

SUBMITTED TO:
Fairbanks International
Airport
6450 Airport Way, Suite 1
Fairbanks, Alaska 99709

BY:
Shannon & Wilson
2355 Hill Road
Fairbanks, Alaska 99709
(907) 479-0600
www.shannonwilson.com

FINAL

SUMMARY REPORT
FY2024 Tall Spruce Monitoring Well
Sampling
FAIRBANKS, ALASKA

Submitted To: Fairbanks International Airport
6450 Airport Way, Suite 1
Fairbanks, Alaska 99709
Attn: Jake Matter, Environmental Manager

Subject: FINAL SUMMARY REPORT, FY2024 TALL SPRUCE MONITORING WELL SAMPLING, FAIRBANKS, ALASKA

Shannon & Wilson, Inc. (S&W) has prepared this report and participated in this project as a consultant to Alaska Department of Transportation and Public Facilities (DOT&PF) Fairbanks International Airport (FAI). S&W's services were performed as described in our proposal dated February 8, 2023, and authorized in notice to proceed issued on June 19, 2023 by DOT&PF under Professional Services Agreement Number 25-19-013 *Per- and Polyfluorinated Substances (PFAS) Related Environmental & Engineering Services*.

This report presents a summary of S&W's monitoring well sampling efforts which took place in October 2023 and February 2024.

We appreciate the opportunity to be of service to you on this project. If you have questions concerning this report, or we may be of further service, please contact us.

Sincerely,

SHANNON & WILSON

Ashley Jaramillo
Senior Chemist
Role: Project Manager

CONTENTS

1	Introduction	1
1.1	Purpose and Objectives	1
1.2	Background	2
1.2.1	2022 Tall Spruce Monitoring Well Installation and Sampling	2
1.3	Site Location and Boundaries	3
1.4	Contaminants of Concern and Action Levels	3
2	Field Activities.....	4
2.1	Groundwater Sampling.....	4
2.2	Investigation Derived Waste	5
2.3	Sample Custody, Storage, and Transport	5
2.4	Deviations.....	6
3	Analytical Results	6
3.1	Groundwater Results.....	6
4	Revised Conceptual Site Model	7
5	Discussion and Recommendations.....	7
6	References	8

Exhibits

Exhibit 1-1: Airport Information	1
Exhibit 1-2: Applicable Regulatory Action Levels	3
Exhibit 1-3: Reported PFAS Analytes.....	4
Exhibit 2-1: Sample Location Along Tall Spruce Road	5
Exhibit 2-3: Sample Containers, Preservation, and Holding Time Requirements.....	6

Tables

Table 1:	October 2023 PFAS Analytical Results
Table 2:	February 2024 PFAS Analytical Results

Figures

Figure 1:	Fairbanks International Airport Vicinity
Figure 2:	Project Area West of the Chena River
Figure 3:	Monitoring Well Locations

CONTENTS

Appendices

- Appendix A: Field Notes
- Appendix B: Analytical Results
- Appendix C: QA/QC Summary
- Appendix D: Conceptual Site Model
- Important Information

ACRONYMS

°C	degrees Celsius
11CL-PF3OUdS	11-chloroeicosfluoro-3-oxaundecane-1-sulfonic acid
AAC	Alaska Administrative Code
ADONA	4,8-dioxa-3H-perfluorononanoic acid
AFFF	aqueous film-forming foam
bgs	below ground surface
CSM	conceptual site model
CUC	College Utilities Corporation
DEC	Alaska Department of Environmental Conservation
DO	dissolved oxygen
DoD	Department of Defense
DOT&PF	Alaska Department of Transportation and Public Facilities
EPA	U.S. Environmental Protection Agency
Eurofins	Eurofins Environment Testing America
FAI	Fairbanks International Airport
GAC	granular activated carbon
GWP	General Work Plan
HFPO-DA	hexafluoropropylene oxide dimer acid
IDW	investigative-derived waste
LDRC	Laboratory Data Review Checklist
LHA	lifetime health advisory level
mg/kg	milligrams per kilogram
mL	milliliter
mV	millivolt
MW	monitoring well
ng/L	nanograms per liter
oz	ounce
PFAS	per- and polyfluoroalkyl substances
PFBS	perfluorobutanesulfonic acid
PFHpA	perfluoroheptanoic acid
PFHxA	perfluorohexanoic acid
PFHxS	perfluorohexanesulfonic acid
PFNA	perfluorononanoic acid
PFOA	perfluorooctanoic acid
PFOS	perfluorooctane sulfonic acid
POC	point of contact
QSM	Quality Systems Manual
S&W	Shannon & Wilson, Inc.

µS/cm

micro-siemens per centimeter

WSW

water supply well

YSI

multiprobe water quality meter

1 INTRODUCTION

Shannon & Wilson, Inc. (S&W) has prepared this report to document the monitoring well (MW) groundwater sampling events in the Tall Spruce neighborhood on the west side of the Chena River near the Fairbanks International Airport (FAI) in Fairbanks, Alaska (Figure 1). This report covers activities performed in October 2023 and February 2024.

The FAI is an active, Alaska Department of Environmental Conservation (DEC) listed contaminated site due to the presence of per- and polyfluoroalkyl substances (PFAS) in groundwater (File Number 100.38.277, Hazard ID 26816). The primary means by which PFAS was introduced into the environment at FAI is the historical use of aqueous film-forming foam (AFFF) for use in training and fire suppression.

Exhibit 1-1: Airport Information

Airport Name:	Fairbanks International Airport
Airport Code:	FAI
DEC File No. / Hazard ID:	100.38.277 / 26816
Airport Address:	6450 Airport Way, Fairbanks, AK 99709
FAI POC:	Jake Matter
DOT&PF PFAS POC:	Melanie Bray
Airport Type:	Current Part 139 Airport
Airport Coordinates (Lat/Long):	64.8130, -147.8731

DEC = Alaska Department of Environmental Conservation, DOT&PF = Alaska Department of Transportation and Public Facilities; FAI= Fairbanks International Airport, PFAS = per- and polyfluoroalkyl substances, POC = point of contact

This report was prepared for the Alaska Department of Transportation & Public Facilities (DOT&PF) in accordance with the terms and conditions of S&W's contract, relevant DEC guidance documents, and 18 Alaska Administrative Code (AAC) 75.335.

1.1 Purpose and Objectives

DOT&PF requested S&W sample MWs in the Tall Spruce neighborhood as part of ongoing site characterization efforts associated with the PFAS contamination originating from the FAI. The goal was to evaluate changes to groundwater PFAS concentrations in the Tall Spruce neighborhood at variable depths. The information will be used to evaluate the fate and transport of PFAS resulting from the use of AFFF at the FAI.

1.2 Background

Water supply well (WSW) sampling for the presence of PFAS at DOT&PF sites began with the FAI in 2017. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were reported above the respective DEC groundwater cleanup levels in several groundwater MWs on airport property. This led to an off-airport WSW search and sampling event.

Beginning in November 2017, the FAI observed PFOS and PFOA above the applicable action level for drinking water in numerous WSWs in neighborhoods downgradient of the airport. Two WSWs, located on the western side of the Chena River on Tall Spruce Road, were identified as having PFAS concentrations above the applicable action level (Figure 2). Interim alternative water has been provided to the locations with PFAS-impacted WSWs and those who have potentially PFAS-impacted WSWs (i.e. close proximity to PFAS-impacted wells).

Quarterly and annual monitoring of WSWs for PFAS began in February 2018 and continued through February 2019 when FAI made the decision to offer PFAS-impacted WSW owners a connection to College Utilities Corporation (CUC) water system, including Tall Spruce Road. Most of the properties with PFAS-impacted WSWs within the plume area have been connected to the CUC water system, and the wells are no longer in use. As applicable, negotiations are ongoing between FAI and the few remaining properties with PFAS-impacted wells regarding CUC service connections.

PFAS site characterization work began in 2018 by FAI term contractors. Exceedances to the applicable DEC soil and groundwater cleanup levels were observed in samples collected from various locations at the airport. The FAI commenced decommissioning the former fire training pit in 2019 and completed the corrective action effort in 2020 (Figure 1).

1.2.1 2022 Tall Spruce Monitoring Well Installation and Sampling

In September of 2022, GeoTek Alaska, Inc. installed a cluster of four MWs in the Tall Spruce Neighborhood. The MWs were installed to depths of 20 feet below ground surface (bgs), 40 feet bgs, 60 feet bgs, and 80 feet bgs. During installation, six soil samples were collected from the deepest MW boring for PFAS analysis. Soil samples were collected below the water table from 13 feet bgs to 78 feet bgs. None of the soil samples contained detectable concentrations of the target PFAS analytes.

After installation, the wells were developed and sampled for PFAS. Each groundwater sample collected from the MWs contained detectable concentrations of perfluorobutanesulfonic acid (PFBS), perfluorohexanesulfonic acid (PFHxS), PFOA, and

PFOS. Additionally, perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), and perfluorononanoic acid (PFNA) were also detected in most of the wells. None of the detected concentrations exceeded DEC groundwater cleanup levels.

1.3 Site Location and Boundaries

The Tall Spruce neighborhood is located in the south-west part of Fairbanks, Alaska, on the west side of the Chena River from FAI. The Tall Spruce subdivision road, "Tall Spruce Road," is a publicly dedicated road located outside of a road service area and is therefore privately maintained. The monitoring wells are located within the 30-foot public utility easement on the western side of the road near the parcels identified by the Parcel Account Numbers 407330 and 407348. Parcel boundaries are shown on Figure 3.

1.4 Contaminants of Concern and Action Levels

The primary contaminants of concern are PFOS and PFOA. The current DEC action level for drinking water is 70 nanograms per liter (ng/L) for the sum of PFOS and PFOA. This threshold is detailed in the DEC's April 9, 2019 updated Technical Memorandum: *Action Levels for PFAS in Water and Guidance on Sampling Groundwater and Drinking Water*.

In June of 2022 the U.S. Environmental Protection Agency (EPA) released lifetime health advisory (LHA) levels for two additional PFAS. The advisory level for hexafluoropropylene oxide dimer acid (HFPO-DA) commonly referred to as GenX was set at 10 ng/L while the advisory level for PFBS was set at 2,000 ng/L. On June 15, 2022, the EPA issued updated interim LHAs for PFOS of 0.02 ng/L and for PFOA of 0.004 ng/L. The DEC is still reviewing these interim LHAs and has not yet issued updated guidance for the State of Alaska. Applicable regulatory action levels are outlined in Exhibit 1-2, below.

Exhibit 1-2: Applicable Regulatory Action Levels

Media	Compound	Level
Drinking water	PFOS + PFOA	70 ng/L
	HFPO-DA	10 ng/L
	PFBS	2,000 ng/L
Groundwater	PFOS	400 ng/L
	PFOA	400 ng/L
Soil	PFOS	0.003 mg/kg
	PFOA	0.0017 mg/kg

HFPO-DA = hexafluoropropylene oxide dimer acid; mg/kg = micrograms per kilogram; ng/L = nanograms per liter; PFBS = perfluorobutanesulfonic acid; PFOA = perfluorooctanoic acid; PFOS = perfluorooctanesulfonic acid

On October 2, 2019, DEC published an updated Technical Memorandum requesting samples be submitted for a longer list of PFAS analytes. Samples collected and summarized in this report were submitted for the following 18 PFAS analytes listed in Exhibit 1-3, below,

via a modified EPA Method 537 compliant with the Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories version 5.3 Table B-15.

Exhibit 2-3: Reported PFAS Analytes

EPA 537M PFAS Analytes	
perfluorooctanesulfonic acid (PFOS)	perfluorotetradecanoic acid (PFTeA)
perfluorooctanoic acid (PFOA)	perfluorotridecanoic acid (PFTrDA or PFTrA)
perfluoroheptanoic acid (PFHpA)	perfluoroundecanoic acid (PFUnA)
perfluorononanoic acid (PFNA)	hexafluoropropylene oxide dimer acid (HFPO-DA)
perfluorohexanesulfonic acid (PFHxS)	N-ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)
perfluorobutanesulfonic acid (PFBS)	N-methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)
perfluorodecanoic acid (PFDA)	11-chloroeicosfluoro-3-oxaundecane-1-sulfonic acid (11CL-PF3OUdS)
perfluorododecanoic acid (PFDoA)	9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid (9CL-PF3ONS)
perfluorohexanoic acid (PFHxA)	4,8-dioxa-3H-perfluorononanoic acid (DONA or ADONA)

2 FIELD ACTIVITIES

The following sections describe the field activities conducted in October 2023 and February 2024 as a part of MW sampling activities in the Tall Spruce neighborhood. Sampling procedures and analytical methods are described in our *Final General Work Plan (GWP) Addendum 026-FAI-002*, dated August 2023 and approved by DEC October 6, 2023.

S&W personnel who collected analytical samples for this project are State of Alaska Qualified Environmental Professionals as defined in 18 AAC 75.333[b].

2.1 Groundwater Sampling

S&W collected four primary groundwater samples and one field duplicate during each of the sampling events. Field staff purged the MWs using a submersible pump and new, disposable, PFAS-free tubing. Water quality parameters and stabilization criteria were measured prior to sample collection.

Field staff measured these parameters using a multiprobe water quality meter (YSI) and recorded pH, temperature in degrees Celsius (°C), conductivity in micro-Siemens per centimeter (µS/cm), dissolved oxygen (DO) in milligrams per liter, and redox potential in millivolts (mV) approximately once every three minutes until sample collection. The following values were used to indicate stability for a minimum of three consecutive readings: ±0.1 pH, ±3 percent °C, ±10 percent DO, ±3 percent conductivity, and ±10 mV redox. Water clarity (visual) was also recorded. Copies of the Monitoring Well Sampling Logs are included in Appendix A.

The water samples were collected into laboratory-supplied containers immediately after each well was purged. Groundwater samples were collected for PFAS analysis from each MW. A field duplicate sample was collected from MW-TS-1 during both sampling events.

S&W staff treated purge water with granular activated carbon (GAC) before discharging to the ground surface. A post-treatment GAC sample was collected at the end of each sampling event to monitor for PFAS breakthrough, and an equipment blank was collected to assess the potential for cross-contamination between samples and the reusable, decontaminated equipment.

2.2 Investigation Derived Waste

Liquid investigation derived waste (IDW) was treated using three in-line five-gallon GAC filters and discharged to the ground surface at least 100 feet from drainage ditches or surface water bodies. An effluent sample was collected from the GAC system following the completion of the sampling events. Results are presented in section 3.1 below.

Other IDW primarily consisted of disposable sampling equipment (nitrile gloves, pump tubing, etc.). These items were disposed of at an onsite dumpster and ultimately the Fairbanks North Star Borough Landfill.

2.3 Sample Custody, Storage, and Transport

Sample containers, preservation, and holding time requirements for samples are outlined in Exhibit 2-3, below. Immediately after collection, the sample bottles were placed in Ziploc bags and stored in a designated sample cooler maintained between 0 °C and 6 °C with ice substitute. S&W maintained custody of the samples until submitting them to the laboratory for analysis.

The analytical samples and chain-of-custody forms were packaged in a hard-plastic cooler with an adequate quantity of frozen-ice substitute and packing materials to prevent bottle breakage during shipping. Staff applied custody seals to the cooler, which were observed to be intact upon receipt by the laboratory.

Exhibit 2-1: Sample Location Along Tall Spruce Road

S&W shipped the sample coolers to Eurofins Environment Testing America (Eurofins) in West Sacramento, California using Alaska Air Cargo's priority overnight service known as Goldstreak. This allowed sufficient time for the laboratory to analyze the samples within the holding time requirements of the analytical method.

Exhibit 2-3: Sample Containers, Preservation, and Holding Time Requirements

Analyte	Method	Media	Container and Sample Volume	Preservation	Holding Time
PFAS	DoD QSM 5.3 Table B-15	Water Soil	2 x 250 mL polycarbonate 4-oz polycarbonate	0 °C to 6 °C 0 °C to 6 °C	14 days to extraction, analyzed within 40 days of extraction

1 °C = degrees Celsius, DoD = Department of Defense, mL = milliliter, oz = ounce, PFAS = per- and polyfluoroalkyl substances, QSM = Quality Systems Manual.

2.4 Deviations

In general, S&W conducted services in accordance with the approved proposals and procedures. The following are deviations from the proposed scope of services:

- During the October 2023 event, two in-line GAC buckets were used instead of the planned three GAC buckets. Freezing conditions made three buckets impracticable. Based on previous GAC effluent sample results, two GAC buckets were sufficient to treat the purge water prior to disposal to the ground surface.

3 ANALYTICAL RESULTS

S&W submitted the groundwater samples to Eurofins for analysis of 18 PFAS compounds using a method compliant with the DoD QSM for Environmental Laboratories version 5.3 Table B-15. These analytes are listed in Exhibit 1-3.

The Eurofins laboratory report and associated DEC Laboratory Data Review Checklists (LDRCs) are included in Appendix B. A quality assurance/quality control assessment of the data is included in Appendix C.

3.1 Groundwater Results

The groundwater samples collected during the October 2023 event contained detectable concentrations of PFOS, PFOA, PFBS, PFHpA, PFHxS, PFHxA, and 11-chloroeicosfluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS). The groundwater samples collected during the February 2024 event contained detectable concentrations of PFOS, PFOA, PFBS, PFHpA, PFHxS, PFHxA, 4,8-dioxa-3H-perfluorononanoic acid (ADONA), and 11Cl-PF3OUdS. None

of the detected concentrations exceeded DEC groundwater cleanup levels. A summary of the groundwater results is available in Table 1 (October 2023) and Table 2 (February 2024).

The GAC effluent sample collected during the October 2023 event had an estimated concentration of PFOS (detected below the laboratory reporting limit). The GAC effluent sample collected during the February 2024 event had an estimated concentration of 11Cl-PF3OUdS.

4 REVISED CONCEPTUAL SITE MODEL

A conceptual site model (CSM) describes potential pathways between a contaminant source and possible receptors (i.e., people, animals, and plants) and is used to determine who may be at risk of exposure to those contaminants. A DEC Human Health CSM Graphic Form and Human Health CSM Scoping Form was revised following the receipt of the most recent analytical results. These forms are included in Appendix D.

The groundwater samples collected from the MWs show that PFAS are present at low concentrations below the DEC Groundwater Cleanup Levels and below the current DEC Drinking Water Limits. Note, surface water samples were not collected as part of this project, so potential impacts resulting from exposure to surficial media is unknown.

5 DISCUSSION AND RECOMMENDATIONS

Due to the detections of PFOS and 11Cl-PF3OUdS in the GAC effluent sample, the three 5-gallon bucket GAC filtration set up will be disposed of during the next semi-annual event tentatively planned for late summer early fall 2024.

Based on our sampling efforts completed in October 2023 and February 2024, it does not appear that PFAS are present in the groundwater at concentrations above DEC action levels at the studied location off Tall Spruce Road. The low PFAS concentrations detected in the groundwater samples were consistent across the range of depths sampled in these MWs. This suggests that PFAS concentrations reaching the western bank of the Chena River are mixed/diluted and not stratified based on depth. S&W recommends that the DOT&PF continue to sample the MWs semi-annually to check for lateral PFAS migration and/or changes in concentration.

These recommendations are based on:

- Tall Spruce groundwater conditions inferred through analytical water samples collected for the project.

- Our understanding of the project and information provided by the DOT&PF, FAI, and other members of the project team.
- The current regulatory status of PFAS in groundwater and drinking water in Alaska.
- The limitations of S&W's approved Professional Services Agreement Number 25-19-013.

The information included in this report is based on limited sampling and should be considered representative of the times and locations at which the sampling occurred. Regulatory agencies may reach different conclusions than S&W. "Important Information about your Environmental Report" has been prepared and is included, to assist you and others in understanding the use and limitations of this report.

6 REFERENCES

Alaska Department of Environmental Conservation (DEC), 2017, Site characterization work plan and reporting guidance for investigation of contaminated sites: Juneau, Alaska, DEC Division of Spill Prevention and Response, Contaminated Sites Program, March, available:
http://dec.alaska.gov/spar/csp/guidance_forms/csguidance.htm.

Alaska Department of Environmental Conservation (DEC), 2017, Field Sampling Guidance: Juneau, Alaska, DEC Division of Spill Prevention and Response, Contaminated Sites Program, August, available:
http://dec.alaska.gov/spar/csp/guidance_forms/csguidance.htm.

Alaska Department of Environmental Conservation (DEC), 2021, 18 AAC 75: Oil and other hazardous substances pollution control: Juneau, Alaska, July, available:
<http://dec.alaska.gov/commish/regulations/>.

Alaska Department of Environmental Conservation (DEC), 2021, 18 AAC 75.345 Table C, Groundwater-Cleanup Levels.

U.S. Environmental Protection Agency (EPA) Office of Recourse Conservation and Recovery, Program Implementation and Information Division., 2009, Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March.

U.S. Environmental Protection Agency (EPA), 2016, Drinking Water Health Advisory for Perfluorooctanoic Acid (PFOA), Document Number 822-R-16-005: Washington, DC, U.S. EPA Office of Water, Health and Ecological Criteria Division, May, available: https://www.epa.gov/sites/production/files/2016-05/documents/pfoa_health_advisory_final_508.pdf

Table 1 — October 2023 PFAS Analytical Results

			Sample Name	MW-TS-1	MW-TS-101	MW-TS-2	MW-TS-3	MW-TS-4	EB-1	GAC
			Well Depth Below Ground Surface (feet)	20	20	40	60	80	--	--
			Collection Date	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023	10/25/2023
			Sample Type	Project	Field Duplicate	Project	Project	Project	Equipment Blank	GAC Effluent
Method	Analyte	Regulatory Limit	Unit	Results	Results	Results	Results	Results	Results	Results
DoD QSM 5.3 Table B-15	Perfluorooctanesulfonic acid (PFOS)	400	ng/L	1.9 J	1.5 J	2.5	2.5	1.1 J	< 2.0	1.0 J
	Perfluorooctanoic acid (PFOA)	400	ng/L	3.7	3.4	4.0	8.8	3.4	< 2.0	< 2.0
	Hexafluoropropylene oxide dimer acid (HFPO-DA)	N/A	ng/L	< 4.1	< 3.7	< 4.2	< 4.2	< 3.8	< 4.0	< 4.0
	Perfluorobutanesulfonic acid (PFBS)	N/A	ng/L	1.2 J	1.1 J	0.75 J	1.5 J	0.44 J	< 2.0	< 2.0
	Perfluorodecanoic acid (PFDA)	N/A	ng/L	< 2.0	< 1.8	< 2.1	< 2.1	< 1.9	< 2.0	< 2.0
	Perfluorododecanoic acid (PFDoA)	N/A	ng/L	< 2.0 J*	< 1.8	< 2.1	< 2.1	< 1.9	< 2.0	< 2.0
	Perfluoroheptanoic acid (PFHpA)	N/A	ng/L	1.3 J	1.1 J	0.50 J	0.58 J	< 1.9	< 2.0	< 2.0
	Perfluorohexanesulfonic acid (PFHxS)	N/A	ng/L	2.7	2.5	4.8	14	5.1	< 2.0	< 2.0
	Perfluorohexanoic acid (PFHxA)	N/A	ng/L	2.5	2.4	2.0 J	4.7	2.0	< 2.0	< 2.0
	Perfluorononanoic acid (PFNA)	N/A	ng/L	< 2.0	< 1.8	< 2.1	< 2.1	< 1.9	< 2.0	< 2.0
	Perfluorotetradecanoic acid (PFTeA)	N/A	ng/L	< 2.0 J*	< 1.8	< 2.1	< 2.1	< 1.9	< 2.0	< 2.0
	Perfluorotridecanoic acid (PFTrDA)	N/A	ng/L	< 2.0 J*	< 1.8	< 2.1	< 2.1	< 1.9	< 2.0	< 2.0
	Perfluoroundecanoic acid (PFUnA)	N/A	ng/L	< 2.0	< 1.8	< 2.1	< 2.1	< 1.9	< 2.0	< 2.0
	9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9Cl-PF3ONS)	N/A	ng/L	< 2.0	< 1.8	< 2.1	< 2.1	< 1.9	< 2.0	< 2.0
	11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	N/A	ng/L	< 2.0	< 1.8	< 2.1	0.59 J	< 1.9	< 2.0	< 2.0
	4,8-Dioxa-3H-perfluorononanoic acid (DONA)	N/A	ng/L	< 2.0	< 1.8	< 2.1	< 2.1	< 1.9	< 2.0	< 2.0
	N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	N/A	ng/L	< 5.1	< 4.6	< 5.3	< 5.3	< 4.7	< 5.0	< 5.0
	N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	N/A	ng/L	< 5.1	< 4.6	< 5.3	< 5.3	< 4.7	< 5.0	< 5.0

Notes: Results reported from Eurofins Environment Testing America work order 320-106532-1

Regulatory limits from 18 AAC 75.345 Groundwater Cleanup Levels.

DoD Department of Defense

PFAS per- and polyfluoroalkyl substances

ng/L nanograms per liter

N/A No applicable regulatory limit exists for the associated analyte.

QSM Quality Systems Manual

< Analyte not detected; listed as less than the limit of detection unless otherwise flagged due to quality-control failures.

J Estimated concentration, detected greater than the detection limit and less than the limit of quantitation. Flag applied by the laboratory.

J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)

Table 2 — February 2024 PFAS Analytical Results

			Sample Name	MW-TS-1	MW-TS-101	MW-TS-2	MW-TS-3	MW-TS-4	EB-1	GAC
Well Depth Below Ground Surface (feet)			20	20	40	60	80	--	--	
Collection Date			2/22/2024	2/22/2024	2/22/2024	2/22/2024	2/22/2024	2/22/2024	2/22/2024	
Sample Type			Project	Field Duplicate	Project	Project	Project	Equipment Blank	GAC Effluent	
Method	Analyte	Regulatory Limit	Unit	Results	Results	Results	Results	Results	Results	Results
DoD QSM 5.3 Table B-15	Perfluorooctanesulfonic acid (PFOS)	400	ng/L	2.1	2.1	1.5 J*	2.0	1.1 J	< 1.8	< 1.8
	Perfluorooctanoic acid (PFOA)	400	ng/L	4.9	4.7	3.9 J*	6.8	3.0	< 1.8	1.1 J
	Hexafluoropropylene oxide dimer acid (HFPO-DA)	N/A	ng/L	< 3.6	< 3.7	< 3.7 J*	< 3.5	< 3.6	< 3.6	< 3.7
	Perfluorobutanesulfonic acid (PFBS)	N/A	ng/L	1.4 J	1.2 J	0.81 J*	1.1 J	0.54 J	< 1.8	< 1.8
	Perfluorodecanoic acid (PFDA)	N/A	ng/L	< 1.8	< 1.9	< 1.8 J*	< 1.8	< 1.8	< 1.8	< 1.8
	Perfluorododecanoic acid (PFDoA)	N/A	ng/L	< 1.8	< 1.9	< 1.8 J*	< 1.8	< 1.8	< 1.8	< 1.8
	Perfluoroheptanoic acid (PFHpA)	N/A	ng/L	1.1 J	1.1 J	0.37 J*	0.44 J*	< 1.8	< 1.8	< 1.8
	Perfluorohexanesulfonic acid (PFHxS)	N/A	ng/L	3.1	2.8	4.9 J*	11	4.4	< 1.8	< 1.8
	Perfluorohexanoic acid (PFHxA)	N/A	ng/L	2.7	2.6	2.0 J*	3.1	1.5 J	< 1.8	< 1.8
	Perfluorononanoic acid (PFNA)	N/A	ng/L	< 1.8	< 1.9	< 1.8 J*	< 1.8	< 1.8	< 1.8	< 1.8
	Perfluorotetradecanoic acid (PFTeA)	N/A	ng/L	< 1.8	< 1.9	< 1.8 J*	< 1.8	< 1.8	< 2.0 N*	< 1.8
	Perfluorotridecanoic acid (PFTrDA)	N/A	ng/L	< 1.8	< 1.9	< 1.8 J*	< 1.8	< 1.8	< 1.8	< 1.8
	Perfluoroundecanoic acid (PFUnA)	N/A	ng/L	< 1.8	< 1.9	< 1.8 J*	< 1.8	< 1.8	< 1.8	< 1.8
	9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9Cl-PF3ONS)	N/A	ng/L	< 1.8	< 1.9	< 1.8 J*	< 1.8	< 1.8	< 1.8	< 1.8
	11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)	N/A	ng/L	< 1.8	< 1.9	< 1.8 J*	< 1.8	< 1.8	< 1.8	0.29 J
	4,8-Dioxa-3H-perfluorononanoic acid (DONA)	N/A	ng/L	< 1.8	< 1.9	0.43 J*	< 1.8	< 1.8	< 1.8	< 1.8
	N-Ethyl perfluorooctane sulfonamidoacetic acid (N-EtFOSAA)	N/A	ng/L	< 4.5	< 4.7	< 4.6 J*	< 4.4	< 4.4	< 4.5	< 4.6
	N-Methyl perfluorooctane sulfonamidoacetic acid (N-MeFOSAA)	N/A	ng/L	< 4.5	< 4.7	< 4.6 J*	< 4.4	< 4.4	< 4.5	< 4.6

Notes: Results reported from Eurofins Environment Testing America work order 320-110042-1

Regulatory limits from 18 AAC 75.345 Groundwater Cleanup Levels.

