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SI* (MODERN METRIC) CONVERSION FACTORS 

APPROXIMATE CONVERSIONS TO SI UNITS
Symbol When You Know Multiply By To Find Symbol 

LENGTH 
in inches 25.4 millimeters mm 
ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 

AREA 
in2 square inches 645.2 square millimeters mm2

ft2 square feet 0.093 square meters m2

yd2 square yard 0.836 square meters m2

ac acres 0.405 hectares ha 
mi2 square miles 2.59 square kilometers km2

VOLUME 
fl oz fluid ounces 29.57 milliliters mL 
gal gallons 3.785 liters L 
ft3 cubic feet 0.028 cubic meters m3 

yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3

MASS 
oz ounces 28.35 grams g
lb pounds 0.454 kilograms kg
T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") 

TEMPERATURE (exact degrees) 
oF Fahrenheit 5 (F-32)/9 Celsius oC 

or (F-32)/1.8 
ILLUMINATION 

fc foot-candles 10.76 lux lx 
fl foot-Lamberts 3.426 candela/m2 cd/m2

FORCE and PRESSURE or STRESS 
lbf poundforce   4.45    newtons N 
lbf/in2 poundforce per square inch 6.89 kilopascals kPa 

APPROXIMATE CONVERSIONS FROM SI UNITS 
Symbol When You Know Multiply By To Find Symbol 

LENGTH
mm millimeters 0.039 inches in 
m meters 3.28 feet ft 
m meters 1.09 yards yd 
km kilometers 0.621 miles mi 

AREA 
mm2 square millimeters 0.0016 square inches in2 

m2 square meters 10.764 square feet ft2 

m2 square meters 1.195 square yards yd2 

ha hectares 2.47 acres ac 
km2 square kilometers 0.386 square miles mi2 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 
L liters 0.264 gallons gal 
m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 

MASS 
g grams 0.035 ounces oz
kg kilograms 2.202 pounds lb
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

TEMPERATURE (exact degrees) 
oC Celsius 1.8C+32 Fahrenheit oF 

ILLUMINATION 
lx  lux 0.0929 foot-candles fc 
cd/m2 candela/m2 0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS 
N newtons 0.225 poundforce lbf 
kPa kilopascals 0.145 poundforce per square inch lbf/in2

*SI is the symbol for th  International System of Units.  Appropriate rounding should be made to comply with Section 4 of ASTM E380.  e
(Revised March 2003)  
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Abstract

AASHTO is developing seismic bridge design provisions using an explicit displacement-based
methodology where a bridge’s lateral displacement capacity is compared directly to demands
induced by seismic events (earthquakes) through a pushover analysis. This represents a
departure from past and current AASHTO guidelines where an approximate force-based
methodology was employed to design bridges based on the forces generated during a seismic
event. The displacement-based approach can lead to improved bridge designs; however, the
calculations required for the pushover analysis are difficult for an engineer to perform with-
out the aid of computer software. To adopt the forthcoming AASHTO displacement-based
bridge design specifications using tools currently available, AKDOT&PF bridge engineers
would have to rely on a patchwork of disparate software plus hand calculations to conduct
a pushover analysis. Development and adoption of a single, automated software tool for
pushover analysis will reduce the cost of future bridge designs by reducing the amount of
time AKDOT&PF engineers spend analyzing bridges for seismic loads.
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Summary of Findings

The development approach taken for this software was relatively unique in terms of structural
engineering software. The software is built around free components, namely Tcl/Tk, a
string-based scripting language with widgets for developing graphical user interfaces (GUIs),
and OpenSees, an open source nonlinear finite element analysis software framework. This
combination of Tcl/Tk and OpenSees allowed for rapid protoyping of GUIs that interact with
state-of-the-art element and constitutive models for the analysis of cast-in-steel shell (CISS)
bents. From a computational point-of-vew, very little “from-scratch” coding was required
other than a few p-y models, as modules available in OpenSees were repackaged to meet
AKDOT&PF’s needs. This development approach will be fruitful for future AKDOT&PF
software projects and potentially for commercialization and technology transfer. Based on
close dealings with Mr. Elmer Marx during its development, the software was found to be
generally easy to use for analyzing a wide range of CISS bents in the AKDOT&PF inventory
and more efficient compared to the variety of separate software previously used for such
analyses.
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Chapter 1

Getting Started

The software, zCISS , is developed using the Tcl/Tk scripting languange for model generation
and graphical user interfaces in conjunction with OpenSees as its computational engine for
nonlinear finite element analysis.

