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jhA  =  Area of horizontal joint shear reinforcement 

jvA  =  Area of vertical joint shear reinforcement 
ext
jvA  =  Area of external vertical joint shear reinforcement, outside the joint region 
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scA  =  Area of the column longitudinal reinforcement 
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P  =  Axial force in the column 

cp  =  Principle compressive stress 

tp  =  Principle tensile stress 

mtp ,  =  Principle tensile stress limit requiring full joint shear reinforcement 

hv  =  Joint shear stress 
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ABSTRACT 
This report presents and discusses results from a research investigation of three 4/5-scale units 
that were cast, retrofitted, and tested under simulated seismic loads at the University of Missouri 
Rolla experimental facilities and sponsored under a research grant from the State of Alaska 
Department of Transportation and Public Facilities. These units were built to model a bridge bent 
consisting of a cast in place steel shell (CISS) column foundation shaft and a bent cap configured 
to form a tee connection. In this report these units were designated as Unit 1, 2, and 3. Each unit 
was retrofitted in the column, bent cap, and their connection according to current seismic design 
standards with the main objective of ensuring a ductile performance under lateral loads.  
 
Specific seismic improvements made to the column and the bent cap system were: (1) the 
moment capacity of the column was reduced by cutting a portion of the column longitudinal 
reinforcement at the connection to the bent cap to levels that can ensure a proper ductile seismic 
response, (2) a section of the steel shell was cut and removed leaving a gap between the steel 
shell and the bent cap, and (3) the bent cap dimensions were increased to ensure proper 
reinforcement spacing and to install the additional flexure and joint shear reinforcement, which 
was designed according to well established joint shear force transfer mechanism models. 
Before testing the lateral deformation response of the test units was performed using well-
established moment rotation models. Based on test results these moment-rotation models were 
revised and an empirical model was proposed to include the contribution of joint flexibility and 
damage into the lateral response of the test units. These models account for the flexibility of the 
retrofitted and as described in this report the post-test results matched well the experimental 
results. This report presents the test results, design philosophy of the upgrade method along with 
design recommendations, and recommendations for future research in order to improve the 
proposed retrofit scheme. 
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1. INTRODUCTION 

1.1. OVERVIEW 
Seismic design in the United States has improved significantly since the 1971 San Fernando 
Earthquake in California (Buckle, 2000; Krawinkler, 1995; 1999). During the aftermath of this 
earthquake a large number of bridges failed catastrophically due to insufficient confinement of 
plastic hinges and span seating. In response to these failures, the California Department of 
Transportation (Caltrans, 2001, 2004) initiated a retrofit program to retrofit all bridges against 
premature failure in the plastic hinge zones and unseating (DesRoches and Fenves, 2001; 
Priestley et al., 1995). Then, following the 1989 Loma Prieta Earthquake in California, major 
advances were implemented in seismic design of joints leading to the current capacity 
philosophy for the seismic design of bridges. According to the capacity design philosophy the 
main performance goal is to allow the development of plastic hinges at both ends of columns for 
optimum energy dissipation. This can be realized by carefully selecting and detailing the plastic 
hinge areas, while the remaining regions are designed to remain elastic for the design seismic 
event (Priestley et al., 1996; Mazzoni and Moehle, 2001; ATC-32, 1996).  
 
It is well documented in current seismic design codes that the purpose of limiting the plastic 
hinges at both ends of columns is because post-earthquake repair may be completed without 
disruption to the daily traffic flow (Caltrans, 2004). Another benefit of this practice is that post-
earthquake inspection consisting of nondestructive measures can be easily undertaken. Previous 
research has shown that existing bridges built in the state of Alaska do not comply with current 
seismic design principles leaving them prone to significant damage and undesirable failure 
modes when subjected to seismic events. A common practice in the construction of bridge bents 
in Alaska and other regions that experience long winter and deicing seasons is the use of a thick 
steel shell to form a cast-in-drilled-hole (CIDH) foundation shaft system and to act as the 
external longitudinal and transverse reinforcement for the system. The shell, which improves 
constructability for the bent by serving as a casing for the CIDH shaft and formwork for the 
column, have been typically embedded into the bent cap and the connection to the bent cap 
consists of mild steel longitudinal reinforcement. Based on a preliminary evaluation of existing 
bridges built in the state of Alaska, (Silva et al., 1999), some of the design deficiencies common 
to these as-built bridges are: 
 

1) The CISS column foundation shafts have excessive longitudinal reinforcement ratios, 
which impose high demands in the joints and the bent caps. 

2) The yield moment capacity of the bent cap is below the maximum feasible moment 
demand that develops at the column faces, which leads to the formation of plastic hinges in the 
bent cap. 
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3) The steel shells are partially embedded in the joint region, which under low levels of 
rotation impose extensive damage on the bent cap, and 

4) The joints have inadequate amounts of joint shear reinforcement to sustain the levels of 
principal tensile stresses that develop within the joint region, which leads to anchorage failure of 
the column longitudinal reinforcement and significant strength degradation below yielding of the 
column longitudinal reinforcement. 

 
Under seismic loading, these design deficiencies lead to damage of the bent cap and joint, which 
do not meet current capacity design standards for a proper seismic response of bent cap systems 
(AASHTO, 1996; Caltrans, 2001; Priestley, 1996).  Because of the design deficiencies outlined 
above, there is a need to develop procedures for the seismic upgrade of these systems. As such, 
the main objective of this research program was to provide upgrade design guidelines and 
evaluation methodologies for bridge system consisting of CIDH foundation shafts. 
 
1.2. RESEARCH SIGNIFICANCE 
This research program investigated an upgrade method for improving the seismic performance of 
bridge bents built in the state of Alaska.  Research results were then used to establish reliable 
displacement ductility levels and joint principle tensile stress limits for design of bridge bents 
using the proposed upgrade method.  As such, a laboratory model was designed, constructed, and 
tested under simulated seismic loads with the main goal of investigating the feasibility for field 
implementation of the proposed upgrade scheme. 
 
1.3. LITERATURE REVIEW 
Most of reinforced concrete (RC) columns built prior to the 1970’s were deficient in shear 
strength and flexural ductility (Sanders et al., 1992; Priestley et al., 1995). Each of these design 
deficiencies corresponds to a potential failure mode that is associated with insufficient amounts 
of transverse reinforcement and/or seismic detailing. However, the associated failure modes are 
mostly eliminated when using steel shells encasing reinforced or unreinforced concrete sections, 
because of the satisfactory seismic performance of steel casings to enhance the ductility capacity 
through confinement of the concrete core (Chai et al., 1991; Priestley et al., 1995; Silva et al., 
1997). With the presence of the steel shells undesirable failure modes are prevented under 
reversed cyclic loading and, as such, no retrofit is required in these members. However; up until 
recently, the steel shells in these CIDH shafts have been embedded into the bent cap. This detail 
has been experimentally investigated to cause extensive damage to the joint region due to the the 
steel shell prying action expected under reversed cyclic loading (Silva and Seible, 2001). As 
demonstrated by Silva et al. (1997), such damage can be easily prevented by terminating the 
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steel shells below the bent cap. This detail was also adopted in this research program and the 
corresponding construction/upgrade details are clearly described in Section 3.1.  
 
Recent earthquakes worldwide have illustrated the vulnerability of existing RC beam-column 
joints to seismic loading (Sritharan, 1998). Poorly detailed joints have been identified as critical 
structural elements because of their undesirable performance when subjected to seismic loading 
(Mazzoni and Moehle, 2001). Strengthening of RC joints is a difficult task posing major 
construction challenges. A variety of techniques applicable to concrete elements have also been 
applied to joints with the most common ones being the construction of concrete jackets with or 
without the use of longitudinal or transverse prestressing (Mazzoni and Moehle, 2001; Ingham, 
1995).  
 
Longitudinal prestressing of a beam-column joint has two major advantages; namely, it reduces 
the tendency for joint cracking due to an increase in horizontal plane stresses, and secondly it 
increases the joint shear strength of the bent cap. Prestressing can also be designed to increase 
the bent cap shear and flexural strength sufficiently to ensure that column plastic hinges are 
developed for both positive and negative moments. However, prestressing the joint also increases 
the principal compressive stresses within the joint, and design of the prestressing force should 
not lead to principle compressive stresses in excess of 0.3f’

c. In this research program post 
tensioning was also evaluated; but in this case, only stressing in the transverse direction of the 
bent cap was implemented. Unlike longitudinal prestressing, transverse prestressing only merits 
by increasing the strength of the joint to resist the input tensile stresses, but it does not either lead 
to a reduction in the principle tensile stresses nor does it increases the shear and flexural strength 
of the bent cap. Although not as effective as prestressing in the longitudinal direction because of 
these reasons, this is a detail solution that has not been previously investigated, and merits 
investigation for its usefulness in field applications. 
 
Longitudinal external prestressing is likely to be the most effective retrofit technique when the 
principal tensile stresses within the joint can be reduced below 0.25 '

cf [MPa]. For higher levels 

of principal tensile stresses it may be unfeasible or even impractical to solely use prestressing. In 
this case, jacketing the joint by concrete, steel, or composite-materials may be also required to 
ensure that the performance of the joint is not likely to degrade under reversed cyclic loading 
(Gergely et al., 2000; Chen et al., 2005). Joint degradation leads to increased drift levels and 
subsequently anchorage failure of the column longitudinal reinforcement. Typically, the concrete 
jacket is dimensioned to ensure that the principle tensile stresses are properly dissipated over a 
wider region (Sritharan, 1998). Jacketing can also be used to increase the joint dimensions, thus 
reducing the principle stress levels. Extending the size of the joint into the existing column and 



 

 - 4 -

bent cap also increases the development length of the column longitudinal reinforcement and it 
creates new critical sections for moment capacity at the edge of the jacket. These details were 
further evaluated and implemented in this research program to enhance the seismic performance 
of the bent cap and joint region. Construction and design details implemented in the three test 
units are clearly described in Sections 3, 4, and 5.  
 
Analytical models in the form of strut-and-tie models have been developed and successfully used 
to design the shear reinforcement within the joint region. For example, Priestley (1993) 
developed a three point stress-strain model for poorly confined joints using these limits as 
starting points for joint design and assessment. As such, strut-and-tie models discussed in the 
literature were also used in this research program (Sritharan, 1998). Test results along with 
recommended procedures for seismic design and implementation of the retrofit schemes are 
presented and discussed in detail in the body of this report. 
 
1.4. SCOPE OF RESEARCH 
A prototype unit consisting of an interior column and corresponding bent cap was designed and 
constructed in a T-configuration by including the deficiencies discussed in Section 1.1. After 
construction, the as-built portion of the test units was modified in order to investigate seismic 
improvements and propose procedures for field implementation. The proposed seismic upgrade 
procedures were experimentally investigated in this research program and are presented in this 
report. Briefly, the seismic improvements made to the column and the bent cap system were: 
 

1) The moment capacity of the column was reduced by cutting a portion of the column 
longitudinal reinforcement at the connection to the bent cap to levels that can ensure a proper 
ductile seismic response.  Although current seismic design practices in the State of Alaska limits 
the longitudinal reinforcement ratio to 3% in order to minimize strength reductions resulting 
from joint degradation, previous research has shown that column reinforcement ratios in the 
order of 4.0% can be achieved provided that joint shear stresses are limited and congestion of 
reinforcement is avoided within the joint region (Priestley et. al, 1995, Silva et. al, 1999).  As 
such, this limit was also used as a benchmark for this research program for retrofit applications. 

2)  A section of the steel shell was cut and removed leaving a gap between the steel shell and 
the bent cap.  As before, previous research has shown that leaving this gap avoids significant 
damage to the bent cap under small rotations because the prying action of the steel shell against 
the surrounding concrete is avoided (Silva et. al, 1999). In addition, the steel shell was removed 
to provide access to cut the column longitudinal reinforcement thereby reducing the 
reinforcement ratio as designated above. 
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3) The bent cap dimensions were increased to ensure proper reinforcement spacing and to 
install the additional flexure and joint shear reinforcement, which was designed according to well 
established joint shear force transfer mechanism models (Sritharan and Ingham, 2003).  
Increasing the bent cap sizes also reduced the principle tensile stresses and provides for a better 
transfer of stresses within the joint region.  In addition, enlarging the bent cap also provides for a 
greater development length of the column longitudinal reinforcement, thereby increasing the 
anchorage capacity of this reinforcement.  Lastly, the bent cap was enlarged to levels that can 
prevent reinforcement congestion within the joint region. 

 
1.5. RESEARCH FINDINGS AND GENERAL DESIGN RECOMMENDATIONS 
Preliminary analytical investigations on the selected prototype structure have shown that joint 
shear failure was expected below first-yielding of the column longitudinal reinforcement. This is 
a clear indication that retrofitting/upgrade of the prototype structure was indeed necessary to 
achieve a desirable seismic performance. To achieve this objective, seismic improvements were 
made to the prototype structure and construction and design implementation of these seismic 
upgrade details are discussed and presented in greater detail within this report.  
 
As clearly shown in Sections 3.3, 4, 5.3, and 11.1, the retrofit scheme was slightly different for 
each of the three tested units and consisted primarily of variations in the: i) steel shell gap length, 
and ii) horizontal joint shear reinforcement. In Units 1 and 2 the steel shell gap length was 51mm 
(2in.), and for Unit 3 the gap length was reduced to 13mm (1/4in.). Regarding the horizontal 
joint shear reinforcement; in Unit 1, this reinforcement was installed in two separate pieces and 
was inserted from either side of the bent cap. In Unit 2 this reinforcement was installed as a 
single piece and was installed continuously through the joint region. Finally, Unit 3 was 
transversely post-tensioned through the existing bent cap section and the new section was built 
over it. A detailed explanation for the reasoning behind each of these variations is presented in 
Design Sections 4 and 5.1 and in the Experimental Results Sections 8, 9, and 10. 
 
After retrofit, results from the cyclic testing of the upgraded units showed a ductile response up 
to the displacement ductility of 4 for the three units without significant decreases in the strength 
of the test units. Beyond this ductility level, the main failure mode of Unit 1 was attributed to 
joint shear failure due to excessive transverse dilations in the joint region. An improved joint 
detail was implemented for Unit 2, and the main failure mode was attributed to low cyclic 
fatigue of the column longitudinal reinforcement.  Joint degradation was also recorded beyond 
the displacement ductility of 6, but this degradation was lower than the values registered for Unit 
1.  In Unit 3 the joint was post-tensioned in the transverse direction while also decreasing the gap 
length between the steel shell and the bent cap. Beyond ductility level 6 degradation of the lateral 
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load capacity of the column occurred due to joint shear failure. Although, strength degradation 
was higher than in Unit 2, this was attributed to the reduction of the steel shell gap and as a first 
recommendation it is suggested that the steel shell gap be within 38 to 51mm. 
Test results also indicate that the computed principal tensile stresses, observed levels of joint 
damage, and energy dissipation capacity were different in each of the test units. Regarding Units 
1 and 2, these units reached principle tensile stresses in the order of 0.42 '

cf [MPa] before 

experiencing decreases in the lateral load capacity. In Unit 3, principle tensile stresses as high as 
0.54 '

cf [MPa] were registered before the unit reached its peak lateral load. While Unit 1 

experienced higher levels of joint damage, strength degradation and losses in the energy 
dissipation capacity, Units 2 and 3 performed within a more acceptable capacity design 
approach. Detailed description for the design of these units and experimental results are 
discussed within this report. Based on these test results, the research team proposes the 
following:  
 
1.5.1. Unit 1 – Permissible Design Levels 
It is recommended that the details used in the construction of this test unit be limited to design 
conditions when the principle tensile stress limits do not exceed φf×0.42 '

cf [MPa]. Furthermore, 

a limiting force reduction factor of 4 should be employed in retrofit conditions using the upgrade 
details discussed in this report for Unit 1. 
 