DoD Department of Defense

PFAS per- and polyfluoroalkyl substances

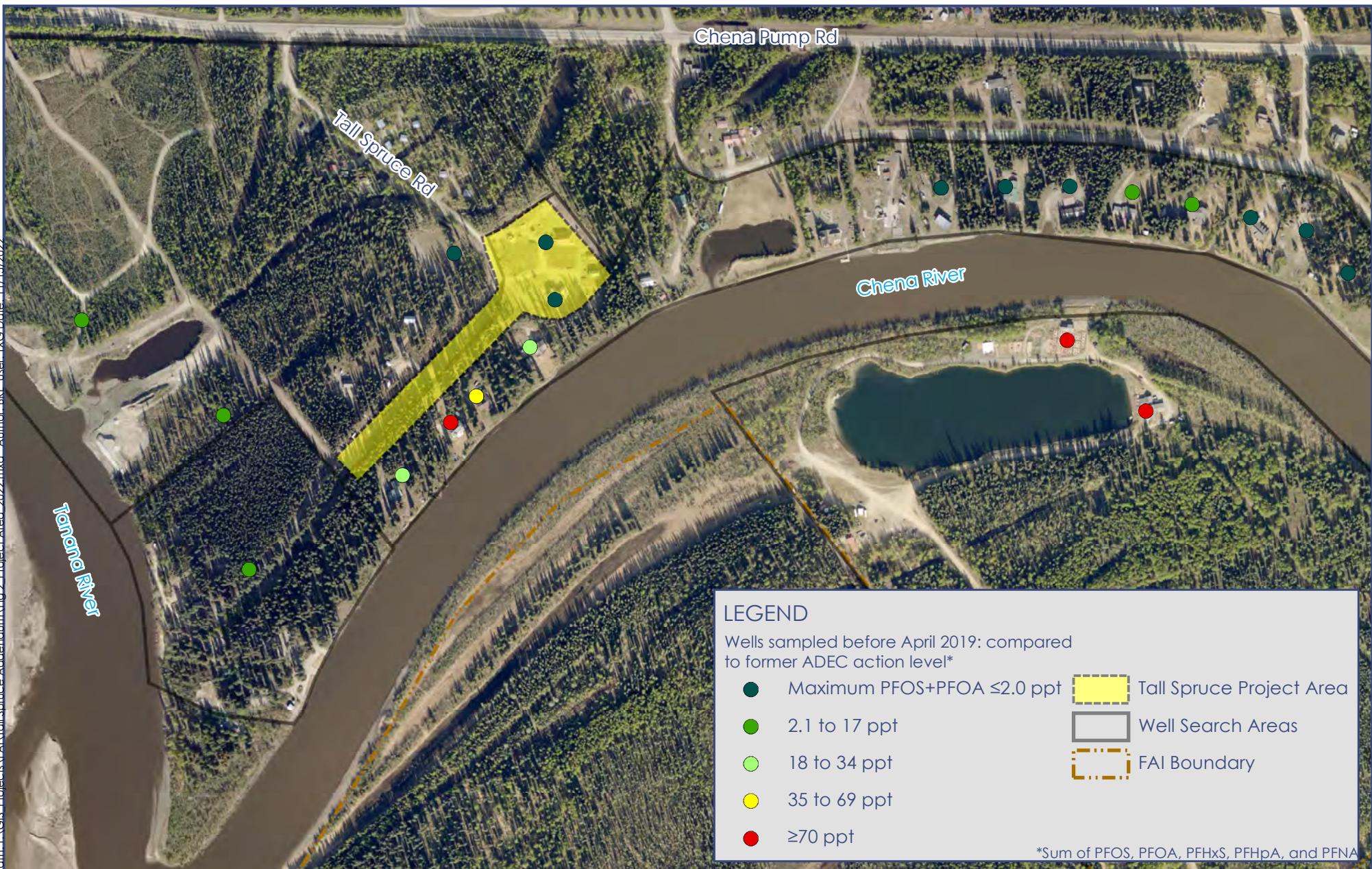
ng/L nanograms per liter

N/A No applicable regulatory limit exists for the associated analyte.

QSM Quality Systems Manual

< Analyte not detected; listed as less than the limit of detection unless otherwise flagged due to quality-control failures.

J Estimated concentration, detected greater than the detection limit and less than the limit of quantitation. Flag applied by the laboratory.


J* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)

N* Estimated concentration due to quality control failures. Flag applied by Shannon & Wilson, Inc. (*)

April 2024

FAIRBANKS INTERNATIONAL AIRPORT VICINITY
Figure 1

Notes:

1. Boundaries are approximate
FAI = Fairbanks International Airport

0 1,000
Feet

April 8 & 9

PROJECT AREA WEST OF THE CHENA RIVER

Figure 2

April 2024

MONITORING WELL LOCATIONS

Figure 3

Appendix A Field Notes

CONTENTS

- Field Activities Daily Logs
- Monitoring Well Sampling Logs

FIELD ACTIVITIES DAILY LOG

Date 10/25/2023

Sheet 1 of 1

Project No. 102519-029

Project Name: Tall Spruce

Field activity subject: PFAS

Description of daily activities and events:

0800 arrive at office. Pack gear, calibrate VSI.

0930 leave office for 2712 Tall Spruce

Use Metal detector to locate MW. First well was not clearly labeled. Determined well ID by depth (compared to other wells later). Purgd & Sampled \Rightarrow MW-TS-2.

Set up GAC in 1 in truck, 1 outside, 1 in ditch.

Hoses quickly froze & became unuse-able. Attempted to set up 3 GACs in truck but was not successful.

Set up GAC 1 to drain into bucket which I poured in to GAC 2. Moved GAC 2 in & out of truck to keep from freezing.

Located MW-TS-4, purged & sampled.

Located MW-TS-3 purged & sampled. Had neighbor stop & ask about work. Very brief.

Located MW-TS-1. Pump stopped working & I noted the clip had broken on 1 side. Put together a temporary fix to finish the purge & sample.

After pulling up pump, other side of the plug disconnected. Could not use the pump for de-ice but cleaned thoroughly without.

TOOK EB sample.

Maneuvered GACs for a long, struggling, hour or two trying to combat the cold.

TOOK GAC-1 effluent sample. Cleaned up site & headed back to office.

Unpacked quickly due to meeting.

Finished unpacking in a.m. on 10/26

* Did not write well ID on other wells (only TS-4) because of frost/snow

Visitors on site:

Changes from plans/specifications and other special orders and important decisions:

Weather conditions: cold, 20's, overcast

Important telephone calls:

Personnel on site:

Signature: A Masters

Date: 10/26/23

MONITORING WELL SAMPLING LOG

Owner/Client DOT&PF - Fairbanks International Airport
 Location Tall Spruce Road
 Sampling Personnel ADM
 Weather Conditions overcast, 20° Air Temp. (°F) 20

Project No. 102519-029
 Date 10/25/23
 Well MW-TS-1
 Time started 1500
 Time completed 1606

Sample No. MW-TS-1
 Duplicate MW-TS-101
 Equipment Blank GB-1
 GAC-1
 Pump Hurricane B
 Purging Method portable / dedicated pump
 Pumping Start 1514
 Purge Rate (gal./min.) 11
 Pumping End 1582
 Pump Set Depth Below MP (ft.) 15
 KuriTec Tubing (ft.) 16 25
 TruPoly Tubing (ft.) —

Time 1532 1532
 Time 1522
 Time 1600

↑
 this froze
 to my clipboard AN

Diameter and Type of Casing 2" PVC
 Approximate Total Depth of Well Below MP (ft.) 20
 Measured Total Depth of Well Below MP (ft.) 19.6 + 0.75 = 20.35
 Depth to Water Below MP (ft.) 7.08
 Depth to Ice (if frozen) Below MP (ft.) —
 Feet of Water in Well 13.27
 Gallons per foot 0.17
 Gallons in Well 2.3 × 0.17 = 0.39
 Purge Water Volume (gal.) 11.11 18
 Purge Water Disposal GAC to ground surface

Monument Condition good
 Casing Condition good
 Wiring Condition Not applicable
 (dedicated pumps)

Measuring Point (MP) Top of Casing (TOC) Monument type: Stickup Flushmount
 Measurement method: Rod & level Tape measure

Top-of-casing to monument (ft.) 0.46 Datalogger type n/a
 Monument to ground surface (ft.) — Datalogger serial # n/a
 Measured cable length (ft.) n/a

 Lock present and operational NA
 Well name legible on outside of well NO
 Evidence of frost-jacking NO

Notes None

WELL CASING VOLUMES

Diameter of Well [ID-inches]	CMT	1 1/4	1 1/2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

MONITORING WELL SAMPLING LOG

Field Parameter Instrument

Circle one: *Parameters stabilized or >3 well volumes purged*

Sample Observations None

Notes None

FIELD PARAMETERS [stabilization criteria]

Laboratory *Eurofins*

Analysis	Sample Containers		Preservatives	Dup
PFAS x 18	2	250 mL	✓	<input checked="" type="checkbox"/>
PFAS x 18	2	250 mL	None	<input checked="" type="checkbox"/> EB-1
PFAS x 18	2	250 mL	None	<input checked="" type="checkbox"/> GAC-1
				<input type="checkbox"/>

MONITORING WELL SAMPLING LOG

Owner/Client DOT&PF - Fairbanks International Airport
 Location Tall Spruce Road
 Sampling Personnel Master's
 Weather Conditions over cast, cold Air Temp. (°F) 38

Project No. 102519-029
 Date 10/25/23
 Well MW-TS-2
 Time started 1100
 Time completed 1150

Sample No. MW-TS-2 Time 1141
 Duplicate — Time —
 Equipment Blank — Time —

Pump Hurricane B
 Purging Method portable / dedicated pump
 Pumping Start 1145
 Purge Rate (gal./min.) 0.6 1
 Pumping End 1148

Pump Set Depth Below MP (ft.) 38.5
 KuriTec Tubing (ft.) 242
 TruPoly Tubing (ft.) —

Diameter and Type of Casing 2" PVC
 Approximate Total Depth of Well Below MP (ft.) 40
 Measured Total Depth of Well Below MP (ft.) 39.13 ± 0.75
 Depth to Water Below MP (ft.) 7.19
 Depth to Ice (if frozen) Below MP (ft.) —
 Feet of Water in Well 32.69
 Gallons per foot 0.17
 Gallons in Well 5.5 × 3 = 16.5
 Purge Water Volume (gal.) 22.8 26

Purge Water Disposal 6AC → Ground

Monument Condition good
 Casing Condition good
 Wiring Condition N/A
 (dedicated pumps)

Measuring Point (MP) Top of Casing (TOC)

Monument type: Stickup / Flushmount
 Measurement method: Rod & level / Tape measure

Top-of-casing to monument (ft.) 0.38
 Monument to ground surface (ft.) —

Datalogger type n/a
 Datalogger serial # n/a
 Measured cable length (ft.) n/a

- Lock present and operational N/A
- Well name legible on outside of well No
- Evidence of frost-jacking No

Notes None

WELL CASING VOLUMES

Diameter of Well [ID-inches]	CMT	1 1/4	2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

MONITORING WELL SAMPLING LOG

Field Parameter Instrument

Circle one: Parameters stabilized or >3 well volumes purged

Sample Observations None

Notes None

FIELD PARAMETERS [stabilization criteria]

Laboratory *Eurofins*

Analysis

Sample Containers

Preservatives

Dup

MONITORING WELL SAMPLING LOG

Owner/Client DOT&PF - Fairbanks International Airport
 Location Tall Spruce Road
 Sampling Personnel A. Masters
 Weather Conditions Clear, cold Air Temp. (°F) 27

Project No. 102519-029
 Date 10/25/23
 Well MW-TS-3
 Time started 1330
 Time completed 1400

Sample No. MW-TS-3 Time 1357
 Duplicate Time
 Equipment Blank Time

Pump Hurricane A
 Purging Method portable / dedicated pump
 Pumping Start 1346
 Purge Rate (gal./min.) 0.0 1
 Pumping End 1357

Pump Set Depth Below MP (ft.) 57.
 KuriTec Tubing (ft.) 63
 TruPoly Tubing (ft.)

Diameter and Type of Casing 2" PVC
 Approximate Total Depth of Well Below MP (ft.) 60
 Measured Total Depth of Well Below MP (ft.) 58.68 + 0.75 = 59.43
 Depth to Water Below MP (ft.) 7.42
 Depth to Ice (if frozen) Below MP (ft.)
 Feet of Water in Well 52.01
 Gallons per foot 0.17
 Gallons in Well 8.8 x 3 = 26.5
 Purge Water Volume (gal.) 136 11

Monument Condition good

Purge Water Disposal GAC -> ground surface

Casing Condition good

Wiring Condition N/A
 (dedicated pumps)

Measuring Point (MP) Top of Casing (TOC)

Monument type: Stickup / Flushmount
 Measurement method: Rod & level / Tape measure

Top-of-casing to monument (ft.) 0.36
 Monument to ground surface (ft.)

Datalogger type n/a
 Datalogger serial # n/a
 Measured cable length (ft.) n/a

Lock present and operational N/A
 Well name legible on outside of well NO
 Evidence of frost-jacking No

Notes None

WELL CASING VOLUMES

Diameter of Well [ID-inches]	CMT	1 1/4	2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

MONITORING WELL SAMPLING LOG

Field Parameter Instrument

Circle one: Parameters stabilized or >3 well volumes purged

Sample Observations None

Notes None

FIELD PARAMETERS [stabilization criteria]

Laboratory Eurofins

Analysis

Eurofins

Sample Containers

Preservatives

Dup

MONITORING WELL SAMPLING LOG

Owner/Client DOT&PF - Fairbanks International Airport
 Location Tall Spruce Road
 Sampling Personnel A. Musters
 Weather Conditions Cloudy, overcast Air Temp. (°F) 28

Project No. 102519-029

Date 10/25/23

Well MW-TS-4

Time started 12:00

Time completed 12:40

Sample No. MW-TS-4
 Duplicate —
 Equipment Blank —

Time 1234
 Time —
 Time —

Pump Hurricane B
 Purging Method portable / dedicated pump
 Pumping Start 12:10
 Purge Rate (gal./min.) 0.08 1
 Pumping End 12:34

Pump Set Depth Below MP (ft.) ~76
 KuriTec Tubing (ft.) ~80
 TruPoly Tubing (ft.) —

Diameter and Type of Casing 2" PVC
 Approximate Total Depth of Well Below MP (ft.) 80
 Measured Total Depth of Well Below MP (ft.) 79.6 + 0.75 = 80.35
 Depth to Water Below MP (ft.) 7.74
 Depth to Ice (if frozen) Below MP (ft.) —
 Feet of Water in Well 7.11
 Gallons per foot 0.17
 Gallons in Well 12.1 x 3 = 36.3
 Purge Water Volume (gal.) 24
 Purge Water Disposal GAC → ground surface

Monument Condition good

Casing Condition good

Wiring Condition (dedicated pumps) N/A

Measuring Point (MP) Top of Casing (TOC)

Monument type: Stickup / Flushmount
 Measurement method: Rod & level / Tape measure

Top-of-casing to monument (ft.) 0.33
 Monument to ground surface (ft.) —

Datalogger type n/a
 Datalogger serial # n/a
 Measured cable length (ft.) n/a

Lock present and operational N/A
 Well name legible on outside of well N/A
 Evidence of frost-jacking N/A

Notes Wrote MW-TS-4 on inside of casing.

WELL CASING VOLUMES

Diameter of Well [ID-inches]	CMT	1 1/4	2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

MONITORING WELL SAMPLING LOG

Field Parameter Instrument

Circle one: *Parameters stabilized* or *>3 well volumes purged*

Sample Observations

None

Notes None

FIELD PARAMETERS [stabilization criteria]

Laboratory Eurofins

FIELD ACTIVITIES DAILY LOG

Date 2/22/24Sheet 1 of
1 Project No.

Project Name: FY24 Tall Spruce October Sampling Event

102519-029

Field Activity Subject: Monitoring well samplingCalibration: YSIBSafety: High vs.

Description of daily activities and events:

0815 - Calibrate YSIB and finish packing up truck

0946 - Arrive at Tall Spruce, tentatively set up GACs: other materials

1000 - Start MW-TS-4, set up GAC system fully during purge, had to fix a few leaky connections (connections, GAC 1 on lab roof, GAC 2 in cab, GAC 3 on ground outside).

1115 - Start GAC, will be continuous all day

1155 - Start MW-TS-3, Hurricane pump started surging (not pumping at continuous rate, had text conversation w/ RL to see if something can be figured out. Pump set at higher rate at control box seemed to work)

1345 - Start at MW-TS-2, Pump still finicky but still working, along w/ 1/2 mw sample, GAC sample was taken as well.

1530 - Start at MW-TS-1, at this well a dup (MW-TS-101) is equipped. Blank (EB-1) were taken. Pump started surging again, but stopped when placed in plastic bag on snow.

1645 - Finished with monitoring wells, kept eye on GAC to finish with all the purge water, worked on paperwork.

1845 - Back in office, de-mob.

Visitors on site: —Changes from plans/specifications and other special orders and important decisions: —Weather conditions: Overcast 30°ishImportant telephone calls: —Personnel on site: SDKQC: YLFSignature: SDKDate: 2/22/24

MONITORING WELL SAMPLING LOG

Owner/Client DOT&PF - Fairbanks International Airport
 Location Tall Spruce Road
 Sampling Personnel SDK
 Weather Conditions Overcast Air Temp. (°F) 27°

Project No. 102519-029
 Date 2/22/24
 Well MW-TS-1
 Time started 1530
 Time completed 1645

Sample No. MW-TS-1 Time 1615
 Duplicate MW-TS-101 Time 1605
 Equipment Blank EB-1 Time 1630

Pump Hurricane
 Purguing Method portable / dedicated pump
 Pumping Start 1530
 Purge Rate (gal./min.) 1542
 Pumping End 1618
 Pump Set Depth Below MP (ft.) ~17
 KuriTec Tubing (ft.) 25
 TruPoly Tubing (ft.) —

Diameter and Type of Casing 2" PVC
 Approximate Total Depth of Well Below MP (ft.) 19.35 + 0.38
 Measured Total Depth of Well Below MP (ft.) 20.33
 Depth to Water Below MP (ft.) 7.56
 Depth to Ice (if frozen) Below MP (ft.) —
 Feet of Water in Well 12.73
 Gallons per foot 0.67
 Gallons in Well 2.16
 Purge Water Volume (gal.) ~31 gallons

Monument Condition good
 Casing Condition good
 Wiring Condition —
 (dedicated pumps)

Purge Water Disposal GAC to ground

Measuring Point (MP) Top of Casing (TOC)

Monument type: Stickup / Flushmount
 Measurement method: Rod & level / Tape measure

Top-of-casing to monument (ft.) 0.48
 Monument to ground surface (ft.) —

Datalogger type n/a
 Datalogger serial # n/a
 Measured cable length (ft.) n/a

- Lock present and operational
- Well name legible on outside of well
- Evidence of frost-jacking N/A

Notes —

WELL CASING VOLUMES

Diameter of Well [ID-inches]	CMT	1 1/4	2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

Well No. MW-TS-1

MONITORING WELL SAMPLING LOG

Field Parameter Instrument

Circle one: *Parameters stabilized* or *>3 well volumes purged*

Sample Observations

Notes

FIELD PARAMETERS [stabilization criteria]

Laboratory Eurolabs

Analysis

PFAS.

Sample Containers

Preservatives

Dup

58

미 미 미 미 미

四

KCF

Well No. MWF-13-1

MONITORING WELL SAMPLING LOG

Owner/Client DOT&PF - Fairbanks International Airport
 Location Tall Spruce Road
 Sampling Personnel SOK
 Weather Conditions Overcast Air Temp. (°F) 29

Project No. 102519-029
 Date 3/22/24
 Well MW-TS-2
 Time started 1345
 Time completed 1455

Sample No. MW-TS-2
 Duplicate GAC-1
 Equipment Blank

Time 1437
 Time 1452 * Post-GAC use sample
 Time

Pump Husky
 Purguing Method portable / dedicated pump
 Pumping Start 1345
 Purge Rate (gal./min.) ~0.8
 Pumping End 1440

Diameter and Type of Casing 2" PVC
 Approximate Total Depth of Well Below MP (ft.) 38.85 ± 0.98
 Measured Total Depth of Well Below MP (ft.) 38.83
 Depth to Water Below MP (ft.) 7.69
 Depth to Ice (if frozen) Below MP (ft.)

Pump Set Depth Below MP (ft.) ~26
 KuriTec Tubing (ft.) 43
 TruPoly Tubing (ft.)

Feet of Water in Well 32.14
 Gallons per foot 0.17
 Gallons in Well 5.46
 Purge Water Volume (gal.) ~20 gallons

Monument Condition good
 Casing Condition good

Purge Water Disposal GAC to ground

Wiring Condition n/a
 (dedicated pumps)

Measuring Point (MP) Top of Casing (TOC)

Monument type: Stickup / Flushmount
 Measurement method: Rod & level / Tape measure

Top-of-casing to monument (ft.) 0.40
 Monument to ground surface (ft.)

Datalogger type n/a
 Datalogger serial # n/a
 Measured cable length (ft.) n/a

- Lock present and operational
- Well name legible on outside of well
- Evidence of frost-jacking

Notes

WELL CASING VOLUMES

Diameter of Well [ID-inches]	CMT	1 1/4	2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

Well No. MW-TS-2

MONITORING WELL SAMPLING LOG

Field Parameter Instrument
Sample Observations
Notes

Circle one: Parameters stabilized or >3 well volumes purged

FIELD PARAMETERS [stabilization criteria]

Laboratory Eurofins

Analysis	Sample Containers	Preservatives	Dup
PEAS	2x250ml PE	—	<input type="checkbox"/>
GAC-1 (PEAS)	" "	—	<input type="checkbox"/>
			<input type="checkbox"/>
			<input type="checkbox"/>

KEF

Well No. MW-TS-2

MONITORING WELL SAMPLING LOG

Owner/Client DOT&PF - Fairbanks International Airport
 Location Tall Spruce Road
 Sampling Personnel SDK
 Weather Conditions Overcast Air Temp. (°F) 30

Project No. 102519-029
 Date 2/22/24
 Well MW-TS-3
 Time started 1155
 Time completed 1330

Sample No. MW-TS-3 Time 1305
 Duplicate — Time —
 Equipment Blank — Time —

Pump Articulite
 Purgung Method portable / dedicated pump
 Pumping Start 1220
 Purge Rate (gal./min.) ~0.8
 Pumping End 1308

Diameter and Type of Casing 2" PVC
 Approximate Total Depth of Well Below MP (ft.) 58.5 ± 0.98
 Measured Total Depth of Well Below MP (ft.) 59.48
 Depth to Water Below MP (ft.) 7.89
 Depth to Ice (if frozen) Below MP (ft.) —
 Feet of Water in Well 51.63
 Gallons per foot 0.17
 Gallons in Well 8.78
 Purge Water Volume (gal.) ~33 gallons
 Purge Water Disposal GAC to ground

Monument Condition good

Casing Condition good

Wiring Condition
(dedicated pumps) N/A

Measuring Point (MP) Top of Casing (TOC)

Monument type: Stickup / Flushmount
 Measurement method: Rod & level / Tape measure

Top-of-casing to monument (ft.) 0.35
 Monument to ground surface (ft.) —

Datalogger type n/a
 Datalogger serial # n/a
 Measured cable length (ft.) n/a

- Lock present and operational
- Well name legible on outside of well
- Evidence of frost-jacking —

Notes Pump started to surge at this well, turned up flow rate and it kept it from stopping the flow

WELL CASING VOLUMES

Diameter of Well [ID-inches]	CMT	1 1/4	2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

Well No. MW-TS-3

MONITORING WELL SAMPLING LOG

Field Parameter Instrument
Sample Observations
Notes

Circle one: Parameters stabilized or >3 well volumes purged

FIELD PARAMETERS [stabilization criteria]

Laboratory Eurofins

ket

Well No. MW-TS-3

MONITORING WELL SAMPLING LOG

Owner/Client DOT&PF - Fairbanks International Airport
 Location Tall Spruce Road
 Sampling Personnel SDK
 Weather Conditions Overcast Air Temp. (°F) 30°

Project No. 102519-029
 Date 2/22/14
 Well MW-TS-4
 Time started 1000
 Time completed 1120

Sample No. MW-TS-4 Time 1108
 Duplicate — Time —
 Equipment Blank — Time —

Pump Husky
 Purguing Method portable / dedicated pump
 Pumping Start 2040
 Purge Rate (gal./min.) ~0.8
 Pumping End 1110
 Pump Set Depth Below MP (ft.) ~76
 KuriTec Tubing (ft.) ~85
 TruPoly Tubing (ft.) —

Diameter and Type of Casing 2" PVC
 Approximate Total Depth of Well Below MP (ft.) 79.50 ± 0.58
 Measured Total Depth of Well Below MP (ft.) 80.48
 Depth to Water Below MP (ft.) 5.11
 Depth to Ice (if frozen) Below MP (ft.) —
 Feet of Water in Well 72.37
 Gallons per foot 0.17
 Gallons in Well 12.30
 Purge Water Volume (gal.) ~25 gallons
 Purge Water Disposal GAC to ground

Monument Condition good

Casing Condition good

Wiring Condition — n/a
 (dedicated pumps)

Measuring Point (MP) Top of Casing (TOC)

Monument type: Stickup / Flushmount
 Measurement method: Rod & level / Tape measure

Top-of-casing to monument (ft.) —
 Monument to ground surface (ft.) —

Datalogger type n/a
 Datalogger serial # n/a
 Measured cable length (ft.) n/a

- Lock present and operational
- Well name legible on outside of well
- Evidence of frost-jacking n/a

Notes —

WELL CASING VOLUMES

Diameter of Well [ID-inches]	CMT	1 1/4	2	3	4	6	8
Gallons per lineal foot	0.000253	0.08	0.17	0.38	0.66	1.5	2.6

Well No. MW-TS-4

Appendix B

Analytical Results

CONTENTS

- Eurofins Environment Testing America, Sacramento Laboratory Reports 320-106532-1 and 320-110042-1
- DEC LDRCs for WOs 320-106532-1 and 320-110042-1

ANALYTICAL REPORT

PREPARED FOR

Attn: Michael X Jaramillo
Shannon & Wilson, Inc

2355 Hill Rd.
Fairbanks, Alaska 99709-5244

Generated 11/20/2023 2:22:06 PM

JOB DESCRIPTION

Tall Spruce

JOB NUMBER

320-106532-1

Eurofins Sacramento

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northern California, LLC Project Manager.

Authorization

Generated
11/20/2023 2:22:06 PM

Authorized for release by
David Alltucker, Project Manager I
David.Alltucker@et.eurofinsus.com
(916)374-4383

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	8
Isotope Dilution Summary	15
QC Sample Results	16
QC Association Summary	22
Lab Chronicle	23
Certification Summary	25
Method Summary	26
Sample Summary	27
Chain of Custody	28
Receipt Checklists	30

Definitions/Glossary

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Qualifiers

LCMS

Qualifier

Qualifier Description

*5-	Isotope dilution analyte is outside acceptance limits, low biased.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation

These commonly used abbreviations may or may not be present in this report.

☒	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Case Narrative

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Job ID: 320-106532-1

Laboratory: Eurofins Sacramento

Narrative

Job Narrative 320-106532-1

Receipt

The samples were received on 10/31/2023 2:55 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.0° C.

LCMS

Method EPA 537(Mod): The continuing calibration verification (CCV) associated with batch 320-720994 recovered above the upper control limit for isotope dilution analyte (IDA) d3-NMeFOSAA and d5-NEtFOSAA. The associated target analytes N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA) and N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA) were within control limits in the CCV; therefore, the data is reported: MW-TS-1 (320-106532-1), MW-TS-2 (320-106532-3), MW-TS-3 (320-106532-4), EB-1 (320-106532-6), GAC-1 (320-106532-7) and (CCV 320-720994/1).

Method EPA 537(Mod): The continuing calibration verification (CCV) associated with batch 320-720994 recovered above the upper control limit for isotope dilution analyte (IDA) d5-NEtFOSAA. The associated target analytes N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA) were within control limits in the CCV; therefore, the data is reported: MW-TS-1 (320-106532-1), MW-TS-2 (320-106532-3), MW-TS-3 (320-106532-4), EB-1 (320-106532-6), GAC-1 (320-106532-7) and (CCV 320-720994/12).

Method EPA 537(Mod): The Isotope Dilution Analyte (IDA) recovery associated with the following sample is below the method recommended limit: MW-TS-1 (320-106532-1). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample(s).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: The following samples in preparation batch 320-718877 were observed to have a thin layer of sediment present in the bottom of the bottle prior to extraction. MW-TS-1 (320-106532-1), MW-TS-2 (320-106532-3), MW-TS-3 (320-106532-4) and GAC-1 (320-106532-7)

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-718877.

Method 3535: During the solid phase extraction process, the following samples contain non-settleable particulates which clogged the solid phase extraction column: MW-TS-1 (320-106532-1), MW-TS-3 (320-106532-4) and GAC-1 (320-106532-7).
preparation batch 320-718877

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-719042.