1.1 Installation Instructions

The user is required to install Tcl/Tk version 8.5 or later, which is available free of charge
at

http://www.activestate.com/activetcl

In addition, the user must have the Tk-version of OpenSees (OpenSeesTk.exe) installed,
which can also be downloaded for free at

http://opensees.berkeley.edu

The combined use of OpenSees and Tcl/Tk makes zCISS platform-independent, with only
aesthetic differences in window appearance.

1.2 Startup Instructions

With OpenSeesTk.exe and zCISS.tcl installed in the same directory, there are two options
to start the software under the Windows operating system.

1. Double-click on the OpenSeesTk.exe icon. An MS-DOS window will then appear
showing OpenSees copyright information along with an interactive prompt. In addition,
there will be a plain grey window titled openSeesTk, as shown in Figure 1.1. At the
prompt in the MS-DOS window, type source zCISS.tcl (also shown in the figure).
This will cause the plain grey window to change to the zCISS startup window shown
in Figure 1.3.

8



2. Drag the zCISS.tcl icon over the OpenSeesTk.exe icon, as shown in Figure 1.2 and
release. The zCISS startup window shown in Figure 1.3 should appear immediately
along with the MS-DOS window showing OpenSees copyright information.

Figure 1.1: MS-DOS window created by double-clicking on the OpenSeesTk.exe icon.

1.3 Default Bent Model

Upon startup, the software creates a default bent model with the following basic details
shown in Figure 1.3:

• Three 36.0 in diameter columns, 8.0 ft on center, each with 486.1 kip axial load and
2.0 in gap at bent cap;

• Columns 14.0 ft above grade extending 60.0 ft below grade;

• Three 20.0 ft sand layers with water table at 3.0 ft;

Further reinforcing details, soil properties, and analysis options for this default model are
omitted from this list for brevity.

9



Figure 1.2: Dragging the zCISS.tcl icon over the OpenSeesTk.exe icon in Windows Ex-
plorer.
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Figure 1.3: Main window created after software is started.
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Chapter 2

Finite Element Model

The bridge bent is modelled and analyzed in 2D using nonlinear frame (beam-column) and
zero length (spring) elements. The line, or skeleton, idealization of a representative bridge
bent is shown in Figure 2.1.

2.1 Column Elements

A single force-based frame element [7] simulates the response of each column member. The
cross-section constitutive response is obtained by numerical integration of concrete and steel
stress-strain response (fiber section approach). The software creates two fiber sections: one
with a steel jacket and one without. The former is used along the entire pile length except
for the gap region adjacent to the bent cap. Both sections use the following constitutive
models for concrete and steel materials.

2.1.1 Concrete

For unconfined concrete in the gap region, the software uses the Kent-Scott-Park model [4],
while it uses the Mander model [5] for confinement owing to the steel jacket below the gap
region and spiral hoops in the gap region. Effective lateral confining pressures are calculated
for the steel jacket region according to Chai et al [2], while confining pressures of the spiral
hoops in the gap region are computed according to Mander [5]. The software’s default
concrete properties are shown in Figure 2.2(a) with the following definitions:

f ce = expected concrete compressive strength (ksi)

e co = unconfined concrete compressive strain at the maximum compressive stress (in/in)

e sp = ultimate unconfined compression (spalling) strain (in/in)

f cc = confined compressive strength of concrete (ksi)

e cc = compressive strain at maximum compressive stress of confined concrete (in/in)

12



1.0 ft
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p−y Springs

Level
Ground

Figure 2.1: Line element idealization of bridge bent system.
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Using the default values for unconfined concrete properties shown in Figure 2.2(a), the result-
ing stress-strain behavior of unconfined, jacket confined, and spiral hoop confined concrete
is shown in Figure 2.2(b).