1.5.2. Unit 2 – Permissible Design Levels 
For this unit the research team proposes two limiting design values. One is for cases when the 
principle tensile stress limits do not exceed φf×0.42 '

cf [MPa]. Under these conditions no limit 

should be imposed on the displacement ductility capacity beyond those currently stipulated for 
bent design. For other cases when the principle tensile stress limits exceed this value a limiting 
force reduction factor of 4 should be employed in the retrofit design. However, the principle 
tensile stress limits should not exceed 0.42 '

cf [MPa] at ductility levels in excess of 4. 

 
1.5.3. Unit 3 – Permissible Design Levels 
For Unit 3 the research team proposes that the steel shell gap be within 38 to51mm. Under these 
conditions when the principle tensile stress limits do not exceed φf×0.55 '

cf [MPa] no extra 

limitation should be imposed on the displacement ductility capacity currently stipulated for bent 
design. For other cases when the principle tensile stress limits exceed this value a limiting force 
reduction factor of 4 should be employed in the retrofit design. However, the principle tensile 
stress limits should not exceed 0.55 '

cf [MPa] at ductility levels in excess of 4. 
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Based on this design philosophy it is expected that some level of strength degradation will be 
observed in the column when the limiting principle tensile stress limits are achieved, but by 
imposing a limiting value on the dependable displacement ductility capacity it is expected that 
this will not either cause significant decrease in the column axial capacity nor significant wide 
open cracks in the joint region.  Furthermore, any cracks at this level will close under the gravity 
loads.  In other conditions, for bent caps with lower principle tensile stress limits the full 
dependable moment capacity and displacement ductility of the column can be expected to 
develop.  As such, for these columns higher displacement ductility levels may be accepted in 
design. These recommendations along with other test results are described in further detail in this 
report. 
 
1.6. REPORT LAYOUT 
Following an introduction to the seismic design of reinforced concrete bridge bents, and scope of 
the current study in this section, Section 2 describes the test matrix, the geometry of the test 
setup and loading protocol, the reinforcement layout for the test as-built section and the material 
properties. Following description of the as-built section in Section 2, Section 3 describes in detail 
the design considerations for the column, bent cap and joint region for Unit 1, along with the 
analytical predictions and evaluation for this test unit. Section 4 describes the design procedure 
for Unit 2, while Section 5 covers the design of Unit 3, and Section 6 describes the 
instrumentation layout for the three test units. In Section 7 the predicted response of the test units 
was developed using well established moment-rotation models and results from these analyses 
are discussed. In Sections 8, 9, and 10 experimental results are described in great detail for Units 
1, 2, and 3, respectively. Following the description of the test results, a detailed discussion and 
development of an empirical model is presented at length in Section 11, which were then used to 
obtain the post-test lateral deformation response of the test units. Finally, this report concludes 
with specific recommendations for the seismic upgrade of reinforced concrete bridge bents with 
cast-in-place steel shell pile-shaft/columns, as presented in Section 12.
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2. EXPERIMENTAL PROGRAM AND AS-BUILT SECTIONS 

2.1. TEST MATRIX 
In this research program three test units, designated as Units 1, 2, and 3, were tested under 
reversed seismic loads. The main objective of this research was to investigate different 
retrofit/upgrade schemes with the main goal of increasing the performance of bridge bents under 
seismic loads. In these units the retrofit scheme for the bent cap was identical, to the exception 
that within the column and joint region a few minor modifications were implemented as 
discussed in Sections 4, and 5. Design of Unit 2 was accomplished after testing of Unit 1; 
meanwhile, design of Unit 3 was accomplished after testing of Unit 2.  
 
2.2. TEST SETUP 
Laboratory conditions placed a limit on the size and setup for the test units. For safety 
precautions the test units were built and tested in an inverted position, as shown in Figure 2-1. 
The test units consisted of a column and respective bent cap arranged in a tee configuration.  In 
the as-built conditions, the columns were 610 mm in diameter with a height from the bent cap 
interface to the height of load application of 2.87 m. The bent caps were 737 mm (wide) x 743 
mm (depth) x 5.18m (length) with a clear span between supports of 4.57 mm.   
 
After retrofitting, the bent cap size dimensions were increased to 1,054 mm (wide) x 895 mm 
(depth), resulting in a reduced column height of 2.72 m or an aspect ratio of 4.5. Design 
considerations for the retrofit and upgrade of the test units are presented in detail in Sections 3, 4, 
and 5 of this report. 
 
As shown in Figure 2-1 for application of the simulated gravity and lateral loads, the top of the 
columns was terminated in the form of a cubic load stub. On the top surface of the load stub a 
hydraulic jack was used to apply the simulated gravity load. This axial load was then transferred 
to the bent cap through I-sections to simulate as closely as possible the position of the prototype 
bridge girders.  These I-sections were positioned on the underside of the bent cap at a distance of 
1.83 m, and the total axial load applied on the column was 710 kN, which corresponds to an 
estimated axial load ratio of 8%. On the side surface, a servo-controlled hydraulic actuator was 
connected to apply the simulated reversed cyclic lateral loads. The lateral loading protocol is 
described in further detail in Section 7.3. 
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Figure 2-1. Test Setup 

 
2.3. AS-BUILT SECTIONS 
The three test units were constructed in a similar manner as in field conditions.  However, in 
order to ensure proper safety precautions during and after construction and testing, each unit was 
built in an inverted position.  Construction of the three test units was performed in two phases.  
In the first phase the corresponding as-built section was built. In the second phase, the as-built 
segment was modified as needed, and the new retrofit section was added. The as-built section 
was identical in all the three test units; however, the retrofit section in all three test units was 
constructed with minor deviations for investigation of different retrofit details, which will be 
discussed in detail in Sections 3, 4, and 5. The as-built column and bent cap cross sections and 
reinforcement layout are shown in Figure 2-2.  
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As previously discussed and based on current seismic evaluation methodologies, in its as-built 
condition the main failure mode of these units was by flexural yielding of the bent cap 
longitudinal reinforcement with significant shear deformations within the joint regions. Each of 
these failure modes do not comply with current seismic design criteria for the response of bridge 
bents under seismic loads. According to these failure modes, plastic hinges form in the bent cap 
and joint shear failure, leading to anchorage failure of the column longitudinal reinforcement at 
displacement levels below yielding of the column, which are insufficient to sustain the design 
seismic event. In Section 3 of this report a detailed analytical investigation of the as-built system 
is presented in further detail along with the recommended design improvements and the 
proposed methodology. 
 

28.6 mm Ø
A490 Bolts

0.61 m 
Square
Load Stud

610 mmNo Stirrups 
at Center of Bent Cap

743   
mm  

Steel Shell 
Embedment
of 89 mm
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13 mm Thick Steel Shell
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Through Load
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D13 Stirrups
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D13 Stirrups
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(Each Side)

Loading 
Direction

A

 (a) Longitudinal Cross-Section (b) Cross-Section 

Figure 2-2. As-Built Reinforcement Layout 
 

2.3.1. Column Reinforcement 
The as-built column section consisted of 20 – D32 bars for the longitudinal reinforcement that 
were encased in a 13 mm thick steel shell with a cover concrete of 51 mm leading to a 
longitudinal reinforcement ratio of 6.1%.  Furthermore, the steel shell was embedded 89 mm into 
the bent cap and the anchorage length of the column longitudinal reinforcement was 690 mm.  
The transverse reinforcement in the column was only provided for construction purposes, which 
under typical field conditions consists of D10 hoops at 381 mm on centers.  By providing this 
large level of column longitudinal reinforcement ratio poses severe difficulties in providing for a 
reliable joint shear force transfer mechanism model and subsequently design of the joint shear 
reinforcement.  
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In addition, previous research has clearly shown that by embedding the steel shell into the bent 
cap imposes significant damage within the seating region due to the prying action of the steel 
shell (Silva et al., 1999). Meanwhile, one of the main advantages in using steel shells encasing 
reinforced concrete sections, especially in seismic regions, is the satisfactory performance of 
steel casings to enhance the ductility capacity of reinforced concrete sections through 
confinement of the concrete core.  
 
2.3.2. Bent Cap Reinforcement 
The main longitudinal reinforcement for the bent cap was the same for both the top and bottom 
layers and consisted of 8 – D16 bars that were placed in two layers.  The clear distance between 
the two layers was 25.4 mm and the distance between the centroid of the top and bottom layer 
was nearly 198 mm, leading approximately to a reinforcement ratio of 0.40%. As discussed in 
Sections 3 and 5, this level of longitudinal reinforcement ratio is not appropriate to develop the 
yielding moment capacity necessary to ensure that the bent cap will remain essentially elastic 
under the input column plastic moment. Matching the as-built bent cap, no transverse 
reinforcement was provided within the joint region.  The transverse reinforcement consisted of 
closed D13 stirrups spaced at 254 mm to either side of the columns (see Figure 2-2).  However, it 
is important to emphasize that this construction detail does not comply with existing seismic 
design standards, and large inelastic actions are expected under reversed cyclic loading. As such, 
the retrofit and/or upgrade details discussed in Sections 3, 4, and 5 of this report investigate the 
feasibility of mediating the response of bridge bents under seismic loadings. 
 
2.4. MATERIAL PROPERTIES 
In Sections 3 and 5, analytical investigations of the as-built and new retrofit sections are 
presented in detail. In this section a detailed list of all the material properties used in these 
analyses are presented.  Concrete and steel properties used in the analysis are presented in Table 
2-1 through Table 2-3, respectively.  Concrete cylinders (102 x 203 mm) were cast for each lift 
of concrete and stored next to the test unit.  Rebar samples were taken from each lot of steel and 
tested.  Reinforcing steel material properties for the as-built and retrofit sections are shown, 
respectively in Table 2-2 and Table 2-3. All material tests for either the concrete or reinforcing 
steel were done in sets of three and averaged. 
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Table 2-1. Concrete Material Properties 
Bent Cap Unit 

No. Test * Column As-Built Retrofit 
28 Day (MPa) 27.1  29.0 33.8 1 Day of Test (MPa)  29.3 33.8 36.9 
28 Day (MPa) 28.0  33.5 36.6 2 Day of Test (MPa)  30.8 38.3 38.9 
28 Day (MPa) 39.3 26.2 36.6 3 Day of Test (MPa)  43.7 27.1 38.8 

 * Specified nominal strength was 34.5 MPa  
 

Table 2-2. Reinforcing Steel Material Properties – As Built Section 
Unit 
No. 

Bar 
Size Bar Location fy 

(MPa)
fu 

(MPa) 
E 

(GPa) 
D10 Column Hoops 310 474 215 
D13 Bent Shear 425 638 195 
D16 Bent Longitudinal 554 689 196 

1  
and  
2 

D32 Column Longitudinal* 519 671 189 
D10 Column Hoops 435 632 174 
D13 Bent Shear 503 669 192 
D16 Bent Longitudinal 476 702 195 3 

D32 Column Longitudinal 497 746 209 
  * Calculated yield strain of 2,740 με 
 

Table 2-3. Reinforcing Steel Material Properties – Retrofit Section 
Unit 
No. 

Bar 
Size Bar Location fy 

(MPa)
fu 

(MPa)
E 

(GPa) 
D13 Bent Shear 506 674 215 
D16 Bent Transverse 486 652 200 1 
D19 Bent Longitudinal 493 775 195 
D13 Bent Shear 503 669 192 
D16 Bent Transverse 476 645 193 2 
D19 Bent Longitudinal 472 696 182 
D13 Bent Shear 506 674 215 
D16 Bent Transverse 486 652 200 
D19 Bent Longitudinal 493 775 195 3 

D19* Pre-Stress Rods 517 689 200 
* Threaded Rod, Manufacturer's Specifications 
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3. RETROFIT AND UPGRADE DESIGN OF UNIT 1 

As previously discussed, after the as-built section was constructed, modifications were 
implemented according to well established seismic design principles.  The overall section 
dimensions and reinforcement layout of the modified cross section for Unit 1 are shown in 
Figure 3-1.  In this figure the shaded region represents the as-built bent cap section. Further 
modifications were implemented in the design of Units 2 and 3, which are discussed in further 
detail in Sections 4 and 5.  In this section, design of the upgrade scheme for Unit 1 is explained 
in further detail. 
 

Gap 51 mm
10 - D19 Bars

3 - D19 Bars
(Each side)

6 - D19 Bars
(Each Side)

743

As-Built Section
Retrofit Section

Note: All units are in mm unless otherwise noted
737159 159

3 - D16 Headed
Reinforcement
(Each Side)

D13 Closed
Stirrups

152

3 - D16 Headed
Reinforcement

Loading
Direction

13 mm Thick
Steel Shell

Bars Cut At The Joint

12-D32 Bars

D13 Closed Stirrups

 
Figure 3-1. Unit 1 Retrofitted Cross-Section 

 
3.1. COLUMN DESIGN CONSIDERATIONS 
In the joint region the column longitudinal reinforcement was reduced to a reinforcement ratio 
below 4.0%, as suggested by Priestley et al. (1996).  This reinforcement ratio has been suggested 
as an upper limit to avoid excessive amounts of joint shear reinforcement, which can lead to 
reinforcement congestion within the joint region.  As such, eight of the twenty column 
longitudinal bars were cut, thereby reducing the reinforcement ratio from 6.1 % to 3.7%.  
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Current seismic design practices in the State of Alaska limits the longitudinal reinforcement ratio 
to 3%. As such, this design value should also be used in retrofit applications provided that by 
reducing the reinforcement ratio to this level does not impose significant demands on the existing 
columns in terms of either ductility or inelastic strength. Otherwise, it is practical to increase this 
limit to 4% without significant strength degradation resulting from joint damage (Priestley et. al, 
1995, Silva et. al, 1999). 
 
In order to access the column longitudinal reinforcement, the steel shell was also cut and a 
portion removed. After the steel shell was cut and the column reinforcement was exposed by 
removing the cover concrete, the designated column bars were cut immediately above the as-
built bent cap section, as shown in Figure 3-2. The new column section consisted of 12 – D32 
longitudinal reinforcement and a gap region of 51 mm was left between the steel shell and the 
new bent cap section as shown in Figure 3-1. 
 

 
Figure 3-2. Cut Longitudinal Reinforcement 

 
3.1.1. Moment-Curvature Analysis 
A moment-curvature analysis was performed for both of these reinforcement ratios (i.e. 6.1% 
and 3.7%) corresponding to the as-built and the retrofitted sections.  Results of this analysis are 
shown in Figure 3-3.   
 
For the as-built section, the moment curvature analysis was implemented considering that in the 
compression block the concrete, longitudinal reinforcement and steel shell are effective in 
transferring forces (Silva, 1997). Meanwhile within the tension block, only the longitudinal 
reinforcement was considered effective in transferring forces. Furthermore, the entire concrete 
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compression block was assumed confined by the action provided by the steel shell based on 
expressions developed by Chai et al. (1991). Based on this analysis the ultimate moment 
capacity for the as-built column section was computed at 2,736 kN-m with an ultimate curvature 
ductility capacity of approximately 17. 
 