Method 3535: The following samples in preparation batch 320-719042 were observed to have a thin layer of sediment present in the bottom of the bottle prior to extraction. MW-TS-101 (320-106532-2) and MW-TS-4 (320-106532-5)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Client Sample ID: MW-TS-1

Lab Sample ID: 320-106532-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	2.5		2.0	0.59	ng/L	1		EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.3	J	2.0	0.25	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	3.7		2.0	0.86	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.2	J	2.0	0.20	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	2.7		2.0	0.58	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.9	J	2.0	0.55	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: MW-TS-101

Lab Sample ID: 320-106532-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	2.4		1.8	0.53	ng/L	1		EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.1	J	1.8	0.23	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	3.4		1.8	0.78	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.1	J	1.8	0.18	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	2.5		1.8	0.52	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.5	J	1.8	0.49	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: MW-TS-2

Lab Sample ID: 320-106532-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	2.0	J	2.1	0.61	ng/L	1		EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.50	J	2.1	0.26	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	4.0		2.1	0.89	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.75	J	2.1	0.21	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	4.8		2.1	0.60	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.5		2.1	0.57	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: MW-TS-3

Lab Sample ID: 320-106532-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	4.7		2.1	0.61	ng/L	1		EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.58	J	2.1	0.27	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	8.8		2.1	0.90	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.5	J	2.1	0.21	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	14		2.1	0.60	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.5		2.1	0.57	ng/L	1		EPA 537(Mod)	Total/NA
11-Chloroeicosfluoro-3-oxaundecan e-1-sulfonic acid	0.59	J	2.1	0.34	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: MW-TS-4

Lab Sample ID: 320-106532-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	2.0		1.9	0.55	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	3.4		1.9	0.80	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.44	J	1.9	0.19	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	5.1		1.9	0.54	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.1	J	1.9	0.51	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: EB-1

Lab Sample ID: 320-106532-6

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins Sacramento

Detection Summary

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Client Sample ID: GAC-1

Lab Sample ID: 320-106532-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorooctanesulfonic acid (PFOS)	1.0	J	2.0	0.54	ng/L	1		EPA 537(Mod)	Total/NA

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

This Detection Summary does not include radiochemical test results.

Eurofins Sacramento

Client Sample Results

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Client Sample ID: MW-TS-1
Date Collected: 10/25/23 15:32
Date Received: 10/31/23 14:55

Lab Sample ID: 320-106532-1
Matrix: Water

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	2.5		2.0	0.59	ng/L		11/08/23 11:39	11/16/23 22:08	1
Perfluoroheptanoic acid (PFHpA)	1.3	J	2.0	0.25	ng/L		11/08/23 11:39	11/16/23 22:08	1
Perfluorooctanoic acid (PFOA)	3.7		2.0	0.86	ng/L		11/08/23 11:39	11/16/23 22:08	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		11/08/23 11:39	11/16/23 22:08	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		11/08/23 11:39	11/16/23 22:08	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		11/08/23 11:39	11/16/23 22:08	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.56	ng/L		11/08/23 11:39	11/16/23 22:08	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		11/08/23 11:39	11/16/23 22:08	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.74	ng/L		11/08/23 11:39	11/16/23 22:08	1
Perfluorobutanesulfonic acid (PFBS)	1.2	J	2.0	0.20	ng/L		11/08/23 11:39	11/16/23 22:08	1
Perfluorohexanesulfonic acid (PFHxS)	2.7		2.0	0.58	ng/L		11/08/23 11:39	11/16/23 22:08	1
Perfluorooctanesulfonic acid (PFOS)	1.9	J	2.0	0.55	ng/L		11/08/23 11:39	11/16/23 22:08	1
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND			5.1	1.2 ng/L		11/08/23 11:39	11/16/23 22:08	1
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND			5.1	1.3 ng/L		11/08/23 11:39	11/16/23 22:08	1
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	ND			2.0	0.24 ng/L		11/08/23 11:39	11/16/23 22:08	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND			4.1	1.5 ng/L		11/08/23 11:39	11/16/23 22:08	1
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	ND			2.0	0.32 ng/L		11/08/23 11:39	11/16/23 22:08	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND			2.0	0.41 ng/L		11/08/23 11:39	11/16/23 22:08	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	79		50 - 150				11/08/23 11:39	11/16/23 22:08	1
13C4 PFHpA	89		50 - 150				11/08/23 11:39	11/16/23 22:08	1
13C4 PFOA	86		50 - 150				11/08/23 11:39	11/16/23 22:08	1
13C5 PFNA	79		50 - 150				11/08/23 11:39	11/16/23 22:08	1
13C2 PFDA	76		50 - 150				11/08/23 11:39	11/16/23 22:08	1
13C2 PFUnA	64		50 - 150				11/08/23 11:39	11/16/23 22:08	1
13C2 PFDoA	44	*5-	50 - 150				11/08/23 11:39	11/16/23 22:08	1
13C2 PFTeDA	42	*5-	50 - 150				11/08/23 11:39	11/16/23 22:08	1
13C3 PFBS	75		50 - 150				11/08/23 11:39	11/16/23 22:08	1
18O2 PFHxS	86		50 - 150				11/08/23 11:39	11/16/23 22:08	1
13C4 PFOS	75		50 - 150				11/08/23 11:39	11/16/23 22:08	1
d3-NMeFOSAA	77		50 - 150				11/08/23 11:39	11/16/23 22:08	1
d5-NEtFOSAA	85		50 - 150				11/08/23 11:39	11/16/23 22:08	1
13C3 HFPO-DA	90		50 - 150				11/08/23 11:39	11/16/23 22:08	1

Eurofins Sacramento

Client Sample Results

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Client Sample ID: MW-TS-101
Date Collected: 10/25/23 15:22
Date Received: 10/31/23 14:55

Lab Sample ID: 320-106532-2
Matrix: Water

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	2.4		1.8	0.53	ng/L		11/08/23 20:00	11/18/23 03:49	1
Perfluoroheptanoic acid (PFHpA)	1.1 J		1.8	0.23	ng/L		11/08/23 20:00	11/18/23 03:49	1
Perfluorooctanoic acid (PFOA)	3.4		1.8	0.78	ng/L		11/08/23 20:00	11/18/23 03:49	1
Perfluorononanoic acid (PFNA)	ND		1.8	0.25	ng/L		11/08/23 20:00	11/18/23 03:49	1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L		11/08/23 20:00	11/18/23 03:49	1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L		11/08/23 20:00	11/18/23 03:49	1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L		11/08/23 20:00	11/18/23 03:49	1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L		11/08/23 20:00	11/18/23 03:49	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.67	ng/L		11/08/23 20:00	11/18/23 03:49	1
Perfluorobutanesulfonic acid (PFBS)	1.1 J		1.8	0.18	ng/L		11/08/23 20:00	11/18/23 03:49	1
Perfluorohexanesulfonic acid (PFHxS)	2.5		1.8	0.52	ng/L		11/08/23 20:00	11/18/23 03:49	1
Perfluorooctanesulfonic acid (PFOS)	1.5 J		1.8	0.49	ng/L		11/08/23 20:00	11/18/23 03:49	1
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND		4.6	1.1	ng/L		11/08/23 20:00	11/18/23 03:49	1
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND		4.6	1.2	ng/L		11/08/23 20:00	11/18/23 03:49	1
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	ND		1.8	0.22	ng/L		11/08/23 20:00	11/18/23 03:49	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.7	1.4	ng/L		11/08/23 20:00	11/18/23 03:49	1
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	ND		1.8	0.29	ng/L		11/08/23 20:00	11/18/23 03:49	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.37	ng/L		11/08/23 20:00	11/18/23 03:49	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	100		50 - 150				11/08/23 20:00	11/18/23 03:49	1
13C4 PFHpA	94		50 - 150				11/08/23 20:00	11/18/23 03:49	1
13C4 PFOA	101		50 - 150				11/08/23 20:00	11/18/23 03:49	1
13C5 PFNA	94		50 - 150				11/08/23 20:00	11/18/23 03:49	1
13C2 PFDA	97		50 - 150				11/08/23 20:00	11/18/23 03:49	1
13C2 PFUnA	89		50 - 150				11/08/23 20:00	11/18/23 03:49	1
13C2 PFDoA	77		50 - 150				11/08/23 20:00	11/18/23 03:49	1
13C2 PFTeDA	83		50 - 150				11/08/23 20:00	11/18/23 03:49	1
13C3 PFBS	89		50 - 150				11/08/23 20:00	11/18/23 03:49	1
18O2 PFHxS	97		50 - 150				11/08/23 20:00	11/18/23 03:49	1
13C4 PFOS	97		50 - 150				11/08/23 20:00	11/18/23 03:49	1
d3-NMeFOSAA	79		50 - 150				11/08/23 20:00	11/18/23 03:49	1
d5-NEtFOSAA	88		50 - 150				11/08/23 20:00	11/18/23 03:49	1
13C3 HFPO-DA	82		50 - 150				11/08/23 20:00	11/18/23 03:49	1

Eurofins Sacramento

Client Sample Results

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Client Sample ID: MW-TS-2
Date Collected: 10/25/23 11:41
Date Received: 10/31/23 14:55

Lab Sample ID: 320-106532-3
Matrix: Water

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	2.0	J	2.1	0.61	ng/L		11/08/23 11:39	11/16/23 22:31	1
Perfluoroheptanoic acid (PFHpA)	0.50	J	2.1	0.26	ng/L		11/08/23 11:39	11/16/23 22:31	1
Perfluorooctanoic acid (PFOA)	4.0		2.1	0.89	ng/L		11/08/23 11:39	11/16/23 22:31	1
Perfluorononanoic acid (PFNA)	ND		2.1	0.28	ng/L		11/08/23 11:39	11/16/23 22:31	1
Perfluorodecanoic acid (PFDA)	ND		2.1	0.33	ng/L		11/08/23 11:39	11/16/23 22:31	1
Perfluoroundecanoic acid (PFUnA)	ND		2.1	1.2	ng/L		11/08/23 11:39	11/16/23 22:31	1
Perfluorododecanoic acid (PFDoA)	ND		2.1	0.58	ng/L		11/08/23 11:39	11/16/23 22:31	1
Perfluorotridecanoic acid (PFTriA)	ND		2.1	1.4	ng/L		11/08/23 11:39	11/16/23 22:31	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.1	0.77	ng/L		11/08/23 11:39	11/16/23 22:31	1
Perfluorobutanesulfonic acid (PFBS)	0.75	J	2.1	0.21	ng/L		11/08/23 11:39	11/16/23 22:31	1
Perfluorohexanesulfonic acid (PFHxS)	4.8		2.1	0.60	ng/L		11/08/23 11:39	11/16/23 22:31	1
Perfluorooctanesulfonic acid (PFOS)	2.5		2.1	0.57	ng/L		11/08/23 11:39	11/16/23 22:31	1
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND		5.3	1.3	ng/L		11/08/23 11:39	11/16/23 22:31	1
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND		5.3	1.4	ng/L		11/08/23 11:39	11/16/23 22:31	1
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	ND		2.1	0.25	ng/L		11/08/23 11:39	11/16/23 22:31	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		4.2	1.6	ng/L		11/08/23 11:39	11/16/23 22:31	1
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	ND		2.1	0.34	ng/L		11/08/23 11:39	11/16/23 22:31	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.1	0.42	ng/L		11/08/23 11:39	11/16/23 22:31	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	98		50 - 150				11/08/23 11:39	11/16/23 22:31	1
13C4 PFHpA	111		50 - 150				11/08/23 11:39	11/16/23 22:31	1
13C4 PFOA	101		50 - 150				11/08/23 11:39	11/16/23 22:31	1
13C5 PFNA	92		50 - 150				11/08/23 11:39	11/16/23 22:31	1
13C2 PFDA	96		50 - 150				11/08/23 11:39	11/16/23 22:31	1
13C2 PFUnA	81		50 - 150				11/08/23 11:39	11/16/23 22:31	1
13C2 PFDoA	65		50 - 150				11/08/23 11:39	11/16/23 22:31	1
13C2 PFTeDA	71		50 - 150				11/08/23 11:39	11/16/23 22:31	1
13C3 PFBS	87		50 - 150				11/08/23 11:39	11/16/23 22:31	1
18O2 PFHxS	103		50 - 150				11/08/23 11:39	11/16/23 22:31	1
13C4 PFOS	87		50 - 150				11/08/23 11:39	11/16/23 22:31	1
d3-NMeFOSAA	109		50 - 150				11/08/23 11:39	11/16/23 22:31	1
d5-NEtFOSAA	103		50 - 150				11/08/23 11:39	11/16/23 22:31	1
13C3 HFPO-DA	114		50 - 150				11/08/23 11:39	11/16/23 22:31	1

Eurofins Sacramento

Client Sample Results

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Client Sample ID: MW-TS-3
Date Collected: 10/25/23 13:57
Date Received: 10/31/23 14:55

Lab Sample ID: 320-106532-4
Matrix: Water

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	4.7		2.1	0.61	ng/L		11/08/23 11:39	11/16/23 22:43	1
Perfluoroheptanoic acid (PFHpA)	0.58	J	2.1	0.27	ng/L		11/08/23 11:39	11/16/23 22:43	1
Perfluorooctanoic acid (PFOA)	8.8		2.1	0.90	ng/L		11/08/23 11:39	11/16/23 22:43	1
Perfluorononanoic acid (PFNA)	ND		2.1	0.29	ng/L		11/08/23 11:39	11/16/23 22:43	1
Perfluorodecanoic acid (PFDA)	ND		2.1	0.33	ng/L		11/08/23 11:39	11/16/23 22:43	1
Perfluoroundecanoic acid (PFUnA)	ND		2.1	1.2	ng/L		11/08/23 11:39	11/16/23 22:43	1
Perfluorododecanoic acid (PFDoA)	ND		2.1	0.58	ng/L		11/08/23 11:39	11/16/23 22:43	1
Perfluorotridecanoic acid (PFTriA)	ND		2.1	1.4	ng/L		11/08/23 11:39	11/16/23 22:43	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.1	0.77	ng/L		11/08/23 11:39	11/16/23 22:43	1
Perfluorobutanesulfonic acid (PFBS)	1.5	J	2.1	0.21	ng/L		11/08/23 11:39	11/16/23 22:43	1
Perfluorohexanesulfonic acid (PFHxS)	14		2.1	0.60	ng/L		11/08/23 11:39	11/16/23 22:43	1
Perfluorooctanesulfonic acid (PFOS)	2.5		2.1	0.57	ng/L		11/08/23 11:39	11/16/23 22:43	1
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND		5.3	1.3	ng/L		11/08/23 11:39	11/16/23 22:43	1
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND		5.3	1.4	ng/L		11/08/23 11:39	11/16/23 22:43	1
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	ND		2.1	0.25	ng/L		11/08/23 11:39	11/16/23 22:43	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		4.2	1.6	ng/L		11/08/23 11:39	11/16/23 22:43	1
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	0.59	J	2.1	0.34	ng/L		11/08/23 11:39	11/16/23 22:43	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.1	0.42	ng/L		11/08/23 11:39	11/16/23 22:43	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	85		50 - 150				11/08/23 11:39	11/16/23 22:43	1
13C4 PFHpA	94		50 - 150				11/08/23 11:39	11/16/23 22:43	1
13C4 PFOA	91		50 - 150				11/08/23 11:39	11/16/23 22:43	1
13C5 PFNA	83		50 - 150				11/08/23 11:39	11/16/23 22:43	1
13C2 PFDA	80		50 - 150				11/08/23 11:39	11/16/23 22:43	1
13C2 PFUnA	72		50 - 150				11/08/23 11:39	11/16/23 22:43	1
13C2 PFDoA	62		50 - 150				11/08/23 11:39	11/16/23 22:43	1
13C2 PFTeDA	52		50 - 150				11/08/23 11:39	11/16/23 22:43	1
13C3 PFBS	84		50 - 150				11/08/23 11:39	11/16/23 22:43	1
18O2 PFHxS	86		50 - 150				11/08/23 11:39	11/16/23 22:43	1
13C4 PFOS	73		50 - 150				11/08/23 11:39	11/16/23 22:43	1
d3-NMeFOSAA	95		50 - 150				11/08/23 11:39	11/16/23 22:43	1
d5-NEtFOSAA	92		50 - 150				11/08/23 11:39	11/16/23 22:43	1
13C3 HFPO-DA	99		50 - 150				11/08/23 11:39	11/16/23 22:43	1

Eurofins Sacramento

Client Sample Results

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Client Sample ID: MW-TS-4
Date Collected: 10/25/23 12:34
Date Received: 10/31/23 14:55

Lab Sample ID: 320-106532-5
Matrix: Water

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	2.0		1.9	0.55	ng/L		11/08/23 20:00	11/18/23 03:59	1
Perfluoroheptanoic acid (PFHpA)	ND		1.9	0.24	ng/L		11/08/23 20:00	11/18/23 03:59	1
Perfluorooctanoic acid (PFOA)	3.4		1.9	0.80	ng/L		11/08/23 20:00	11/18/23 03:59	1
Perfluorononanoic acid (PFNA)	ND		1.9	0.25	ng/L		11/08/23 20:00	11/18/23 03:59	1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.29	ng/L		11/08/23 20:00	11/18/23 03:59	1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L		11/08/23 20:00	11/18/23 03:59	1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.52	ng/L		11/08/23 20:00	11/18/23 03:59	1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng/L		11/08/23 20:00	11/18/23 03:59	1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.69	ng/L		11/08/23 20:00	11/18/23 03:59	1
Perfluorobutanesulfonic acid (PFBS)	0.44	J	1.9	0.19	ng/L		11/08/23 20:00	11/18/23 03:59	1
Perfluorohexanesulfonic acid (PFHxS)	5.1		1.9	0.54	ng/L		11/08/23 20:00	11/18/23 03:59	1
Perfluorooctanesulfonic acid (PFOS)	1.1	J	1.9	0.51	ng/L		11/08/23 20:00	11/18/23 03:59	1
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND		4.7	1.1	ng/L		11/08/23 20:00	11/18/23 03:59	1
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND		4.7	1.2	ng/L		11/08/23 20:00	11/18/23 03:59	1
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	ND		1.9	0.23	ng/L		11/08/23 20:00	11/18/23 03:59	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.8	1.4	ng/L		11/08/23 20:00	11/18/23 03:59	1
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	ND		1.9	0.30	ng/L		11/08/23 20:00	11/18/23 03:59	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.38	ng/L		11/08/23 20:00	11/18/23 03:59	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	89		50 - 150				11/08/23 20:00	11/18/23 03:59	1
13C4 PFHpA	95		50 - 150				11/08/23 20:00	11/18/23 03:59	1
13C4 PFOA	101		50 - 150				11/08/23 20:00	11/18/23 03:59	1
13C5 PFNA	92		50 - 150				11/08/23 20:00	11/18/23 03:59	1
13C2 PFDA	93		50 - 150				11/08/23 20:00	11/18/23 03:59	1
13C2 PFUnA	87		50 - 150				11/08/23 20:00	11/18/23 03:59	1
13C2 PFDoA	84		50 - 150				11/08/23 20:00	11/18/23 03:59	1
13C2 PFTeDA	81		50 - 150				11/08/23 20:00	11/18/23 03:59	1
13C3 PFBS	94		50 - 150				11/08/23 20:00	11/18/23 03:59	1
18O2 PFHxS	93		50 - 150				11/08/23 20:00	11/18/23 03:59	1
13C4 PFOS	94		50 - 150				11/08/23 20:00	11/18/23 03:59	1
d3-NMeFOSAA	81		50 - 150				11/08/23 20:00	11/18/23 03:59	1
d5-NEtFOSAA	83		50 - 150				11/08/23 20:00	11/18/23 03:59	1
13C3 HFPO-DA	85		50 - 150				11/08/23 20:00	11/18/23 03:59	1

Eurofins Sacramento

Client Sample Results

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Client Sample ID: EB-1

Lab Sample ID: 320-106532-6

Matrix: Water

Date Collected: 10/25/23 16:00

Date Received: 10/31/23 14:55

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L	11/08/23 11:39	11/16/23 23:06		1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L	11/08/23 11:39	11/16/23 23:06		1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.86	ng/L	11/08/23 11:39	11/16/23 23:06		1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L	11/08/23 11:39	11/16/23 23:06		1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L	11/08/23 11:39	11/16/23 23:06		1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L	11/08/23 11:39	11/16/23 23:06		1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L	11/08/23 11:39	11/16/23 23:06		1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L	11/08/23 11:39	11/16/23 23:06		1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.74	ng/L	11/08/23 11:39	11/16/23 23:06		1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L	11/08/23 11:39	11/16/23 23:06		1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.57	ng/L	11/08/23 11:39	11/16/23 23:06		1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54	ng/L	11/08/23 11:39	11/16/23 23:06		1
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L	11/08/23 11:39	11/16/23 23:06		1
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND		5.0	1.3	ng/L	11/08/23 11:39	11/16/23 23:06		1
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	ND		2.0	0.24	ng/L	11/08/23 11:39	11/16/23 23:06		1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		4.0	1.5	ng/L	11/08/23 11:39	11/16/23 23:06		1
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	ND		2.0	0.32	ng/L	11/08/23 11:39	11/16/23 23:06		1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.40	ng/L	11/08/23 11:39	11/16/23 23:06		1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	89		50 - 150				11/08/23 11:39	11/16/23 23:06	1
13C4 PFHpA	102		50 - 150				11/08/23 11:39	11/16/23 23:06	1
13C4 PFOA	100		50 - 150				11/08/23 11:39	11/16/23 23:06	1
13C5 PFNA	92		50 - 150				11/08/23 11:39	11/16/23 23:06	1
13C2 PFDA	106		50 - 150				11/08/23 11:39	11/16/23 23:06	1
13C2 PFUnA	108		50 - 150				11/08/23 11:39	11/16/23 23:06	1
13C2 PFDoA	94		50 - 150				11/08/23 11:39	11/16/23 23:06	1
13C2 PFTeDA	87		50 - 150				11/08/23 11:39	11/16/23 23:06	1
13C3 PFBS	92		50 - 150				11/08/23 11:39	11/16/23 23:06	1
18O2 PFHxS	95		50 - 150				11/08/23 11:39	11/16/23 23:06	1
13C4 PFOS	84		50 - 150				11/08/23 11:39	11/16/23 23:06	1
d3-NMeFOSAA	115		50 - 150				11/08/23 11:39	11/16/23 23:06	1
d5-NEtFOSAA	140		50 - 150				11/08/23 11:39	11/16/23 23:06	1
13C3 HFPO-DA	107		50 - 150				11/08/23 11:39	11/16/23 23:06	1

Eurofins Sacramento

Client Sample Results

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Client Sample ID: GAC-1
Date Collected: 10/25/23 17:00
Date Received: 10/31/23 14:55

Lab Sample ID: 320-106532-7
Matrix: Water

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L	11/08/23 11:39	11/16/23 23:17		1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L	11/08/23 11:39	11/16/23 23:17		1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L	11/08/23 11:39	11/16/23 23:17		1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L	11/08/23 11:39	11/16/23 23:17		1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L	11/08/23 11:39	11/16/23 23:17		1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L	11/08/23 11:39	11/16/23 23:17		1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L	11/08/23 11:39	11/16/23 23:17		1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L	11/08/23 11:39	11/16/23 23:17		1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L	11/08/23 11:39	11/16/23 23:17		1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L	11/08/23 11:39	11/16/23 23:17		1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.57	ng/L	11/08/23 11:39	11/16/23 23:17		1
Perfluorooctanesulfonic acid (PFOS)	1.0 J		2.0	0.54	ng/L	11/08/23 11:39	11/16/23 23:17		1
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L	11/08/23 11:39	11/16/23 23:17		1
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND		5.0	1.3	ng/L	11/08/23 11:39	11/16/23 23:17		1
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	ND		2.0	0.24	ng/L	11/08/23 11:39	11/16/23 23:17		1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		4.0	1.5	ng/L	11/08/23 11:39	11/16/23 23:17		1
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	ND		2.0	0.32	ng/L	11/08/23 11:39	11/16/23 23:17		1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.40	ng/L	11/08/23 11:39	11/16/23 23:17		1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
13C2 PFHxA	83		50 - 150			11/08/23 11:39	11/16/23 23:17		1
13C4 PFHpA	84		50 - 150			11/08/23 11:39	11/16/23 23:17		1
13C4 PFOA	86		50 - 150			11/08/23 11:39	11/16/23 23:17		1
13C5 PFNA	82		50 - 150			11/08/23 11:39	11/16/23 23:17		1
13C2 PFDA	72		50 - 150			11/08/23 11:39	11/16/23 23:17		1
13C2 PFUnA	66		50 - 150			11/08/23 11:39	11/16/23 23:17		1
13C2 PFDoA	55		50 - 150			11/08/23 11:39	11/16/23 23:17		1
13C2 PFTeDA	59		50 - 150			11/08/23 11:39	11/16/23 23:17		1
13C3 PFBS	79		50 - 150			11/08/23 11:39	11/16/23 23:17		1
18O2 PFHxS	86		50 - 150			11/08/23 11:39	11/16/23 23:17		1
13C4 PFOS	63		50 - 150			11/08/23 11:39	11/16/23 23:17		1
d3-NMeFOSAA	80		50 - 150			11/08/23 11:39	11/16/23 23:17		1
d5-NEtFOSAA	87		50 - 150			11/08/23 11:39	11/16/23 23:17		1
13C3 HFPO-DA	96		50 - 150			11/08/23 11:39	11/16/23 23:17		1

Eurofins Sacramento

Isotope Dilution Summary

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Matrix: Water

Prep Type: Total/NA

Lab Sample ID	Client Sample ID	Percent Isotope Dilution Recovery (Acceptance Limits)							
		PFHxA (50-150)	C4PFHA (50-150)	PFOA (50-150)	PFNA (50-150)	PFDA (50-150)	PFUnA (50-150)	PFDoA (50-150)	PFTDA (50-150)
320-106532-1	MW-TS-1	79	89	86	79	76	64	44 *5-	42 *5-
320-106532-2	MW-TS-101	100	94	101	94	97	89	77	83
320-106532-3	MW-TS-2	98	111	101	92	96	81	65	71
320-106532-4	MW-TS-3	85	94	91	83	80	72	62	52
320-106532-5	MW-TS-4	89	95	101	92	93	87	84	81
320-106532-6	EB-1	89	102	100	92	106	108	94	87
320-106532-7	GAC-1	83	84	86	82	72	66	55	59
LCS 320-718877/2-A	Lab Control Sample	98	106	103	93	93	104	96	99
LCS 320-719042/2-A	Lab Control Sample	91	102	106	96	98	93	93	95
LCSD 320-718877/3-A	Lab Control Sample Dup	102	111	110	100	107	109	101	100
LCSD 320-719042/3-A	Lab Control Sample Dup	82	93	97	92	90	85	90	91
MB 320-718877/1-A	Method Blank	97	96	97	87	97	97	97	93
MB 320-719042/1-A	Method Blank	92	97	107	104	108	109	94	99
Lab Sample ID	Client Sample ID	Percent Isotope Dilution Recovery (Acceptance Limits)							
		C3PFBS (50-150)	PFHxS (50-150)	PFOS (50-150)	d3NMFOS (50-150)	d5NEFOS (50-150)	HFPODA (50-150)		
320-106532-1	MW-TS-1	75	86	75	77	85	90		
320-106532-2	MW-TS-101	89	97	97	79	88	82		
320-106532-3	MW-TS-2	87	103	87	109	103	114		
320-106532-4	MW-TS-3	84	86	73	95	92	99		
320-106532-5	MW-TS-4	94	93	94	81	83	85		
320-106532-6	EB-1	92	95	84	115	140	107		
320-106532-7	GAC-1	79	86	63	80	87	96		
LCS 320-718877/2-A	Lab Control Sample	95	100	88	122	131	111		
LCS 320-719042/2-A	Lab Control Sample	105	105	102	83	91	86		
LCSD 320-718877/3-A	Lab Control Sample Dup	102	110	97	130	140	113		
LCSD 320-719042/3-A	Lab Control Sample Dup	94	98	95	78	83	81		
MB 320-718877/1-A	Method Blank	91	99	81	126	140	108		
MB 320-719042/1-A	Method Blank	105	106	106	90	104	95		

Surrogate Legend

PFHxA = 13C2 PFHxA
 C4PFHA = 13C4 PFHpA
 PFOA = 13C4 PFOA
 PFNA = 13C5 PFNA
 PFDA = 13C2 PFDA
 PFUnA = 13C2 PFUnA
 PFDoA = 13C2 PFDoA
 PFTDA = 13C2 PFTeDA
 C3PFBS = 13C3 PFBS
 PFHxS = 18O2 PFHxS
 PFOS = 13C4 PFOS
 d3NMFOS = d3-NMeFOSAA
 d5NEFOS = d5-NEtFOSAA
 HFPODA = 13C3 HFPO-DA

Eurofins Sacramento

QC Sample Results

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Lab Sample ID: MB 320-718877/1-A

Matrix: Water

Analysis Batch: 720994

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 718877

Analyte	MB Result	MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		11/08/23 11:39	11/16/23 21:34	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		11/08/23 11:39	11/16/23 21:34	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		11/08/23 11:39	11/16/23 21:34	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		11/08/23 11:39	11/16/23 21:34	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		11/08/23 11:39	11/16/23 21:34	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		11/08/23 11:39	11/16/23 21:34	1
Perfluorododecanoic acid (PFDa)	ND		2.0	0.55	ng/L		11/08/23 11:39	11/16/23 21:34	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		11/08/23 11:39	11/16/23 21:34	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		11/08/23 11:39	11/16/23 21:34	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		11/08/23 11:39	11/16/23 21:34	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.57	ng/L		11/08/23 11:39	11/16/23 21:34	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54	ng/L		11/08/23 11:39	11/16/23 21:34	1
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L		11/08/23 11:39	11/16/23 21:34	1
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND		5.0	1.3	ng/L		11/08/23 11:39	11/16/23 21:34	1
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	ND		2.0	0.24	ng/L		11/08/23 11:39	11/16/23 21:34	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		4.0	1.5	ng/L		11/08/23 11:39	11/16/23 21:34	1
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	ND		2.0	0.32	ng/L		11/08/23 11:39	11/16/23 21:34	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.40	ng/L		11/08/23 11:39	11/16/23 21:34	1