(a) Software defaults

0 0.01 0.02 0.03 0.04
0

5

10

15

Strain (in/in)

St
re

ss
 (

ks
i)

Unconfined

Jacket

Spiral

(b) Stress-strain behavior

Figure 2.2: Stress-strain model used for unconfined concrete and concrete confined by steel
jacket and spiral hoop reinforcement.

2.1.2 Steel

The steel stress-strain behavior for the longitudinal response of both the reinforcing bars and
the jacket is based on the model proposed by Raynor [8]. The software’s default properties
of longitudinal reinforcing steel are shown in Figure 2.3(a) with the following definitions:

E = modulus of elasticity of steel (ksi)

f ye = expected yield strength (ksi)

f ue = expected tensile strength (ksi)

e sh = tensile strain at the onset of strain hardening (in/in)

e suR = reduced ultimate tensile strain (in/in)

e su = ultimate tensile strain (in/in)

C1 = power curve parameter of Raynor [8] model
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Using the default values for longitudinal reinforcing steel shown in Figure 2.3(a), the resulting
stress-strain behavior is shown in Figure 2.3(b). Default properties for the jacket steel differ
slightly from those shown in Figure 2.3(a) with f ye = 60 ksi, f ue = 78 ksi, e suR = 0.04
in/in, and e su = 0.06 in/in.

(a) Software defaults
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0

20

40
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80

100

Strain (in/in)

St
re

ss
 (

ks
i)

(b) Stress-strain behavior

Figure 2.3: Stress-strain model used for longitudinal response of reinforcing steel.

2.1.3 Plastic Hinge Length

To allow for the possibility of losing lateral load carrying capacity under heavy gravity loads,
a regularized integration approach [11] is used along the element length. The plastic hinge
length assigned at the top of the column member is based on Eq. (4.11.6) from [1]

Lp = Gf + 0.3fyedbl (2.1)

where Gf is the gap between the isolated flare and the soffit of the bent cap (in), fye is the
expected yield strength of the column longitudinal steel (ksi) (shown in Figure 2.3(a)), and
dbl is the nominal diameter of the column longitudinal steel reinforcing bars (in). The plastic
hinge length at the column base is set to zero. This selection of integration point locations
give four evaluation points along the column height.

2.2 Bent Cap

The bent cap is modeled using linear-elastic frame elements with cross-section properties
based on user input of the bent cap width and depth and elastic modulus based on the user

15



input concrete strength.

Ec = 57000
√

f ′
ce (psi) (2.2)

where f ′
ce is the expected concrete compressive strenth (psi) input via the window of Fig-

ure 2.2(a).

2.3 Subgrade Pile Elements

Below grade there is a series of standard displacement-based frame elements whose cross-
section response is also obtained by the fiber section approach with two Gauss-Legendre
integration points. Each node below grade is connected to a zero length p-y spring element
in order to simulate soil resistance to lateral loading of the bent. The vertical spacing of p-y
springs is fixed at 1.0 ft, as shown in Figure 2.1. The software includes three types of soil:
stiff clay, soft clay, and sand, each with resistance calculated either above or below the water
table based on the following parameters:

gamma = unit weight of soil (pcf)

phi = angle of internal friction (deg)

c = soil shear strength (psi)

eps50 = soil strain corresponding to one-half the maximum principal stress difference
(in/in)

nh = increase in soil stiffness with respect to depth (pci)

The implementation of each of p-y soil model in OpenSees follows the procedures described
in [12], with formulations developed by [10], [6], and [9] for stiff clay, soft clay, and sand,
respectively. The behavior of each model, using the software’s default values of the parame-
ters listed above, is shown in Figures 2.4, 2.5, and 2.6 for cases 5.5 ft above and 4.5 ft below
a hypothetical water table of 10 ft below grade.

16



(a) Software defaults
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Figure 2.4: p-y model for stiff clay resistance [10] above and below water table at x=10 ft
below grade.