For the retrofitted section and since the steel shell was cut at the bent cap interface to provide for 
a gap between the steel shell and the increased bent cap, the moment curvature analyses was 
implemented considering that in the compression block only the concrete and longitudinal 
reinforcement are effective in transferring forces (Silva, 1997). In this case the concrete 
compression block was assumed confined by an equivalent spiral confined section with a spiral 
size and pitch of 13x13 mm and 51 mm, respectively. These numbers correspond to the steel 
shell thickness and the gap at the interface with the bent cap (see Figure 3-1). Based on this 
analysis the ultimate moment demand for the modified column section was computed at 1,414 
kN-m with an ultimate curvature ductility capacity of approximately 18. 
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Figure 3-3. Column Moment Curvature 

 
Referring to this figure, it is clear that the moment capacity of the retrofitted section (i.e. 3.7%) 
was reduced by nearly a factor of 2.  Proportionally, this decrease is much less than the decrease 
in the reinforcement ratio or by a factor of 1.66.  This can be explained because in addition to a 
decrease in the reinforcement ratio, the gap between the steel shell and the new bent cap section 
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also decreased the confinement action of the steel shell and the effects of the steel shell on the 
bending moment capacity of the column section. In addition, analysis for the reduced 
reinforcement ratio without the compression action of the steel shell shows a pronounced elasto-
plastic response when compared against the original section. This is also a desirable 
characteristic in the seismic design of structures because it sets the limiting actions in the system 
at low displacement ductility levels as compared to the as-built section where the capacity of the 
section increases up to ultimate.  This new reinforcement ratio of 3.7%, was then used as the 
parameter to design the additional flexural, shear, and joint shear reinforcement for the bent cap.  
 
3.2. BENT CAP DESIGN CONSIDERATIONS 
The moment demand placed on the bent cap was determined based on the ultimate moment 
capacity of the column, the applied axial load, and the structural layout of the test unit.  Then an 
analysis was performed along the centerline of the bent cap at the critical locations, as shown in 
Figure 3-4(a).  Based on the bending moment diagram depicted in Figure 3-4(b), the critical 
location used for design of the bent cap was established at node F. 
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Figure 3-4. Bent Cap Moment Demand Design Considerations 
 
The maximum moment demand placed on the bent cap was determined according to the bending 
moment diagram presented in Figure 3-4(b) and computed at node F based on the expression 

'
2

2 4

bG
CF C B c B c

B
C B

hLM L D L DM P
L L

⎛ ⎞+ ⎛ ⎞ ⎛ ⎞− −⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎜ ⎟
⎝ ⎠

 (3-1) 
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Referring to Figure 3-4, MB
F

  is the bent cap centerline moment at the critical node F, MC
G is the 

retrofitted column bending moment capacity estimated according to the moment curvature 
analysis presented in Figure 3-3 for the column with the reduced reinforcement ratio, ρl, of 3.7%, 
L’

B is the distance between the bridge girders, which for these test units was modeled at 1.83 m, 
as shown in Figure 2-1, Dc for CISS sections is the inside diameter of the steel shell or 584 mm 
for these test units, and P is the axial load applied to the column. Furthermore, hb is the height of 
the retrofitted bent cap, LC is the distance from the top surface of the bent cap to the centerline of 
the applied lateral load or the distance between nodes C and G, and LB is the distance between 
the end supports or the distance between nodes A and B or 4.57 m, as shown in Figure 2-1 and 
Figure 3-4(a). 
 
3.2.1. Moment-Curvature Analysis 
From the moment-curvature analysis depicted in Figure 3-5, it can be shown that the as-built 
bent cap moment capacity was deficient compared to the moment demand obtained by using Eq. 
(3-1).  In this analysis the column capacity was evaluated based on the section with the reduced 
reinforcement ratio of 3.7%.  As such, additional longitudinal reinforcement was added to the 
bent cap to increase its yield moment capacity above the moment demand imposed on the bent 
cap from the column, Mc

G. 
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Figure 3-5. Bent Cap Moment Curvature 
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Referring to Figure 3-5, the maximum moment demand that can be imposed on the bent cap was 
nearly 990 kN-m and the computed yield moment capacity of the as-built bent cap was nearly 
464 kN-m.  Previous research by Silva et al. (1999) has suggested that the first yield moment 
capacity of the bent cap, My,b, should be at least 1,110 kN-m as given by 

mkNMM D
b

f

o
by −=×== 100,1990

9.0
0.1

, φ
λ

 (3-2) 

Where λ0 is the material over-strength factor equal to 1.4 when the nominal reinforcement design 
yield stress is used, otherwise λ0 is 1.0, MB

F
  is the bent cap centerline moment at location F 

given by Eq. (3-1), and φf is the flexural strength reduction factor equal to 0.9.  In order to 
increase the yield moment capacity of the bent cap to 1,100 kN-m, additional longitudinal 
reinforcement in the amount of approximately 800 mm2 top and bottom were required along with 
increasing the bent cap dimensions.  This limit required a total of 3-D19 bars; as although, as 
shown in Figure 3-1, the total amount of additional reinforcement provided in the bent cap was 
10-D19 on the top and 12-D19 on the bottom.  These values exceed the required limit because of 
joint shear design considerations, which will be discussed in Section 3.3.3. However it is 
important to note that the moment curvature analysis presented in Figure 3-5 was evaluated for a 
bent cap section with the new dimensions shown in Figure 3-1 but including only these new 3-
D19 bars along with the as-built reinforcement. 
 
3.2.2. Retrofitted Bent Cap Sizing 
In order to install the longitudinal reinforcement in the bent cap and to meet current seismic 
design standards, the minimum width of the bent cap, Wb, required was 

mmmmDW cb 8765845.15.1 =×==  (3-3) 
However, the required width of the bent cap necessary to meet current ACI (ACI 2002) bar 
spacing and cover concrete specifications (see Figure 3-1) was 1,054 mm. Completing the bent 
cap resizing design, the height of the bent cap was determined based on limits to provide 
adequate anchorage length for the column longitudinal reinforcement.  Using Priestley’s (1996) 
recommendations, the development length, ld, was computed based on the expression 

mm
MPa

MPamm
f

f
dl

cb

yc
bd 677

5.34
414323.03.0

'
≈××==  (3-4) 

Where db and fyc are the column longitudinal reinforcement diameter and specified design yield 
strength, respectively, and f’

cb  is the bent cap specified design concrete compressive strength.  
Since the as-built bent cap section provided only for a development length of 629 mm, there was 
the need to increase the height of the bent cap.  The bent cap height was increased by a length of 
152 mm for a total depth of 895 mm.  This new height led to a total development length for the 
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column longitudinal reinforcement of 790 mm, which exceeds the required anchorage length of 
677 mm. 
 
3.3. JOINT DESIGN CONSIDERATIONS 
3.3.1. Joint Principle Stress Evaluation 
Recent earthquakes have demonstrated the high risks associated with joint shear failure that can 
lead to collapse of entire bridge systems. Joint shear failure has been attributed largely to poorly 
detailed joints, performing as weak links in RC frames (Mazzoni and Moehle, 2001). According 
to the National Cooperative Highway Research Program seismic design guidelines (NCHRP, 
2003) and further corroborated by experimental investigation many existing bridges are 
vulnerable in the connection of the columns to the bent cap under seismic loads (Priestley et al., 
1995; Yashinsky and Karshenas, 2003). Although flexibility in these connections is likely under 
seismic actions, these connections should retain reserved strength capacity under reversal cyclic 
loading in order to prevent large strength decreases in the system caused by shear failure of the 
joint core, or, as importantly, to prevent pull-out of the column longitudinal reinforcement.  
 
Forces acting upon a typical bridge bent tee joint are depicted in Figure 3-6. Since large shear 
forces develop in bridge joints, as illustrated in Figure 3-6(c), conventional design methods that 
are based on joint shear forces typically demand considerable amounts of joint shear 
reinforcement. This design approach results in steel congestion within the joint regions creating 
difficulties in the construction of concrete bridge joints. A procedure that is nowadays used for 
the design of the joints is based on strut and tie models, which will be discussed in the next 
section.  
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Figure 3-6. Joint Shear Forces in Bridge Tee Joints 
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In this research program, design of the joint was preceded by an evaluation of the principle 
compressive and tensile stresses computed from a Mohr’s circle of analysis in order to anticipate 
its seismic performance (Priestley, 1996; Silva, 1999; Sritharan, 2003).  For the design of joints 
(Priestley, 1996; Sritharan and Ingham, 2003) the following values are limits that have been 
proposed to establish a criterion for the design of the joint shear reinforcement 

'3.0 cc fp ≤  (3-5) 
'0.25 [ ]t cp f MPa≤  (3-6) 

'
, 0.42 [ ]t m cp f MPa≥  (3-7) 

The principle compressive stress limit, pc, stipulated by Eq. (3-5), corresponds to the value at 
which crushing of the diagonal compression strut through the joint region initiates.  In this 
research program, the bent cap sizing was inspected to ensure that the computed principle 
compressive stresses were below this value. Based on the column moment demand and bent cap 
sizes the principle compressive stresses were evaluated at 0.13f’

c, which are significantly lower 
than the limit value of 0.30 f’

c. 
 
The principle tensile stress limit, pt, stipulated by Eq. (3-6) indicates the limit at which diagonal 
cracking in the joint is initiated and nominal joint shear reinforcement is required. Eq. (3-7) 
stipulates the principle tensile stress limit, pt,m, at which full joint shear reinforcement is required.  
Interpolation between nominal and full joint shear reinforcement is typically required between 
these two limits. Given the applied axial load in the column of 710 kN and using the retrofitted 
column’s predicted ultimate moment capacity of 1,440 kN-m (see Figure 3-3), the joint shearing 
stress, vj, and the axial stress, fa, are 

MPa
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Where Vh is the shear force in the joint due to the applied moment, bje is the width of the joint 
over which the shear force is applied, Dc is the inside diameter of the steel shell, and P is the 
axial force in the column, and Vh and bje are given by 
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In Eq. (3-10), Mc
G is the ultimate moment capacity of the column derived from the moment 

curvature analysis.  Using the Mohr’s circle of analysis and the results from Eqs. (3-8) and (3-9), 
the principle stresses are then given by 

( )MPav
ff

pp j
aa

tc 7.3,5.409.4
4
82.0

2
82.0

42
, 2

2
2

2

−=+±=+±=  (3-12) 

Normalizing the results derived from Eq. (3-12) in terms of the nominal design concrete 
compressive strength of 34.5 MPa for f’

c, yields the normalized principle compressive, pc,  and 

tensile stresses, pt, of  0.13f’
c and '63.0 cf  respectively. Joint principle tensile stresses, pt, were 

then computed using the entire moment curvature envelope based on the retrofitted column 
section shown in Figure 3-3.  As shown in Figure 3-7 results indicate that the principle tensile 
stresses, pt, exceed the limits stipulated by Eq. (3-7) and, as such, full joint shear reinforcement 
was required in the joint.  In the next section, the joint shear design is presented in further detail. 
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Figure 3-7. Joint Principle Tensile Stresses - Retrofitted Column 

 
3.3.2. Joint Shear Reinforcement 
Extensive information exists in the literature that clearly delineates the procedure of establishing 
strut and tie models for the design of joints and its benefits of transferring forces across the joint 
(Sritharan, 1999; Mazzoni, 2001).  Sritharan (1999) has proposed a strut and tie model that has 
been successfully used to design the reinforcement in the joint region and was used in this 



 

 - 22 -

research program for the design of the joint shear reinforcement.  Referring to Figure 3-8, design 
of the test unit upgrade scheme was based on the modified external strut force transfer model 
(Sritharan,1999).  
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Figure 3-8. Joint Force Transfer Model (Sritharan, 1999) 
 

This model typically requires the least amount of reinforcement when compared to other possible 
models. Design of joints using this approach has also been successfully used previously in the 
design of a three multiple column bridge bent (Silva et al., 1999). Based on the strut and tie 
model of Figure 3-8, joint design includes (see Figure 3-9) 

1. Top, ΔAtb, and bottom, ΔAbb, additional bent cap longitudinal reinforcement. 

2. Vertical reinforcement outside and inside the joint region, Ajv, and 

3. Horizontal joint reinforcement, Ajh. 
 
Typically, the top, ΔAtb, and bottom, ΔAbb, longitudinal reinforcement is provided by additional 
reinforcement in the bent cap.  Reference to top and bottom reinforcement are for a bent cap in 
its upright position; which in the test units these are inverted.  The vertical reinforcement outside 
and inside the joint region, Ajv, is provided by closed stirrups or properly anchored headed 
reinforcement, and finally, the horizontal reinforcement, Ajh, is provided also by closed stirrups 
or headed reinforcement. Each of these along with the design requirements are described next. 
 

 
Note:  Anchorage of tie TS 
and external actions not 
shown for drawing clarity 
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Figure 3-9. Joint Shear Reinforcements 

 
3.3.3. Additional Longitudinal Reinforcement  
Based on the strut and tie model presented in Figure 3-8 (Sritharan, 1999), additional 
longitudinal reinforcement is required to resist the joint shear forces and must be placed in the 
bent cap.  As such, in addition to the required longitudinal reinforcement to satisfy flexural 
requirements, the area of additional top, ΔAtb, and bottom, ΔAtb, longitudinal reinforcement 
required was 

2
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5194.819120.117.017.0 mm

f
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sctb =××××==Δ λ  (3-13) 
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5198.98320.115.015.0 mm

f
f

AA
yb

yc
scbb =×××==Δ λ  (3-14) 

Where λ0 is the material over-strength factor equal to 1.4 when the reinforcement design yield 
stress is used, otherwise λ0 = 1.0, Asc is the area of the column longitudinal reinforcement, fyc is 
the column longitudinal reinforcement yield stress, and fyb is the bent cap longitudinal 
reinforcement yield stress.  It is required that this reinforcement be provided in addition to the 
reinforcement required to increase the yield moment capacity of the bent cap given by Eq. (3-2). 
Using a column longitudinal reinforcement of 12-D32 with a tested grade, fyc, of 519 MPa, a 
tested grade for the additional bent cap longitudinal reinforcement (D19) of 493 MPa, along with 
using λ0 = 1.0, the required limits for ΔAtb and ΔAbb were 1,759 mm2 (7-D19) and 1,552 mm2 (6-
D19), respectively.  From the bent cap longitudinal reinforcement provided, and subtracting the 
reinforcement required for the flexural capacity of the bent cap, 9-D19 and 10-D19 were 
available for ΔAtb and ΔAbb, respectively, which exceeds the required limits of 7 and 6, 
respectively. 
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3.3.4. Additional Internal and External Vertical Reinforcement 
Based on the selected strut and tie model, the area of internal vertical joint shear 
reinforcement, int

jvA , required within the joint region was (Silva 1999) 

2
0

int 958
506
5198.98320.1095.0095.0 mm

f
f

AA
yv

yc
scjv =×××== λ  (Internal) (3-15) 

Where fyv is the yield stress of the vertical stirrups.  In addition, an area of external vertical joint 
shear reinforcement, ext

jvA , was placed at a distance of hb away from the column face (Silva 1999) 

given by 

2
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5198.98320.1125.0125.0 mm

f
f
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yv

yc
sc

ext
jv =×××== λ  (External) (3-16) 

In construction, D13 internal and external joint shear reinforcement was provided by closed 
stirrups. With a tested grade for the closed stirrups of 506 MPa the required Ajv

int was 958 mm2 
or 8 legs of D13, and Ajv

ext was 1261mm2 or 10 legs of D13, respectively.  Referring to Figure 
3-1 and Figure 3-10, outside the joint region and within a distance of hb, four D13 closed stirrups 
were provided on either side of the existing bent cap and within the joint three D13 stirrups were 
provided on either side of the existing bent cap, which exceeds the required reinforcement to 
satisfy Ajv

int and Ajv
ext, respectively. 

 
3.3.5. Additional Horizontal Reinforcement 
As in the previous two sections and based on the selected strut and tie model, an area of 
horizontal joint shear reinforcement, Ajh, was required within the joint region (Silva, 1999).  In 
the design of new joints this reinforcement is typically provided in the form of spirals or hoops 
and installed along the anchorage length of the column longitudinal reinforcement. 
 