Isotope Dilution	%Recovery	MB Qualifier	MB Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	97		50 - 150		11/08/23 11:39	11/16/23 21:34
13C4 PFHpA	96		50 - 150		11/08/23 11:39	11/16/23 21:34
13C4 PFOA	97		50 - 150		11/08/23 11:39	11/16/23 21:34
13C5 PFNA	87		50 - 150		11/08/23 11:39	11/16/23 21:34
13C2 PFDA	97		50 - 150		11/08/23 11:39	11/16/23 21:34
13C2 PFUnA	97		50 - 150		11/08/23 11:39	11/16/23 21:34
13C2 PFDa	97		50 - 150		11/08/23 11:39	11/16/23 21:34
13C2 PFTeA	93		50 - 150		11/08/23 11:39	11/16/23 21:34
13C3 PFBS	91		50 - 150		11/08/23 11:39	11/16/23 21:34
18O2 PFHxS	99		50 - 150		11/08/23 11:39	11/16/23 21:34
13C4 PFOS	81		50 - 150		11/08/23 11:39	11/16/23 21:34
d3-NMeFOSAA	126		50 - 150		11/08/23 11:39	11/16/23 21:34
d5-NEtFOSAA	140		50 - 150		11/08/23 11:39	11/16/23 21:34
13C3 HFPO-DA	108		50 - 150		11/08/23 11:39	11/16/23 21:34

Lab Sample ID: LCS 320-718877/2-A

Matrix: Water

Analysis Batch: 720994

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 718877

Analyte	Spike Added	LCS Result	LCS Qualifier	Unit	D	%Rec	Limits
Perfluorohexanoic acid (PFHxA)	40.0	39.3		ng/L		98	72 - 129
Perfluoroheptanoic acid (PFHpA)	40.0	36.7		ng/L		92	72 - 130
Perfluorooctanoic acid (PFOA)	40.0	37.2		ng/L		93	71 - 133
Perfluorononanoic acid (PFNA)	40.0	40.9		ng/L		102	69 - 130

Eurofins Sacramento

QC Sample Results

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCS 320-718877/2-A

Matrix: Water

Analysis Batch: 720994

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 718877

Analyte	Spike Added	LCS Result	LCS Qualifier	Unit	D	%Rec	Limits
Perfluorodecanoic acid (PFDA)	40.0	38.7		ng/L		97	71 - 129
Perfluoroundecanoic acid (PFUnA)	40.0	38.1		ng/L		95	69 - 133
Perfluorododecanoic acid (PFDoA)	40.0	42.6		ng/L		107	72 - 134
Perfluorotridecanoic acid (PFTriA)	40.0	37.9		ng/L		95	65 - 144
Perfluorotetradecanoic acid (PFTeA)	40.0	36.9		ng/L		92	71 - 132
Perfluorobutanesulfonic acid (PFBS)	35.5	33.3		ng/L		94	72 - 130
Perfluorohexanesulfonic acid (PFHxS)	36.5	32.7		ng/L		90	68 - 131
Perfluorooctanesulfonic acid (PFOS)	37.2	40.3		ng/L		108	65 - 140
N-methylperfluorooctanesulfonic acid (NMeFOSAA)	40.0	39.7		ng/L		99	65 - 136
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	40.0	39.8		ng/L		99	61 - 135
9-Chlorohexadecafluoro-3-oxanone-1-sulfonic acid	37.4	38.1		ng/L		102	77 - 137
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	40.0	35.6		ng/L		89	72 - 132
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	37.8	39.4		ng/L		104	76 - 136
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	37.8	41.7		ng/L		110	81 - 141

Isotope Dilution	LCS %Recovery	LCS Qualifier	Limits
13C2 PFHxA	98		50 - 150
13C4 PFHpA	106		50 - 150
13C4 PFOA	103		50 - 150
13C5 PFNA	93		50 - 150
13C2 PFDA	93		50 - 150
13C2 PFUnA	104		50 - 150
13C2 PFDoA	96		50 - 150
13C2 PFTeDA	99		50 - 150
13C3 PFBS	95		50 - 150
18O2 PFHxS	100		50 - 150
13C4 PFOS	88		50 - 150
d3-NMeFOSAA	122		50 - 150
d5-NEtFOSAA	131		50 - 150
13C3 HFPO-DA	111		50 - 150

Lab Sample ID: LCSD 320-718877/3-A

Matrix: Water

Analysis Batch: 720994

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 718877

Analyte	Spike Added	LCSD Result	LCSD Qualifier	Unit	D	%Rec	Limits	RPD	RPD Limit
Perfluorohexanoic acid (PFHxA)	40.0	41.3		ng/L		103	72 - 129	5	30
Perfluoroheptanoic acid (PFHpA)	40.0	40.8		ng/L		102	72 - 130	10	30
Perfluorooctanoic acid (PFOA)	40.0	38.3		ng/L		96	71 - 133	3	30

Eurofins Sacramento

QC Sample Results

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCSD 320-718877/3-A			Client Sample ID: Lab Control Sample Dup						
			Prep Type: Total/NA Prep Batch: 718877						
Analyte	Spike Added	LCSD Result	LCSD Qualifier	Unit	D	%Rec	Limits	RPD	RPD Limit
Perfluorononanoic acid (PFNA)	40.0	42.3		ng/L		106	69 - 130	3	30
Perfluorodecanoic acid (PFDA)	40.0	36.4		ng/L		91	71 - 129	6	30
Perfluoroundecanoic acid (PFUnA)	40.0	39.8		ng/L		99	69 - 133	4	30
Perfluorododecanoic acid (PFDa)	40.0	43.2		ng/L		108	72 - 134	1	30
Perfluorotridecanoic acid (PFTriA)	40.0	38.0		ng/L		95	65 - 144	0	30
Perfluorotetradecanoic acid (PFTeA)	40.0	39.8		ng/L		99	71 - 132	7	30
Perfluorobutanesulfonic acid (PFBS)	35.5	34.5		ng/L		97	72 - 130	3	30
Perfluorohexanesulfonic acid (PFHxS)	36.5	31.7		ng/L		87	68 - 131	3	30
Perfluorooctanesulfonic acid (PFOS)	37.2	41.5		ng/L		112	65 - 140	3	30
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	40.0	41.2		ng/L		103	65 - 136	4	30
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	40.0	41.7		ng/L		104	61 - 135	5	30
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	37.4	39.4		ng/L		105	77 - 137	3	30
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	40.0	38.6		ng/L		96	72 - 132	8	30
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	37.8	39.0		ng/L		103	76 - 136	1	30
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	37.8	39.3		ng/L		104	81 - 141	6	30
Isotope Dilution		LCSD %Recovery	LCSD Qualifier	LCSD Limits					
13C2 PFHxA		102		50 - 150					
13C4 PFHpA		111		50 - 150					
13C4 PFOA		110		50 - 150					
13C5 PFNA		100		50 - 150					
13C2 PFDA		107		50 - 150					
13C2 PFUnA		109		50 - 150					
13C2 PFDa		101		50 - 150					
13C2 PFTeDA		100		50 - 150					
13C3 PFBS		102		50 - 150					
18O2 PFHxS		110		50 - 150					
13C4 PFOS		97		50 - 150					
d3-NMeFOSAA		130		50 - 150					
d5-NEtFOSAA		140		50 - 150					
13C3 HFPO-DA		113		50 - 150					

Lab Sample ID: MB 320-719042/1-A

Matrix: Water

Analysis Batch: 721186

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 719042

Analyte	MB Result	MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		11/08/23 20:00	11/18/23 03:19	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		11/08/23 20:00	11/18/23 03:19	1

Eurofins Sacramento

QC Sample Results

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: MB 320-719042/1-A

Matrix: Water

Analysis Batch: 721186

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 719042

Analyte	MB		D	Prepared		Analyzed		Dil Fac
	Result	Qualifier		RL	MDL	Unit		
Perfluorooctanoic acid (PFOA)	ND			2.0	0.85	ng/L	11/08/23 20:00	11/18/23 03:19
Perfluoronanoic acid (PFNA)	ND			2.0	0.27	ng/L	11/08/23 20:00	11/18/23 03:19
Perfluorodecanoic acid (PFDA)	ND			2.0	0.31	ng/L	11/08/23 20:00	11/18/23 03:19
Perfluoroundecanoic acid (PFUnA)	ND			2.0	1.1	ng/L	11/08/23 20:00	11/18/23 03:19
Perfluorododecanoic acid (PFDa)	ND			2.0	0.55	ng/L	11/08/23 20:00	11/18/23 03:19
Perfluorotridecanoic acid (PFTriA)	ND			2.0	1.3	ng/L	11/08/23 20:00	11/18/23 03:19
Perfluorotetradecanoic acid (PFTeA)	ND			2.0	0.73	ng/L	11/08/23 20:00	11/18/23 03:19
Perfluorobutanesulfonic acid (PFBS)	ND			2.0	0.20	ng/L	11/08/23 20:00	11/18/23 03:19
Perfluorohexanesulfonic acid (PFHxS)	ND			2.0	0.57	ng/L	11/08/23 20:00	11/18/23 03:19
Perfluorooctanesulfonic acid (PFOS)	ND			2.0	0.54	ng/L	11/08/23 20:00	11/18/23 03:19
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND			5.0	1.2	ng/L	11/08/23 20:00	11/18/23 03:19
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND			5.0	1.3	ng/L	11/08/23 20:00	11/18/23 03:19
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	ND			2.0	0.24	ng/L	11/08/23 20:00	11/18/23 03:19
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND			4.0	1.5	ng/L	11/08/23 20:00	11/18/23 03:19
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	ND			2.0	0.32	ng/L	11/08/23 20:00	11/18/23 03:19
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND			2.0	0.40	ng/L	11/08/23 20:00	11/18/23 03:19

Isotope Dilution	MB		Limits	Prepared		Analyzed		Dil Fac
	%Recovery	Qualifier						
13C2 PFHxA	92		50 - 150					1
13C4 PFHpA	97		50 - 150					1
13C4 PFOA	107		50 - 150					1
13C5 PFNA	104		50 - 150					1
13C2 PFDA	108		50 - 150					1
13C2 PFUnA	109		50 - 150					1
13C2 PFDa	94		50 - 150					1
13C2 PFTeDA	99		50 - 150					1
13C3 PFBS	105		50 - 150					1
18O2 PFHxS	106		50 - 150					1
13C4 PFOS	106		50 - 150					1
d3-NMeFOSAA	90		50 - 150					1
d5-NEtFOSAA	104		50 - 150					1
13C3 HFPO-DA	95		50 - 150					1

Lab Sample ID: LCS 320-719042/2-A

Matrix: Water

Analysis Batch: 721186

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 719042

Analyte	Spike		LCS	LCS	%Rec		
	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorohexanoic acid (PFHxA)	40.0	41.3		ng/L		103	72 - 129
Perfluoroheptanoic acid (PFHpA)	40.0	39.5		ng/L		99	72 - 130
Perfluorooctanoic acid (PFOA)	40.0	36.2		ng/L		91	71 - 133
Perfluoronanoic acid (PFNA)	40.0	40.9		ng/L		102	69 - 130
Perfluorodecanoic acid (PFDA)	40.0	39.6		ng/L		99	71 - 129
Perfluoroundecanoic acid (PFUnA)	40.0	41.0		ng/L		103	69 - 133

Eurofins Sacramento

QC Sample Results

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCS 320-719042/2-A		Client Sample ID: Lab Control Sample						
Matrix: Water		Prep Type: Total/NA						
Analysis Batch: 721186		Prep Batch: 719042						
Analyte		Spike Added	LCS Result	LCS Qualifier	Unit	D	%Rec	%Rec Limits
Perfluorododecanoic acid (PFDoA)		40.0	40.5		ng/L	101	72 - 134	
Perfluorotridecanoic acid (PFTriA)		40.0	38.6		ng/L	97	65 - 144	
Perfluorotetradecanoic acid (PFTeA)		40.0	39.1		ng/L	98	71 - 132	
Perfluorobutanesulfonic acid (PFBS)		35.5	36.6		ng/L	103	72 - 130	
Perfluorohexanesulfonic acid (PFHxS)		36.5	34.8		ng/L	95	68 - 131	
Perfluorooctanesulfonic acid (PFOS)		37.2	36.7		ng/L	99	65 - 140	
N-methylperfluorooctanesulfonic acid (NMeFOSAA)		40.0	42.3		ng/L	106	65 - 136	
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)		40.0	42.4		ng/L	106	61 - 135	
9-Chlorohexadecafluoro-3-oxanone-1-sulfonic acid		37.4	34.7		ng/L	93	77 - 137	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)		40.0	41.3		ng/L	103	72 - 132	
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid		37.8	33.7		ng/L	89	76 - 136	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)		37.8	40.0		ng/L	106	81 - 141	
Isotope Dilution		LCS %Recovery	LCS Qualifier	Limits				
13C2 PFHxA		91		50 - 150				
13C4 PFHpA		102		50 - 150				
13C4 PFOA		106		50 - 150				
13C5 PFNA		96		50 - 150				
13C2 PFDA		98		50 - 150				
13C2 PFUnA		93		50 - 150				
13C2 PFDoA		93		50 - 150				
13C2 PFTeDA		95		50 - 150				
13C3 PFBS		105		50 - 150				
18O2 PFHxS		105		50 - 150				
13C4 PFOS		102		50 - 150				
d3-NMeFOSAA		83		50 - 150				
d5-NEtFOSAA		91		50 - 150				
13C3 HFPO-DA		86		50 - 150				

Lab Sample ID: LCSD 320-719042/3-A		Client Sample ID: Lab Control Sample Dup						
Matrix: Water		Prep Type: Total/NA						
Analysis Batch: 721186		Prep Batch: 719042						
Analyte		Spike Added	LCSD Result	LCSD Qualifier	Unit	D	%Rec	RPD
Perfluorohexanoic acid (PFHxA)		40.0	44.4		ng/L	111	72 - 129	7 30
Perfluoroheptanoic acid (PFHpA)		40.0	40.3		ng/L	101	72 - 130	2 30
Perfluorooctanoic acid (PFOA)		40.0	38.9		ng/L	97	71 - 133	7 30
Perfluorononanoic acid (PFNA)		40.0	40.6		ng/L	102	69 - 130	1 30
Perfluorodecanoic acid (PFDA)		40.0	40.5		ng/L	101	71 - 129	2 30

Eurofins Sacramento

QC Sample Results

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCSD 320-719042/3-A			Client Sample ID: Lab Control Sample Dup						
			Prep Type: Total/NA						
			Prep Batch: 719042						
Analyte		Spike Added	LCSD Result	LCSD Qualifier	Unit	D	%Rec	Limits	RPD
Perfluoroundecanoic acid (PFUnA)		40.0	43.6		ng/L	109	69 - 133	6	30
Perfluorododecanoic acid (PFDoA)		40.0	40.2		ng/L	100	72 - 134	1	30
Perfluorotridecanoic acid (PFTriA)		40.0	40.6		ng/L	101	65 - 144	5	30
Perfluorotetradecanoic acid (PFTeA)		40.0	43.8		ng/L	110	71 - 132	11	30
Perfluorobutanesulfonic acid (PFBS)		35.5	36.8		ng/L	104	72 - 130	0	30
Perfluorohexanesulfonic acid (PFHxS)		36.5	34.8		ng/L	95	68 - 131	0	30
Perfluorooctanesulfonic acid (PFOS)		37.2	37.2		ng/L	100	65 - 140	1	30
N-methylperfluorooctanesulfonic acid (NMeFOSAA)		40.0	41.1		ng/L	103	65 - 136	3	30
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)		40.0	45.6		ng/L	114	61 - 135	7	30
9-Chlorohexadecafluoro-3-oxanone-1-sulfonic acid		37.4	33.4		ng/L	89	77 - 137	4	30
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)		40.0	43.1		ng/L	108	72 - 132	4	30
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid		37.8	33.9		ng/L	90	76 - 136	1	30
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)		37.8	39.4		ng/L	104	81 - 141	2	30
		LCSD	LCSD						
Isotope Dilution		%Recovery	Qualifier	Limits					
13C2 PFHxA		82		50 - 150					
13C4 PFHpA		93		50 - 150					
13C4 PFOA		97		50 - 150					
13C5 PFNA		92		50 - 150					
13C2 PFDA		90		50 - 150					
13C2 PFUnA		85		50 - 150					
13C2 PFDoA		90		50 - 150					
13C2 PFTeDA		91		50 - 150					
13C3 PFBS		94		50 - 150					
18O2 PFHxS		98		50 - 150					
13C4 PFOS		95		50 - 150					
d3-NMeFOSAA		78		50 - 150					
d5-NEtFOSAA		83		50 - 150					
13C3 HFPO-DA		81		50 - 150					

QC Association Summary

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

LCMS

Prep Batch: 718877

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-106532-1	MW-TS-1	Total/NA	Water	3535	
320-106532-3	MW-TS-2	Total/NA	Water	3535	
320-106532-4	MW-TS-3	Total/NA	Water	3535	
320-106532-6	EB-1	Total/NA	Water	3535	
320-106532-7	GAC-1	Total/NA	Water	3535	
MB 320-718877/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-718877/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-718877/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Prep Batch: 719042

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-106532-2	MW-TS-101	Total/NA	Water	3535	
320-106532-5	MW-TS-4	Total/NA	Water	3535	
MB 320-719042/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-719042/2-A	Lab Control Sample	Total/NA	Water	3535	
LCSD 320-719042/3-A	Lab Control Sample Dup	Total/NA	Water	3535	

Analysis Batch: 720994

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-106532-1	MW-TS-1	Total/NA	Water	EPA 537(Mod)	718877
320-106532-3	MW-TS-2	Total/NA	Water	EPA 537(Mod)	718877
320-106532-4	MW-TS-3	Total/NA	Water	EPA 537(Mod)	718877
320-106532-6	EB-1	Total/NA	Water	EPA 537(Mod)	718877
320-106532-7	GAC-1	Total/NA	Water	EPA 537(Mod)	718877
MB 320-718877/1-A	Method Blank	Total/NA	Water	EPA 537(Mod)	718877
LCS 320-718877/2-A	Lab Control Sample	Total/NA	Water	EPA 537(Mod)	718877
LCSD 320-718877/3-A	Lab Control Sample Dup	Total/NA	Water	EPA 537(Mod)	718877

Analysis Batch: 721186

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-106532-2	MW-TS-101	Total/NA	Water	EPA 537(Mod)	719042
320-106532-5	MW-TS-4	Total/NA	Water	EPA 537(Mod)	719042
MB 320-719042/1-A	Method Blank	Total/NA	Water	EPA 537(Mod)	719042
LCS 320-719042/2-A	Lab Control Sample	Total/NA	Water	EPA 537(Mod)	719042
LCSD 320-719042/3-A	Lab Control Sample Dup	Total/NA	Water	EPA 537(Mod)	719042

Lab Chronicle

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Client Sample ID: MW-TS-1
Date Collected: 10/25/23 15:32
Date Received: 10/31/23 14:55

Lab Sample ID: 320-106532-1
Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			246.8 mL	10.0 mL	718877	11/08/23 11:39	FXY	EET SAC
Total/NA	Analysis	EPA 537(Mod)		1	1 mL	1 mL	720994	11/16/23 22:08	AP1	EET SAC

Client Sample ID: MW-TS-101
Date Collected: 10/25/23 15:22
Date Received: 10/31/23 14:55

Lab Sample ID: 320-106532-2
Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			273.4 mL	10.0 mL	719042	11/08/23 20:00	FX	EET SAC
Total/NA	Analysis	EPA 537(Mod)		1	1 mL	1 mL	721186	11/18/23 03:49	AP1	EET SAC

Client Sample ID: MW-TS-2
Date Collected: 10/25/23 11:41
Date Received: 10/31/23 14:55

Lab Sample ID: 320-106532-3
Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			237.9 mL	10.0 mL	718877	11/08/23 11:39	FXY	EET SAC
Total/NA	Analysis	EPA 537(Mod)		1	1 mL	1 mL	720994	11/16/23 22:31	AP1	EET SAC

Client Sample ID: MW-TS-3
Date Collected: 10/25/23 13:57
Date Received: 10/31/23 14:55

Lab Sample ID: 320-106532-4
Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			235.8 mL	10.0 mL	718877	11/08/23 11:39	FXY	EET SAC
Total/NA	Analysis	EPA 537(Mod)		1	1 mL	1 mL	720994	11/16/23 22:43	AP1	EET SAC

Client Sample ID: MW-TS-4
Date Collected: 10/25/23 12:34
Date Received: 10/31/23 14:55

Lab Sample ID: 320-106532-5
Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			265.9 mL	10.0 mL	719042	11/08/23 20:00	FX	EET SAC
Total/NA	Analysis	EPA 537(Mod)		1	1 mL	1 mL	721186	11/18/23 03:59	AP1	EET SAC

Client Sample ID: EB-1
Date Collected: 10/25/23 16:00
Date Received: 10/31/23 14:55

Lab Sample ID: 320-106532-6
Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			248.2 mL	10.0 mL	718877	11/08/23 11:39	FXY	EET SAC
Total/NA	Analysis	EPA 537(Mod)		1	1 mL	1 mL	720994	11/16/23 23:06	AP1	EET SAC

Eurofins Sacramento

Lab Chronicle

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Client Sample ID: GAC-1

Lab Sample ID: 320-106532-7

Date Collected: 10/25/23 17:00

Matrix: Water

Date Received: 10/31/23 14:55

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			251 mL	10.0 mL	718877	11/08/23 11:39	FXY	EET SAC
Total/NA	Analysis	EPA 537(Mod)		1	1 mL	1 mL	720994	11/16/23 23:17	AP1	EET SAC

Laboratory References:

EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Laboratory: Eurofins Sacramento

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	02-20-24

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Eurofins Sacramento

Method Summary

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Method	Method Description	Protocol	Laboratory
EPA 537(Mod) 3535	PFAS for QSM 5.3, Table B-15 Solid-Phase Extraction (SPE)	EPA SW846	EET SAC EET SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Sample Summary

Client: Shannon & Wilson, Inc
Project/Site: Tall Spruce

Job ID: 320-106532-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
320-106532-1	MW-TS-1	Water	10/25/23 15:32	10/31/23 14:55
320-106532-2	MW-TS-101	Water	10/25/23 15:22	10/31/23 14:55
320-106532-3	MW-TS-2	Water	10/25/23 11:41	10/31/23 14:55
320-106532-4	MW-TS-3	Water	10/25/23 13:57	10/31/23 14:55
320-106532-5	MW-TS-4	Water	10/25/23 12:34	10/31/23 14:55
320-106532-6	EB-1	Water	10/25/23 16:00	10/31/23 14:55
320-106532-7	GAC-1	Water	10/25/23 17:00	10/31/23 14:55

2355 Hill Road
Fairbanks, AK 99709
(907) 479-0600

www.shannonwilson.com

CHAIN-OF-CUSTODY RECORD

Page 1 of 1
Laboratory Eurofins
Attn: DAITUCKY

Analytical Methods (include preservative if used)

Turn Around Time:
 Normal Rush

Quote No:

Sample Identity	Lab No.	Time	Date Sampled	POV	Total	Remarks/Matrix Composition/Grab? Sample Containers
MW-TS-1		1532	1/25/23	X	2	Groundwater
MW-TS-101		1522		X	2	
MW-TS-2		1141		X	2	
MW-TS-3		1357		X	2	
MW-TS-4		1234		X	2	
EB-1		1600		X	2	Equipment Blank
GAC-1		1700		X	2	GAC EF Fiven F

Project Information		Sample Receipt		Relinquished By: 1.		Relinquished By: 2.		Relinquished By: 3.	
Number: <u>10519-026</u>	Total No. of Containers: <u>14</u>	Signature:	Time: <u>1530</u>	Signature: _____	Time: _____	Signature: _____	Time: _____		
Name: <u>Tall Spruce</u>	COC Seals/Intact? Y/N/NA	Printed Name: <u>Silvia Kiehlis</u>	Date: <u>10/30/23</u>	Printed Name: _____	Date: _____	Printed Name: _____	Date: _____		
Contact: <u>Ashley.Jayarajillo</u>	Received Good Cond./Cold	Company: <u>Shannon & Wilson</u>	Company: <u>Shannon & Wilson</u>	Company: _____	Company: _____	Company: _____	Company: _____		
Ongoing Project? Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>	Temp: _____	Received By: 1.	Received By: 2.	Received By: 3.	Received By: 4.	Received By: 5.	Received By: 6.		
Sampler: <u>A. Mastus</u>	Delivery Method: _____	Signature:	Time: <u>1455</u>	Signature: _____	Time: _____	Signature: _____	Time: _____		
 <u>320-106532 Chain of Custody</u>		Printed Name: <u>Sandy P</u>	Date: <u>10/31/23</u>	Printed Name: _____	Date: _____	Printed Name: _____	Date: _____		
Distribution: White - w/shipment - returned to Shannon & Wilson w/ laboratory report Yellow - Shannon & Wilson - job file		Company: <u>EETCA</u>	1.0C	Company: _____	Company: _____	Company: _____	Company: _____		

Environment Testing

Loc: 320
106532

Sacramento Sample Receiving Notes (SSRN)

Tracking #: 027-7020 6334

Job: _____

SO / PO / FO / SAT / 2-Day / Ground / UPS / CDO / Courier
GSL / OnTrac / Goldstreak / USPS / Other

Use this form to record Sample Custody Seal, Cooler Custody Seal, Temperature & corrected Temperature & other observations. File in the job folder with the COC.

Therm. ID: <u>209</u>	Corr. Factor: (+ / -) <u>0</u> °C	Notes: _____							
Ice _____	Wet _____	Gel <u>X</u>	Other _____						
Cooler Custody Seal: <u>SEAL</u>									
Cooler ID: _____									
Temp Observed: <u>1.0</u> °C		Corrected: <u>1.0</u> °C							
From: Temp Blank <input checked="" type="checkbox"/> Sample <input type="checkbox"/>									
Opening/Processing The Shipment <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td><u>Yes</u></td> <td><u>No</u></td> <td><u>NA</u></td> </tr> <tr> <td><input type="checkbox"/></td> <td><input checked="" type="checkbox"/></td> <td><input type="checkbox"/></td> </tr> </table>				<u>Yes</u>	<u>No</u>	<u>NA</u>	<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>
<u>Yes</u>	<u>No</u>	<u>NA</u>							
<input type="checkbox"/>	<input checked="" type="checkbox"/>	<input type="checkbox"/>							
Cooler compromised/tampered with? <input type="checkbox"/>									
Cooler Temperature is acceptable? <input checked="" type="checkbox"/>									
Frozen samples show signs of thaw? <input type="checkbox"/>									
Initials: <u>SP</u> Date: <u>10/31/23</u>									
Unpacking/Labeling The Samples <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td><u>Yes</u></td> <td><u>No</u></td> <td><u>NA</u></td> </tr> <tr> <td><input checked="" type="checkbox"/></td> <td><input type="checkbox"/></td> <td><input type="checkbox"/></td> </tr> </table>				<u>Yes</u>	<u>No</u>	<u>NA</u>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
<u>Yes</u>	<u>No</u>	<u>NA</u>							
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>							
Containers are not broken or leaking? <input checked="" type="checkbox"/>									
Samples compromised/tampered with? <input type="checkbox"/>									
COC is complete w/o discrepancies <input checked="" type="checkbox"/>									
Sample custody seal? <input type="checkbox"/>									
Sample containers have legible labels? <input checked="" type="checkbox"/>									
Sample date/times are provided? <input checked="" type="checkbox"/>									
Appropriate containers are used? <input checked="" type="checkbox"/>									
Sample bottles are completely filled? <input checked="" type="checkbox"/>									
Sample preservatives verified? <input type="checkbox"/>									
Is the Field Sampler's name on COC? <input checked="" type="checkbox"/>									
Samples w/o discrepancies? <input checked="" type="checkbox"/>									
Zero headspace?* <input type="checkbox"/>									
Alkalinity has no headspace? <input type="checkbox"/>									
Perchlorate has headspace? (Methods 314, 331, 6850) <input type="checkbox"/>									
Multiphasic samples are not present? <input checked="" type="checkbox"/>									
<small>*Containers requiring zero headspace have no headspace, or bubble < 6 mm (1/4")</small>									
Trizma Lot #(s): _____ _____ _____									
Ammonium Acetate Lot #(s): _____ _____ _____									
Login Completion <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <td><u>Yes</u></td> <td><u>No</u></td> <td><u>NA</u></td> </tr> <tr> <td><input checked="" type="checkbox"/></td> <td><input type="checkbox"/></td> <td><input type="checkbox"/></td> </tr> </table>				<u>Yes</u>	<u>No</u>	<u>NA</u>	<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>
<u>Yes</u>	<u>No</u>	<u>NA</u>							
<input checked="" type="checkbox"/>	<input type="checkbox"/>	<input type="checkbox"/>							
Receipt Temperature on COC? <input type="checkbox"/>									
NCM Filed? <input type="checkbox"/>									
Samples received within hold time? <input checked="" type="checkbox"/>									
Log Release checked in TALS? <input checked="" type="checkbox"/>									
Initials: <u>DM</u> Date: <u>10/31/23</u>									
Initials: <u>DM</u> Date: <u>10/31/23</u>									

**Containers requiring zero headspace have no headspace or bubble ≤ 6 mm (1/4")*

Initials: DM Date: 10/31/23

Initials: DM Date: 10/31/23

Login Sample Receipt Checklist

Client: Shannon & Wilson, Inc

Job Number: 320-106532-1

Login Number: 106532

List Source: Eurofins Sacramento

List Number: 1

Creator: Pratali, Sandra A

Question	Answer	Comment	
Radioactivity wasn't checked or is </= background as measured by a survey meter.	True	REFER TO SSRN	1
The cooler's custody seal, if present, is intact.	N/A		2
Sample custody seals, if present, are intact.	N/A		3
The cooler or samples do not appear to have been compromised or tampered with.	N/A		4
Samples were received on ice.	N/A		5
Cooler Temperature is acceptable.	N/A		6
Cooler Temperature is recorded.	N/A		7
COC is present.	N/A		8
COC is filled out in ink and legible.	N/A		9
COC is filled out with all pertinent information.	N/A		10
Is the Field Sampler's name present on COC?	N/A		11
There are no discrepancies between the containers received and the COC.	N/A		12
Samples are received within Holding Time (excluding tests with immediate HTs)	N/A		13
Sample containers have legible labels.	N/A		14
Containers are not broken or leaking.	N/A		15
Sample collection date/times are provided.	N/A		
Appropriate sample containers are used.	N/A		
Sample bottles are completely filled.	N/A		
Sample Preservation Verified.	N/A		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	N/A		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A		
Multiphasic samples are not present.	N/A		
Samples do not require splitting or compositing.	N/A		
Residual Chlorine Checked.	N/A		

ADEC Contaminated Sites Program Laboratory Data Review Checklist

Completed By:	Nathan Lenhard	CS Site Name:	FIA – Sitewide PFAS	Lab Name:	Eurofins Environment Testing
Title:	Environmental Scientist	ADEC File No.:	100.38.277	Lab Report No.:	320-106532-1
Consulting Firm:	Shannon & Wilson, Inc.	Hazard ID No.:	26816	Lab Report Date:	11/20/2023

Note: Any N/A or No box checked must have an explanation in the comments box.

