federal Project Number: 0001743 CE Documentation Form April 2020

 \square

A. Permits and Authorizations	Yes	No
1. USACE, Section 404/10 Includes Abbreviated Permit Process, Nationwide Permit, and General Permit		Ø
2. Coast Guard, Section 9		\square
3. ADF&G Fish Habitat Permit (Title 16.05.871 and Title 16.05.841)		\square
4. Flood Hazard		\square
5. ADEC Non-domestic Wastewater Plan Approval		\square
6. Requires 401 Cert		\square
7. ADEC APDES		
8. Eagle Permit		\square
9. Incidental Take Authorization		\square
10. Local (Borough or City) permit (e.g., noise)		\square
10. Other Permits		\square
Summary		
The above-indicated permit will be acquired as needed. It is anticipated the APDES Construction Gerbe utilized as the project will impact in excess of one acre.	neral Permi	t will
V. <u>Environmental Commitments</u>		
A. Environmental Commitments and Mitigation Measures [23 CFR 771.109(b)]	Yes	No
1. Are there project-specific environmental commitments for this project?		
Summary Summarize changes to environmental commitments and mitigation measures from original environmen	tal docume	ent.
DOT&PF and their Contractor(s) shall:		

DEC's Recommendations for General Project Activities near a PWS will be followed as it pertains to the several PWS in the project area

Attachments

- DEC_PWS_Map.pdf CFHWY00885.pdf
- dec-eh-dw-recommendations-for-general-project-activities-near-a-pws-source.pdf CFHWY00885.pdf

VI. Environmental Documentation Approval

17 of 19

State Project Name: Hemmer Rd Extension and Upgrade, Palmer Wasilla Hwy to

Bogard Rd (MSB)

State Project Number: CFHWY00885 Federal Project Number: 0001743

A. Environmental Documentation Approval	Yes	No
1. Do any unusual circumstances exist, as described in 23 CFR 771.117(b)?		$\overline{\checkmark}$
2. Does the project meet the criteria of one of the following DOT&PF Programmatic Approvals authorized in the Nov. 13, 2017 "Chief Engineer Directive - Programmatic Categorical Exclusions"?		Ø
Summary		
This project is an unlisted CE, thus the General Programmatic Approval Conditions do not come into a this reason an unlisted CE can not be programmatic.	considerat	ion. For
VII. (e) Constraints		
A. 23 CFR 771.117(e) Constraints	Yes	No
Does the project involve any of the following? Supporting information for responses must be provided in the impact discussions for each of the applicable impact categories. <i>If YES is selected for any item, the project cannot be approved under 23 CFR 771.117(c)(26-28).</i>		
1. An acquisition of more than a minor amount of right-of-way or that would result in any residential or non-residential displacements.		
2. An action that needs a bridge permit from the U.S. Coast Guard, or an action that does not meet the terms and conditions of a U.S. Army Corps of Engineers nationwide or general permit under Section 404 of the Clean Water Act and/or Section 10 of the Rivers and Harbors Act of 1899.		
3. A finding of "adverse effect" to historic properties under the National Historic Preservation Act.		
4. The use of a resource protected under 23 U.S.C. 138 or 49 U.S.C. 303 [Section 4(f)] except for actions resulting in de minimis impacts.		
5. A finding of "may affect, likely to adversely affect" threatened or endangered species or critical habitat under the Endangered Species Act.		
6. Construction of temporary access, or the closure of an existing road, bridge, or ramps, that would result in major traffic disruptions.		
7. Changes in access control.		
8. A floodplain encroachment other than functionally dependent uses (e.g. bridges, wetlands) or actions that facilitate open space use (e.g. recreational trails, bicycle and pedestrian paths).		
9. Construction activities in, across or adjacent to a river component designated or proposed for inclusion in the National System of Wild and Scenic Rivers.		
Summary		

State Project Name: Hemmer Rd Extension and Upgrade, Palmer Wasilla Hwy to Bogard Rd (MSB) State Project Number: CFHWY00885 Federal Project Number: 0001743

CE Documentation Form April 2020

Environmental Documentation Approval Signatures

Prepared by: Date: 4/30/2024

Roy Dahlstrom

Environmental Impact Analyst II

Reviewed by: Date: 4/30/2024

Chris Bentz

Project Manager

Approved by: Buin Elliott: Date: 4/30/2024

Brian Elliott

Central Region Environmental Manager

Recommended by: Date: 4/30/2024

Matthew Dietrick NEPA Manager

APPENDIX H

Approved Design Exceptions and Design Waivers

APPENDIX J

Design Memos