In other retrofit projects this reinforcement is typically provided in the form of U-shaped hoops, 
but in this case the entire concrete within the joints must be removed in order to install the 
reinforcement (Ingham, 1995; Mazzoni and Moehle, 2001). In this research program a different 
detail was implemented in which the horizontal reinforcement was provided in the form of 
horizontal headed reinforcement. This reinforcement was embedded in pre-drilled holes; thus, 
avoiding the need to remove any concrete from the joints, which speeds up the construction 
process. Design of this headed reinforcement is discussed next.  
 
Headed reinforcement was placed on all surfaces between the as-built and the retrofit sections.  
As such, the headed reinforcement extended halfway into the bent cap to form a mechanism to 
confine the concrete in the joint region due to insufficient detailing of the as-built section.  This 
headed reinforcement was also effective in providing shear flow between the as-built section and 
the retrofit section ensuring composite action between these two sections. In addition, as shown 
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in Figure 3-1, horizontal D13 closed stirrups were also placed across the top of the bent cap and 
outside of the joint region to confine this portion of the new bent cap section.  
 
Vertical headed reinforcement was also added on the top surface.  According to this detailing the 
headed reinforcement extended to a depth equal to the depth of the column longitudinal 
reinforcement anchorage length. This vertical reinforcement was placed near the middle of the 
bent cap to ensure that the compression struts formed from the column longitudinal 
reinforcement, as shown in Figure 3-11, are balanced by the ties that develop from this vertical 
headed reinforcement. Priestley (1996) recommends a clamping confining pressure required to 
prevent excessive transverse strains in the concrete be no less than 

ac

ycsc
shsl lD

fA
ff '

023.0
5.0

λ
ρ ==  (3-17) 

Where fl is the confining pressure, ρs is the volumetric transverse reinforcement ratio, fsh is the 
stress in the confining steel, la is the anchorage length of the column longitudinal reinforcement 
in the joint region (la = 0.7 hb), and D’

c is the diameter of the column concrete core.  To prevent 
pullout of the column reinforcement, Priestley recommends limiting the strain in the concrete to 
1.5 mm/m, which also leads to limiting the strain in the reinforcing hoops to 1.5 mm/m.  For 
Grade 60 steel, this strain value is below the yield strain leading to the following force 
equilibrium 

⇒= ycscsst fAEA 023.00015.0 λ 2142,4
900,1880015.0

5198.98320.123.0 mmAst =
×

×××
=  (3-18) 

For this retrofit, using the tested ultimate strength of the column longitudinal reinforcement of 
671 MPa and the tested modulus of elasticity of 189 GPa, leads to a required transverse 
reinforcement area, Ast, of 4,142 mm2, which was provided by at least 20-D16. Figure 3-1 shows 
the final retrofit cross-section with the longitudinal reinforcement provided to increase the elastic 
moment capacity and additional vertical and horizontal joint shear reinforcement, where the 
spacing of the stirrups and headed reinforcement are shown in Figure 3-10. 
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Figure 3-10. Unit 1 Bent Cap Reinforcement Layout 
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3.4. CONSTRUCTION OF THE AS-BUILT SECTION 
As previously discussed, the as-built section was identical in all the three test units. A brief 
description of the steps used in the construction of the as-built section is described next.  
 
Initially, the bent cap and column reinforcement cages were assembled (see Figure 3-12 and 
Figure 3-13). This was followed by placing the bent cap reinforcing cage inside the form work 
and installation of the column reinforcement cage and steel shell casing, as shown in Figure 3-14 
to Figure 3-16, respectively. With the column reinforcement cage and steel shell casing in place, 
the next step consisted of casting the bent cap, as shown in Figure 3-17. As a final step in the 
construction of the as-built sections, the load stub was assembled, followed by simultaneously 
casting the column and load stub (see Figure 3-18). The completed as-built section before any 
modifications were made is shown in Figure 3-19. 
 

 
Figure 3-12. Column & Cap Reinforcing Cage Figure 3-13. Bent Cap Reinforcing Cage 

 

Figure 3-14. Bent Cap Inside Form Work 
 

Figure 3-15. Colum Reinforcing Cage 
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Figure 3-16. Installation of Column Cage Figure 3-17. Casting of the Bent Cap 

 

Figure 3-18. Construction of the Load Stub Figure 3-19. Completed As-Built Section 

 
3.5. CONSTRUCTION OF UNIT 1 UPGRADE SECTION 
As previously discussed, after the as-built section was constructed, modifications were 
implemented in order to install the reinforcement in the new bent cap section.  As such, after the 
form work for the as-built section was removed (see Figure 3-19), the first step in the retrofit 
operation consisted of cutting the steel shell followed by cutting the column longitudinal 
reinforcement. This procedure is shown in Figure 3-2 and Figure 3-20. Next, the headed 
reinforcement was embedded in predrilled holes thru the as-built section (see Figure 3-21) by 
using U.S Anchor Corp.’s HS-200 epoxy. This is a rapid setting high strength structural epoxy.   
From an installation procedure, before embedding the headed reinforcement in the predrilled 
holes, these holes were first cleaned with compressed air in order to remove any loose particles 
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or dust.  Then, the epoxy was injected into each hole until it was approximately half full.  The 
rebar was inserted with a twisting motion to prevent any air voids for developing inside the 
holes.  The installed headed reinforcement for the retrofit section is shown in Figure 3-21. As a 
procedural recommendation, the headed reinforcement should be installed before any other 
reinforcement is placed around the existing bent cap.  
 
After the epoxy had cured, the retrofit longitudinal and vertical steel was tied in place, as shown 
in Figure 3-22 to Figure 3-24.  The retrofit bent cap was then formed and the concrete was 
poured (see Figure 3-25).  Finally, the retrofitted Unit 1 before testing is shown completed in 
Figure 3-26. 
 

Figure 3-20. Cutting Steel Shell Casing Figure 3-21. Installing Headed Reinforcing 
 

 
Figure 3-22. Retrofit Section Reinforcing Cage Figure 3-23. Joint Region Detail 
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Figure 3-24. Retrofit Section Reinforcing Cage 
 

Figure 3-25. Forming Retrofit Section 
 

 

Figure 3-26. Completed Unit 1 Before Testing 
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4. RETROFIT AND UPGRADE DESIGN OF UNIT 2 

Following testing of Unit 1 a few modifications were implemented for the construction of Unit 2. 
The main objective for these modifications was to increase the shear force transfer capacity 
through the joint and to improve the response of the test unit under cyclic loading. Description 
and reasoning behind these modifications are described next. 
 
First, in Unit 1 the headed reinforcement was installed from either side of the bent cap leaving a 
gap between the reinforcement inside the joint region, as shown in Figure 3-1. Although this 
detail provided for an easier construction process, it was not sufficient in preventing excessive 
dilations in the transverse direction of the bent cap, as discussed in Section 8.1. As such, in Unit 
2, the horizontal headed reinforcement was installed as a single continuous piece instead of two 
separate pieces. In order to accomplish this construction layout, a head was welded to the rebar 
and at the other end threads were used for the installation of the closing head. This type of 
headed reinforcement is commonly produced by companies specializing in the production of 
headed reinforcement. Figure 4-1 shows the continuous headed reinforcement running through 
the transverse direction of the bent cap. 
 

159 mm 159 mm737 mm

4 Rows of D16 Continuous 

Note: Provide One End with
a Welded Head and the Opposite 
End with a Threaded Head

2-D13 Hoops
Field Weld 

895 mm

1-Single D16 Continuous 

51mm Gap

152 mm

 
Figure 4-1. Unit 2 Retrofit Cross-Section 

 
Second, during testing of Unit 1, it was observed that the column longitudinal reinforcement 
began to buckle immediately after crushing of the cover concrete. This was attributed to 
insufficient transverse reinforcement within the gap region. In order to improve the anti-buckling 
resistance for the longitudinal reinforcement, two additional D-13 field welded hoops were also 
provided within the steel shell gap region. This detail will be further discussed in the next section 
or Section 4.1. 
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Finally, during the final stages of testing of Unit 1 wide open cracks were observed in the bent 
cap near the column interface. As such, the following modifications were implemented as shown 
in Figure 4-2: (1) the D16 horizontal headed reinforcement within the joint region were placed at 
a much closer pattern near the joint, (2) an additional headed rebar was installed through the gap 
region and within the column longitudinal reinforcement, and (3) an additional D13 closed 
stirrup was provided on either side of the bent cap. The retrofit cross-section and reinforcing 
layout for the second unit are shown in Figure 4-1 and Figure 4-2. 

 

 406 mm406 mm 10 @ 229 mm o.c.

Solid Circle Denotes 
D-16 Continuous  Headed 
Reinforcement

2-D13 Hoops 
Field Welded 

 
Figure 4-2. Unit 2 Retrofit Reinforcement Layout 

 
4.1. CONSTRUCTION OF UNIT 2 UPGRADE SECTION 
As in Unit 1, after the as-built section was constructed, modifications were implemented in order 
to install the new reinforcement. As before, the first step in the retrofit operation consisted of 
removing a protion of the steel shell followed by cutting the column longitudinal reinforcement 
(see Figure 4-3). Unlike Unit 1, in Unit 2, the next step consisted of removing first all of the 
concrete cover surrounding the column longitudinal reinforcement, as shown in Figure 4-3 and 
Figure 4-4.  
 
Next, the continuous horizontal and vertical headed reinforcement was embedded in predrilled 
holes but in this unit the holes were predrilled through the entire width of the as-built section. 
After installation of the headed reinforcement, the closing head was threaded followed by 
installation of the remaining reinforcement, as shown in Figure 4-5 and Figure 4-6. Next, 
installation of the headed reinforcement and completion of the construction of the upgrade 
section followed the same procedures outlined in Section 3.5. 
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Figure 4-3. Detail at Bent Cap Interface  Figure 4-4. Detail at Bent Cap Interface 

 

Figure 4-5. Bent Cap Retrofit Section Figure 4-6. Bent Cap Retrofit Section 
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5. RETROFIT AND UPGRADE DESIGN OF UNIT 3 

5.1. INTRODUCTION 
The upgrade scheme was slightly modified for the third unit, and these modifications are 
described in this section. As discussed in Section 9.1, the continuous reinforcement though the 
joint region was adequate in preventing dilation of the bent cap in the transverse direction. In 
order to further enhance the strength capacity of the joint, a different detail was investigated, 
which consisted of replacing the horizontal headed reinforcement with post-tensioned rods. As 
previously stated, transverse prestressing is a good alternative for increasing the strength of the 
joint, because it actively confines the concrete and induces an increase in the bond strength 
provided to the column longitudinal reinforcement. In addition, the steel shell gap was reduced 
from 52mm to 13mm, to further reduce the propensity for buckling of the column longitudinal 
reinforcement. The retrofitted cross-section and the reinforcing layout for Unit 3 are shown in 
Figure 5-1 and Figure 5-2. 

159 mm

152 mm

159 mm737 mm

4-Rows of Continuous 
D-19 Post-Tension 
Theaded Rod

2-D13 Hoops 
Field Weld

13 mm Gap

885 mm

 
Figure 5-1. Unit 3 Retrofit Cross-Section 

 
Since transverse stresses are only effective in improving the joint shear capacity and the bond 
strength of the column longitudinal reinforcement, the post-tensioned rods were only used within 
the joint region, as shown in Figure 5-3. Since placing the pre-stressing rods for the entire length 
of the bent cap would not lead to an increase in seismic performance, prestressing rods were only 
provided within the joint region further reducing construction time and costs. Each pre-stressing 
rod was 19 mm in diameter with a yield strength of 517 MPa according to the manufacturer. The 
pre-stressing rods were stressed to 60% of fy by tightening a nut at each end of the rod, and  the 
stress on the rods was measured by a calibrated torque wrench. It is important to note that the 
typical tensile strength of high-strength post-tensioning rods is 1,034MPA. Since in this research 
the rods provided by the manufacturer had a tensile strength of 517MPA, this only translated in a 
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higher pre-stress value applied to the rods but not a reduction in the performance of the joint. The 
stressed joint for Unit 3 is shown in Figure 5-3. 

10 @ 229 mm o.c.

D16 Headed Reinforcement

Solid Circle Denotes Continuous D19 
Post-Tension Theaded Rods

406 mm  406 mm

2-D13 Hoops Field Welded

 
Figure 5-2. Unit 3 Retrofit Reinforcement Layout 

 

 
Figure 5-3. Unit 3 Pre-stressed Joint 

 
5.2. MOMENT-CURVATURE ANALYSIS 
Since the steel shell gap in the column of Unit 2 was identical to Unit 1 the moment curvature 
analysis for these two units’ column was identical. In Unit 3 the steel shell gap was reduced from 
51mm to 13mm and, as a result, a new moment-curvature analysis was performed for the column 
of the third unit.  Results of this analysis are shown in Figure 5-4.  In this unit, the column 
moment curvature analysis was nearly the same as in the previous two units to the exception that 
the concrete compression block was assumed confined by an equivalent spiral size and pitch of 
13x13 mm and 13 mm, respectively. The moment curvature analysis for the test units are shown 
in Figure 5-4 and relevant data is outlined in Table 5-1. In Unit 3 the ultimate moment demand 
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for the modified column section was computed at 1,588 kN-m with an ultimate curvature 
ductility capacity of approximately 18, which was the same for the previous two units. 
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Figure 5-4. Unit 3 Moment-Curvature 

 
Table 5-1. Bilinear Moment Curvature  

First yield Theoretical Yield Ideal Ultimate Unit 
No. φ’

Y 
(1/m) 

M’
Y 

(kN-m) 
φY 

(mm) 
MY 

(kN-m)
φI 

(1/m) 
MI 

(kN-m)
φU 

(1/m) 
MU 

(kN-m) μφ 

1 & 2 0.00007 790 0.00010 1125 0.00035 1168 0.00180 1,414 
3 0.00008 903 0.00010 1232 0.00038 1290 0.00179 1,588 18 

  
5.3. JOINT PRINCIPLE STRESS DETERMINATION 
Due to the additional pre-stress in the transverse direction, a principle stress analysis was 
implemented for a 3-dimensional stress cube, as shown in Figure 5-5.  For a 3-D analysis the 
principle stresses are obtained by solving the determinant of the following stress matrix in terms 
of the scalar λ 

0=
−

−
−

λσττ
τλστ
ττλσ

zzzyzx

yzyyyx

xzxyxx

 (5-1) 
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Where λ are the three principle stresses, σxx is zero because there is no pre-stressing in the 
longitudinal direction of the bent cap, σyy is fa and is the stress due to the axial load, σzz is the 
stress due to the transverse stress force, τxy is equal to vj and is the shear stress due to the applied 
column moment, and τxz and τzy  are assumed zero or negligible due to the unidirectional applied 
column bending moment and that the applied pre-stress forces do not result in any significant 
shear stresses in these planes.  

σx

zxyτ σ

σy

 
Figure 5-5. 3-D Stress Cube 

 
As such, the determinant of Eq. (5-1) reverts to Eq. (3-12), which indicates that pre-stressing in 
the transverse direction has no effect on the joint principle compressive, pc, and tensile, pt, 
stresses in the longitudinal direction but only increases the joint principle compression stress in 
the transverse direction. As previously stated in Section 1.3 and unlike longitudinal prestressing, 
transverse prestressing does not lead to a reduction in the principle tensile stresses nor joint 
cracking, nor does it increases the bent cap shear and flexural strength. However, transverse 
prestressing merits by increasing the strength of the joint to resist the input tensile stresses. For 
example, test results clear suggest that the strength of the joint was increased from 0.42 '

cf  

[MPa] to [0.54 '
cf [MPa], representing an increase over 25%. This has significant implications in 

retrofit applications; because, it significantly reduces construction costs and time. 
 