(a) Software defaults
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Figure 2.5: p-y model for soft clay resistance [6] above and below water table at x=10 ft
below grade.
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(a) Software defaults
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Figure 2.6: p-y model for sand resistance [9] above and below water table at x=10 ft below
grade.

2.4 Analysis Options

Several options dictate how the lateral response of the bent model is computed, as well as
how the results are displayed on screen, during a pushover analysis. These options, along
with their default values, are shown in Figure 2.7 and described below:

• Max Lateral Displacement – This is the target lateral displacement at which the
analysis terminates under normal conditions.

• Post Peak Capacity – Should the lateral response peak, then show a loss in capacity
before reaching the maximum lateral displacement, this is the capacity level at which
the analysis will terminate.

• Soil-Structure Interaction – The radio button turns soil-structure interaction (SSI)
on and off. For the “On” selection, the interaction of piles and soil is simulated during
the analysis using the previously described nonlinear beam-column elements and p-y
springs. In the “Off” selection, the node at ground level of the finite element model is
fixed against displacement and rotation so that SSI is effectively disabled.

• P-Delta Analysis – This radio button allows the user to account for large displace-
ment effects of axial loads in the above grade column elements using the corotational
geometric transformation [3].

18



Figure 2.7: Analysis Options window showing software default values.

• Soil Buoyant Weight below GWT – This option tells the software whether or not
to subtract the specific weight of water from the input soil properties for p-y springs
that are below the water table.

• Draw Displaced Shape – To draw the displaced shape of the bent at each load step
during the pushover analysis.

• Draw Moment Diagram – To draw the bending moment diagram (including loca-
tions of local extrema and points of inflection) at each load step during the pushover
analysis.

• Draw Shear Diagram – To draw the sheare diagram (including locations of local
extrema) at each load step during the pushover analysis.

Note that the three Draw options may be selected so that combinations, e.g., moment and
shear diagram, are drawn simultaneously during the pushover analysis. By default, only the
moment diagram is drawn.
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2.5 Limit States

The software allows user-defined limit states to be tracked during the analysis for plotting
in summary reports. As shown in Figure 2.8, three limit states are available to detect when
peak strains are reached in the longitudinal reinforcing steel, jacket steel, and concrete.

Figure 2.8: Limit States window showing software default values.
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Chapter 3

Summary Report

The software will create a PDF report summarizing the bent’s geometric and material prop-
erties in addition to analysis results. This feature is accessed by pressing the “Create Report”
button shown on the main window in Figure 1.3 and gives the dialog box shown in Figure 3.1.
The contents of the report, created from the software’s default properties, are summarized
in the following pages.

Figure 3.1: File dialog window to save PDF summary report.
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3.1 Title Page and Table of Contents

The title page echoes information from the main window (Figure 1.3) including the bridge
name, performing engineer, and date of analysis. There is also a table of contents as shown
in Figure 3.2.

Bridge1395430368

Pushover Analysis Summary

John Doe, P.E.
02/25/2011 10:16:21

Alaska DOT&PF Pile Extension Pier Pushover Program, v 1.0

Contents
Bent Overview 2
Pushover Analysis 3
Final Dispalced Shape 4
Final Moment Diagram 5
Final Shear Diagram 6
Cross-Section Details 7
Gap Section Moment-Curvature 8
Section Axial-Moment Interaction 9
Longitudinal Reinforcing Steel 10
Jacket Steel 11
Concrete 12
Soil Layers 13

Figure 3.2: Sample title page of PDF summary report.
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3.2 Bent Overview

A summary of bent dimensions is given on page 2 of the report. The summary includes
column height, cap beam dimensions, shell gap, plastic hinge length, water table location,
and total soil depth. A rendering (with limited color for better printing) of the bent model
is included, as shown in Figure 3.3.

Bridge1395430368
John Doe, P.E.