1. Laboratory

a. Did an ADEC Contaminated Sites Laboratory Approval Program (CS-LAP) approved laboratory receive and perform all of the submitted sample analyses?

Yes No N/A

Comments: Project samples were sent to Eurofins Environment Testing (Eurofins) in Sacramento, California. Eurofins analyzed project samples for PFAS by EPA 537(Mod), a LCMSMS method compliant with the DoD QSM Version 5.3 Table B-15, under DEC approval 17-020 dated 2/21/24, expiring 2/20/2027.

b. If the samples were transferred to another “network” laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses CS-LAP approved?

Yes No N/A

Comments: Project samples were not transferred to another ‘network’ laboratory or sub-contracted to an alternate laboratory.

2. Chain of Custody (CoC)

a. Is the CoC information completed, signed, and dated (including released/received by)?

Yes No N/A

Comments:

b. Were the correct analyses requested?

Yes No N/A

Analyses requested: PFAS by EPA 537(Mod), compliant with DoD QSM 5.3 Table B-15.

Comments: Analysis was performed as requested.

3. Laboratory Sample Receipt Documentation

a. Is the sample/cooler temperature documented and within range at receipt (0° to 6° C)?

Yes No N/A

Cooler temperature(s): Cooler temperature was not reported by the laboratory.

Sample temperature(s): A temperature blank was included with the samples in the cooler and is used to access temperature preservation. The COC can sample receiving notes indicate the temperature blank was 1.0°C at sample login.

Comments: The temperature blank was within the acceptable temperature range of 0°C to 6°C.

b. Is the sample preservation acceptable – acidified waters, methanol preserved soil (GRO, BTEX, VOCs, etc.)?

Yes No N/A

Comments: Sample preservation outside of temperature control is not required for PFAS analysis.

c. Is the sample condition documented – broken, leaking, zero headspace (VOA vials); canister vacuum/pressure checked and no open valves, etc.?

Yes No N/A

Comments: The laboratory sample receipt form notes that project samples arrived in acceptable condition, properly preserved, and within an acceptable temperature range.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, canister not holding a vacuum, etc.?

Yes No N/A

Comments: No sample discrepancies are noted on the laboratory sample receipt form.

e. Is the data quality or usability affected?

Yes No N/A

Comments: See above.

4. Case Narrative

a. Is the case narrative present and understandable?

Yes No N/A

Comments:

b. Are there discrepancies, errors, or QC failures identified by the lab?

Yes No N/A

Comments:

The continuing calibration verification (CCV) associated with preparation batch 320-720994 recovered above the upper control limit for isotope dilution analyte (IDA) d3-NMeFOSAA and d5-NEtFOSAA. The associated target analytes N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA) and N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA) were within control limits in the CCV; therefore, the data is reported for samples *MW-TS-1*, *MW-TS-2*, *MW-TS-3*, *EB-1*, *GAC-1*, and (CCV320-720994/1). These analytes were not detected in project samples. Data quality and/or usability not affected.

The CCV associated with preparation batch 320-720994 recovered above the upper control limit for IDA d5-NEtFOSAA. The associated target analytes NMeFOSAA and NEtFOSAA were within control limits in the CCV; therefore, the data is reported for samples *MW-TS-1*, *MW-TS-2*, *MW-TS-3*, *EP-1*, *GAC-1*, and (CCV320-720994/12). These analytes were not detected in project samples. Data quality and/or usability not affected.

The Isotope Dilution Analyte (IDA) recovery associated with the following sample is below the method recommended limit: *MW-TS-1*. Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample(s). See Section 6.d for details regarding impacts to data quality and/or usability, as applicable.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batches 320-718877 and 320-719042. See section 6.c. for details regarding data quality/usability as applicable.

Samples *MW-TS-1*, *MW-TS-2*, *MW-TS-4*, and *GAC-1* associated with preparation batch 320-718877 were observed to have a thin layer of sediment present in the bottom of the bottle prior to extraction. Data quality and/or usability not affected.

During the solid phase extraction process, the following samples contain non-settleable particulates which clogged the solid phase extraction column: *MW-TS-1*, *MW-TS-3*, and *GAC-1* from preparation batch 320-718877. Data quality and/or usability not affected.

Samples *MW-TS-101* and *MW-TS-4* associated with preparation batch 320-719042 were observed to have a thin layer of sediment present in the bottom of the bottle prior to extraction. Data quality and/or usability not affected.

c. Were all the corrective actions documented?

Yes No N/A

Comments: Corrective actions not required.

d. What is the effect on data quality/usability according to the case narrative?
Comments: The effects on data quality/usability noted in the case narrative are discussed in section 4.b., above, or elsewhere in this checklist.

5. Sample Results

a. Are the correct analyses performed/reported as requested on CoC?

Yes No N/A

Comments:

b. Are all applicable holding times met?

Yes No N/A

Comments:

c. Are all soils reported on a dry weight basis?

Yes No N/A

Comments: Soil samples were not included in this work order.

d. Are the reported limits of quantitation (LoQ) or limits of detections (LOD), or reporting limits (RL) less than the Cleanup Level or the action level for the project?

Yes No N/A

Comments:

e. Is the data quality or usability affected?

Yes No N/A

Comments: See above.

6. QC Samples

a. Method Blank

i. Was one method blank reported per matrix, analysis, and 20 samples?

Yes No N/A

Comments:

ii. Are all method blank results less than LoQ (or RL)?

Yes No

Comments: No analytes are detected in method blank samples.

iii. If above LoQ or RL, what samples are affected?

Comments: Not applicable, see above.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes No N/A

Comments: See above.

v. Data quality or usability affected?

Yes No N/A

Comments: See above.

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics – Are one LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes No N/A

Comments:

ii. Metals/Inorganics – Are one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes No N/A

Comments: Metals/inorganic analyses were not included in this work order.

iii. Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes No N/A

Comments:

iv. Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? Was the RPD reported from LCS/LCSD, and or sample/sample duplicate? (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes No N/A

Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments: Not applicable, see above.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes No N/A

Comments: See above.

vii. Is the data quality or usability affected?

Yes No N/A

Comments: Data quality/usability is not affected, see above.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

i. Organics – Are one MS/MSD reported per matrix, analysis and 20 samples?

Yes No N/A

Comments: Insufficient sample was available to perform an MS/MSD associated with preparation batches 320-718877 and 320-719042. Batch accuracy and precision is evaluated using the LCS/LCSD samples associated with these respective batches. See section 6.b., above. Data quality/usability is not affected.

ii. Metals/Inorganics – Are one MS/MSD reported per matrix, analysis and 20 samples?

Yes No N/A

Comments: Metals/inorganic analyses were not requested for samples included in the work order.

iii. Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes No N/A

Comments: See above.

iv. Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes No N/A

Comments: See above.

v. If %R or RPD is outside of acceptable limits, what samples are affected?

Comments: Not applicable, see above.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes No N/A

Comments: See above.

vii. Is the data quality or usability affected?

Yes No N/A

Comments: See above.

d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only

- i. Are surrogate/IDA recoveries reported for organic analyses – field, QC, and laboratory samples?
Yes No N/A
Comments:
- ii. Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)
Yes No N/A
Comments: PFAS IDAs 13C2 PFDoA and 13C2 PFTeDA were recovered low in sample MW-TS-1 associated with preparatory batch 320-718877. Associated analytes PFDoA, PFTriA, and PFTeA were not detected in the noted sample. Consequently, the result of the aforementioned analytes in sample MW-TS-1 are considered estimates, no direction of bias, and flagged 'J*' in the analytical table. The data is considered affected as noted, however, the data is considered usable with applied flags.
- iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?
Yes No N/A
Comments:
- iv. Is the data quality or usability affected?
Yes No N/A
Comments: See above.

e. Trip Blanks

- i. Is one trip blank reported per matrix, analysis, and for each cooler containing volatile samples? Yes No N/A
Comments: No volatile samples were included in this work order. No trip blank needed.
- ii. Are all results less than LoQ or RL?
Yes No N/A
Comments: See above.
- iii. If above LoQ or RL, what samples are affected?
Comments: Not applicable, see above.
- iv. Is the data quality or usability affected?
Yes No N/A

Comments: See above.

f. Field Duplicate

i. Are one field duplicate submitted per matrix, analysis, and 10 project samples?

Yes No N/A

Comments: Sample *MW-TS-101* is a duplicate of corresponding sample *MW-TS-1*.

ii. Was the duplicate submitted blind to lab?

Yes No N/A

Comments:

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water or air, 50% soil)

$$RPD (\%) = \left| \frac{R_1 - R_2}{\left(\frac{R_1 + R_2}{2} \right)} \right| \times 100$$

Where R_1 = Sample Concentration

R_2 = Field Duplicate Concentration

Is the data quality or usability affected? (Explain)

Yes No N/A

Comments: Where calculable, analytical results met the comparison criterion ($\leq 30\%$ for water) for the field duplicate pair.

iv. Is the data quality or usability affected? (Explain)

Yes No N/A

Comments: Data quality/usability is not affected, see above.

g. Decontamination or Equipment Blanks

i. Were decontamination or equipment blanks collected?

Yes No N/A

Comments: An equipment blank sample designated *EB-1* was included with the work order.

ii. Are all results less than LoQ or RL?

Yes No N/A

Comments: No analytes are detected in the equipment blank sample.

iii. If above LoQ or RL, specify what samples are affected.

CS Site Name: FIA – Sitewide PFAS

Lab Report No.: 320-106532-1

Comments: Not applicable, see above.

iv. Are data quality or usability affected?

Yes No N/A

Comments: See above.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Are they defined and appropriate?

Yes No N/A

Comments: No other data flags/qualifiers are observed.

ANALYTICAL REPORT

PREPARED FOR

Attn: Ashley Jaramillo
Shannon & Wilson, Inc
2355 Hill Rd.
Fairbanks, Alaska 99709-5244

Generated 3/22/2024 1:11:41 PM

JOB DESCRIPTION

DOT P:F, FAI Tallspruce

JOB NUMBER

320-110042-1

Eurofins Sacramento

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northern California, LLC Project Manager.

Authorization

Generated
3/22/2024 1:11:41 PM

Authorized for release by
David Alltucker, Project Manager I
David.Alltucker@et.eurofinsus.com
(916)374-4383

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Detection Summary	6
Client Sample Results	8
Isotope Dilution Summary	15
QC Sample Results	17
QC Association Summary	23
Lab Chronicle	24
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	31

Definitions/Glossary

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Qualifiers

LCMS	Qualifier	Qualifier Description
*5-		Isotope dilution analyte is outside acceptance limits, low biased.
H		Sample was prepped or analyzed beyond the specified holding time. This does not meet regulatory requirements.
I		Value is EMPC (estimated maximum possible concentration).
J		Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
□	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Case Narrative

Client: Shannon & Wilson, Inc
Project: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Job ID: 320-110042-1

Eurofins Sacramento

Job Narrative 320-110042-1

Receipt

The samples were received on 2/27/2024 3:03 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.3° C.

LCMS

Method EPA 537(Mod): The Isotope Dilution Analyte (IDA) recovery associated with the following sample is below the method recommended limit: MW-TS-2 (320-110042-3). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample.

Method EPA 537(Mod): The "I" qualifier means the transition mass ratio for the indicated analyte was outside the established ratio limits. The qualitative identification of the analyte has some degree of uncertainty. However, analyst judgment was used to positively identify the analyte: MW-TS-3 (320-110042-2).

Method EPA 537(Mod): Internal standard (ISTD) response for the following sample was outside control limits: MW-TS-2 (320-110042-3). The sample was re-analyzed and ISTD response was still outside control limits. The ISTD is not used to calculate analyte concentration therefor there is no adverse impact from this anomaly.

Method EPA 537(Mod): The following Equipment Blank (EB) sample: EB-1 (320-110042-7) was re-extracted past holding time due to suspected lab contamination for Perfluorotetradecanoic acid (PFTeA) detected above the 1/2RL. The re-extraction data analysis was non-detect. Therefore both sets of data were reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method 3535: The following samples in preparation batch 320-743326 were yellow in color prior to extraction. MW-TS-4 (320-110042-1), MW-TS-3 (320-110042-2), MW-TS-2 (320-110042-3), GAC-1 (320-110042-4), MW-TS-1 (320-110042-5) and MW-TS-101 (320-110042-6)

Method 3535: The following samples in preparation batch 320-743326 were observed to have floating particulates present in the sample bottle. MW-TS-4 (320-110042-1), MW-TS-3 (320-110042-2), MW-TS-2 (320-110042-3), GAC-1 (320-110042-4), MW-TS-1 (320-110042-5) and MW-TS-101 (320-110042-6)

Method 3535: The following samples in preparation batch 320-743326 were yellow in color following extraction. MW-TS-2 (320-110042-3), MW-TS-1 (320-110042-5) and MW-TS-101 (320-110042-6)

Method 3535: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-746513.

Method 3535: The following sample was re-prepared outside of preparation holding time due to blank hit confirmation: EB-1 (320-110042-7).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Client Sample ID: MW-TS-4

Lab Sample ID: 320-110042-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	1.5	J	1.8	0.52	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	3.0		1.8	0.76	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.54	J	1.8	0.18	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	4.4		1.8	0.51	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.1	J	1.8	0.48	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: MW-TS-3

Lab Sample ID: 320-110042-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	3.1		1.8	0.51	ng/L	1		EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.44	J	1.8	0.22	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	6.8		1.8	0.75	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.1	J	1.8	0.18	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	11		1.8	0.50	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.0		1.8	0.48	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: MW-TS-2

Lab Sample ID: 320-110042-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	2.0		1.8	0.54	ng/L	1		EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	0.37	J	1.8	0.23	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	3.9		1.8	0.79	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	0.81	J	1.8	0.18	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	4.9		1.8	0.53	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	1.5	J	1.8	0.50	ng/L	1		EPA 537(Mod)	Total/NA
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	0.43	J	1.8	0.37	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: GAC-1

Lab Sample ID: 320-110042-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorooctanoic acid (PFOA)	1.1	J	1.8	0.78	ng/L	1		EPA 537(Mod)	Total/NA
11-Chloroeicosfluoro-3-oxaundecan e-1-sulfonic acid	0.29	J	1.8	0.29	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: MW-TS-1

Lab Sample ID: 320-110042-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	2.7		1.8	0.52	ng/L	1		EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.1	J	1.8	0.23	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	4.9		1.8	0.77	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.4	J	1.8	0.18	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	3.1		1.8	0.51	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.1		1.8	0.49	ng/L	1		EPA 537(Mod)	Total/NA

Client Sample ID: MW-TS-101

Lab Sample ID: 320-110042-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid (PFHxA)	2.6		1.9	0.54	ng/L	1		EPA 537(Mod)	Total/NA
Perfluoroheptanoic acid (PFHpA)	1.1	J	1.9	0.23	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanoic acid (PFOA)	4.7		1.9	0.80	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	1.2	J	1.9	0.19	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	2.8		1.9	0.53	ng/L	1		EPA 537(Mod)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	2.1		1.9	0.51	ng/L	1		EPA 537(Mod)	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Sacramento

Detection Summary

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Client Sample ID: EB-1

Lab Sample ID: 320-110042-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorotetradecanoic acid (PFTeA)	1.3	J	1.8	0.66	ng/L	1		EPA 537(Mod)	Total/NA

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

This Detection Summary does not include radiochemical test results.

Eurofins Sacramento

Client Sample Results

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Client Sample ID: MW-TS-4

Lab Sample ID: 320-110042-1

Matrix: Water

Date Collected: 02/22/24 11:08

Date Received: 02/27/24 15:03

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	1.5	J	1.8	0.52	ng/L	02/28/24 12:06	03/09/24 22:43		1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.22	ng/L	02/28/24 12:06	03/09/24 22:43		1
Perfluorooctanoic acid (PFOA)	3.0		1.8	0.76	ng/L	02/28/24 12:06	03/09/24 22:43		1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L	02/28/24 12:06	03/09/24 22:43		1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L	02/28/24 12:06	03/09/24 22:43		1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.98	ng/L	02/28/24 12:06	03/09/24 22:43		1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.49	ng/L	02/28/24 12:06	03/09/24 22:43		1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L	02/28/24 12:06	03/09/24 22:43		1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.65	ng/L	02/28/24 12:06	03/09/24 22:43		1
Perfluorobutanesulfonic acid (PFBS)	0.54	J	1.8	0.18	ng/L	02/28/24 12:06	03/09/24 22:43		1
Perfluorohexanesulfonic acid (PFHxS)	4.4		1.8	0.51	ng/L	02/28/24 12:06	03/09/24 22:43		1
Perfluorooctanesulfonic acid (PFOS)	1.1	J	1.8	0.48	ng/L	02/28/24 12:06	03/09/24 22:43		1
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND		4.4	1.1	ng/L	02/28/24 12:06	03/09/24 22:43		1
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND		4.4	1.2	ng/L	02/28/24 12:06	03/09/24 22:43		1
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	ND		1.8	0.21	ng/L	02/28/24 12:06	03/09/24 22:43		1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.3	ng/L	02/28/24 12:06	03/09/24 22:43		1
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	ND		1.8	0.28	ng/L	02/28/24 12:06	03/09/24 22:43		1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L	02/28/24 12:06	03/09/24 22:43		1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
13C2 PFHxA	100		50 - 150			02/28/24 12:06	03/09/24 22:43		1
13C4 PFHpA	99		50 - 150			02/28/24 12:06	03/09/24 22:43		1
13C4 PFOA	102		50 - 150			02/28/24 12:06	03/09/24 22:43		1
13C5 PFNA	123		50 - 150			02/28/24 12:06	03/09/24 22:43		1
13C2 PFDA	104		50 - 150			02/28/24 12:06	03/09/24 22:43		1
13C2 PFUnA	88		50 - 150			02/28/24 12:06	03/09/24 22:43		1
13C2 PFDoA	103		50 - 150			02/28/24 12:06	03/09/24 22:43		1
13C2 PFTeDA	94		50 - 150			02/28/24 12:06	03/09/24 22:43		1
13C3 PFBS	78		50 - 150			02/28/24 12:06	03/09/24 22:43		1
18O2 PFHxS	99		50 - 150			02/28/24 12:06	03/09/24 22:43		1
13C4 PFOS	100		50 - 150			02/28/24 12:06	03/09/24 22:43		1
d3-NMeFOSAA	107		50 - 150			02/28/24 12:06	03/09/24 22:43		1
d5-NEtFOSAA	123		50 - 150			02/28/24 12:06	03/09/24 22:43		1
13C3 HFPO-DA	90		50 - 150			02/28/24 12:06	03/09/24 22:43		1

Eurofins Sacramento

Client Sample Results

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Client Sample ID: MW-TS-3

Lab Sample ID: 320-110042-2

Matrix: Water

Date Collected: 02/22/24 13:05

Date Received: 02/27/24 15:03

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	3.1		1.8	0.51	ng/L	02/28/24 12:06	03/09/24 22:54		1
Perfluoroheptanoic acid (PFHpA)	0.44	J I	1.8	0.22	ng/L	02/28/24 12:06	03/09/24 22:54		1
Perfluorooctanoic acid (PFOA)	6.8		1.8	0.75	ng/L	02/28/24 12:06	03/09/24 22:54		1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L	02/28/24 12:06	03/09/24 22:54		1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.27	ng/L	02/28/24 12:06	03/09/24 22:54		1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.97	ng/L	02/28/24 12:06	03/09/24 22:54		1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.48	ng/L	02/28/24 12:06	03/09/24 22:54		1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.1	ng/L	02/28/24 12:06	03/09/24 22:54		1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.64	ng/L	02/28/24 12:06	03/09/24 22:54		1
Perfluorobutanesulfonic acid (PFBS)	1.1	J	1.8	0.18	ng/L	02/28/24 12:06	03/09/24 22:54		1
Perfluorohexanesulfonic acid (PFHxS)	11		1.8	0.50	ng/L	02/28/24 12:06	03/09/24 22:54		1
Perfluorooctanesulfonic acid (PFOS)	2.0		1.8	0.48	ng/L	02/28/24 12:06	03/09/24 22:54		1
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND		4.4	1.1	ng/L	02/28/24 12:06	03/09/24 22:54		1
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND		4.4	1.1	ng/L	02/28/24 12:06	03/09/24 22:54		1
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	ND		1.8	0.21	ng/L	02/28/24 12:06	03/09/24 22:54		1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.5	1.3	ng/L	02/28/24 12:06	03/09/24 22:54		1
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	ND		1.8	0.28	ng/L	02/28/24 12:06	03/09/24 22:54		1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.35	ng/L	02/28/24 12:06	03/09/24 22:54		1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
13C2 PFHxA	100		50 - 150			02/28/24 12:06	03/09/24 22:54		1
13C4 PFHpA	104		50 - 150			02/28/24 12:06	03/09/24 22:54		1
13C4 PFOA	103		50 - 150			02/28/24 12:06	03/09/24 22:54		1
13C5 PFNA	113		50 - 150			02/28/24 12:06	03/09/24 22:54		1
13C2 PFDA	108		50 - 150			02/28/24 12:06	03/09/24 22:54		1
13C2 PFUnA	94		50 - 150			02/28/24 12:06	03/09/24 22:54		1
13C2 PFDoA	96		50 - 150			02/28/24 12:06	03/09/24 22:54		1
13C2 PFTeDA	94		50 - 150			02/28/24 12:06	03/09/24 22:54		1
13C3 PFBS	80		50 - 150			02/28/24 12:06	03/09/24 22:54		1
18O2 PFHxS	97		50 - 150			02/28/24 12:06	03/09/24 22:54		1
13C4 PFOS	105		50 - 150			02/28/24 12:06	03/09/24 22:54		1
d3-NMeFOSAA	107		50 - 150			02/28/24 12:06	03/09/24 22:54		1
d5-NEtFOSAA	110		50 - 150			02/28/24 12:06	03/09/24 22:54		1
13C3 HFPO-DA	91		50 - 150			02/28/24 12:06	03/09/24 22:54		1

Eurofins Sacramento

Client Sample Results

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Client Sample ID: MW-TS-2

Date Collected: 02/22/24 14:37

Date Received: 02/27/24 15:03

Lab Sample ID: 320-110042-3

Matrix: Water

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	2.0		1.8	0.54	ng/L	02/28/24 12:06	03/09/24 23:05		1
Perfluoroheptanoic acid (PFHpA)	0.37	J	1.8	0.23	ng/L	02/28/24 12:06	03/09/24 23:05		1
Perfluorooctanoic acid (PFOA)	3.9		1.8	0.79	ng/L	02/28/24 12:06	03/09/24 23:05		1
Perfluorononanoic acid (PFNA)	ND		1.8	0.25	ng/L	02/28/24 12:06	03/09/24 23:05		1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.29	ng/L	02/28/24 12:06	03/09/24 23:05		1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L	02/28/24 12:06	03/09/24 23:05		1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.51	ng/L	02/28/24 12:06	03/09/24 23:05		1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L	02/28/24 12:06	03/09/24 23:05		1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.68	ng/L	02/28/24 12:06	03/09/24 23:05		1
Perfluorobutanesulfonic acid (PFBS)	0.81	J	1.8	0.18	ng/L	02/28/24 12:06	03/09/24 23:05		1
Perfluorohexanesulfonic acid (PFHxS)	4.9		1.8	0.53	ng/L	02/28/24 12:06	03/09/24 23:05		1
Perfluorooctanesulfonic acid (PFOS)	1.5	J	1.8	0.50	ng/L	02/28/24 12:06	03/09/24 23:05		1
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND		4.6	1.1	ng/L	02/28/24 12:06	03/09/24 23:05		1
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND		4.6	1.2	ng/L	02/28/24 12:06	03/09/24 23:05		1
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	ND		1.8	0.22	ng/L	02/28/24 12:06	03/09/24 23:05		1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.7	1.4	ng/L	02/28/24 12:06	03/09/24 23:05		1
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	ND		1.8	0.30	ng/L	02/28/24 12:06	03/09/24 23:05		1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	0.43	J	1.8	0.37	ng/L	02/28/24 12:06	03/09/24 23:05		1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
13C2 PFHxA	64		50 - 150			02/28/24 12:06	03/09/24 23:05		1
13C4 PFHpA	60		50 - 150			02/28/24 12:06	03/09/24 23:05		1
13C4 PFOA	60		50 - 150			02/28/24 12:06	03/09/24 23:05		1
13C5 PFNA	67		50 - 150			02/28/24 12:06	03/09/24 23:05		1
13C2 PFDA	59		50 - 150			02/28/24 12:06	03/09/24 23:05		1
13C2 PFUnA	51		50 - 150			02/28/24 12:06	03/09/24 23:05		1
13C2 PFDoA	47	*5-	50 - 150			02/28/24 12:06	03/09/24 23:05		1
13C2 PFTeDA	50		50 - 150			02/28/24 12:06	03/09/24 23:05		1
13C3 PFBS	53		50 - 150			02/28/24 12:06	03/09/24 23:05		1
18O2 PFHxS	66		50 - 150			02/28/24 12:06	03/09/24 23:05		1
13C4 PFOS	61		50 - 150			02/28/24 12:06	03/09/24 23:05		1
d3-NMeFOSAA	54		50 - 150			02/28/24 12:06	03/09/24 23:05		1
d5-NEtFOSAA	62		50 - 150			02/28/24 12:06	03/09/24 23:05		1
13C3 HFPO-DA	60		50 - 150			02/28/24 12:06	03/09/24 23:05		1

Eurofins Sacramento

Client Sample Results

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Client Sample ID: GAC-1

Date Collected: 02/22/24 14:52

Date Received: 02/27/24 15:03

Lab Sample ID: 320-110042-4

Matrix: Water

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.53	ng/L	02/28/24 12:06	03/09/24 23:28		1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.23	ng/L	02/28/24 12:06	03/09/24 23:28		1
Perfluorooctanoic acid (PFOA)	1.1	J	1.8	0.78	ng/L	02/28/24 12:06	03/09/24 23:28		1
Perfluorononanoic acid (PFNA)	ND		1.8	0.25	ng/L	02/28/24 12:06	03/09/24 23:28		1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.29	ng/L	02/28/24 12:06	03/09/24 23:28		1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L	02/28/24 12:06	03/09/24 23:28		1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.51	ng/L	02/28/24 12:06	03/09/24 23:28		1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L	02/28/24 12:06	03/09/24 23:28		1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.67	ng/L	02/28/24 12:06	03/09/24 23:28		1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L	02/28/24 12:06	03/09/24 23:28		1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.53	ng/L	02/28/24 12:06	03/09/24 23:28		1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.50	ng/L	02/28/24 12:06	03/09/24 23:28		1
N-methylperfluorooctanesulfonamidoa cetic acid (NMeFOSAA)	ND		4.6	1.1	ng/L	02/28/24 12:06	03/09/24 23:28		1
N-ethylperfluorooctanesulfonamidoac etic acid (NEtFOSAA)	ND		4.6	1.2	ng/L	02/28/24 12:06	03/09/24 23:28		1
9-Chlorohexadecafluoro-3-oxanonan e-1-sulfonic acid	ND		1.8	0.22	ng/L	02/28/24 12:06	03/09/24 23:28		1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.7	1.4	ng/L	02/28/24 12:06	03/09/24 23:28		1
11-Chloroeicosfluoro-3-oxaunde cane-1-sulfonic acid	0.29	J	1.8	0.29	ng/L	02/28/24 12:06	03/09/24 23:28		1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.37	ng/L	02/28/24 12:06	03/09/24 23:28		1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	82		50 - 150				02/28/24 12:06	03/09/24 23:28	1
13C4 PFHpA	87		50 - 150				02/28/24 12:06	03/09/24 23:28	1
13C4 PFOA	87		50 - 150				02/28/24 12:06	03/09/24 23:28	1
13C5 PFNA	102		50 - 150				02/28/24 12:06	03/09/24 23:28	1
13C2 PFDA	88		50 - 150				02/28/24 12:06	03/09/24 23:28	1
13C2 PFUnA	69		50 - 150				02/28/24 12:06	03/09/24 23:28	1
13C2 PFDoA	70		50 - 150				02/28/24 12:06	03/09/24 23:28	1
13C2 PFTeDA	70		50 - 150				02/28/24 12:06	03/09/24 23:28	1
13C3 PFBS	71		50 - 150				02/28/24 12:06	03/09/24 23:28	1
18O2 PFHxS	86		50 - 150				02/28/24 12:06	03/09/24 23:28	1
13C4 PFOS	85		50 - 150				02/28/24 12:06	03/09/24 23:28	1
d3-NMeFOSAA	76		50 - 150				02/28/24 12:06	03/09/24 23:28	1
d5-NEtFOSAA	78		50 - 150				02/28/24 12:06	03/09/24 23:28	1
13C3 HFPO-DA	81		50 - 150				02/28/24 12:06	03/09/24 23:28	1