As before, with an applied axial load on the column equal to 710 kN and referring to Eq. (3-9) 
the axial stress, fa, is 0.82 MPa. Given the column’s predicted ultimate moment capacity of 1,588 
kN-m (see Table 5-1), the shear force in the joint, Vh, is  

kN
m
mkN

h
M

d
M

V
b

F
c

F
c

h 218,2
895.08.0

1588
8.0

=
×

−
=≈=  (5-2) 

Referring to Section 3.3, the joint shearing stress, vj, is then 

MPa
mm

kN
Db

V
v

cje

h
j 60.4

584.0826.0
2218

=
×

==  (5-3) 

As a last step, using the results from Eqs. (3-9) and (5-3), the principle stresses are then given by 
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As before, normalizing the results of Eq. (5-4) in terms of the specified nominal concrete 
strength, f’

c , of 34.5 MPa yields the normalized principle compressive, pc,  and tensile stresses, 

pt, of  0.15f’
c and 0.72 '

cf . Joint principle tensile stresses, pt, were computed for the entire 

moment curvature envelope shown in Figure 5-4 and using the retrofitted column sections. The 
principle tensile stresses were then normalized and plotted versus the curvature of the column as 
shown in Figure 5-6.   
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Figure 5-6. Unit 3 Principle Stresses 

 
Again the principle tensile stresses, pt, exceeded the limits stipulated by Eq. (3-7) and full joint 
shear reinforcement was required for design of the joint. It is important to note that although pre-
stressing in the transverse direction does not lead to a reduction in the principle tensile stresses or 
demand in the joint, these stresses increase the bond strength of the column longitudinal 
reinforcement and subsequently the joint shear capacity. This suggests that a different moment 
rotation capacity should be proposed for units retrofitted according to the design details 
illustrated in this section. 
 



 

 - 39 -

5.4. CONSTRUCTION OF UNIT 3 UPGRADE SECTION 
As before, the first step in the construction of the upgrade section consisted of cutting a portion 
of the steel shell and the designated column longitudinal bars, which was similar to the procedure 
shown in Figure 3-20. As specified, in this unit, the gap region was reduced to 13 mm.  
 
As in Unit 2, the horizontal and vertical headed reinforcement were embedded in predrilled 
holes, as shown in Figure 5-7 and Figure 5-8. Installation of the headed reinforcement followed 
the same procedure outlined in Section 3.5. After installation of the headed reinforcement the 
pre-stress rods were installed and stressed by tightening a nut at each end of the rods. The 
stressed joint is shown in Figure 5-3, and the retrofit longitudinal and vertical steel was tied in 
place similar to Figure 3-22 and Figure 3-24, followed by forming and casting the upgrade 
section (see Figure 5-9).  The completed Unit 3 during testing is shown in Figure 5-10. 
 

Figure 5-7. Pre-Drilled Holes  
 

Figure 5-8. Installed Headed Reinforcement 
 

Figure 5-9. Unit Before Casting of 
Upgrade Section  Figure 5-10. Completed Test Unit  
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6. INSTRUMENTATION LAYOUT 

For each test unit, strain gauges were placed on the reinforcing steel, linear variable differential 
transducers (LVDT’s) were affixed to the joint, and load cells were placed to measure the axial 
force in the column.  The actuator used had an internal LVDT and load cell to measure the lateral 
displacement and force applied to the load stub atop the column.  All instruments were connected 
to a data acquisition system that took data at preset time intervals.  A detailed description of the 
instrumentation used is presented in the next three sections. 
 
6.1. STRAIN GAUGES 
Strain gauges were placed on the reinforcing steel on the as-built and the retrofit section, as 
shown in Figure 6-1 through Figure 6-7.  Instrumentation of these reinforcement consisted of 
electric resistance strain gages produced by Tokyo Sokki Kenkyujo Co., Ltd. These strain gauges 
have a gage length of 5mm and a gage resistance of 120±0.3Ω. 
 
6.1.1. Column Section 
A description of the strain gauges mounted on the column reinforcement is discussed in this 
section. As shown in Figure 6-1, a total of 12 gauges were applied on the column longitudinal 
reinforcement, and 6 and 8 strain gauges were positioned vertically and horizontally in the steel 
shells, respectively.  
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Figure 6-1. Column Reinforcement and Steel Shell Strain Gauges 
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6.1.2. Bent Cap As-Built Section 
A description of the strain gages mounted on the bent cap as-built section reinforcement is 
discussed in this section. As shown in Figure 6-2, a total of 16 gauges were applied on the as-
built section longitudinal reinforcement, and as shown in Figure 6-3, 6 strain gauges were 
positioned on the as-built section stirrups.  
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Figure 6-2. As-Built Bent Cap Strain Gauges 
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Figure 6-3. As-Built Bent Cap Shear Strain Gauges 
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6.1.3. Bent Cap Retrofit Section 
A description of the strain gauges mounted on the bent cap upgrade section reinforcement is 
discussed in this section. As shown in Figure 6-4, a total of 16 gauges were also applied on the 
new section longitudinal reinforcement, and as shown in Figure 6-5, Figure 6-6, and Figure 6-7 
15 strain gauges were positioned on the as-built section stirrups, 16 strain gauges were 
positioned on the horizontal headed reinforcement and 6 strain gauges were positioned on the 
vertical headed reinforcement.  
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Figure 6-4. Retrofit Bent Cap Strain Gauges 
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Figure 6-5. Retrofit Bent Cap Shear Strain Gauges 
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Figure 6-6. Retrofit Transverse Headed Reinforcement Strain Gauges 
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Figure 6-7. Retrofit Vertical Headed Reinforcement Strain Gauges 
 

6.2. LOAD CELLS 
Two load cells were placed on top of the reaction beam, which was used to transfer the applied  
axial load to the column, as shown in Figure 6-8.  The axial load was held constant by a 
hydraulic pump with a control valve applying a constant pressure to the hydraulic jack placed on 
top of the column. 

Hydraulic Jack Used
To Simulate Axial
Load on Structure

Load Cells

 
Figure 6-8. Load Cells for Axial Load 
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6.3. LVDT’S 
A total of 14 LVDT’s were placed across the joint to measure the joint shear as shown in Figure 
6-9.  The deformations from LVDT’s JHt, JHb, JVb, JVa, J1, and J2 were used to calculate the 
joint shear deformations and strains according to Figure 6-10. 
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(a) Schematic 

 
(b) Test Setup Installation 
Figure 6-9. Joint LVDT’s 
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Figure 6-10. Joint Strain Calculation 
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7. PREDICTED LOAD-DEFORMATION RESPONSE 

7.1. ONE-COMPONENT NONLINEAR GIBERSON MODEL 
The theoretical column top lateral deflection was established based on variables depicted in 
Figure 3-4, and according to the following expression: 
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Where ΔVi and ΔDi are the incremental column lateral load and top deflection, respectively, KC,i 

is the instantaneous tangential bending stiffness for the column bending response, and KB,i is the 
instantaneous tangential rotational stiffness of the bent cap contribution to the column top 
deflection expressed by Eq. (7-2). Furthermore in Eq. (7-1), the center of rotation of the bent cap 
was set at a distance of Lc+hb/2, where hb is the depth of the bent cap. The stiffness terms for the 
column and the bent cap were developed based on the one-component nonlinear Giberson model 
(Carr, 2000; Cheng, 2001). However, because of the test unit layout, this model was simplified 
for a base rotation due to the plastic hinge formation at one end only. As such, it was feasible to 
decouple the modes of deformation in the joint region in terms of plastic hinge plus bent cap 
rotation. In Eq. (7-1), the column and bent cap stiffness, KC,i and KB,i, are, respectively: 
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Referring to Figure 3-4, LC  is the column height measured from the centerline of the applied 
lateral load to the bent cap interface (i.e. LC  = 2.72 m), LB is the length of the bent cap measured 
between supports blocks A and B (i.e. LB  = 4.57 m), and ri,C and ri.B are the column and bent cap 
instantaneous stiffness ratios, and EIC

’ and EIB
’ are the column and bent cap secant yield stiffness 

obtained from the column and bent cap moment curvature analyses. These quantities were 
further evaluated based on: 
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In addition, for the retrofitted units, Lp,C  and Lp,B are, respectively, the column and bent cap 
plastic hinge lengths and were computed based on the following expressions (Priestley et al., 
1995; Caltrans, 2004): 
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Where g is the steel shell gap length, fyc is the column longitudinal reinforcement yield stress, dbl 
is the bar diameter of the column longitudinal reinforcement, D∗ is the least cross section dimension 
for rectangular sections, and H′ is the length from the interface of the column to the point of 
contraflexure. 
 
In Eq. (7-3) when the column is in the elastic range ri is one, and the expression for KC,i reverts 
to the bending stiffness of a cantilever member given by EI’

C /3LC
3. The procedure given by Eq. 

(7-1) can be used without the need to compute in advance the yield and ultimate conditions, 
which makes it suitable for the seismic assessment of system with multiple members with 
hinging at one end only. Hinging at both ends is a significantly more complex approach and was 
not covered in this research. Another attractive feature of the approach given by Eq. (7-1), is that 
the procedure is easily implemented for systems with multiple members responding within the 
inelastic range and for displacement control analysis, which were necessary conditions for this 
research program because the bent cap is likely to experience inelastic actions. Furthermore, in 
the Section 11 it will be shown that the influence of the inelastic deformations in the joint region 
will be easily handled with this approach. 
 
7.2. FORCE-DISPLACEMENT RESPONSE NOT CONSIDERING JOINT DEGRADATION 
Using the moment curvature analyses for the column and the bent cap previously outlined in 
Sections 3 and 5 and using the model developed based on Eq. (7-1), the corresponding predicted 
force-displacement responses for Units 1, 2 and 3 was performed and results of this analysis are 
shown in Figure 7-1.  
 
Table 7-1 outlines values from this analysis at first yield, and other performance levels. From the 
moment curvature analyses described in Section 3.1.1, and Figure 3-3  first yield of the section 
was defined at yielding of the column longitudinal reinforcement. The ideal capacity was defined 
at the moment that develops a strain of εc=0.5 mm/m in the extreme compression fibers of the 
columns. Allowing for low cycle fatigue of the column longitudinal reinforcement due to cyclic 
loading and recognizing that the steel shell provides adequate resistance to prevent buckling of 
the column longitudinal reinforcement, rupture of these bars was predicted at a strain of 7%, 
which was based on previous laboratory tests. Numerical results at these performance levels are 
outlined in Table 7-1. Numerical analysis also indicates that the maximum expected 
displacement ductility capacity for the three tests units is within 9 and 10 with drift levels 
exceeding 10. These values indicate that the gap region was within values that can lead to 
displacement ductility levels that can ensure a safe seismic performance of RC bridge bents 
retrofitted according to the design details previously described. 
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It is important to emphasize that these predictions considered no strength degradation resulting 
from damage within the joint region. Based on test results, the test units experienced increasing 
levels of strength degradation at increasing levels of imposed displacement ductility, which was 
mainly attributed to joint damage. As such, in Section 11.5 three moment-rotation models were 
empirically developed from each of the test units test results. An empirical model was then 
developed to include the contribution of joint flexibility and damage into the lateral response of 
the test units. Furthermore, a detailed description of the implementation of these models in 
design is further outlined in Section 12.3. 
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Figure 7-1. Predicted Force-Displacement Response of Units 1, 2 and 3 

 
Table 7-1. Bilinear Force Deformation 

First yield Theoretical 
Yield Ideal Ultimate Unit 

No. Δ’
Y 

(mm) 
V’

Y 
(kN) 

ΔY 
(mm) 

VY 
(kN) 

ΔI 
(mm) 

VI 
(kN) 

ΔU 
(mm) 

VU 
(kN) μΔ 

1 & 2 21.4 290 30.5 413 69.1 429 297.5 520 
3 22.1 332 30.2 453 72.4 474 295.0 584 9.8 

   



 

 - 49 -

7.3. LOADING PROTOCOL 
Following the development of the load deformation response for the three test units the loading 
protocol was outlined for these units. For a direct comparison of test results the three units were 
loaded to the same load and displacement levels. Loading of the test units consisted of first 
applying the simulated gravity load followed by the cyclic lateral loads, which are described 
next.  
 
The gravity load of the superstructure was simulated by a 710 kN axial load that was applied to 
the column by means of a hydraulic jack and the loading fixture shown in Figure 2-1.  After 
applying the simulated gravity load, the units were tested according to the reversed cyclic 
loading protocol shown in Figure 7-2.  
 
As discussed in Sections 8, 9, and 10, throughout testing, the three test units supported the 
applied gravity load. In the initial stages of testing, the three test units were loaded in force 
control with single cycles up to first yielding of the column longitudinal reinforcement.  After 
first yielding, three cycles were applied in displacement control at intermediate displacement 
levels corresponding to the displacement ductility levels of 1, 1.5, 2, 4, and 6.  At the 
displacement ductility level of 8, five cycles were applied to further investigate joint degradation 
under multiple reversed cyclic loading. 

( )
'

21
1 2 Y

Y
T
y

T
y

V
VΔ+Δ

=Δ μ   (7-5) 

Where ∆µ1 is the lateral displacement at µ∆ = 1, VY  is the lateral force at the theoretical yield, 
∆T

y1 and ∆T
y2 are, respectively, the experimental lateral deflections recorded at first yield in the 

push and pull directions of loading. For Unit 1, in the push and pull directions these lateral 
deflections were recorded at 28.86 mm and 24.66 mm, respectively. Bilinear approximation of 
Unit 1 is presented in Figure 7-1. Thus, the lateral displacement of the test unit at the 
displacement ductility level of µ∆ =1 was 38.10mm. It is important to emphasize that this number 
is different than the computed yield deflection presented in Table 7-1, which for Units 1 and 2 
the yield deflection was 27.12 mm and for Unit 3 the yield deflection was 26.86 mm. However, 
the same force and ductility levels were used for testing of Units 2 and 3 to provide for a direct 
comparison of the test results. 
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Figure 7-2. Loading Protocol Sequence 
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8. EXPERIMENTAL RESULTS – UNIT 1 

This section presents observations recorded during testing, including load deformation and strain 
profiles for the column and bent cap reinforcement.  The reversed cyclic loading protocol was 
previously described in detail in Section 7.3 and shown in Figure 7-2. 
 
8.1. GENERAL TEST OBSERVATIONS 
8.1.1. Force Control Load Cycles 
Following application of the 710 kN axial load, the column was loaded during the first four 
reversed cycles in force control up to the theoretical first yield of the column longitudinal 
reinforcement. Theoretical yielding was previously defined in Section 3.1.1. Up to this load 
level, single fully reversed cycles were applied at 0.25Vy, 0.50Vy, 0.75Vy, and 1.00Vy 
corresponding, respectively, to the lateral loads of 70.3, 140.1, 210.4, and 280.2 kN.  At each 
peak cycle the load was held constant while damage was assessed and major observations were 
recorded for post-test evaluation.   
 
During these four force-controlled cycles, inception of first cracking was detected during loading 
to 0.50Vy. Micro-cracks were recorded at the interface between the column and the bent cap and 
within the steel shell gap region.  Next at 0.75Vy, these cracks propagated entirely around the 
column footprint and remained within widths smaller than 2mm. Then, as shown in Figure 8-1 
and Figure 8-2, at 1.00Vy cracks propagated into the bent cap in a pattern emanating 
perpendicular to the column footprint.  This crack pattern is indicative of onset of yielding of the 
column longitudinal reinforcement at the bent cap interface and development of yielding 
penetration into the joint region. This observation by itself indicates strong correlation to the 
predicted response, indicating yielding of the longitudinal reinforcement at this load level. As 
such, testing was continued and the theoretical displacement at ductility level 1 was calculated 
according to Eq. (7-5). 
 