Bent Overview

Column Height 14.0 ft above grade
Cap Beam depth 48.0 in
Cap Beam width 72.0 in
Shell Gap, Gf 2.0 in
Plastic Hinge Length, lp 2.50 ft
Water Table 3.0 ft below grade
Total Soil Depth 60.0 ft below grade

  486.1
  kip

  486.1
  kip

  486.1
  kip

 Gf = 2.00 in

Column 1 Column 2 Column 3

8.0 ft o.c. 8.0 ft o.c.

  Layer 1 20.00 ft Sand

  Layer 2 20.00 ft Sand

  Layer 3 20.00 ft Sand

 Water Table, 3.00 ft

2

Figure 3.3: Sample bent overview of PDF summary report.
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3.3 Pushover Analysis

The lateral load-displacement response of the bent is shown on page 3 of the report. In
addition to the pushover curve, there is summary information regarding the selected analysis
options and a summary of limit state information, as shown in Figure 3.4.

Bridge1395430368
John Doe, P.E.

Pushover Analysis

Max Lateral Disp 2.0 ft
P-Delta Analysis On 
Soil-Structure Interaction On 
Soil Buoyant Weight below GWT On 

R/F Steel Yield   0.17 ft, 348.5 kip
R/F Steel Strain Limit (0.06 in/in)   N/A
Jacket Steel Strain Limit (0.04 in/in)   N/A
Concrete Strain Limit (0.02 in/in)   N/A
Peak Capacity   2.00 ft, 1010.8 kip
Post Peak Limit (80% Peak)   N/A

0 0.5 1.0 1.5 2.0 2.5 3.0
0

200.0

400.0

600.0

800.0

1000.0

1200.0

 First Steel Yield

Displacement (ft)

Load (kip)

3

Figure 3.4: Sample pushover analysis of PDF summary report.
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3.4 Final Displaced Shape

The displaced shape of the bent at the last load step of the pushover analysis is shown
on page 4 of the report. In addition, the extreme minimum and maximum axial loads are
summarized for each column, as shown in Figure 3.5.

Bridge1395430368
John Doe, P.E.

Final Displaced Shape

Extreme Axial Loads   Column 1: 151.4 kip (T) to 486.1 kip (C)
Column 2: 434.3 kip (C) to 486.1 kip (C)

Column 3: 486.1 kip (C) to 1110.0 kip (C)

  486.1
  kip

  486.1
  kip

  486.1
  kip

 Gf = 2.00 in

Column 1 Column 2 Column 3

8.0 ft o.c. 8.0 ft o.c.

  Layer 1 20.00 ft Sand

  Layer 2 20.00 ft Sand

  Layer 3 20.00 ft Sand

 Water Table, 3.00 ft

4

Figure 3.5: Sample displaced shape of PDF summary report.
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3.5 Final Moment Diagram

The moment diagram for each pile at the last load step of the pushover analysis is shown on
page 5. In addition, the magnitude and location of extreme bending moments and inflection
point locations are labeled, as shown in Figure 3.6.

Bridge1395430368
John Doe, P.E.

Final Moment Diagram

  486.1
  kip

  486.1
  kip

  486.1
  kip

 Gf = 2.00 in

Column 1 Column 2 Column 3

8.0 ft o.c. 8.0 ft o.c.

  Layer 1 20.00 ft Sand

  Layer 2 20.00 ft Sand

  Layer 3 20.00 ft Sand

 Water Table, 3.00 ft

 7.3 ft

 2151.8 kip-ft
 14.0 ft

 6622.7 kip-ft
 -19.5 ft

 -46.5 ft

 6.7 ft

 2685.4 kip-ft
 14.0 ft

 6944.2 kip-ft
 -19.5 ft

 -46.5 ft

 6.2 ft

 3258.7 kip-ft
 14.0 ft

 7248.4 kip-ft
 -19.5 ft

 -47.5 ft

5

Figure 3.6: Sample moment diagram of PDF summary report.
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3.6 Final Shear Diagram

The shear diagram for each pile at the last load step of the pushover analysis is shown on
page 6. In addition, the magnitude and location of extreme shears and are labeled, as shown
in Figure 3.7.

Bridge1395430368
John Doe, P.E.