Eurofins Sacramento

Client Sample Results

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Client Sample ID: MW-TS-1

Lab Sample ID: 320-110042-5

Matrix: Water

Date Collected: 02/22/24 16:15

Date Received: 02/27/24 15:03

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	2.7		1.8	0.52	ng/L	02/28/24 12:06	03/09/24 23:40		1
Perfluoroheptanoic acid (PFHpA)	1.1	J	1.8	0.23	ng/L	02/28/24 12:06	03/09/24 23:40		1
Perfluorooctanoic acid (PFOA)	4.9		1.8	0.77	ng/L	02/28/24 12:06	03/09/24 23:40		1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L	02/28/24 12:06	03/09/24 23:40		1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L	02/28/24 12:06	03/09/24 23:40		1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	0.99	ng/L	02/28/24 12:06	03/09/24 23:40		1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L	02/28/24 12:06	03/09/24 23:40		1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L	02/28/24 12:06	03/09/24 23:40		1
Perfluorotetradecanoic acid (PFTeA)	ND		1.8	0.66	ng/L	02/28/24 12:06	03/09/24 23:40		1
Perfluorobutanesulfonic acid (PFBS)	1.4	J	1.8	0.18	ng/L	02/28/24 12:06	03/09/24 23:40		1
Perfluorohexanesulfonic acid (PFHxS)	3.1		1.8	0.51	ng/L	02/28/24 12:06	03/09/24 23:40		1
Perfluorooctanesulfonic acid (PFOS)	2.1		1.8	0.49	ng/L	02/28/24 12:06	03/09/24 23:40		1
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L	02/28/24 12:06	03/09/24 23:40		1
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND		4.5	1.2	ng/L	02/28/24 12:06	03/09/24 23:40		1
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	ND		1.8	0.22	ng/L	02/28/24 12:06	03/09/24 23:40		1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.4	ng/L	02/28/24 12:06	03/09/24 23:40		1
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	ND		1.8	0.29	ng/L	02/28/24 12:06	03/09/24 23:40		1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L	02/28/24 12:06	03/09/24 23:40		1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
13C2 PFHxA	125		50 - 150			02/28/24 12:06	03/09/24 23:40		1
13C4 PFHpA	127		50 - 150			02/28/24 12:06	03/09/24 23:40		1
13C4 PFOA	123		50 - 150			02/28/24 12:06	03/09/24 23:40		1
13C5 PFNA	142		50 - 150			02/28/24 12:06	03/09/24 23:40		1
13C2 PFDA	131		50 - 150			02/28/24 12:06	03/09/24 23:40		1
13C2 PFUnA	86		50 - 150			02/28/24 12:06	03/09/24 23:40		1
13C2 PFDoA	90		50 - 150			02/28/24 12:06	03/09/24 23:40		1
13C2 PFTeDA	95		50 - 150			02/28/24 12:06	03/09/24 23:40		1
13C3 PFBS	102		50 - 150			02/28/24 12:06	03/09/24 23:40		1
18O2 PFHxS	124		50 - 150			02/28/24 12:06	03/09/24 23:40		1
13C4 PFOS	117		50 - 150			02/28/24 12:06	03/09/24 23:40		1
d3-NMeFOSAA	105		50 - 150			02/28/24 12:06	03/09/24 23:40		1
d5-NEtFOSAA	102		50 - 150			02/28/24 12:06	03/09/24 23:40		1
13C3 HFPO-DA	116		50 - 150			02/28/24 12:06	03/09/24 23:40		1

Eurofins Sacramento

Client Sample Results

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Client Sample ID: MW-TS-101

Lab Sample ID: 320-110042-6

Matrix: Water

Date Collected: 02/22/24 16:05

Date Received: 02/27/24 15:03

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	2.6		1.9	0.54	ng/L	02/28/24 12:06	03/09/24 23:51		1
Perfluoroheptanoic acid (PFHpA)	1.1	J	1.9	0.23	ng/L	02/28/24 12:06	03/09/24 23:51		1
Perfluorooctanoic acid (PFOA)	4.7		1.9	0.80	ng/L	02/28/24 12:06	03/09/24 23:51		1
Perfluorononanoic acid (PFNA)	ND		1.9	0.25	ng/L	02/28/24 12:06	03/09/24 23:51		1
Perfluorodecanoic acid (PFDA)	ND		1.9	0.29	ng/L	02/28/24 12:06	03/09/24 23:51		1
Perfluoroundecanoic acid (PFUnA)	ND		1.9	1.0	ng/L	02/28/24 12:06	03/09/24 23:51		1
Perfluorododecanoic acid (PFDoA)	ND		1.9	0.52	ng/L	02/28/24 12:06	03/09/24 23:51		1
Perfluorotridecanoic acid (PFTriA)	ND		1.9	1.2	ng/L	02/28/24 12:06	03/09/24 23:51		1
Perfluorotetradecanoic acid (PFTeA)	ND		1.9	0.68	ng/L	02/28/24 12:06	03/09/24 23:51		1
Perfluorobutanesulfonic acid (PFBS)	1.2	J	1.9	0.19	ng/L	02/28/24 12:06	03/09/24 23:51		1
Perfluorohexanesulfonic acid (PFHxS)	2.8		1.9	0.53	ng/L	02/28/24 12:06	03/09/24 23:51		1
Perfluorooctanesulfonic acid (PFOS)	2.1		1.9	0.51	ng/L	02/28/24 12:06	03/09/24 23:51		1
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND		4.7	1.1	ng/L	02/28/24 12:06	03/09/24 23:51		1
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND		4.7	1.2	ng/L	02/28/24 12:06	03/09/24 23:51		1
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	ND		1.9	0.22	ng/L	02/28/24 12:06	03/09/24 23:51		1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.7	1.4	ng/L	02/28/24 12:06	03/09/24 23:51		1
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	ND		1.9	0.30	ng/L	02/28/24 12:06	03/09/24 23:51		1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.9	0.37	ng/L	02/28/24 12:06	03/09/24 23:51		1
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
13C2 PFHxA	94		50 - 150			02/28/24 12:06	03/09/24 23:51		1
13C4 PFHpA	98		50 - 150			02/28/24 12:06	03/09/24 23:51		1
13C4 PFOA	98		50 - 150			02/28/24 12:06	03/09/24 23:51		1
13C5 PFNA	95		50 - 150			02/28/24 12:06	03/09/24 23:51		1
13C2 PFDA	99		50 - 150			02/28/24 12:06	03/09/24 23:51		1
13C2 PFUnA	85		50 - 150			02/28/24 12:06	03/09/24 23:51		1
13C2 PFDoA	99		50 - 150			02/28/24 12:06	03/09/24 23:51		1
13C2 PFTeDA	84		50 - 150			02/28/24 12:06	03/09/24 23:51		1
13C3 PFBS	77		50 - 150			02/28/24 12:06	03/09/24 23:51		1
18O2 PFHxS	99		50 - 150			02/28/24 12:06	03/09/24 23:51		1
13C4 PFOS	94		50 - 150			02/28/24 12:06	03/09/24 23:51		1
d3-NMeFOSAA	97		50 - 150			02/28/24 12:06	03/09/24 23:51		1
d5-NEtFOSAA	110		50 - 150			02/28/24 12:06	03/09/24 23:51		1
13C3 HFPO-DA	95		50 - 150			02/28/24 12:06	03/09/24 23:51		1

Eurofins Sacramento

Client Sample Results

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Client Sample ID: EB-1

Date Collected: 02/22/24 16:30

Date Received: 02/27/24 15:03

Lab Sample ID: 320-110042-7

Matrix: Water

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		1.8	0.53	ng/L	02/28/24 12:06	03/10/24 00:02		1
Perfluoroheptanoic acid (PFHpA)	ND		1.8	0.23	ng/L	02/28/24 12:06	03/10/24 00:02		1
Perfluorooctanoic acid (PFOA)	ND		1.8	0.77	ng/L	02/28/24 12:06	03/10/24 00:02		1
Perfluorononanoic acid (PFNA)	ND		1.8	0.24	ng/L	02/28/24 12:06	03/10/24 00:02		1
Perfluorodecanoic acid (PFDA)	ND		1.8	0.28	ng/L	02/28/24 12:06	03/10/24 00:02		1
Perfluoroundecanoic acid (PFUnA)	ND		1.8	1.0	ng/L	02/28/24 12:06	03/10/24 00:02		1
Perfluorododecanoic acid (PFDoA)	ND		1.8	0.50	ng/L	02/28/24 12:06	03/10/24 00:02		1
Perfluorotridecanoic acid (PFTriA)	ND		1.8	1.2	ng/L	02/28/24 12:06	03/10/24 00:02		1
Perfluorotetradecanoic acid (PFTeA)	1.3 J		1.8	0.66	ng/L	02/28/24 12:06	03/10/24 00:02		1
Perfluorobutanesulfonic acid (PFBS)	ND		1.8	0.18	ng/L	02/28/24 12:06	03/10/24 00:02		1
Perfluorohexanesulfonic acid (PFHxS)	ND		1.8	0.52	ng/L	02/28/24 12:06	03/10/24 00:02		1
Perfluorooctanesulfonic acid (PFOS)	ND		1.8	0.49	ng/L	02/28/24 12:06	03/10/24 00:02		1
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND		4.5	1.1	ng/L	02/28/24 12:06	03/10/24 00:02		1
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND		4.5	1.2	ng/L	02/28/24 12:06	03/10/24 00:02		1
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	ND		1.8	0.22	ng/L	02/28/24 12:06	03/10/24 00:02		1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		3.6	1.4	ng/L	02/28/24 12:06	03/10/24 00:02		1
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	ND		1.8	0.29	ng/L	02/28/24 12:06	03/10/24 00:02		1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		1.8	0.36	ng/L	02/28/24 12:06	03/10/24 00:02		1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFHxA	96		50 - 150				02/28/24 12:06	03/10/24 00:02	1
13C4 PFHpA	104		50 - 150				02/28/24 12:06	03/10/24 00:02	1
13C4 PFOA	97		50 - 150				02/28/24 12:06	03/10/24 00:02	1
13C5 PFNA	106		50 - 150				02/28/24 12:06	03/10/24 00:02	1
13C2 PFDA	107		50 - 150				02/28/24 12:06	03/10/24 00:02	1
13C2 PFUnA	90		50 - 150				02/28/24 12:06	03/10/24 00:02	1
13C2 PFDoA	97		50 - 150				02/28/24 12:06	03/10/24 00:02	1
13C2 PFTeDA	106		50 - 150				02/28/24 12:06	03/10/24 00:02	1
13C3 PFBS	80		50 - 150				02/28/24 12:06	03/10/24 00:02	1
18O2 PFHxS	100		50 - 150				02/28/24 12:06	03/10/24 00:02	1
13C4 PFOS	101		50 - 150				02/28/24 12:06	03/10/24 00:02	1
d3-NMeFOSAA	101		50 - 150				02/28/24 12:06	03/10/24 00:02	1
d5-NEtFOSAA	108		50 - 150				02/28/24 12:06	03/10/24 00:02	1
13C3 HFPO-DA	90		50 - 150				02/28/24 12:06	03/10/24 00:02	1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 - RE

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorotetradecanoic acid (PFTeA)	ND	H	2.0	0.72	ng/L	03/13/24 05:27	03/16/24 05:50		1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C2 PFTeDA	78		50 - 150				03/13/24 05:27	03/16/24 05:50	1

Eurofins Sacramento

Isotope Dilution Summary

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Matrix: Water

Prep Type: Total/NA

Lab Sample ID	Client Sample ID	Percent Isotope Dilution Recovery (Acceptance Limits)							
		PFHxA (50-150)	C4PFHA (50-150)	PFOA (50-150)	PFNA (50-150)	PFDA (50-150)	PFUnA (50-150)	PFDoA (50-150)	PFTDA (50-150)
320-110023-A-1-B MS	Matrix Spike	107	106	121	102	90	93	86	
320-110023-A-1-C MSD	Matrix Spike Duplicate	112	110	122	104	102	95	96	
320-110042-1	MW-TS-4	100	99	102	123	104	88	103	94
320-110042-2	MW-TS-3	100	104	103	113	108	94	96	94
320-110042-3	MW-TS-2	64	60	60	67	59	51	47 *5-	50
320-110042-4	GAC-1	82	87	87	102	88	69	70	70
320-110042-5	MW-TS-1	125	127	123	142	131	86	90	95
320-110042-6	MW-TS-101	94	98	98	95	99	85	99	84
320-110042-7	EB-1	96	104	97	106	107	90	97	106
320-110042-7 - RE	EB-1								78
LCS 320-743326/2-A	Lab Control Sample	107	110	103	119	118	99	109	125
LCS 320-746513/2-A	Lab Control Sample								86
LCSD 320-743326/3-A	Lab Control Sample Dup	103	107	103	126	105	96	118	113
LCSD 320-746513/3-A	Lab Control Sample Dup								82
MB 320-743326/1-A	Method Blank	90	93	102	109	107	94	97	111
MB 320-746513/1-A	Method Blank								81

Lab Sample ID	Client Sample ID	Percent Isotope Dilution Recovery (Acceptance Limits)					
		C3PFBS (50-150)	PFHxS (50-150)	PFOS (50-150)	d3NMFOS (50-150)	d5NEFOS (50-150)	HFPODA
320-110023-A-1-B MS	Matrix Spike	88	111	103	114	97	100
320-110023-A-1-C MSD	Matrix Spike Duplicate	96	114	109	107	110	104
320-110042-1	MW-TS-4	78	99	100	107	123	90
320-110042-2	MW-TS-3	80	97	105	107	110	91
320-110042-3	MW-TS-2	53	66	61	54	62	60
320-110042-4	GAC-1	71	86	85	76	78	81
320-110042-5	MW-TS-1	102	124	117	105	102	116
320-110042-6	MW-TS-101	77	99	94	97	110	95
320-110042-7	EB-1	80	100	101	101	108	90
320-110042-7 - RE	EB-1						
LCS 320-743326/2-A	Lab Control Sample	84	107	114	114	113	97
LCS 320-746513/2-A	Lab Control Sample						
LCSD 320-743326/3-A	Lab Control Sample Dup	80	105	103	113	113	99
LCSD 320-746513/3-A	Lab Control Sample Dup						
MB 320-743326/1-A	Method Blank	76	100	99	115	101	94
MB 320-746513/1-A	Method Blank						

Surrogate Legend

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

C3PFBS = 13C3 PFBS

PFHxS = 18O2 PFHxS

PFOS = 13C4 PFOS

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

Eurofins Sacramento

Isotope Dilution Summary

Client: Shannon & Wilson, Inc

Project/Site: DOT P:F, FAI Talspruce

HFPODA = 13C3 HFPO-DA

Job ID: 320-110042-1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

QC Sample Results

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15

Lab Sample ID: MB 320-743326/1-A

Matrix: Water

Analysis Batch: 745422

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 743326

Analyte	MB Result	MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid (PFHxA)	ND		2.0	0.58	ng/L		02/28/24 12:06	03/09/24 21:23	1
Perfluoroheptanoic acid (PFHpA)	ND		2.0	0.25	ng/L		02/28/24 12:06	03/09/24 21:23	1
Perfluorooctanoic acid (PFOA)	ND		2.0	0.85	ng/L		02/28/24 12:06	03/09/24 21:23	1
Perfluorononanoic acid (PFNA)	ND		2.0	0.27	ng/L		02/28/24 12:06	03/09/24 21:23	1
Perfluorodecanoic acid (PFDA)	ND		2.0	0.31	ng/L		02/28/24 12:06	03/09/24 21:23	1
Perfluoroundecanoic acid (PFUnA)	ND		2.0	1.1	ng/L		02/28/24 12:06	03/09/24 21:23	1
Perfluorododecanoic acid (PFDoA)	ND		2.0	0.55	ng/L		02/28/24 12:06	03/09/24 21:23	1
Perfluorotridecanoic acid (PFTriA)	ND		2.0	1.3	ng/L		02/28/24 12:06	03/09/24 21:23	1
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		02/28/24 12:06	03/09/24 21:23	1
Perfluorobutanesulfonic acid (PFBS)	ND		2.0	0.20	ng/L		02/28/24 12:06	03/09/24 21:23	1
Perfluorohexanesulfonic acid (PFHxS)	ND		2.0	0.57	ng/L		02/28/24 12:06	03/09/24 21:23	1
Perfluorooctanesulfonic acid (PFOS)	ND		2.0	0.54	ng/L		02/28/24 12:06	03/09/24 21:23	1
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND		5.0	1.2	ng/L		02/28/24 12:06	03/09/24 21:23	1
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND		5.0	1.3	ng/L		02/28/24 12:06	03/09/24 21:23	1
9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	ND		2.0	0.24	ng/L		02/28/24 12:06	03/09/24 21:23	1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		4.0	1.5	ng/L		02/28/24 12:06	03/09/24 21:23	1
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	ND		2.0	0.32	ng/L		02/28/24 12:06	03/09/24 21:23	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		2.0	0.40	ng/L		02/28/24 12:06	03/09/24 21:23	1

Isotope Dilution	MB %Recovery	MB Qualifier	MB Limits	Prepared	Analyzed	Dil Fac
13C2 PFHxA	90		50 - 150		02/28/24 12:06	03/09/24 21:23
13C4 PFHpA	93		50 - 150		02/28/24 12:06	03/09/24 21:23
13C4 PFOA	102		50 - 150		02/28/24 12:06	03/09/24 21:23
13C5 PFNA	109		50 - 150		02/28/24 12:06	03/09/24 21:23
13C2 PFDA	107		50 - 150		02/28/24 12:06	03/09/24 21:23
13C2 PFUnA	94		50 - 150		02/28/24 12:06	03/09/24 21:23
13C2 PFDoA	97		50 - 150		02/28/24 12:06	03/09/24 21:23
13C2 PFTeDA	111		50 - 150		02/28/24 12:06	03/09/24 21:23
13C3 PFBS	76		50 - 150		02/28/24 12:06	03/09/24 21:23
18O2 PFHxS	100		50 - 150		02/28/24 12:06	03/09/24 21:23
13C4 PFOS	99		50 - 150		02/28/24 12:06	03/09/24 21:23
d3-NMeFOSAA	115		50 - 150		02/28/24 12:06	03/09/24 21:23
d5-NEtFOSAA	101		50 - 150		02/28/24 12:06	03/09/24 21:23
13C3 HFPO-DA	94		50 - 150		02/28/24 12:06	03/09/24 21:23

Lab Sample ID: LCS 320-743326/2-A

Matrix: Water

Analysis Batch: 745422

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 743326

Analyte	Spike Added	LCS Result	LCS Qualifier	Unit	D	%Rec	Limits
Perfluorohexanoic acid (PFHxA)	40.0	39.1		ng/L		98	72 - 129
Perfluoroheptanoic acid (PFHpA)	40.0	40.7		ng/L		102	72 - 130
Perfluorooctanoic acid (PFOA)	40.0	43.8		ng/L		110	71 - 133
Perfluorononanoic acid (PFNA)	40.0	40.5		ng/L		101	69 - 130

Eurofins Sacramento

QC Sample Results

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCS 320-743326/2-A				Client Sample ID: Lab Control Sample				
Matrix: Water				Prep Type: Total/NA				
Analysis Batch: 745422				Prep Batch: 743326				
Analyte		Spike Added	LCS Result	LCS Qualifier	Unit	D	%Rec	%Rec Limits
Perfluorodecanoic acid (PFDA)		40.0	38.1		ng/L	95	71 - 129	
Perfluoroundecanoic acid (PFUnA)		40.0	46.3		ng/L	116	69 - 133	
Perfluorododecanoic acid (PFDoA)		40.0	41.3		ng/L	103	72 - 134	
Perfluorotridecanoic acid (PFTriA)		40.0	41.9		ng/L	105	65 - 144	
Perfluorotetradecanoic acid (PFTeA)		40.0	36.4		ng/L	91	71 - 132	
Perfluorobutanesulfonic acid (PFBS)		35.5	36.9		ng/L	104	72 - 130	
Perfluorohexanesulfonic acid (PFHxS)		36.5	33.5		ng/L	92	68 - 131	
Perfluorooctanesulfonic acid (PFOS)		37.2	35.5		ng/L	95	65 - 140	
N-methylperfluorooctanesulfonic acid (NMeFOSAA)		40.0	36.7		ng/L	92	65 - 136	
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)		40.0	41.2		ng/L	103	61 - 135	
9-Chlorohexadecafluoro-3-oxanone-1-sulfonic acid		37.4	34.3		ng/L	92	77 - 137	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)		40.0	41.3		ng/L	103	72 - 132	
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid		37.8	35.8		ng/L	95	76 - 136	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)		37.8	35.6		ng/L	94	81 - 141	
Isotope Dilution		LCS %Recovery	LCS Qualifier	Limits				
13C2 PFHxA		107		50 - 150				
13C4 PFHpA		110		50 - 150				
13C4 PFOA		103		50 - 150				
13C5 PFNA		119		50 - 150				
13C2 PFDA		118		50 - 150				
13C2 PFUnA		99		50 - 150				
13C2 PFDoA		109		50 - 150				
13C2 PFTeDA		125		50 - 150				
13C3 PFBS		84		50 - 150				
18O2 PFHxS		107		50 - 150				
13C4 PFOS		114		50 - 150				
d3-NMeFOSAA		114		50 - 150				
d5-NEtFOSAA		113		50 - 150				
13C3 HFPO-DA		97		50 - 150				

Lab Sample ID: LCSD 320-743326/3-A

Matrix: Water
Analysis Batch: 745422

Analyte	Spike Added	LCSD Result	LCSD Qualifier	Unit	D	%Rec	%Rec Limits	RPD	RPD Limit
Perfluorohexanoic acid (PFHxA)	40.0	39.1		ng/L	98	72 - 129		0	30
Perfluoroheptanoic acid (PFHpA)	40.0	40.2		ng/L	101	72 - 130		1	30
Perfluorooctanoic acid (PFOA)	40.0	41.6		ng/L	104	71 - 133		5	30

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA
Prep Batch: 743326

QC Sample Results

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCSD 320-743326/3-A				Client Sample ID: Lab Control Sample Dup						
				Prep Type: Total/NA Prep Batch: 743326						
Analyte		Spike Added	LCSD Result	LCSD Qualifier	Unit	D	%Rec	Limits	RPD	RPD Limit
Perfluorononanoic acid (PFNA)		40.0	37.5		ng/L	94	69 - 130	8	30	
Perfluorodecanoic acid (PFDA)		40.0	41.1		ng/L	103	71 - 129	7	30	
Perfluoroundecanoic acid (PFUnA)		40.0	42.7		ng/L	107	69 - 133	8	30	
Perfluorododecanoic acid (PFDa)		40.0	40.4		ng/L	101	72 - 134	2	30	
Perfluorotridecanoic acid (PFTriA)		40.0	38.0		ng/L	95	65 - 144	10	30	
Perfluorotetradecanoic acid (PFTeA)		40.0	36.9		ng/L	92	71 - 132	1	30	
Perfluorobutanesulfonic acid (PFBS)		35.5	40.3		ng/L	113	72 - 130	9	30	
Perfluorohexanesulfonic acid (PFHxS)		36.5	32.9		ng/L	90	68 - 131	2	30	
Perfluorooctanesulfonic acid (PFOS)		37.2	37.0		ng/L	99	65 - 140	4	30	
N-methylperfluorooctanesulfonic acid (NMeFOSAA)		40.0	40.4		ng/L	101	65 - 136	9	30	
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)		40.0	39.1		ng/L	98	61 - 135	5	30	
9-Chlorohexadecafluoro-3-oxanone-1-sulfonic acid		37.4	38.4		ng/L	103	77 - 137	11	30	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)		40.0	41.0		ng/L	102	72 - 132	1	30	
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid		37.8	38.8		ng/L	103	76 - 136	8	30	
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)		37.8	38.6		ng/L	102	81 - 141	8	30	
Isotope Dilution		LCSD %Recovery	LCSD Qualifier	Limits						
13C2 PFHxA		103		50 - 150						
13C4 PFHpA		107		50 - 150						
13C4 PFOA		103		50 - 150						
13C5 PFNA		126		50 - 150						
13C2 PFDA		105		50 - 150						
13C2 PFUnA		96		50 - 150						
13C2 PFDa		118		50 - 150						
13C2 PFTeDA		113		50 - 150						
13C3 PFBS		80		50 - 150						
18O2 PFHxS		105		50 - 150						
13C4 PFOS		103		50 - 150						
d3-NMeFOSAA		113		50 - 150						
d5-NEtFOSAA		113		50 - 150						
13C3 HFPO-DA		99		50 - 150						

Lab Sample ID: 320-110023-A-1-B MS

Matrix: Water

Analysis Batch: 745422

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 743326

Analyte	Sample Result	Sample Qualifier	Spike Added	MS Result	MS Qualifier	Unit	D	%Rec	%Rec Limits
	Result	Qualifier	Added	Result	Qualifier	Unit	D	Rec	Limits
Perfluoroheptanoic acid (PFHpA)	20		32.6	54.3		ng/L	105	72 - 130	
Perfluorooctanoic acid (PFOA)	2.7		32.6	35.3		ng/L	100	71 - 133	

Eurofins Sacramento

QC Sample Results

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: 320-110023-A-1-B MS							Client Sample ID: Matrix Spike			
Matrix: Water							Prep Type: Total/NA			
Analysis Batch: 745422							Prep Batch: 743326			
Analyte	Sample Result	Sample Qualifier	Spike Added	MS Result	MS Qualifier	Unit	D	%Rec	Limits	
Perfluorononanoic acid (PFNA)	0.33	J	32.6	31.4		ng/L	95	69 - 130		
Perfluorodecanoic acid (PFDA)	ND		32.6	32.2		ng/L	99	71 - 129		
Perfluoroundecanoic acid (PFUnA)	ND		32.6	37.6		ng/L	115	69 - 133		
Perfluorododecanoic acid (PFDa)	0.57	J	32.6	33.4		ng/L	101	72 - 134		
Perfluorotridecanoic acid (PFTriA)	ND		32.6	30.0		ng/L	92	65 - 144		
Perfluorotetradecanoic acid (PFTeA)	ND		32.6	28.8		ng/L	88	71 - 132		
Perfluorobutanesulfonic acid (PFBS)	0.35	J	29.0	31.0		ng/L	106	72 - 130		
Perfluorohexanesulfonic acid (PFHxS)	ND		29.7	26.9		ng/L	91	68 - 131		
Perfluorooctanesulfonic acid (PFOS)	1.0	J	30.3	27.9		ng/L	89	65 - 140		
N-methylperfluorooctanesulfonamidoacetic acid (NMeFOSAA)	ND		32.6	33.7		ng/L	103	65 - 136		
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND		32.6	34.8		ng/L	107	61 - 135		
9-Chlorohexadecafluoro-3-oxanone-1-sulfonic acid	ND		30.5	30.5		ng/L	100	77 - 137		
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		32.6	33.4		ng/L	102	72 - 132		
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	ND		30.8	26.4		ng/L	86	76 - 136		
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		30.9	30.9		ng/L	100	81 - 141		
MS MS										
Isotope Dilution	%Recovery	Qualifier	Limits							
13C4 PFHpA	107		50 - 150							
13C4 PFOA	106		50 - 150							
13C5 PFNA	121		50 - 150							
13C2 PFDA	102		50 - 150							
13C2 PFUnA	90		50 - 150							
13C2 PFDa	93		50 - 150							
13C2 PFTeDA	86		50 - 150							
13C3 PFBS	88		50 - 150							
18O2 PFHxS	111		50 - 150							
13C4 PFOS	103		50 - 150							
d3-NMeFOSAA	114		50 - 150							
d5-NEtFOSAA	97		50 - 150							
13C3 HFPO-DA	100		50 - 150							

Lab Sample ID: 320-110023-A-1-C MSD

Matrix: Water
Analysis Batch: 745422

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA
Prep Batch: 743326

Analyte	Sample Result	Sample Qualifier	Spike Added	MSD Result	MSD Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Perfluoroheptanoic acid (PFHpA)	20		32.9	54.1		ng/L	103	72 - 130		0	30
Perfluorooctanoic acid (PFOA)	2.7		32.9	34.5		ng/L	97	71 - 133		2	30
Perfluorononanoic acid (PFNA)	0.33	J	32.9	31.3		ng/L	94	69 - 130		0	30