 
Figure 8-1. Bent Cap Cracking at 1.00Vy 
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Figure 8-2. Bent Cap Cracking at 1.00 Vy  

 
8.1.2. Displacement Control Load Cycles 
After these four cycles the loading pattern was changed to displacement-control, as outlined in 
Section 7.3.  At each peak displacement ductility level, testing was paused on the first and third 
cycles to visually inspect and record any damage to the test unit. It is important to emphasize that 
the ductility levels referenced in this section correlate to those described in Figure 7-2. However, 
during post-test evaluation different ductility levels were defined and these are referenced in 
Figure 8-22. The recorded damage at each ductility level is described next.  

- 1.0 μΔ [38.1 mm]: During the first cycle to this ductility level onset of joint shear 
cracking and flexural cracking of the bent cap was recorded, with the crack pattern recorded in 
Figure 8-3.  It was also recorded that previously marked cracks increased in width along with 
onset of spalling of the cover concrete within the steel shell gap region, as shown in Figure 8-4. 

- 1.5 μΔ [57.2 mm]: Additional joint shear cracks were recorded including extension of 
previous cracks, as shown in Figure 8-5.  An increase of strain penetration cracks occurred, as 
shown in Figure 8-6, along with further crushing of the column cover concrete. 

- 2.0 μΔ [76.2 mm]: Increase in the number of cracks and elongation of previous cracks 
was recorded in the joint, as seen in Figure 8-7.  Separation of the cover concrete in the bent cap 
top surface further indicates continued strain penetrations into the bent cap (see Figure 8-8). At 
this damage level, further crushing and spalling of the column cover concrete were also recorded 
indicating onset of formation of a plastic hinge in the column. These two observations further 
confirm that up to this displacement level the joint was capable of sustaining the imposed joint 
shear stresses without significant strength degradation to the test unit. 
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- 4.0 μΔ [152.4 mm]: At each successive cycle at ductility level 4, there was a loss of 
strength in the column combined with accumulated damage at the interface between the bent cap 
and column. There were no additional joint shear cracks and only minimal extensions of the 
existing cracks were recorded in Figure 8-9. In this figure and in Figure 8-10 are distinguishable 
concrete wedges lifting on the top surface of the bent cap and to either side of the column. 
Displacement of these wedges was more accentuated as the column was being displaced beyond 
ductility two, but then as the unit was progressively displaced lifting of these wedges stabilized. 
In addition, these wedges were limited to a distance corresponding to the first line of headed 
reinforcement, which prevented further extension of these cracks into the bent cap, as shown in 
Figure 8-10.  The joint shear cracks remained within small widths as shown in Figure 8-11. At 
this level there was also further crushing of the column concrete cover as shown in Figure 8-12. 

- 6.0 μΔ [228.6 mm]: At this level the column strength continued to decrease; however, 
joint shear cracks neither extended further or increased in width as shown in Figure 8-13. 
Additional crushing of the column cover concrete was also recorded as shown in Figure 8-14.  
Onset of cracking on the underside of the bent cap was also observed indicating the typical 
pullout cone that is generally indicative of anchorage failure of the column longitudinal 
reinforcement. Further cycles accentuated the cracking and spalling of the cover concrete on the 
underside of the bent cap, as shown in Figure 8-15.  Then as the longitudinal bars were pulled 
from within the joint core, under reversed cyclic loading, the steel shell was not as effective in 
preventing buckling of this reinforcement. As such during the last cycle at this level, buckling of 
the main column longitudinal bar was observed, as shown in Figure 8-16. Although some level 
of joint shear failure is clearly visible at this ductility level, complete failure of the test unit has 
not yet fully developed, as the unit is capable of sustaining significant amounts of lateral load. 

- 8.0 μΔ [304.8 mm]: There was a continual loss in capacity at this ductility level. The 
column bars that had previously buckled finally fractured under low cycle fatigue, as shown in 
Figure 8-18.  Cracking continued on the underside of the bent cap and large wedge blocks 
separated from the bent cap as shown in Figure 8-19.  However, cracks on the side of the bent 
cap remained within widths smaller than 3 mm with the corresponding cracking pattern shown in 
Figure 8-20. This observation suggests that joint damage was concentrated within the as-built 
section. Testing was stopped at this ductility level for safety reasons and more importantly 
because the sustained lateral load was rapidly decreasing to negligible levels.  

 
After testing, all loose concrete was removed and the test unit was further inspected to evaluate 
the main failure mode. An important observation is that the extent of damage in the bent cap was 
confined to the first row of headed reinforcement, as shown in Figure 8-21. On the underside of 
the bent cap it was recorded that a wide open crack extended in the longitudinal direction of the 
bent cap. This indicates splitting of the bent cap and potential dilation of the bent cap in the 
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transverse direction. This indicates also that the transverse reinforcement through the bent cap 
was not effective in preventing this dilation and continuous reinforcement should be provided 
instead, as outlined in Section 4 while describing the design of Unit 2.  

 

 
Figure 8-3. Joint Cracking at 1.0 μΔ 

 

 
Figure 8-4. Bent Cap Cracking at 1.0 μΔ  
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Figure 8-5. Joint Cracking at 1.5 μΔ  

 

 
Figure 8-6. Bent Cap Cracking at 1.5 μΔ  
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Figure 8-7. Joint Cracking at 2.0 μΔ  

 

 
Figure 8-8. Bent Cap Cracking at 2.0 μΔ 

 



 

 - 57 -

 
Figure 8-9. Joint Cracking at 4.0 μΔ 

 

 
Figure 8-10. Bent Cap Cracking at 4.0 μΔ  
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Figure 8-11. Joint Crack Width at 4.0 μΔ  

 

 
Figure 8-12. Column Concrete Crushing at 4.0 μΔ  
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Figure 8-13. Joint Cracking at 6.0 μΔ  

 

 
Figure 8-14. Column Concrete Crushing at 6.0 μΔ  
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Figure 8-15. Bent Cap Bottom Cracking at 6.0 μΔ  

 

 
Figure 8-16. Column Longitudinal Bar Buckling at 6.0 μΔ  
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Figure 8-17. Bent Cap Cracking at 8.0 μΔ  

 

 
Figure 8-18. Column Longitudinal Bar Fracture at 8.0 μΔ  
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Figure 8-19. Bent Cap Bottom Spalling at 8.0 μΔ  

 

 
Figure 8-20. Joint Cracking at 8.0 μΔ  
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Figure 8-21. Bent Cap Ultimate Damage 

 
8.2. LOAD DEFORMATION RESPONSE 
The pre and post-test theoretical and experimental load vs. deformation curves for Unit 1 are 
shown in Figure 8-22. Development of the pre-test analysis curve was previously outlined in 
Section 7.1 and the post-test analysis is discussed in Section 11.5, which also describes the post-
testing investigation for the three test units. After testing, the displacement at ductility level one 
was rectified to reflect directly the test results. Based on a direct investigation of the test results 
the new displacement at ductility level one was set at 31.5 mm, leading to the ductility levels 
shown in Figure 8-22. 
 
The maximum lateral load was recorded during loading to the first cycle at the displacement of 
152.4 mm or ductility level 5. At this cycle, in the push and pull directions the lateral loads were 
+421 and -442 kN, respectively. From the first to the second cycle the drop in the lateral load 
was approximately 17%, and from the second to the third cycle the drop in the lateral load was 
only 5%. In addition, during loading to the first cycle at the next displacement of 228.6 mm (or 
ductility 7) the degradation in the lateral load was less than 5% indicating stability in the 
response of the test unit. This suggests that at this level any damage that has developed within 
the joint region stabilized, and the reinforcement provided in the new bent cap section was 
effective in preventing further degradation to the test unit.  
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Then, during subsequent cycles a the continuous strength degradation was observed in 
combination with pinching in the hysteretic response of the test unit. The first significant drop in 
load below the theoretical yield load level was observed during the second cycle at this 
displacement level. Before this displacement ductility level, the hysteretic response of the test 
unit was reasonably stable with significant amounts of energy dissipation capacity. As previously 
stated, it is important to reemphasize that during loading to the first cycle at 228.6 mm the lateral 
load was nearly the same as the load registered to the third cycle at 152.4 mm. This indicates that 
load transfer within the joint region was still within limits capable of sustaining load levels 
within 80% of the maximum registered lateral load for displacement ductility levels less than 5. 
As such, a safe ductility level 4 was selected as the limiting ductility level for assessment and 
design using this retrofit procedure. 
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Figure 8-22. Unit 1 - Load Displacement Response 
 
During the second cycle to 228.6 mm, cracks and then spalling of a concrete wedge were 
observed on the underside of the bent cap immediately below the column footprint.  This 
indicates that severe joint degradation under reversed cyclic loading had initiated, which is also 
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evidenced by a drop in the lateral load during subsequent cycles. However, this damage level did 
not lead to complete loss in the lateral and axial load capacity of the test unit.  In fact, during the 
first cycle to the displacement of 304.8 mm, low cycle fatigue of one of the column longitudinal 
rebar was detected, which shows that the joint had reserve capacity to prevent complete pull-out 
of the column longitudinal bars.  Furthermore, the three cycles at the displacement ductility level 
of 228.6 mm exhibited considerable levels of energy dissipation capacity. 
 
During the subsequent cycles at the displacement of 304.8 mm, large blocks of concrete 
separated from the bottom of the bent cap.  Through visual inspection it was possible to 
distinguish a wide open crack running in the longitudinal direction and along the mid-width of 
the bent cap indicating a longitudinal splitting in the bent cap.  This was accompanied by a 
significant drop in the lateral load capacity which indicates partial pullout failure of the column 
longitudinal reinforcement in addition to low cycle fatigue. These observations clearly suggest 
that the two-piece transverse reinforcement layout was not effective in preventing longitudinal 
splitting of the bent cap and this detail was revised for the construction of Unit 2, as described in 
Section 4.   
 
8.3. LOAD VS. CURVATURE RESPONSE 
Figure 8-23 shows the measured lateral load versus the computed curvatures at the interface of 
the column to the bent cap. The diagram depicted in this figure indicates a good correlation 
between the pre-test analysis and the experimental test results during the initial stages of testing. 
However, after peak load there is a considerable deviation between these two curves. These can 
be attributed to the fact that during the initial stages of testing most of the deformations are due 
to curvature along the length of the column, and at later stages of testing most of the column top 
deflection is a result of large rotations originating solely from within the joint region. Using these 
experimental results it was possible to back calculate any potential rotations within the joint 
region and propose models that can account for the contribution of the joint rotation on the 
column top deflection. This issue is further discussed in Section 11. 
 
Curvatures presented in Figure 8-23 represent average values and were computed according to 
the expression:  

curcur
ave hW ×

Δ−Δ
= 21φ  (8-1) 

Where Δ1 and Δ2 are the relative vertical displacements between the adjacent curvature rods in 
the extreme faces and on the opposite faces of the column, Wcur is the horizontal distance 
between the pair of linear potentiometers, and hcur is the vertical distance between the adjacent 
linear potentiometers. During computations of curvatures at the pile cap interface the height of 
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the linear potentiometer cell hcur include an additional term to account for tensile strain 
penetration into the bent cap by including the strain penetration length into the curvature cell 
height hcur according to the expression:  

sblcur fdhh 0022.0+=  (8-2) 
Where dbl is the column main bar diameter and fs is the column main bar stress obtained from the 
reinforcement strains obtained from the next section data. In the early stages of the testing 
procedure strain levels in the inner core reinforcement are minimum and fs should be used 
instead of fy and any tensile strain penetrations are negligible. Then at later stages of testing fy 
was used. 
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Figure 8-23. Unit 1 – Load versus Curvature Response 

 
8.4. COLUMN LONGITUDINAL REINFORCEMENT STRAINS 
Strains presented in this section and subsequent sections are indicated as positive when the bars 
are subjected to a tensile strain and negative when the bars are subjected to compressive strains. 
The strain histories of the column longitudinal reinforcement gauges at the interface of the 
column and bent cap for side “A” and side “B” are shown in Figure 8-24 and Figure 8-25, 
respectively.  The yield strain of the column longitudinal reinforcement occurred at ±2,740με as 
determined from tensile testing and was previously indicated in the material properties section 
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and Table 2-2. The strain profiles for each side of the column are shown in Figure 8-26 and 
Figure 8-27.  The onset of yielding of the main column longitudinal bars occurred at μ1.0 for 
each side of the column, which are within the predicted levels. 
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Figure 8-24. Strain Gauge History – C4a 
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Figure 8-25. Strain Gauge History – C4b 
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Figure 8-26. Strain Gauge Profile – Side “A” 
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Figure 8-27. Strain Gauge Profile – Side “B” 
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8.5. JOINT SHEAR REINFORCEMENT STRAIN PROFILES 
Strain profiles were developed from gauges mounted on the joint shear reinforcement and these 
profiles are presented in this section. As determined from the material characterization pull-out 
tests, the yield strain for the as-built shear reinforcement was measured at ±2,191με and the yield 
strain for the retrofit shear reinforcement was measured at ±2,340. Figure 8-28 and Figure 8-29 
illustrate the strain profiles for the stirrups in the as-built and the retrofit sections, respectively. 
From these figures it is clear that the strain values registered in these stirrups stayed below 
yielding, which suggest that the cracks observed on the faces of the bent cap remained fairly 
small. This description matched closely the test observations described in Section 8.1, further 
indicating that joint shear failure in the longitudinal plane of the retrofit or the as-built bent cap 
sections was not the likely failure mode of the test unit. 
 
Further comparisons between these strain profiles clearly indicate that during the initial stages of 
testing and up to ductility one the strains in either the as-built or the retrofit section were 
negligible. This statement corroborates the observation that diagonal joint shear cracking was not 
observed up to this ductility level, as shown in Figure 8-3. Another important observation that 
can help to explain the failure mode of this unit is that the strains in the as-built and the retrofit 
sections achieved similar profiles and nearly the same values. This is a strong indication that 
composite action was developed between these two sections and since it was not possible to 
investigate the damage within the as-built section, this eliminates the possibility for joint shear 
failure in the longitudinal plane of the as-built section.  
 
In addition, at the centerline of the retrofit section the registered strains were nearly 50% higher 
than at the interface to the column, clearly showing that the reinforcement in this region was 
fully mobilized in preventing joint shear failure in the longitudinal plane of the bent cap section. 
Of equal importance to this study, the strains in the shear reinforcement rapidly dissipated away 
from the column faces. In fact beyond a distance of hb/2 the strains were almost negligible, 
indicating that the vertical joint shears reinforcement is only active within this distance, and it 
should be placed within a distance of hb/2 from the column faces, as stated per Section 3.3.4.  
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Figure 8-28. Strain Profiles – As-Built Section 
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Figure 8-29. Strain Profiles – Retrofit Section 
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8.6. BENT CAP LONGITUDINAL REINFORCEMENT STRAINS 
This section presents and discusses the strain profiles for the bent cap longitudinal reinforcement. 
The yield strains for the as-built and the retrofit longitudinal reinforcement were measured, 
respectively, at 2,807 με and 2,544 με.  
 
8.6.1. Strain Profiles - Bottom Reinforcement 
The strain profiles shown in Figure 8-30 and Figure 8-31 clearly indicate that the strains in either 
the as-built or the retrofit bottom reinforcements were above the measured yield strain values. 
These profiles also show that in similar locations, the strains in both these reinforcements 
achieved nearly the same strains levels, indicating that the bent cap was acting as one composite 
unit. Important to note that although after ductility level four the applied lateral load decreased 
and hence, the moment applied to the bent cap decreased, the strains in the longitudinal 
reinforcement at the bottom of the bent cap continued to increase as shown in these profiles.  
 