Final Shear Diagram

  486.1
  kip

  486.1
  kip

  486.1
  kip

 Gf = 2.00 in

Column 1 Column 2 Column 3

8.0 ft o.c. 8.0 ft o.c.

  Layer 1 20.00 ft Sand

  Layer 2 20.00 ft Sand

  Layer 3 20.00 ft Sand

 Water Table, 3.00 ft

 328.3 kip
 14.0 ft

 404.7 kip
 -31.5 ft

 338.5 kip
 14.0 ft

 419.2 kip
 -31.5 ft

 347.1 kip
 14.0 ft

 431.8 kip
 -31.5 ft

6

Figure 3.7: Sample shear diagram of PDF summary report.
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3.7 Cross-Section Details

A summary of column/pile cross-section reinforcing details is shown on page 7. Presented
information includes the outer diameter and thickness of the steel shell, the amount of cover
concrete, and the number, size, and area ratio of longitudinal reinforcing bars. In addition,
there is information on spiral reinforcement, which is not rendered in the report, as shown
in Figure 3.8.

Bridge1395430368
John Doe, P.E.

Cross-Section Details

Outer Shell Diamter, Dj 36.00 in
Shell Thickness, tj 0.75 in
Cover 2.00 in
Number of Bars 16 
Bar Size 11 
Long. R/F Ratio 0.02670 

Spiral Size 5 
Hoop Spacing 3.00 in
Yield Stress 60.00 ksi

7

Figure 3.8: Sample cross-section details of PDF summary report.
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3.8 Gap Section Moment-Curvature

Moment-curvature analysis of the gap section is presented on page 8, as shown in Figure 3.9.
Analyses are shown for the overall extreme axial loads summarized on page 4 of the report
(Figure 3.5). User-selected assumptions regarding the confinement of core and cover concrete
in the gap region are also shown on this page of the report.

Bridge1395430368
John Doe, P.E.

Gap Section Moment-Curvature

Core Confinement Steel Shell 
Cover Confinement Same as Core 

Target Ductility 25.0 

Extreme Axial Loads   151.4 kip (T) in Column 1 @ 1010.8 kip
1110.0 kip (C) in Column 3 @ 1010.8 kip

0 0.01 0.02 0.03 0.04 0.05
0

800.0

1600.0

2400.0

3200.0

4000.0

Column 3

Column 1

Curvature (1/ft)

Moment (kip-ft)

8

Figure 3.9: Sample moment-curvature analysis of PDF summary report.
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3.9 Gap Section Axial-Moment Interaction

Axial-moment interaction of the gap and steel shell sections is presented on page 9, as shown
in Figure 3.10. Balance point information is shown along with user-selected assumptions for
the confinement of core and cover cocrete in the gap region.

Bridge1395430368
John Doe, P.E.

Section Axial-Moment Interaction

Gap Region  
Core Confinement Steel Shell 
Cover Confinement Same as Core 

CISS Section  
Balance Point @ N = 3402.7 kip 6462.8 kip-ft 

Gap Section  
Balance Point @ N = 4618.0 kip 2935.9 kip-ft 

0 1400.0 2800.0 4200.0 5600.0 7000.0
-5000.0

-1000.0

3000.0

7000.0

11000.0

15000.0
CISS Section

Gap Section

(6462.8,3402.7)

(2935.9,4618.0)

M (kip-ft)

N (kip)

9

Figure 3.10: Sample axial-moment interaction of PDF summary report.
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3.10 Steel Stress-Strain

Stress-strain curves for the longitudinal and jacket steel are shown on pages 10 and 11,
respectively, along with a summary of physical properties, as shown in Figure 3.11.

Bridge1395430368
John Doe, P.E.

Longitudinal Reinforcing Steel

Elastic Modulus, E 29000.0 ksi
Yield Stress, fye 68.0 ksi
Ultimate Stress, fue 95.0 ksi
Strain-Hardening Onset, epssh 0.0115 in/in
Strain-Hardening Coefficient, C1 1.5 
Rupture Strain, epssuR 0.06 in/in
Ultimate Strain, epssu 0.09 in/in

0 0.02 0.04 0.06 0.08 0.1
0

20.0

40.0

60.0

80.0

100.0

Strain (in/in)

Stress (ksi)

10

(a) Longitudinal steel

Bridge1395430368
John Doe, P.E.