Eurofins Sacramento

QC Sample Results

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: 320-110023-A-1-C MSD							Client Sample ID: Matrix Spike Duplicate						
Matrix: Water							Prep Type: Total/NA						
Analysis Batch: 745422							Prep Batch: 743326						
Analyte	Sample Result	Sample Qualifier	Spike Added	MSD Result	MSD Qualifier	Unit	D	%Rec	Limits	RPD	RPD	Limit	Limit
Perfluorodecanoic acid (PFDA)	ND		32.9	29.5		ng/L		90	71 - 129	9	30		
Perfluoroundecanoic acid (PFUnA)	ND		32.9	34.3		ng/L		104	69 - 133	9	30		
Perfluorododecanoic acid (PFDa)	0.57	J	32.9	35.5		ng/L		106	72 - 134	6	30		
Perfluorotridecanoic acid (PFTriA)	ND		32.9	34.3		ng/L		104	65 - 144	14	30		
Perfluorotetradecanoic acid (PFTeA)	ND		32.9	27.2		ng/L		83	71 - 132	6	30		
Perfluorobutanesulfonic acid (PFBS)	0.35	J	29.2	29.0		ng/L		98	72 - 130	7	30		
Perfluorohexanesulfonic acid (PFHxS)	ND		30.0	25.4		ng/L		85	68 - 131	6	30		
Perfluorooctanesulfonic acid (PFOS)	1.0	J	30.6	29.0		ng/L		91	65 - 140	4	30		
N-methylperfluorooctanesulfonic acid (NMeFOSAA)	ND		32.9	33.8		ng/L		103	65 - 136	0	30		
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	ND		32.9	36.2		ng/L		110	61 - 135	4	30		
9-Chlorohexadecafluoro-3-oxanone-1-sulfonic acid	ND		30.7	30.1		ng/L		98	77 - 137	2	30		
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		32.9	32.6		ng/L		99	72 - 132	2	30		
11-Chloroeicosfluoro-3-oxaundecane-1-sulfonic acid	ND		31.0	26.9		ng/L		87	76 - 136	2	30		
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	ND		31.1	32.2		ng/L		103	81 - 141	4	30		
Isotope Dilution		MSD %Recovery	MSD Qualifier	MSD Limits									
13C4 PFHpA		112		50 - 150									
13C4 PFOA		110		50 - 150									
13C5 PFNA		122		50 - 150									
13C2 PFDA		104		50 - 150									
13C2 PFUnA		102		50 - 150									
13C2 PFDa		95		50 - 150									
13C2 PFTeDA		96		50 - 150									
13C3 PFBS		96		50 - 150									
18O2 PFHxS		114		50 - 150									
13C4 PFOS		109		50 - 150									
d3-NMeFOSAA		107		50 - 150									
d5-NEtFOSAA		110		50 - 150									
13C3 HFPO-DA		104		50 - 150									

Lab Sample ID: MB 320-746513/1-A							Client Sample ID: Method Blank						
Matrix: Water							Prep Type: Total/NA						
Analysis Batch: 747543							Prep Batch: 746513						
Analyte	MB Result	MB Qualifier	MB RL	MB MDL	MB Unit	MB D	Prepared	Prepared	Analyzed	Analyzed	Dil Fac		
Perfluorotetradecanoic acid (PFTeA)	ND		2.0	0.73	ng/L		03/13/24 05:27	03/16/24 05:10			1		
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Prepared	Analyzed	Analyzed	Dil Fac		
13C2 PFTeDA	81		50 - 150				03/13/24 05:27	03/16/24 05:10			1		

Eurofins Sacramento

QC Sample Results

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Method: EPA 537(Mod) - PFAS for QSM 5.3, Table B-15 (Continued)

Lab Sample ID: LCS 320-746513/2-A

Matrix: Water

Analysis Batch: 747543

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 746513

Analyte	Spike Added	LCS Result	LCS Qualifier	Unit	D	%Rec	%Rec Limits
Perfluorotetradecanoic acid (PFTeA)	40.0	42.9		ng/L	107	71 - 132	
<i>Isotope Dilution</i>							
<i>13C2 PFTeDA</i>							
	86			50 - 150			

Lab Sample ID: LCSD 320-746513/3-A

Matrix: Water

Analysis Batch: 747543

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 746513

Analyte	Spike Added	LCSD Result	LCSD Qualifier	Unit	D	%Rec	%Rec Limits	RPD	RPD Limit
Perfluorotetradecanoic acid (PFTeA)	40.0	44.1		ng/L	110	71 - 132		3	30
<i>Isotope Dilution</i>									
<i>13C2 PFTeDA</i>									
	82			50 - 150					

Eurofins Sacramento

QC Association Summary

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

LCMS

Prep Batch: 743326

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-110042-1	MW-TS-4	Total/NA	Water	3535	1
320-110042-2	MW-TS-3	Total/NA	Water	3535	2
320-110042-3	MW-TS-2	Total/NA	Water	3535	3
320-110042-4	GAC-1	Total/NA	Water	3535	4
320-110042-5	MW-TS-1	Total/NA	Water	3535	5
320-110042-6	MW-TS-101	Total/NA	Water	3535	6
320-110042-7	EB-1	Total/NA	Water	3535	7
MB 320-743326/1-A	Method Blank	Total/NA	Water	3535	8
LCS 320-743326/2-A	Lab Control Sample	Total/NA	Water	3535	9
LCSD 320-743326/3-A	Lab Control Sample Dup	Total/NA	Water	3535	10
320-110023-A-1-B MS	Matrix Spike	Total/NA	Water	3535	11
320-110023-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	3535	12

Analysis Batch: 745422

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-110042-1	MW-TS-4	Total/NA	Water	EPA 537(Mod)	743326
320-110042-2	MW-TS-3	Total/NA	Water	EPA 537(Mod)	743326
320-110042-3	MW-TS-2	Total/NA	Water	EPA 537(Mod)	743326
320-110042-4	GAC-1	Total/NA	Water	EPA 537(Mod)	743326
320-110042-5	MW-TS-1	Total/NA	Water	EPA 537(Mod)	743326
320-110042-6	MW-TS-101	Total/NA	Water	EPA 537(Mod)	743326
320-110042-7	EB-1	Total/NA	Water	EPA 537(Mod)	743326
MB 320-743326/1-A	Method Blank	Total/NA	Water	EPA 537(Mod)	743326
LCS 320-743326/2-A	Lab Control Sample	Total/NA	Water	EPA 537(Mod)	743326
LCSD 320-743326/3-A	Lab Control Sample Dup	Total/NA	Water	EPA 537(Mod)	743326
320-110023-A-1-B MS	Matrix Spike	Total/NA	Water	EPA 537(Mod)	743326
320-110023-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Water	EPA 537(Mod)	743326

Prep Batch: 746513

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-110042-7 - RE	EB-1	Total/NA	Water	3535	1
MB 320-746513/1-A	Method Blank	Total/NA	Water	3535	2
LCS 320-746513/2-A	Lab Control Sample	Total/NA	Water	3535	3
LCSD 320-746513/3-A	Lab Control Sample Dup	Total/NA	Water	3535	4

Analysis Batch: 747543

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
320-110042-7 - RE	EB-1	Total/NA	Water	EPA 537(Mod)	746513
MB 320-746513/1-A	Method Blank	Total/NA	Water	EPA 537(Mod)	746513
LCS 320-746513/2-A	Lab Control Sample	Total/NA	Water	EPA 537(Mod)	746513
LCSD 320-746513/3-A	Lab Control Sample Dup	Total/NA	Water	EPA 537(Mod)	746513

Lab Chronicle

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Client Sample ID: MW-TS-4

Date Collected: 02/22/24 11:08

Date Received: 02/27/24 15:03

Lab Sample ID: 320-110042-1

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			281.3 mL	10.0 mL	743326	02/28/24 12:06	ERR	EET SAC
Total/NA	Analysis	EPA 537(Mod)		1	1 mL	1 mL	745422	03/09/24 22:43	C1P	EET SAC

Client Sample ID: MW-TS-3

Date Collected: 02/22/24 13:05

Date Received: 02/27/24 15:03

Lab Sample ID: 320-110042-2

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			283.7 mL	10.0 mL	743326	02/28/24 12:06	ERR	EET SAC
Total/NA	Analysis	EPA 537(Mod)		1	1 mL	1 mL	745422	03/09/24 22:54	C1P	EET SAC

Client Sample ID: MW-TS-2

Date Collected: 02/22/24 14:37

Date Received: 02/27/24 15:03

Lab Sample ID: 320-110042-3

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			270.3 mL	10.0 mL	743326	02/28/24 12:06	ERR	EET SAC
Total/NA	Analysis	EPA 537(Mod)		1	1 mL	1 mL	745422	03/09/24 23:05	C1P	EET SAC

Client Sample ID: GAC-1

Date Collected: 02/22/24 14:52

Date Received: 02/27/24 15:03

Lab Sample ID: 320-110042-4

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			271.3 mL	10.0 mL	743326	02/28/24 12:06	ERR	EET SAC
Total/NA	Analysis	EPA 537(Mod)		1	1 mL	1 mL	745422	03/09/24 23:28	C1P	EET SAC

Client Sample ID: MW-TS-1

Date Collected: 02/22/24 16:15

Date Received: 02/27/24 15:03

Lab Sample ID: 320-110042-5

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			277.4 mL	10.0 mL	743326	02/28/24 12:06	ERR	EET SAC
Total/NA	Analysis	EPA 537(Mod)		1	1 mL	1 mL	745422	03/09/24 23:40	C1P	EET SAC

Client Sample ID: MW-TS-101

Date Collected: 02/22/24 16:05

Date Received: 02/27/24 15:03

Lab Sample ID: 320-110042-6

Matrix: Water

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			266.9 mL	10.0 mL	743326	02/28/24 12:06	ERR	EET SAC
Total/NA	Analysis	EPA 537(Mod)		1	1 mL	1 mL	745422	03/09/24 23:51	C1P	EET SAC

Eurofins Sacramento

Lab Chronicle

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Client Sample ID: EB-1

Lab Sample ID: 320-110042-7

Matrix: Water

Date Collected: 02/22/24 16:30

Date Received: 02/27/24 15:03

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3535			275.6 mL	10.0 mL	743326	02/28/24 12:06	ERR	EET SAC
Total/NA	Analysis	EPA 537(Mod)		1	1 mL	1 mL	745422	03/10/24 00:02	C1P	EET SAC
Total/NA	Prep	3535	RE		255.2 mL	10.0 mL	746513	03/13/24 05:27	HJA	EET SAC
Total/NA	Analysis	EPA 537(Mod)	RE	1			747543	03/16/24 05:50	AP1	EET SAC

Laboratory References:

EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Accreditation/Certification Summary

Client: Shannon & Wilson, Inc

Project/Site: DOT P:F, FAI Talspruce

Job ID: 320-110042-1

Laboratory: Eurofins Sacramento

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Alaska (UST)	State	17-020	02-20-27

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Eurofins Sacramento

Method Summary

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Method	Method Description	Protocol	Laboratory
EPA 537(Mod) 3535	PFAS for QSM 5.3, Table B-15 Solid-Phase Extraction (SPE)	EPA SW846	EET SAC EET SAC

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Sample Summary

Client: Shannon & Wilson, Inc
Project/Site: DOT P:F, FAI Tallspruce

Job ID: 320-110042-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
320-110042-1	MW-TS-4	Water	02/22/24 11:08	02/27/24 15:03
320-110042-2	MW-TS-3	Water	02/22/24 13:05	02/27/24 15:03
320-110042-3	MW-TS-2	Water	02/22/24 14:37	02/27/24 15:03
320-110042-4	GAC-1	Water	02/22/24 14:52	02/27/24 15:03
320-110042-5	MW-TS-1	Water	02/22/24 16:15	02/27/24 15:03
320-110042-6	MW-TS-101	Water	02/22/24 16:05	02/27/24 15:03
320-110042-7	EB-1	Water	02/22/24 16:30	02/27/24 15:03

CHAIN-OF-CUSTODY RECORD

Laboratory Eurofins
Attn: David Alltucker

Analytical Methods (include preservative if used)

Turn Around Time:
 Normal Rush

Quote No: _____
MSA Number: _____
J-Flags: Yes No

320-110042 Chain of Custody

Project Information		Sample Receipt		Relinquished By: 1.		Relinquished By: 2.		Relinquished By: 3.	
Number	102519-029	Total No of Containers		Signature	Time 1430	Signature	Time _____	Signature	Time _____
Name	DOI PFE FAI Tall Spine	COC Seals/Intact? Y/N/NA		Printed Name <i>Shivja Kreiles</i>		Date 2/26/24	Printed Name. Date _____	Printed Name	Date _____
Contact	AMJ	Received Good Cond /Cold				Company	<i>Shannon & Wilson</i>	Company	Company
Ongoing Project?	Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>	Temp	0.3°C						
Sampler	SDK	Delivery Method							
Notes:					DOD QSM v53, table B-15				
Distribution White - w/shipment - returned to Shannon & Wilson w/ laboratory report Yellow - Shannon & Wilson - job file									

Distribution White - w/shipment - returned to Shannon & Wilson w/ laboratory report
Yellow - Shannon & Wilson - job file

Environment Testing

Loc: 320

110042

Tracking # : Q27-70206496

Job: _____

SO / PO / FO / SAT / 2-Day / Ground / UPS / CDO / Courier
GSL / OnTrac / ~~Goldstreak~~ / USPS / Other

Use this form to record Sample Custody Seal, Cooler Custody Seal, Temperature & corrected Temperature & other observations. File in the job folder with the COC.

Therm. ID: <u>L06</u>	Corr. Factor: (+ / -) <u>NA</u> °C	Notes: _____ _____ _____ _____ _____ _____
Ice _____	Wet _____	Gel <input checked="" type="checkbox"/> Other _____
Cooler Custody Seal: <u>1548594</u>		
Cooler ID: _____		
Temp Observed: <u>0.3</u> °C		
Corrected: <u>0.3</u> °C		
From: Temp Blank <input checked="" type="checkbox"/> Sample <input type="checkbox"/>		
Opening/Processing The Shipment		
Yes	No	NA
Cooler compromised/tampered with? <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/>		
Cooler Temperature is acceptable? <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>		
Frozen samples show signs of thaw? <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>		
Initials: <u>DM</u> Date: <u>02/27/24</u>		
Unpacking/Labeling The Samples		
Yes	No	NA
Containers are not broken or leaking? <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>		
Samples compromised/tampered with? <input type="checkbox"/> <input checked="" type="checkbox"/> <input type="checkbox"/>		
COC is complete w/o discrepancies <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>		
Sample custody seal? <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>		
Sample containers have legible labels? <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>		
Sample date/times are provided? <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>		
Appropriate containers are used? <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>		
Sample bottles are completely filled? <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>		
Sample preservatives verified? <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>		
Is the Field Sampler's name on COC? <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>		
Samples w/o discrepancies? <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>		
Zero headspace?* <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>		
Alkalinity has no headspace? <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>		
Perchlorate has headspace? (Methods 314, 331, 6850) <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>		
Multiphasic samples are not present? <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>		
*Containers requiring zero headspace have no headspace, or bubble < 6 mm (1/4")		
Initials: <u>DM</u> Date: <u>02/27/24</u>		
Trizma Lot #(s): _____ _____		
Ammonium		
Acetate Lot #(s): _____ _____		
Login Completion		
Yes	No	NA
Receipt Temperature on COC? <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>		
NCM Filed? <input type="checkbox"/> <input type="checkbox"/> <input checked="" type="checkbox"/>		
Samples received within hold time? <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>		
Log Release checked in TALS? <input checked="" type="checkbox"/> <input type="checkbox"/> <input type="checkbox"/>		
Initials: <u>DM</u> Date: <u>02/27/24</u>		

*Containers requiring zero headspace have no headspace, or bubble < 6 mm (1/4")

Initials: DM Date: 02/27/24

Initials: DM Date: 02/27/24

1 Login Sample Receipt Checklist

2 Client: Shannon & Wilson, Inc

3 Job Number: 320-110042-1

4 **Login Number: 110042**

5 **List Source: Eurofins Sacramento**

6 **List Number: 1**

7 **Creator: Morazzini, Dominic S**

Question	Answer	Comment
Radioactivity wasn't checked or is </= background as measured by a survey meter.	True	REFER TO SSRN
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	N/A	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	N/A	
Cooler Temperature is recorded.	N/A	
COC is present.	N/A	
COC is filled out in ink and legible.	N/A	
COC is filled out with all pertinent information.	N/A	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	N/A	
Samples are received within Holding Time (excluding tests with immediate HTs)	N/A	
Sample containers have legible labels.	N/A	
Containers are not broken or leaking.	N/A	
Sample collection date/times are provided.	N/A	
Appropriate sample containers are used.	N/A	
Sample bottles are completely filled.	N/A	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	N/A	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

ADEC Contaminated Sites Program Laboratory Data Review Checklist

Completed By:	Silvija Kreilis	CS Site Name:	FIA – Sitewide PFAS	Lab Name:	Eurofins Environment Testing
Title:	Environmental Scientist	ADEC File No.:	100.38.277	Lab Report No.:	320-110042-1
Consulting Firm:	Shannon & Wilson, Inc.	Hazard ID No.:	26816	Lab Report Date:	3/22/2024

Note: Any N/A or No box checked must have an explanation in the comments box.

1. Laboratory

a. Did an ADEC Contaminated Sites Laboratory Approval Program (CS-LAP) approved laboratory receive and perform all of the submitted sample analyses?

Yes No N/A

Comments: Project samples were sent to Eurofins Environment Testing (Eurofins) in Sacramento, California. Eurofins analyzed project samples for PFAS by EPA 537(Mod), a LCMSMS method compliant with the DoD QSM Version 5.3 Table B-15, under DEC approval 17-020 dated 2/21/24, expiring 2/20/2027.

b. If the samples were transferred to another “network” laboratory or sub-contracted to an alternate laboratory, was the laboratory performing the analyses CS-LAP approved?

Yes No N/A

Comments: Project samples were not transferred to another ‘network’ laboratory or sub-contracted to an alternate laboratory.

2. Chain of Custody (CoC)

a. Is the CoC information completed, signed, and dated (including released/received by)?

Yes No N/A

Comments:

b. Were the correct analyses requested?

Yes No N/A

Analyses requested: PFAS by EPA 537(Mod), compliant with DoD QSM 5.3 Table B-15.

Comments: Analysis was performed as requested.

3. Laboratory Sample Receipt Documentation

a. Is the sample/cooler temperature documented and within range at receipt (0° to 6° C)?

Yes No N/A

Cooler temperature(s): Cooler temperature was not reported by the laboratory.

Sample temperature(s): A temperature blank was included with the samples in the cooler and is used to assess temperature preservation. The COC sample receiving notes indicate the temperature blank was 0.3° C at sample login

Comments: The temperature blank was within the acceptable temperature range of 0°C to 6°C.

b. Is the sample preservation acceptable – acidified waters, methanol preserved soil (GRO, BTEX, VOCs, etc.)?

Yes No N/A

Comments: Sample preservation outside of temperature control is not required for PFAS analysis.

c. Is the sample condition documented – broken, leaking, zero headspace (VOA vials); canister vacuum/pressure checked and no open valves, etc.?

Yes No N/A

Comments: The laboratory sample receipt form notes that project samples arrived in acceptable condition, properly preserved, and within an acceptable temperature range.

d. If there were any discrepancies, were they documented? For example, incorrect sample containers/preservation, sample temperature outside of acceptable range, insufficient or missing samples, canister not holding a vacuum, etc.?

Yes No N/A

Comments: No sample discrepancies are noted on the laboratory sample receipt form.

e. Is the data quality or usability affected?

Yes No N/A

Comments: See above.

4. Case Narrative

a. Is the case narrative present and understandable?

Yes No N/A

Comments:

b. Are there discrepancies, errors, or QC failures identified by the lab?

Yes No N/A

Comments:

The Isotope Dilution Analyte (IDA) recovery associated with the following sample is below the method recommended limit: *MW-TS-2* (320-110042-3). Generally, data quality is not considered affected if the IDA signal-to-noise ratio is greater than 10:1, which is achieved for all IDA in the sample. See section 6.d. for details regarding impacts on data quality and/or usability, as applicable.

The "I" qualifier means the transition mass ratio for the indicated analyte was outside the established ratio limits. The qualitative identification of the analyte has some degree of uncertainty. However, analyst judgment was used to positively identify the analyte: *MW-TS-3* (320-110042-2). See section 7.a. for details regarding impacts on data quality and/or usability, as applicable.

Internal standard (ISTD) response for the following sample was outside control limits: *MW-TS-2* (320-110042-3). The sample was re-analyzed and ISTD response was still outside control limits. The ISTD is not used to calculate analyte concentration therefore there is no adverse impact from this anomaly. Based on the comments in the case narrative, sample *MW-TS-2* may have matrix interference contributing to the ISTD failures. Therefore, the results for the noted sample are considered estimates, no direction of bias and are flagged 'J*' in the analytical table. The data is considered affected as noted, however, the data is considered usable with applied flags.

The following Equipment Blank (EB) sample: *EB-1* (320-110042-7) was re-extracted past holding time due to suspected lab contamination for Perfluorotetradecanoic acid (PFTeA) detected above the 1/2RL. The re-extraction data analysis was non-detect. Therefore, both sets of data were reported. See section 5.b and 6.g for details regarding impacts to data quality and/or usability, as applicable.

The following samples in preparation batch 320-743326 were yellow in color prior to extraction. *MW-TS-4* (320-110042-1), *MW-TS-3* (320-110042-2), *MW-TS-2* (320-110042-3), *GAC-1* (320-110042-4), *MW-TS-1* (320-110042-5) and *MW-TS-101* (320-110042-6). Data quality and/or usability not affected.

The following samples in preparation batch 320-743326 were observed to have floating particulates present in the sample bottle. *MW-TS-4* (320-110042-1), *MW-TS-3* (320-110042-2), *MW-TS-2* (320-110042-3), *GAC-1* (320-110042-4), *MW-TS-1* (320-110042-5) and *MW-TS-101* (320-110042-6). Data quality and/or usability not affected.

The following samples in preparation batch 320-743326 were yellow in color following extraction. *MW-TS-2* (320-110042-3), *MW-TS-1* (320-110042-5) and *MW-TS-101* (320-110042-6). Data quality and/or usability not affected.

Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-746513. See section 6.b. for details regarding impacts on data quality and/or usability, as applicable.

The following sample was re-prepared outside of preparation holding time due to blank hit confirmation: *EB-1* (320-110042-7). See section 5.b and 6.g for details regarding impacts to data quality and/or usability, as applicable.

c. Were all the corrective actions documented?

Yes No N/A

Comments: See above.

d. What is the effect on data quality/usability according to the case narrative?

Comments: The effects on data quality/usability noted in the case narrative are discussed in section 4.b., above, or elsewhere in this checklist.

5. Sample Results

a. Are the correct analyses performed/reported as requested on CoC?

Yes No N/A

Comments:

b. Are all applicable holding times met?

Yes No N/A

Comments: The project samples were extracted within holding times; however, *EB-1* was re-extracted past holding time. The laboratory confirmed PFTeA contamination in the original sample and therefore the PFTeA from the extraction outside of hold time is used for reporting purposes. The non-detect result is considered a tentatively identified estimate, no direction of bias and is flagged 'N*' in the analytical data table. The data is considered affected as noted, however, the data is considered usable with applied flags.

c. Are all soils reported on a dry weight basis?

Yes No N/A

Comments: Soil samples were not included in this work order.

d. Are the reported limits of quantitation (LOQ) or limits of detections (LOD), or reporting limits (RL) less than the Cleanup Level or the action level for the project?

Yes No N/A

Comments:

e. Is the data quality or usability affected?

Yes No N/A

Comments: See above.

6. QC Samples

a. Method Blank

i. Was one method blank reported per matrix, analysis, and 20 samples?

Yes No N/A

Comments:

ii. Are all method blank results less than LOQ (or RL)?

Yes No

Comments: No analytes are detected in method blank samples.

iii. If above LOQ or RL, what samples are affected?

Comments: Not applicable, see above.

iv. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes No N/A

Comments: See above.

v. Data quality or usability affected?

Yes No N/A

Comments: See above.

b. Laboratory Control Sample/Duplicate (LCS/LCSD)

i. Organics – Are one LCS/LCSD reported per matrix, analysis and 20 samples? (LCS/LCSD required per AK methods, LCS required per SW846)

Yes No N/A

Comments:

ii. Metals/Inorganics – Are one LCS and one sample duplicate reported per matrix, analysis and 20 samples?

Yes No N/A

Comments: Metals/inorganic analyses were not included in this work order.

iii. Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods: AK101 60%-120%, AK102 75%-125%, AK103 60%-120%; all other analyses see the laboratory QC pages)

Yes No N/A

Comments:

iv. Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? Was the RPD reported from LCS/LCSD, and or sample/sample duplicate? (AK Petroleum methods 20%; all other analyses see the laboratory QC pages)

Yes No N/A

Comments:

v. If %R or RPD is outside of acceptable limits, what samples are affected? Comments: Not applicable, see above.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes No N/A

Comments: See above.

vii. Is the data quality or usability affected?

Yes No N/A

Comments: Data quality/usability is not affected; see above.

c. Matrix Spike/Matrix Spike Duplicate (MS/MSD)

i. Organics – Are one MS/MSD reported per matrix, analysis and 20 samples?

Yes No N/A

Comments: Insufficient sample volume was available to perform a MS/MSD associated with preparation batch 320-746513. Batch accuracy and precision is evaluated using the LCS/LCSD samples associated with these respective batches. See section 6.b., above. Data quality/usability is not affected.

ii. Metals/Inorganics – Are one MS/MSD reported per matrix, analysis and 20 samples?

Yes No N/A

Comments: Metals/inorganic analyses were not requested for samples included in the work order.

iii. Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable?

Yes No N/A

Comments: See above.

iv. Precision – Are all relative percent differences (RPD) reported and less than method or laboratory limits and project specified objectives, if applicable? RPD reported from MS/MSD, and or sample/sample duplicate.

Yes No N/A

Comments: See above.

v. If %R or RPD is outside of acceptable limits, what samples are affected?
Comments: Not applicable, see above.

vi. Do the affected sample(s) have data flags? If so, are the data flags clearly defined?

Yes No N/A

Comments: See above.

vii. Is the data quality or usability affected?

Yes No N/A

Comments: See above.

d. Surrogates – Organics Only or Isotope Dilution Analytes (IDA) – Isotope Dilution Methods Only

i. Are surrogate/IDA recoveries reported for organic analyses – field, QC, and laboratory samples?

Yes No N/A

Comments:

ii. Accuracy – Are all percent recoveries (%R) reported and within method or laboratory limits and project specified objectives, if applicable? (AK Petroleum methods 50-150 %R for field samples and 60-120 %R for QC samples; all other analyses see the laboratory report pages)

Yes No N/A

Comments: The IDA recovery associated with sample *MW-TS-2* (320-110042-3) is below the method recommended limit for 13C2 PFDoA. The associated project sample analytes (PFDoA and PFTriA) are considered estimates, no direction of bias, and are flagged 'J*' in the analytical table. The data is considered affected as noted, however, the data is considered usable with applied flags.

iii. Do the sample results with failed surrogate/IDA recoveries have data flags? If so, are the data flags clearly defined?

Yes No N/A

Comments: See above

iv. Is the data quality or usability affected?

Yes No N/A

Comments: See above.

e. Trip Blanks

i. Is one trip blank reported per matrix, analysis, and for each cooler

containing volatile samples? Yes No N/A

Comments: No volatile samples were included in this work order. No trip blank needed.

ii. Are all results less than LOQ or RL?

Yes No N/A

Comments: See above

iii. If above LOQ or RL, what samples are affected?

Comments: Not applicable, see above.

iv. Is the data quality or usability affected?

Yes No N/A

Comments: See above.

f. Field Duplicate

i. Are one field duplicate submitted per matrix, analysis, and 10 project samples?

Yes No N/A

Comments: Sample *MW-TS-101* is a duplicate of corresponding sample *MW-TS-1*.

ii. Was the duplicate submitted blind to lab?

Yes No N/A

Comments:

iii. Precision – All relative percent differences (RPD) less than specified project objectives? (Recommended: 30% water or air, 50% soil)

$$RPD (\%) = \left| \frac{R_1 - R_2}{\left(\frac{R_1 + R_2}{2} \right)} \right| \times 100$$

Where R_1 = Sample Concentration

R_2 = Field Duplicate Concentration

Yes No N/A

Comments: Where calculable, analytical results met the comparison criterion ($\leq 30\%$ for water) for the field duplicate pair.

iv. Is the data quality or usability affected? (Explain)

Yes No N/A

Comments: See above.

g. Decontamination or Equipment Blanks

i. Were decontamination or equipment blanks collected?

Yes No N/A

Comments: An equipment blank sample designated *EB-1* was included with the work order.

ii. Are all results less than LOQ or RL?

Yes No N/A

Comments: Perfluorotetradecanoic acid (PFTeA) was detected at a concentration less than the LOQ in the original batch. It was suspected to be a result of lab contamination and the sample was re-extracted outside of hold time. PFTeA was not detected in the re-extracted sample or any of the associated project samples. Data quality and/or usability not affected.

iii. If above LOQ or RL, specify what samples are affected.

Comments: Not applicable, see above.

iv. Are data quality or usability affected?

Yes No N/A

Comments: See above.

7. Other Data Flags/Qualifiers (ACOE, AFCEE, Lab Specific, etc.)

a. Are they defined and appropriate?

Yes No N/A

Comments: The "I" qualifier means the transition mass ratio for the indicated analyte was outside the established ratio limits. The qualitative identification of the analyte has some degree of uncertainty. However, analyst judgment was used to positively identify PFHpA for sample *MW-TS-3* (320-110042-2). The result is considered estimated, no direction of bias, and is flagged 'J*' in the analytical data table. The data is considered affected as noted, however, the data is considered usable with applied flags.