This increase can be attributed to strains that develop as a result of joint stress demands as 
outlined by the strut and tie model shown in Figure 3-8 and the reinforcement demands per Eq. 
(3-13). Hence, based on the moment curvature analysis previously discussed in Section 3.2.1, the 
maximum achieved peak loads described in Section 8.2, and the stress demands per Eq. (3-13), it 
is feasible to estimate the strains that develop in this reinforcement by the expression 
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Where μεf was the estimated flexural strain which for a peak lateral load of 442 kN was 
estimated from the moment curvature analysis at 1,100με by considering 11-D16 bars, μεj was 
the estimated strain at yielding by considering that only 7-D16 bars were effective in resisting 
the joint shear mechanism, nbf and nj are the number of bars from flexural and joint shear design 
considerations, and nt is the total of bars provided at the bottom of the bent cap per Figure 3-1. 
As such, the estimated strains in these reinforcements per Eq. (8-3) were nearly 1,500με which 
are significantly lower than the maximum strain value of near 2,000με obtained from these strain 
profiles. These results suggest that other mechanism/s influenced the response of the joint.  
 
Another mechanism that can be attributed to have caused this increase in strains beyond ductility 
level four is best depicted in Figure 8-32. According to this mechanism, after the wedges of 
concrete are formed at the bottom of the bent cap (see Figure 8-15) under reversed cyclic loading 
the column longitudinal reinforcement imposes downwards forces on these wedges. This 
increases the clamping mechanism that needs to be engaged by the bottom reinforcement in 
order to prevent complete punching shear failure of the column cage; Hence, imposing higher 
demands in these reinforcements. 
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Figure 8-30. Strain Profiles – As-Built Section 
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Figure 8-31. Strain Profiles – Retrofit Section 
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Figure 8-32. Confinement of Column Anchorage Failure 

 
8.6.2. Strain Profiles - Top Reinforcement 
As in the previous section, the strain profiles shown in Figure 8-33 clearly indicate that the 
strains in the retrofit top reinforcement were always below the measured yield strain values. 
These profiles also show that in the pull direction the maximum strains were registered at a 
distance of -550mm from the centerline of the bent, and from the strain profiles shown in Figure 
8-31 the strains are highest at this location under the push direction which matches the expected 
moment demands per Figure 3-4(b).  
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Figure 8-33. Strain Profiles – Retrofit Section 
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Performing similar calculations as in the previous section the estimated strain values in the top 
reinforcement were 

με
μεμε

με 070,1
18

6544,28500
=

×+×
=

×+×
=

t

jjff
e n

nn
 (8-4) 

In this expression, the flexural strains are less than in Eq. (8-3) because of the reduction in 
moment demands in the top section per the bending moment diagram depicted in Figure 3-4(b).  
As before, the predicted strain values per Eq. (8-4) are also lower than the maximum strain 
values registered in the strain profiles, which indicate other mechanism/s were influencing the 
response of the test unit.  
 
A reasonable mechanism, which can be used to justify this increase in top strains, was previously 
discussed while describing the importance of the mechanism shown in Figure 3-11, and matches 
well the observed damage substantiated per Figure 8-21. As such, under reversed cyclic loading 
the column longitudinal reinforcement is now clamped by wedges of concrete at the top of the 
bent cap which imposes upwards forces on these wedges; hence, imposing higher demands in 
these reinforcements. 
 
8.7. JOINT SHEAR ANALYSIS 
Referring to Figure 8-22 and based on a post-test investigation, it is reasonable to infer that the 
progressive loss in strength evidenced in this figure was mainly a result of flexibilities 
originating from within the joint region and, not necessarily a result of poor performance of the 
flexural or shear response of the column. It is also important to recognize that either of these 
column failure modes is associated with sudden losses in strength, which does not match the 
progressive loss of strength evidenced per Figure 8-22. 

 As important, load deformation responses of poorly detailed joints are associated with sudden 
losses in strength in excess of 30% per cycle, which also does not match the nature of the 
deformation response shown in Figure 8-22 figure. In addition, joint shear failures of poorly 
detailed joints are associated with large cracks and joint shear deformations on the face of the 
bent, which does not match the joint shear cracks marked on the sides of the bent cap. In fact, 
these marked cracks were rather small to justify any level of joint shear degradation. This is also 
evidenced by the computed shear deformations shown in Figure 8-34, which were rather small 
once again to justify joint shear failure. This also suggests that joint flexibility was not a result of 
lack of joint shear reinforcement but of the mechanisms previously associated with Figure 3-11 
and Figure 8-32, which are typically associated with a more moderate loss of strength and do not 
necessarily lead to a sudden loss in strength. 
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Joint shear deformations shown in Figure 8-34 were computed based on the mathematical 
methodology presented in Figure 6-10 and using the experimental data obtained from the devices 
shown in Figure 6-9. Priestley (1993) developed a model for joint behavior using principle 
tensile stresses and joint shear strains that were obtained from tests conducted for unreinforced 
concrete joints. Based on his work Priestley developed a trilinear model which comprises of an 
initial joint stiffness based on the shear modulus of concrete, Gc, and is linear until cracking 

occurs at '/29.0 cf .  The second slope of the joint stiffness model is based on the joint 

reinforcing steel stiffness of the cracked section where it peaks at '/42.0 cf  and at a 

corresponding strain of 0.007.  Finaly, the third slope is based on a linear descent to an ultimate 
strain of 0.01 at zero principle tensile stress (Priestley 1993). In another model proposed by 

Mazzoni (2004) the second slope stays linear past '/42.0 cf  up to '/62.0 cf .   
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Figure 8-34. Joint Shear Deformation 

 
In Figure 8-35 is shown the envelope of the joint shear strain versus the principle tensile stress 
for Unit 1, along with the models for the “weak” and the “intermediate” joints.  Based on these 
results, it is clear that, for the most part during testing, the test data stays well above the “weak” 
joint limit curve. For poorly detailed joints and during subsequent reductions in the principle 
tensile stresses, which also reflect losses in the strength of the test unit, there is an associated 
significant increase in the joint shear deformations, which once again do not match the computed 
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data shown in this figure. In fact this moderate elastic behavior of the joint clearly indicates that 
joint shear failure was not the prevalent failure mode of the bent cap.  
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Figure 8-35. Unit 1 Principle Tensile Stress vs. Joint Shear Strain 

 
Post-test investigations at the bottom of the cap clearly uncovered a longitudinal crack forming 
along the centerline of the bent cap, as shown in Figure 8-36. This indicates that the bent cap was 
splitting along this crack, leading to a partial anchorage failure of the column longitudinal bars 
and the mechanisms associated with Figure 3-11 and Figure 8-32.  
 

 
Figure 8-36. Underside of Bent Cap Cracking Pattern 
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8.8. RELEVANT EXPERIMENTAL RESULTS USED IN THE DESIGN OF UNIT 2 
One of the main conclusions that can be drawn for these test results is that there was a 
progressive loss in strength due to joint shear failure, which resulted from the longitudinal 
splitting of the bent cap. This splitting was attributed to the fact that the transverse reinforcement 
going through the joint region was installed in two separate pieces leaving a gap between the two 
pieces. This detail solution resulted in a lack of a mechanism to proper clamp the bent cap in the 
transverse direction. As such, in the design of Unit 2 the transverse reinforcement going through 
the joint was installed continuous as described in Section 4. In Section 11.4 a different joint 
model is proposed and described in further detail using the data extracted from the curves shown 
in Figure 8-22 and Figure 8-23. This new model was then used in Section 11.5 to develop the 
post-test analysis for the test units, which is shown in Figure 8-22. 
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9. EXPERIMENTAL RESULTS – UNIT 2 

This section presents observations recorded during experimental testing, including force-
deformation and reinforcement strain profiles for the column and bent cap. 
 
9.1. GENERAL TEST OBSERVATIONS 
9.1.1. Force Control Load Cycles 
Unit 2 was tested using the same loading protocol used for Unit 1 (see Figure 7-2).  Similar 
observations were recorded for these two test units up to the first four cycles in force control. As 
in Unit 1, inception of cracking was detected at 0.50Vy with micro cracks developing at the bent 
cap interface.  At this load level a single crack was observed on the bent cap, as shown in Figure 
9-1.  At 0.75Vy additional cracks developed due to strain penetrations along with cracking at the 
interface of the base of the column and the bent cap, as shown in Figure 9-2.  At 1.00Vy 
extension of these strain penetration cracks were recorded (see Figure 9-3) along with onset of 
joint shear cracking as shown in Figure 9-4. 
 

 

Figure 9-1. Bent Cap Cracking at 0.50Vy 
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Figure 9-2. Bent Cap Cracking at 0.75Vy 

 

 
Figure 9-3. Bent Cap Cracking at 1.00Vy 
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Figure 9-4. Joint Cracking at 1.00Vy  

 
9.1.2. Displacement Control Load Cycles 
After the force control load cycles the loading pattern was changed to displacement control as 
outlined in Section 7.3. As before, after reaching the peak displacement, at each ductility level, 
testing was paused on the first and last cycles to visually inspect and record damage to the unit. 

- 1.0 μΔ [38.1 mm]: Onset of joint shear cracking was observed in the joint region as 
shown in Figure 9-5.  Strain penetration cracks around the column extended and onset of spalling 
of the cover concrete in the gap region was recorded, as shown in Figure 9-6. 

- 1.5 μΔ [57.2 mm]: At this level, additional joint shear cracks were recorded along with 
additional flexural cracking and extension to the previous marked cracks, as shown in Figure 9-7.  
An increase in the marked cracks resulting from strain penetration was observed by the increased 
cracking of the bent cap near the column, as shown Figure 9-8. 

- 2.0 μΔ [76.2 mm]: Additional joint shear cracking was observed along with the 
extension of existing joint shear cracks, as shown in Figure 9-9.  Further cracking and lifting of 
wedges of concrete next to the column faces due to strain penetration was observed along with 
the onset of crushing of the column concrete, as shown in Figure 9-10. 

- 4.0 μΔ [152.4 mm] –After the fist cycle at ductility level 4.0, there was a moderate loss 
in the strength of the column.  At this level, no additional joint shear cracks were recorded and 
only minimal extensions of the existing cracks were observed, as shown in Figure 9-11.  Also it 
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may be concluded that at this level, the upward movement of the wedges of concrete, resulting 
strain penetrations, was prevented by the first line of vertical headed reinforcement, which is 
clear by inspection of Figure 9-12. 

- 6.0 μΔ [228.6 mm]: There was a continuous progression in the loss of strength of the 
test unit at this ductility level and at the subsequent cycles, but there were no additional joint 
shear cracks. Existing cracks did not extend further and remained within small widths, as shown 
in Figure 9-13. On the pull direction of the third cycle, additional crushing of the column 
concrete was observed along with buckling and fracture of one of the column longitudinal bars, 
as shown in Figure 9-14.  

- 8.0 μΔ [304.8 mm]: There was a continual decrease in the capacity of the test unit at this 
ductility level, but this decrease was mainly a result of the fracture of the longitudinal 
reinforcement.  Additional fracture of the column longitudinal reinforcement was observed and 
detected during loading to this ductility level.  Cracks propagated on the underside of the bent 
cap (see Figure 9-15); however, these cracks remained within small widths and no concrete 
wedges were separated from the bent cap, as observed during testing of Unit 1.  In conclusion, 
joint shear cracks on the sides of the bent cap remained within small widths (see Figure 9-16), 
along with further crushing of the column cover concrete, as shown in Figure 9-17. 
 
As before, after testing, all loose concrete was removed.  In comparison to Unit 1 damage to the 
bent cap was significantly smaller, as shown in Figure 9-18.  The extra two welded hoops that 
were placed below the interface of the bent cap and the column were effective in preventing an 
uncontrolled buckling of the column longitudinal reinforcement once the spalling of concrete 
occurred in the gap region; however, they could not prevent entirely the buckling to the column 
longitudinal reinforcement and the subsequent premature low cycle fatigue of this reinforcement, 
as shown in Figure 9-19 and Figure 9-20. As such, in the design of Unit 3 this issue was 
addressed by investigating the effects, either positive or negative, of reducing the steel gap 
region and install additional transverse reinforcement to further prevent buckling and premature 
low cycle fatigue of the longitudinal reinforcement. These issues were addressed during design 
of Unit 3 in Section 5, and will be further discussed in the body of this report. 
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Figure 9-5. Joint Cracking at 1.0 μΔ  

 

 
Figure 9-6. Bent Cap Cracking at 1.0 μΔ  
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Figure 9-7. Joint Cracking at 1.5 μΔ  

 

 
Figure 9-8. Bent Cap Cracking at 1.5 μΔ  
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Figure 9-9. Joint Cracking at 2.0 μΔ  

 

 
Figure 9-10. Bent Cap Cracking at 2.0 μΔ  
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Figure 9-11. Joint Cracking at 4.0 μΔ  

 

 
Figure 9-12. Bent Cap Cracking at 4.0 μΔ  
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Figure 9-13. Joint Cracking at 6.0 μΔ  

 

 
Figure 9-14. Bent Cap Cracking at 6.0 μΔ  



 

 - 87 -

 
Figure 9-15. Bottom Cracking at 8.0 μΔ 

 

 
Figure 9-16. Joint Cracking at 8.0 μΔ  
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Figure 9-17. Column Crushing at 8.0 μΔ  

 

 
Figure 9-18. Final Damage 
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Figure 9-19. Hoop Buckling Side “A” 

 

 
Figure 9-20. Hoop Buckling Side “B” 
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9.2. LOAD DEFORMATION RESPONSE 
Unit 2 was tested following the loading protocol shown in Figure 7-2 and the load deformation 
response of Unit 2 is shown in Figure 9-21. This figure shows that Unit 2 response displayed 
similar features as those described for Unit 1.  By comparing the load deformation response for 
these two test units, one may conclude that the response of Unit 2 displayed an improvement in 
the seismic response in terms of damage and load degradation at higher ductility levels. Further 
comparisons are described in greater detail in Section 11.1. As in Unit 1, based on a direct 
investigation of the test results the new displacement at ductility level one was also set at 31.5 
mm. 
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Figure 9-21. Unit 2 – Load Displacement Response 

 
In Unit 2 the maximum registered lateral load was also recorded during the first cycle to the 
displacement of 152.4 mm. In the push and pull directions the registered lateral loads were +440 
and -460 kN, respectively, which are slightly higher than those registered in Unit 1. Between the 
first and second cycles the drop in the lateral load was the same as in Unit 1 or approximately 
17%, and between the second and third cycles the drop in the lateral load was 5%, indicating 
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stability in the response of this unit. Comparisons of load degradation at higher ductility levels 
are also described in further detail in Section 11.1. 
 
In Unit 2 higher levels of load degradation were observed at the displacement level of 228.6 mm, 
which is one of the main differences in the response of these two units. As before, the unit 
exhibit significant levels of strain penetration around the column but this was limited to the first 
row of vertical headed reinforcement. Compared to Unit 1 these levels of strain penetration and 
corresponding damage extended much further in the bent cap (see Figure 9-22). 
 
Unlike Unit 1, the first significant drop in the lateral load capacity of the test unit below the 
theoretical yield load level was not observed until the first cycle to the displacement of 304.8 
mm. However, it is important to recognize that, when loading to the displacement of 228.6 mm 
and during the pull direction of the third cycle, low cycle fatigue fracture of the longitudinal 
reinforcement was observed, as previously discussed in Section 9.1.2. This is a clear indication 
that the loss in the strength of the test unit during the last cycles was predominantly due to 
fracture of the longitudinal reinforcement. In total, four column longitudinal bars buckled and 
fractured due to low cycle fatigue during displacement ductility levels 6 and 8 indicating reserve 
capacity in the joint against pullout of the column reinforcement.   
 
In addition, cracking due to joint shear was minimal and all joint shear cracks were small as 
shown in Figure 9-22.  Some level of cracking occurred on the underside of the bent cap but was 
significantly smaller than in Unit 1 as shown in Figure 9-23, which also indicates an 
improvement in the seismic response of the test unit.  
 