Jacket Steel

Elastic Modulus, E 29000.0 ksi
Yield Stress, fye 60.0 ksi
Ultimate Stress, fue 78.0 ksi
Strain-Hardening Onset, epssh 0.0115 in/in
Strain-Hardening Coefficient, C1 1.5 
Rupture Strain, epssuR 0.04 in/in
Ultimate Strain, epssu 0.06 in/in

0 0.02 0.04 0.06 0.08 0.1
0

20.0

40.0

60.0

80.0

Strain (in/in)

Stress (ksi)

11

(b) Jacket steel

Figure 3.11: Sample steel stress-strain of PDF summary report.
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3.11 Concrete Stress-Strain

Concrete stress-strain curves are presented on page 12. Three curves are shown, one each for
unconfined, hoop-confined, and steel jacket confined concrete, as shown in Figure 3.12. In
addition, physical properties used in obtaining each curve are shown at the top of the page.

Bridge1395430368
John Doe, P.E.

Concrete

Expected Concrete Strength, f'ce 5.20 ksi
Cracking Strain, eco 0.0020 in/in
Tangent Modulus, Ec 5200.00 ksi
Spalling Strain, esp 0.0060 in/in

Steel Shell (CISS) Spiral Hoop
Compressive Strength, f'cc 14.43 ksi 7.60 ksi
Peak Strain, ecc 0.01974 in/in 0.00661 in/in
Secant Modulus, Esec 730.71 ksi 1149.37 ksi
Mander Coefficient, r 1.16 1.28

0 0.01 0.02 0.03 0.04
0

5.0

10.0

15.0

CISS

Unconfined

Hoop

Strain (in/in)

Stress (ksi)

12

Figure 3.12: Sample concrete stress-strain of PDF summary report.
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3.12 Soil p-y Curves

Resistance curves for each p-y spring are shown of the final pages of the report. The springs
in layer 1 are shown on page 13, layer 2 on page 14, layer 3 on page 15, etc. The layer’s soil
type, depth, p-y spacing, number of springs, and physical properties are summarized at the
top of the page, with a series of p-y curves plotted below, as shown in Figure 3.13.

Bridge1395430368
John Doe, P.E.

Soil Layer 1: Sand

Depth range 0.0 - 20.0 ft

Unit weight, gamma 125.0 pcf
Angle of internal friction, phi 28.0 deg
Stiffness increase wrt depth, nh 50.0 pci

p-y spring spacing 1.0 ft
Number of p-y springs 20 

0 0.2 0.4 0.6 0.8 1.0
0

10.0

20.0

30.0

40.0

50.0

x = 0.5 ft

x = 1.5 ft

x = 2.5 ft

x = 3.5 ft

x = 4.5 ft
x = 5.5 ft
x = 6.5 ft
x = 7.5 ft
x = 8.5 ft
x = 9.5 ft

x = 10.5 ft

x = 11.5 ftx = 12.5 ft

x = 13.5 ft

x = 14.5 ft

x = 15.5 ft

x = 16.5 ft

x = 17.5 ft

x = 18.5 ft

x = 19.5 ft

y (ft)

p (kip/ft)

13

Figure 3.13: Sample soil p-y curves of PDF summary report.
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Chapter 4

Future Extensions

Should use of this software become more prevalent by AKDOT&PF engineers, it is antici-
pated that additional features will have to be incorporated. Potential features include, but
are not limited to the following:

• Different types of analysis procedures as seismic design provisions evolve.

• Incorporation of frozen soil p-y curves that are under development by other AKDOT&PF-
sponsored researchers.

• Incorporation of specialized soil p-y curves based on user-defined input.

• Sensitivity and reliability options for quantifying epistemic and aleatory uncertainty
of bent models and analysis assumptions.
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