Appendix C

QA/QC Summary

CONTENTS

C.1	Introduction	1
C.1.1	Analytical Methods and Data Quality Objectives	1
C.1.2	Summary of Groundwater Samples	2
C.2	Groundwater Data Quality Review	3
C.2.1	Sample Collection.....	3
C.2.2	Sample Handling.....	3
C.2.3	Method Blanks.....	3
C.2.4	Laboratory Control Samples.....	4
C.2.5	Matrix Spike Sample and Sample Duplicates	4
C.2.6	Isotope Dilution Analyte.....	4
C.2.7	Field Duplicates.....	4
C.2.8	Additional Quality Control Discrepancies	4
C.2.9	Analytical Sensitivity	5
C.2.10	Summary of Qualified Results	5
C.2.11	Completeness.....	6

Exhibits

Exhibit C-1: Summary of Qualified Results	5
---	---

APPENDIX C: QA/QC SUMMARY

°C	degrees Celsius
DEC	Alaska Department of Environmental Conservation
DQO	data quality objective
Eurofins	Eurofins Environment Testing
IDA	isotope dilution analyte
LCS	laboratory control sample
LCSD	laboratory control sample duplicate
LDRC	Laboratory Data Review Checklist
MS	matrix spike
MSD	MS duplicate
MW	monitoring well
PFAS	per- and polyfluoroalkyl substances
QA	quality assurance
QC	quality control
QSM	Quality Systems Manual
RPD	relative percent difference
WO	work order

C.1 INTRODUCTION

This quality assurance (QA)/quality control (QC) summary outlines our technical review of analytical results generated in support of monitoring well (MW) groundwater sampling in the Tall Spruce neighborhood in October 2023 and February 2024.

Shannon & Wilson, Inc (S&W) reviewed project samples and QC analytical data to assess whether the data met the designated data quality objectives (DQOs) and were acceptable for project use. The project data were reviewed for deviations to the requirements presented in *Final General Work Plan Addendum 026-FAI-002* (Addendum), dated August 2023 and approved by the Alaska Department of Environmental Conservation (DEC) on October 6, 2023. As applicable, the review includes evaluation of sample collection and handling, holding times, blanks, project samples and laboratory QC sample duplicates, laboratory control samples (LCSs) and sample surrogate or isotope dilution analyte (IDA) recoveries, and matrix spike sample (MS) recoveries. Calibration curves and continuing calibration verification recoveries were not reviewed unless a QC discrepancy was noted by the laboratory in a case narrative. QC deviations that do not impact data quality are not discussed in this summary. Full data quality descriptions are reported in the DEC Laboratory Data Review Checklists (LDRC) prepared for each laboratory report. LDRCs and laboratory reports are included in Appendix B.

Groundwater sample data quality is discussed in the following sections. Data which did not meet acceptance criteria have been described and the associated samples and data quality implications or qualifications are summarized.

C.1.1 Analytical Methods and Data Quality Objectives

The analytical methods and associated DQOs used for this review were established in the Addendum. The DQOs represent the minimum acceptable QC limits and goals for analytical measurements and are used as comparison criteria during data quality review to determine both the quality and usability of the analytical data.

The six DQOs used for this review were accuracy, precision, representativeness, comparability, sensitivity, and completeness.

- Accuracy measures the correctness, or the closeness, between the true value and the quantity detected. It is measured by calculating the percent recovery of known concentrations of spiked compounds that were introduced into the appropriate sample matrix. Surrogate or IDA, LCS, and MS sample recoveries are used to measure accuracy.

- Precision measures the reproducibility of repetitive measurements. It is measured by calculating the relative percent difference (RPD) between duplicate samples. Laboratory duplicate samples, field duplicate samples, MS and matrix spike duplicate sample (MSD) sample pairs, and LCS and laboratory control sample duplicate (LCSD) pairs are used to measure precision.
- Representativeness describes the degree to which data accurately and precisely represents site characteristics. This is addressed in more detail in the following section(s).
- Comparability describes whether two data sets can be considered equivalent with respect to the project goal. This is addressed in more detail in the following section(s).
- Sensitivity describes the lowest concentration that the analytical method can reliably quantitate and is evaluated by verifying that the detected results and/or limits of detection meet the project-specific cleanup levels and/or screening levels.
- Completeness describes the amount of valid data obtained from the sampling event(s). It is calculated as the percentage of valid measurements compared to the total number of measurements. The completeness goal for this project was set at 90 percent.

In addition to these criteria for the six DQOs described above, sample collection and handling procedures and blank samples were reviewed to ensure overall data quality. Sample collection forms were reviewed to verify that representative samples were collected. Sample handling was reviewed to assess parameters such as chain-of-custody documentation, the use of appropriate sample containers and preservatives, shipment cooler temperature, and method-specified sample holding times. Each of these parameters contributes to the general representativeness and comparability of the project data. The combination of evaluations of the above-mentioned items leads to a determination of the overall project data completeness.

C.1.2 Summary of Groundwater Samples

A total of ten groundwater samples were collected from MWs on Tall Spruce during October 2023 and February 2024. Five samples (including one field duplicate) were collected during the October 2023 event and five samples (including one field duplicate) were collected during the February 2024 event. An equipment blank sample and granular activated carbon effluent sample were also collected during each event.

Project samples were sent to Eurofins Environment Testing (Eurofins) in Sacramento, California. Groundwater samples were shipped via Alaska Airlines Goldstreak service from Fairbanks to Eurofins. Eurofins analyzed project samples for per- and polyfluoroalkyl substances (PFAS) by 537(Mod), compliant with the U.S. Department of Defense Quality

Systems Manual Version 5.3 Table B-15, under DEC approval 17-020 dated February 21, 2024.

The October 2023 laboratory report was assigned the work order (WO) number 320-106532-1. The February 2024 laboratory report was assigned the WO number 320-110042-1.

C.2 GROUNDWATER DATA QUALITY REVIEW

This section presents the findings of the data quality review and the resulting data qualifications for the groundwater samples. See the associated LDRCs in Appendix B for more elaborate data quality assessment descriptions.

C.2.1 Sample Collection

Sample collection forms (Appendix A) were reviewed to confirm samples were collected as identified in the Addendum. No sample collection discrepancies were noted.

C.2.2 Sample Handling

The evaluation of proper sample handling procedures includes verification of the following: correct chain-of-custody documentation, appropriate sample containers and preservatives, cooler temperatures maintained within the DEC-recommended temperature range (0 to 6 degrees Celsius [$^{\circ}\text{C}$]), and sample analyses performed within method-specified holding times. The following sample handling discrepancy was identified.

- WO 320-110042-1: The project samples were extracted within holding times; however, EB-1 was re-extracted past holding time. The laboratory confirmed PFTeA contamination in the original sample and therefore the PFTeA from the extraction outside of hold time is used for reporting purposes. The non-detect result is considered a tentatively identified estimate, no direction of bias and is flagged 'N*' in the analytical data table. The data is considered affected as noted, however, the data is considered usable with applied flags.

C.2.3 Method Blanks

Method blanks were utilized to detect potential laboratory cross-contamination of project samples. Samples are considered affected if they are detected within ten times the concentration of the detection in the method blank. Blank samples were analyzed in every batch, as required. No project analytes were detected in method blank samples.

C.2.4 Laboratory Control Samples

The LCS/LCSD samples were prepared by adding spike compounds to blank samples to assess laboratory extraction and instrumentation performance. An LCS/LCSD pair was reported in each WO. LCS/LCSD recoveries and/or RPDs were within laboratory and project limits and did not result in qualification of the data.

C.2.5 Matrix Spike Sample and Sample Duplicates

MS/MSD samples were not reported in either WO due to insufficient sample volumes. Accuracy and precision for samples in this WO were evaluated using the LCS/LCSD.

C.2.6 Isotope Dilution Analyte

IDA compounds were added to project samples by the laboratory prior to analysis, in accordance with method requirements. IDA recoveries were then calculated as percentages and reported by the laboratory as a measure of analytical extraction efficiency. The following IDA discrepancies were identified.

- WO 320-106532-1: PFAS IDAs 13C2 PFDoA and 13C2 PFTeDA were recovered low in sample MW-TS-1 associated with preparatory batch 320-718877. Associated analytes PFDoA, PFTriA, and PFTeA were not detected in the noted sample. Consequently, the result of the aforementioned analytes in sample MW-TS-1 are considered estimates, no direction of bias, and flagged 'J*' in the analytical table. The data is considered affected as noted, however, the data is considered usable with applied flags.
- WO 320-110042-1: The IDA recovery associated with sample MW-TS-2 is below the method recommended limit for 13C2 PFDoA. The associated project sample analytes (PFDoA and PFTriA) are considered estimates, no direction of bias, and are flagged 'J*' in the analytical table. The data is considered affected as noted, however, the data is considered usable with applied flags.

C.2.7 Field Duplicates

Two field duplicate samples were collected as a part of this project (MW-TS-101 for both events). Where calculable, analytical results met the comparison criterion ($\leq 30\%$ for water) for the field duplicate pairs.

C.2.8 Additional Quality Control Discrepancies

The following additional quality control discrepancies were identified.

WO 320-110042-1: The "I" qualifier means the transition mass ratio for the indicated analyte was outside the established ratio limits. The qualitative identification of the analyte has

some degree of uncertainty. However, analyst judgment was used to positively identify PFHpA for sample MW-TS-3. The result is considered estimated, no direction of bias, and is flagged 'J*' in the analytical data table. The data is considered affected as noted, however, the data is considered usable with applied flags.

WO 320-110042-1: Internal standard (ISTD) response for the following sample was outside control limits: MW-TS-2. The sample was re-analyzed and ISTD response was still outside control limits. The ISTD is not used to calculate analyte concentration therefore there is no adverse impact from this anomaly. Based on the comments in the case narrative, sample MW-TS-2 may have matrix interference contributing to the ISTD failures. Therefore, the results for the noted sample are considered estimates, no direction of bias and are flagged 'J*' in the analytical table. The data is considered affected as noted, however, the data is considered usable with applied flags.

C.2.9 Analytical Sensitivity

Analytical sensitivity was evaluated to verify that the reporting limits met the applicable regulatory levels for non-detect results. All analytes met the minimum required detection level.

C.2.10 Summary of Qualified Results

Overall, the data validation process deemed the groundwater data acceptable for use. The following table summarizes the applied flags.

Exhibit C-1: Summary of Qualified Results

WO	Sample	Analyte	Flag	Explanation
320-106532-1	MW-TS-1	PFDoA, PFTriA, and PFTeA	J*	IDA recovery failure
	MW-TS-2	PFOS, PFOA, PFHpA, PFNA, PFHxS, PFBS, PFDA, PFDoA, PFHxA, PFTeA, PFTriA, PFUnA, HFPO-DA, N-EtFOSAA, N-MeFOSAA, 11CL-PF3OUdS, 9CL-PF3ONS, and ADONA	J*	Internal standard response discrepancy
320-110042-1	EB-1	PFTeA	N*	Holding time exceedance
	MW-TS-3	PFHpA	J*	Transition mass ratio discrepancy

C.2.11. Completeness

Overall, the data validation process deemed the groundwater data acceptable for use. No data were rejected pursuant to the data quality review, and all data may be used as applicable for the purposes of the FY2024 Tall Spruce Monitoring Well Sampling Summary Report.

Appendix D

Conceptual Site Model

CONTENTS

- Human Health Conceptual Site Model Scoping Form
- Human Health Conceptual Site Model Graphic Form

Appendix A - Human Health Conceptual Site Model Scoping Form and Standardized Graphic

Site Name: Fairbanks Int'l Airport Statewide PFAS - Tall Spruce Neighborhood

File Number: 100.38.277 / 26816

Completed by: Shannon & Wilson, Inc.

Introduction

The form should be used to reach agreement with the Alaska Department of Environmental Conservation (DEC) about which exposure pathways should be further investigated during site characterization. From this information, summary text about the CSM and a graphic depicting exposure pathways should be submitted with the site characterization work plan and updated as needed in later reports.

General Instructions: Follow the italicized instructions in each section below.

1. General Information:

Sources (check potential sources at the site)

<input type="checkbox"/> USTs	<input type="checkbox"/> Vehicles
<input type="checkbox"/> ASTs	<input type="checkbox"/> Landfills
<input type="checkbox"/> Dispensers/fuel loading racks	<input type="checkbox"/> Transformers
<input type="checkbox"/> Drums	<input checked="" type="checkbox"/> Other: Aqueous Film Forming Foam (AFFF) release upgradient of site

Release Mechanisms (check potential release mechanisms at the site)

<input type="checkbox"/> Spills	<input type="checkbox"/> Direct discharge
<input type="checkbox"/> Leaks	<input type="checkbox"/> Burning
	<input checked="" type="checkbox"/> Other: Migration from upgradient PFAS contamination at FAI

Impacted Media (check potentially-impacted media at the site)

<input type="checkbox"/> Surface soil (0-2 feet bgs*)	<input checked="" type="checkbox"/> Groundwater
<input type="checkbox"/> Subsurface soil (>2 feet bgs)	<input type="checkbox"/> Surface water
<input type="checkbox"/> Air	<input type="checkbox"/> Biota
<input type="checkbox"/> Sediment	<input type="checkbox"/> Other:

Receptors (check receptors that could be affected by contamination at the site)

<input checked="" type="checkbox"/> Residents (adult or child)	<input checked="" type="checkbox"/> Site visitor
<input checked="" type="checkbox"/> Commercial or industrial worker	<input checked="" type="checkbox"/> Trespasser
<input checked="" type="checkbox"/> Construction worker	<input checked="" type="checkbox"/> Recreational user
<input checked="" type="checkbox"/> Subsistence harvester (i.e. gathers wild foods)	<input checked="" type="checkbox"/> Farmer
<input checked="" type="checkbox"/> Subsistence consumer (i.e. eats wild foods)	<input type="checkbox"/> Other:

2. Exposure Pathways: (The answers to the following questions will identify complete exposure pathways at the site. Check each box where the answer to the question is "yes".)

a) Direct Contact -

1. Incidental Soil Ingestion

Are contaminants present or potentially present in surface soil between 0 and 15 feet below the ground surface?
(Contamination at deeper depths may require evaluation on a site-specific basis.)

If the box is checked, label this pathway complete:

Incomplete

Comments:

Soil contamination was not identified in samples collected while installing monitoring wells off Tall Spruce Road; however, PFAS surface soil contamination is present at FAI.

2. Dermal Absorption of Contaminants from Soil

Are contaminants present or potentially present in surface soil between 0 and 15 feet below the ground surface?
(Contamination at deeper depths may require evaluation on a site specific basis.)

Can the soil contaminants permeate the skin (see Appendix B in the guidance document)?

If both boxes are checked, label this pathway complete:

Incomplete

Comments:

PFAS contamination was not detected in subsurface soil samples spanning depths between 13 feet below ground surface and 78 feet below ground surface.

b) Ingestion -

1. Ingestion of Groundwater

Have contaminants been detected or are they expected to be detected in the groundwater, or are contaminants expected to migrate to groundwater in the future?

Could the potentially affected groundwater be used as a current or future drinking water source? Please note, only leave the box unchecked if DEC has determined the groundwater is not a currently or reasonably expected future source of drinking water according to 18 AAC 75.350.

If both boxes are checked, label this pathway complete:

Complete

Comments:

Samples collected from the four monitoring wells installed off Tall Spruce Road indicate that PFAS are present in groundwater at concentrations below the DEC Groundwater Cleanup Level and the current DEC Drinking Water Limits. However, samples collected from drinking water wells roughly 200 linear feet to the east exhibit PFAS concentrations above the DEC Drinking Water Limits.

2. Ingestion of Surface Water

Have contaminants been detected or are they expected to be detected in surface water, or are contaminants expected to migrate to surface water in the future?

Could potentially affected surface water bodies be used, currently or in the future, as a drinking water source? Consider both public water systems and private use (i.e., during residential, recreational or subsistence activities).

If both boxes are checked, label this pathway complete:

Incomplete

Comments:

Surface water samples were not collected during the installation of the Tall Spruce neighborhood monitoring wells. Contaminants are not expected to be detected or expected to migrate to surface water.

3. Ingestion of Wild and Farmed Foods

Is the site in an area that is used or reasonably could be used for hunting, fishing, or harvesting of wild or farmed foods?

Do the site contaminants have the potential to bioaccumulate (see Appendix C in the guidance document)?

Are site contaminants located where they would have the potential to be taken up into biota? (i.e. soil within the root zone for plants or burrowing depth for animals, in groundwater that could be connected to surface water, etc.)

If all of the boxes are checked, label this pathway complete:

Incomplete

Comments:

Soil within the vadose zone did not contain detectable concentrations of PFAS. Groundwater was encountered at roughly 6.5 feet bgs and contained PFAS concentrations below DEC Groundwater Cleanup Levels and Drinking Water Limits.

c) Inhalation-

1. Inhalation of Outdoor Air

Are contaminants present or potentially present in surface soil between 0 and 15 feet below the ground surface? (Contamination at deeper depths may require evaluation on a site specific basis.)

Are the contaminants in soil volatile (see Appendix D in the guidance document)?

If both boxes are checked, label this pathway complete:

Incomplete

Comments:

2. Inhalation of Indoor Air

Are occupied buildings on the site or reasonably expected to be occupied or placed on the site in an area that could be affected by contaminant vapors? (within 30 horizontal or vertical feet of petroleum contaminated soil or groundwater; within 100 feet of non-petroleum contaminated soil or groundwater; or subject to "preferential pathways," which promote easy airflow like utility conduits or rock fractures)

Are volatile compounds present in soil or groundwater (see Appendix D in the guidance document)?

If both boxes are checked, label this pathway complete:

Incomplete

Comments:

3. Additional Exposure Pathways: *(Although there are no definitive questions provided in this section, these exposure pathways should also be considered at each site. Use the guidelines provided below to determine if further evaluation of each pathway is warranted.)*

Dermal Exposure to Contaminants in Groundwater and Surface Water

Dermal exposure to contaminants in groundwater and surface water may be a complete pathway if:

- Climate permits recreational use of waters for swimming.
- Climate permits exposure to groundwater during activities, such as construction.
- Groundwater or surface water is used for household purposes, such as bathing or cleaning.

Generally, DEC groundwater cleanup levels in 18 AAC 75, Table C, are deemed protective of this pathway because dermal absorption is incorporated into the groundwater exposure equation for residential uses.

Check the box if further evaluation of this pathway is needed:

Comments:

PFAS concentrations observed in samples collected from the new monitoring wells were below the DEC Groundwater Cleanup Levels in 18 AAC 75.345 Table C and the current Drinking Water Limits. This pathway has been marked complete because historical private well samples from the nearby properties 2720 Tall Spruce Rd and 2712 Tall Spruce Rd have exhibited PFAS concentrations above or near the Drinking Water Limit.

Inhalation of Volatile Compounds in Tap Water

Inhalation of volatile compounds in tap water may be a complete pathway if:

- The contaminated water is used for indoor household purposes such as showering, laundering, and dish washing.
- The contaminants of concern are volatile (common volatile contaminants are listed in Appendix D in the guidance document.)

DEC groundwater cleanup levels in 18 AAC 75, Table C are protective of this pathway because the inhalation of vapors during normal household activities is incorporated into the groundwater exposure equation.

Check the box if further evaluation of this pathway is needed:

Comments:

Inhalation of Fugitive Dust

Inhalation of fugitive dust may be a complete pathway if:

- Nonvolatile compounds are found in the top 2 centimeters of soil. The top 2 centimeters of soil are likely to be dispersed in the wind as dust particles.
- Dust particles are less than 10 micrometers (Particulate Matter - PM₁₀). Particles of this size are called respirable particles and can reach the pulmonary parts of the lungs when inhaled.

DEC human health soil cleanup levels in Table B1 of 18 AAC 75 are protective of this pathway because the inhalation of particulates is incorporated into the soil exposure equation.

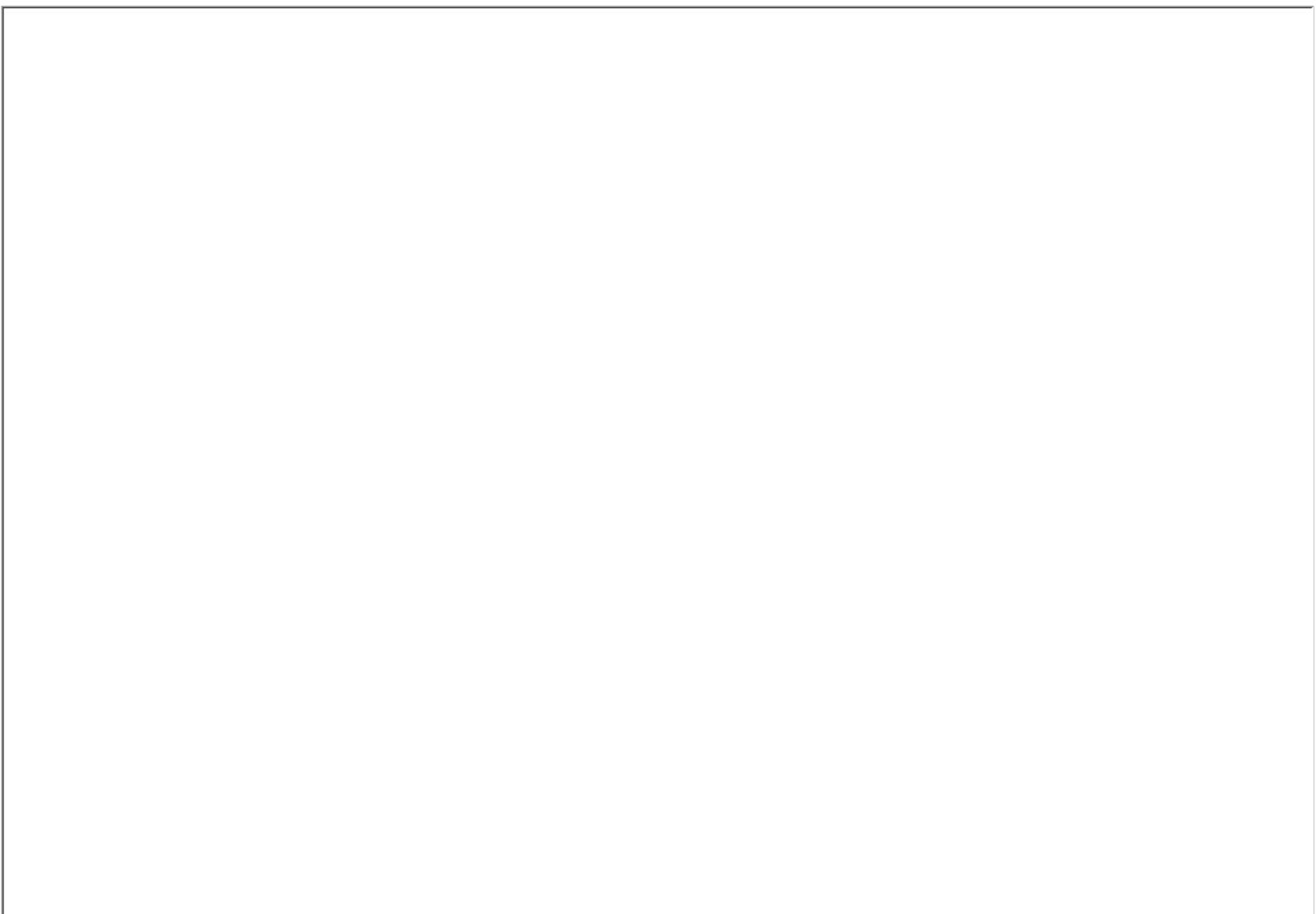
Check the box if further evaluation of this pathway is needed:

Comments:

Direct Contact with Sediment

This pathway involves people's hands being exposed to sediment, such as during some recreational, subsistence, or industrial activity. People then incidentally ingest sediment from normal hand-to-mouth activities. In addition, dermal absorption of contaminants may be of concern if the the contaminants are able to permeate the skin (see Appendix B in the guidance document). This type of exposure should be investigated if:

- Climate permits recreational activities around sediment.
- The community has identified subsistence or recreational activities that would result in exposure to the sediment, such as clam digging.


Generally, DEC direct contact soil cleanup levels in 18 AAC 75, Table B1, are assumed to be protective of direct contact with sediment.

Check the box if further evaluation of this pathway is needed:

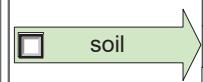
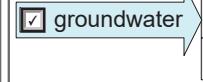
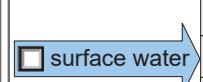
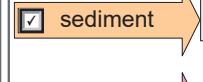
Comments:

Sediment samples were not collected during the installation of the Tall Spruce monitoring wells. This pathway has been marked complete because more investigation is needed.

4. Other Comments (*Provide other comments as necessary to support the information provided in this form.*)

A large, empty rectangular box with a thin black border, occupying most of the page below the question. It is intended for the respondent to write their comments in.

HUMAN HEALTH CONCEPTUAL SITE MODEL GRAPHIC FORM





Site: Fairbanks Int'l Airport Statewide PFAS - Tall Spruce Neighborhood
100.38.277 / 26816

Completed By: Shannon & Wilson, Inc.

Date Completed: March 27, 2024

Instructions: Follow the numbered directions below. Do not consider contaminant concentrations or engineering/land use controls when describing pathways.

(1) Check the media that could be directly affected by the release.		(2) For each medium identified in (1), follow the top arrow and check possible transport mechanisms. Check additional media under (1) if the media acts as a secondary source.	
Media		Transport Mechanisms	
Surface Soil (0-2 ft bgs)	<input type="checkbox"/> Direct release to surface soil check soil		
	<input type="checkbox"/> Migration to subsurface check soil		
	<input type="checkbox"/> Migration to groundwater check groundwater		
	<input type="checkbox"/> Volatilization check air		
	<input type="checkbox"/> Runoff or erosion check surface water		
	<input type="checkbox"/> Uptake by plants or animals check biota		
<input type="checkbox"/> Other (list): _____			
Subsurface Soil (2-15 ft bgs)	<input type="checkbox"/> Direct release to subsurface soil check soil		
	<input type="checkbox"/> Migration to groundwater check groundwater		
	<input type="checkbox"/> Volatilization check air		
	<input type="checkbox"/> Uptake by plants or animals check biota		
	<input type="checkbox"/> Other (list): _____		
Groundwater	<input checked="" type="checkbox"/> Direct release to groundwater check groundwater		
	<input type="checkbox"/> Volatilization check air		
	<input type="checkbox"/> Flow to surface water body check surface water		
	<input checked="" type="checkbox"/> Flow to sediment check sediment		
	<input checked="" type="checkbox"/> Uptake by plants or animals check biota		
	<input type="checkbox"/> Other (list): _____		
Surface Water	<input type="checkbox"/> Direct release to surface water check surface water		
	<input type="checkbox"/> Volatilization check air		
	<input type="checkbox"/> Sedimentation check sediment		
	<input type="checkbox"/> Uptake by plants or animals check biota		
<input type="checkbox"/> Other (list): _____			
Sediment	<input type="checkbox"/> Direct release to sediment check sediment		
	<input type="checkbox"/> Resuspension, runoff, or erosion check surface water		
	<input type="checkbox"/> Uptake by plants or animals check biota		
	<input type="checkbox"/> Other (list): _____		

(3) Check all exposure media identified in (2).		(4) Check all pathways that could be complete. The pathways identified in this column must agree with Sections 2 and 3 of the Human Health CSM Scoping Form.		(5) Identify the receptors potentially affected by each exposure pathway: Enter "C" for current receptors, "F" for future receptors, "C/F" for both current and future receptors, or "I" for insignificant exposure.																																											
Exposure Media		Exposure Pathway/Route																																													
soil		<input type="checkbox"/> Incidental Soil Ingestion <input type="checkbox"/> Dermal Absorption of Contaminants from Soil <input type="checkbox"/> Inhalation of Fugitive Dust																																													
groundwater		<input checked="" type="checkbox"/> Ingestion of Groundwater C/F <input checked="" type="checkbox"/> Dermal Absorption of Contaminants in Groundwater C/F <input type="checkbox"/> Inhalation of Volatile Compounds in Tap Water		C/F C/F I I I I																																											
air		<input type="checkbox"/> Inhalation of Outdoor Air <input type="checkbox"/> Inhalation of Indoor Air <input type="checkbox"/> Inhalation of Fugitive Dust																																													
surface water		<input type="checkbox"/> Ingestion of Surface Water <input type="checkbox"/> Dermal Absorption of Contaminants in Surface Water <input type="checkbox"/> Inhalation of Volatile Compounds in Tap Water																																													
sediment		<input checked="" type="checkbox"/> Direct Contact with Sediment C/F <input checked="" type="checkbox"/> Ingestion of Wild or Farmed Foods C/F		C/F C/F I C/F C/F C/F																																											
biota		<input checked="" type="checkbox"/> Ingestion of Wild or Farmed Foods		I																																											
Current & Future Receptors																																															
<table border="1"> <thead> <tr> <th>Residents (adults or children)</th> <th>Commercial or Industrial workers</th> <th>Site visitors, trespassers, or recreational users</th> <th>Construction workers</th> <th>Farmers or subsistence harvesters</th> <th>Subsistence consumers</th> <th>Other</th> </tr> </thead> <tbody> <tr> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> <tr> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table>						Residents (adults or children)	Commercial or Industrial workers	Site visitors, trespassers, or recreational users	Construction workers	Farmers or subsistence harvesters	Subsistence consumers	Other																																			
Residents (adults or children)	Commercial or Industrial workers	Site visitors, trespassers, or recreational users	Construction workers	Farmers or subsistence harvesters	Subsistence consumers	Other																																									

Important Information

About Your Environmental Report

IMPORTANT INFORMATION

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors that were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining

your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary, because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims

being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland

IMPORTANT INFORMATION