 
Figure 9-22. Unit 2 Joint Shear Cracks 
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Figure 9-23. Cracking on Underside of Bent Cap 

 
9.3. LOAD VS. CURVATURE RESPONSE 
Figure 9-24 shows the measured lateral load versus the computed curvatures at the column to the 
bent cap interface for Unit 2. As in Unit 1, the diagram depicted in this figure also indicates a 
good correlation between the pre-test analysis and the experimental test results during the initial 
stages of testing. However, after peak load there is a considerable deviation between these two 
curves. As in Unit 1, this can be attributed to joint flexibilities that where not considered during 
the pre-test analysis.  
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Figure 9-24. Unit 2 – Load versus Curvature Response 



 

 - 93 -

9.4. COLUMN LONGITUDINAL REINFORCEMENT STRAINS 
The strain histories of the column longitudinal reinforcement gauges at the interface of the 
column and bent cap for side “A” and side “B” are shown in Figure 9-25 and Figure 9-26, 
respectively.  The yield strain of the column longitudinal reinforcement occurred at ±2,740με as 
determined from tensile testing. The strain profiles for each side of the column are shown in 
Figure 9-27 and Figure 9-28. Onset of yielding of the main column longitudinal bars occurred at 
μ1.0 on either side of the column. 
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Figure 9-25. Strain Gauge History – C4a 
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Figure 9-26. Strain Gauge History – C4b 
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Figure 9-27. Strain Gauge Profile – Side “A” 
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Figure 9-28. Strain Gauge Profile – Side “B” 

 
9.5. JOINT SHEAR REINFORCEMENT STRAIN PROFILES 
Strain profiles developed from gauges installed on the joint shear reinforcement are presented in 
this section.  The yield strain of the as-built and retrofit shear reinforcement occurred, 
respectively, at ±2,191με and ±2,630 με, which were determined from tensile pull-out tests.  
Figure 9-29 and Figure 9-30 are the strain profiles for the stirrups in the as-built and retrofit 
sections, respectively.  These strain profiles clearly show that these stirrups stayed below the 
yield level, which corroborate the observations recorded during testing that the diagonal cracks 
through the joint region remained small in width.  
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During the initial stages of testing and up to the ductility level of one, strain levels in these 
reinforcements were negligible, indicating no shear cracks had yet developed up to this level, 
which matched results observed during testing. At later stages of testing, strains in both the as-
built and the retrofit reinforcement achieved approximately the same level of strain, which is a 
strong indication that once again composite action developed between these two sections.  
Beyond the column face, the strain in the stirrups quickly decreased, indicating that shear strains 
were primarily confined within a distance of hb/2 away from the column faces, which matched 
the extent of diagonal cracking in the bent cap. 
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Figure 9-29. Strain Profiles – As-Built Section 
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Figure 9-30. Strain Profiles – Retrofit Section 

 
9.6. BENT CAP LONGITUDINAL REINFORCEMENT STRAINS 
The following section presents the strain profiles developed for the bent cap longitudinal 
reinforcement. Based on tensile pull-out tests, the measured yield strain for the as-built 
longitudinal was 2,807 με.  The yield strain for the retrofit longitudinal reinforcement was 2,604 
με. 
 
9.6.1. Strain Profiles - Bottom Reinforcement 
Referring to the strain profiles depicted in Figure 9-31 and Figure 9-32, in both of the as-built 
and retrofit sections, the steel did not yield, indicating that the bent cap remained essentially 
elastic.  For similar locations, the strains in both the retrofit steel and the as-built steel achieved 
similar strain profiles and values, indicating once again that the entire bent cap acted as one unit. 
As in Unit 1, although the applied lateral load decreased at higher ductility levels, the strains in 
the longitudinal reinforcement at the bottom of the bent cap continued to increase, as shown in 
these profiles. However, this increased was not as pronounced, and in fact the peak registered 
values in Unit 2 was nearly 1,000 με or half of those registered in Unit 1, which strongly 
suggested that any slipping of the column longitudinal reinforcement and its associated 
mechanisms as described by Figure 3-11 and Figure 8-32 were negligible.  
 
Strain profiles for the top longitudinal reinforcement were not developed for this test unit 
because strain gages were malfunctioning at the onset of testing. 
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Figure 9-31. Strain Profiles – As-Built Section 
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Figure 9-32. Strain Profiles – Retrofit Section 
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9.7. JOINT SHEAR ANALYSIS 
As in Unit 1, the load deformation response for Unit 2 clearly shows a progressive loss in 
strength, and based on observations and experimental results, is mainly justified by flexibilities 
originating from within the joint region and, not necessarily a result of poor performance of the 
flexural or shear response of the column. Computed shear deformations are shown in Figure 
9-33, which are nearly equal to those computed for Unit 1. These values once again do not 
justify typical values associated with joint shear failure.  
 

-300 -200 -100 0 100 200 300
Lateral Displacement (mm)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Jo
in

t S
he

ar
 D

ef
or

m
at

io
n 

(m
m

)

 
Figure 9-33. Specimen #2 Joint Shear Deformation 

 
Furthermore, the maximum recorded strains in the bent cap top transverse reinforcement was 
1,281με, while the maximum achieved strains in the transverse headed reinforcement was 506με, 
as shown in the strain histories presented in Figure 9-34 and Figure 9-35, respectively. These 
values are smaller than the 1,500με limit, which was stipulated in design given by Eq. (3-18) and 
recommended by Priestley (1996). This is an indication that the amount of reinforcement 
provided was adequate, and the continuous transverse headed reinforcement was effective in 
preventing splitting and excessive transverse dilations in the bent cap,  
 
As in Figure 8-35, in Figure 9-36 is shown the envelope for Unit 2. Similar results may be 
inferred from this test data, which indicates that joint shear failure was not the prevalent failure 
mode which caused the unit’s progressive loss in strength; but, instead low cycle fatigue fracture 
of the longitudinal reinforcement. Further comparisons between the response of these two test 
units is described in Section 11. 



 

 - 99 -

-200

-100

0

100

200

300

400

St
ra

in
 (μ

ε)

-300 -150 0 150 300
Lateral Displacement (mm)  

(a) 

0

100

200

300

400

St
ra

in
 (μ

ε)

-300 -150 0 150 300
Lateral Displacement (mm)  

0

100

200

300

400

500

600

St
ra

in
 (μ

ε)

-300 -150 0 150 300
Lateral Displacement (mm)  

(b) (c) 
Figure 9-34. Unit 2 Headed Transverse Reinforcement Strain History 
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Figure 9-36. Unit 2 Principle Tensile Stress vs. Joint Shear Strain 
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10. EXPERIMENTAL RESULTS – UNIT 3 

As in the previous two sections, this section presents observations recorded during testing, 
including force-deformation and reinforcement strain profiles for the column and the bent cap. 
 
10.1. GENERAL TEST OBSERVATIONS 
10.1.1. Force Control Load Cycles 
Unit 3 was loaded following the loading protocol shown in Figure 7-2, which was identical to the 
loading protocol used for testing of Units 1 and 2.  Onset of cracking was detected at 1.00Vy with 
cracks forming on the bent cap top surface, which once again indicates onset of strain 
penetration, as shown in Figure 10-1. During the force control cycles no other damage level was 
recorded for this test unit. 
 

 
Figure 10-1. Bent Cap Cracking at 1.00Vy 

 
10.1.2. Displacement Control Load Cycles 
After the four force control load cycles the loading pattern was changed to displacement control 
as outlined in Section 7.3.  During the first and last cycle peak reversals and at each displacement 
ductility level testing was paused to visually inspect and record damage to the test unit. It is 
important to note that besides some minor differences nearly the same observations were 
recorded for the three units. 
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- 1.0 μΔ [38.1 mm]: Onset of joint shear cracking was observed in the joint region as 
shown in Figure 10-2.  As shown in Figure 10-3, previously recorded cracks depicting strain 
penetration grew in width, indicating the longitudinal bars were properly anchored to the joint. 

- 1.5 μΔ [57.2 mm]: There was additional joint shear cracking including extension of 
previous cracks along with the onset of flexural cracking in the bent cap as shown in Figure 10-4.  
Additional cracking on the bent cap due to strain penetration was minimal (see Figure 10-5). 

- 2.0 μΔ [76.2 mm]: Additional joint shear cracking and flexural cracking was observed 
along with the extension of existing joint shear and flexural cracks as shown in Figure 10-6.  
Additional cracking and extension of existing cracks was observed on the bent cap due to strain 
penetration along with onset of crushing of the column cover concrete as shown in Figure 10-7. 

- 4.0 μΔ [152.4 mm]: After the fist cycle at ductility level 4.0, there was a loss of capacity 
in the column,  At this stage, no additional joint shear cracks were observed and minimal 
extension to the existing cracks was visible.  Additional flexural cracks were observed on the 
side of the bent cap along with extension of existing flexural cracks, as shown in Figure 10-8. 
Similar to the previous two test units, concrete wedges originating from strain penetration on 
either side of the column lifted and the first line of headed reinforcement prevented further 
cracking into the bent cap, as shown in Figure 10-9. 

- 6.0 μΔ [228.6 mm]: At this ductility level, a progressive loss in the strength of the test 
unit was recorded; however, it is worth indicating that the first cycle at this ductility level 
matched the stiffness of the second and third cycles at 4.0μ. At the subsequent cycles a 
progressive loss in the capacity of the test unit was recorded but no additional joint shear cracks 
or extension of existing cracks were observed, as seen Figure 10-10.  Additional crushing of the 
column cover concrete was observed along with the widening of one of the existing cracks on the 
surface of the bent, as shown in Figure 10-11.  Onset of cracking on the underside side of the 
bent cap was observed at this level. 

- 8.0 μΔ [304.8 mm]: A continual loss in capacity was recorded at this ductility level.  No 
further extension of joint shear cracks was observed and previously recorded cracks stayed 
within constant widths for the remaining of the test.  As before, concrete wedges developing as a 
result of strain penetrations from the column longitudinal reinforcement extended on the sides of 
the bent cap as indicated by the horizontal crack shown in Figure 10-12.  On the top surface of 
the bent cap, it is visible the lifting of these concrete wedges, as shown in Figure 10-13 and 
Figure 10-14.  On the bottom surface of the bent cap and as shown in Figure 10-15, concrete 
wedges separated from the bent cap , which is indicative of onset of anchorage failure of the 
column longitudinal reinforcement. 
 
As in the previous two test units, after testing all loose cracked concrete was removed.  The 
extent of damage to the bent cap was limited to the first row of headed reinforcement, as shown 
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in Figure 10-16.  Reducing the gap region to 13 mm prevented excessive crushing of the column 
concrete as shown in Figure 10-17.  This also prevented buckling of the column longitudinal 
reinforcement after spalling of the cover concrete and subsequently premature low cyclic fatigue 
fracture of this reinforcement. The extent of the cracking on the underside of the bent cap is 
shown in Figure 10-18. Further comparisons and discussions with Units 1 and 2 are discussed in 
Section 11. 
 

 
Figure 10-2. Joint Cracking at 1.0 μΔ  

 

 
Figure 10-3. Bent Cap Cracking at 1.0 μΔ  
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Figure 10-4. Joint Cracking at 1.5 μΔ  

 

 
Figure 10-5. Bent Cap Cracking at 1.5 μΔ  
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Figure 10-6. Joint Cracking at 2.0 μΔ  

 

 
Figure 10-7. Bent Cap Cracking at 2.0 μΔ  



 

 - 106 -

 
Figure 10-8. Joint Cracking 4.0 μΔ  

 

 
Figure 10-9. Bent Cap Cracking at 4.0 μΔ  
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Figure 10-10. Joint Cracking at 6.0 μΔ  

 

 
Figure 10-11. Bent Cap Cracking at 6.0 μΔ  
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Figure 10-12. Joint Cracking at 8.0 μΔ  

 

 
Figure 10-13. Bent Cap Cracking – Side “A” at 8.0 μΔ  
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Figure 10-14. Bent Cap Cracking – Side “B” at 8.0 μΔ  

 

 
Figure 10-15. Bent Cap Underside Cracking at 8.0 μΔ 
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Figure 10-16. Bent Cap Cracking Ultimate Damage 

 

 
Figure 10-17. Column Crushing Ultimate Damage 
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Figure 10-18. Underside of Bent Cap Ultimate Damage 

 
10.2. LOAD DEFORMATION RESPONSE 
The load deformation response of Unit 3 is shown in Figure 10-19.  After the displacement of 
228.6 mm the unit experienced the first significant loss in capacity, which is thought to result 
from significant strain penetration cracks around the column, especially after the displacement of 
228.6 mm.  

-300 -200 -100 0 100 200 300
-600

-400

-200

0

200

400

600

-12.0 -9.0 -6.0 -3.0 0.0 3.0 6.0 9.0 12.0
Drift (%)

 μΔ   1     2            4

Vy

V'y

Vy

V'y

Pre-Test Analysis
Post-Test Analysis
Experimental

 6             8 

 
Figure 10-19. Unit 3 - Load Displacement Response 
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An immediate conclusion from these test results clearly indicate that reducing the steel shell gap 
to 13mm prevented excessive crushing of the concrete cover, and buckling of the column 
longitudinal bars, as previously described in Unit 1 and 2. This further accentuates the 
conclusion that the reduction in the lateral load observed in the previous two units was likely 
from flexibilities originating from within the joint and not due to buckling of the column 
longitudinal reinforcement, as one may have originally anticipated. This also accentuates the 
need to develop refined joint models that can account for these joint flexibilities, which is the 
central topic discussed in Section 11.5. Cracking on the sides of the bent cap resulting from joint 
shear was minimal and all cracks stayed small as shown in Figure 10-20.  The crack pattern was 
more distributed than in Units 1 and 2.  Cracking and spalling of large wedges of concrete 
occurred on the underside of the bent cap indicating once again onset of anchorage failure of the 
column longitudinal reinforcement, as shown in Figure 10-18. 
 

 
Figure 10-20. Unit 3 Joint Shear Cracks 

 
In Unit 3 the maximum registered lateral load was also recorded during the first cycle to the 
displacement of 152.4 mm. In the push and pull directions the registered lateral loads were +555 
and -570 kN, respectively, which are nearly 20% higher than those registered for the previous 
two units. Between the first and second cycles the drop in the lateral load was the same as in Unit 
1 or approximately 14%, and between the second and third cycles the drop in the lateral load was 
5%, indicating once again stability in the response of Unit 3. Comparisons of load degradation at 
higher ductility levels are also described in further detail in Section 11.1. The first significant 
drop in the lateral load capacity of Unit 3 below the theoretical first yield load level was 
observed during the third cycle at the displacement of 228.6 mm. This indicates similar load 
degradation, which indicates that reducing the steel shell gap did not translate directly into an 
improvement of the seismic response of the test unit, but it certainly prevented premature low 
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cycle fatigue of the reinforcement. This suggests, that the steel shell gap should not be reduced 
below levels that can lead to significant increase in the load capacity of the unit, leading to 
higher principle tensile stress demands in the joint. For Unit 3 and based on a direct investigation 
of the test results the new displacement at ductility level one was set at 42.1 mm, translating in 
the displacement ductility levels shown in the Figure 10-19.. 
 
10.3. LOAD VS. CURVATURE RESPONSE 
As before, Figure 10-21 depicts the measured lateral load versus the computed curvatures at the 
column to the bent cap interface for Unit 3. As in the previous Units 1 and 2, the diagram 
depicted in this figure also indicates a good correlation between the pre-test analysis and the 
experimental test results during the initial stages of testing. However, after peak load there is a 
considerable deviation between these two curves. As in Units 1 and 2, this can be attributed to 
large rotations originating solely from within the joint region, which indicates that the response 
of the three units was very similar.  
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Figure 10-21. Unit 3 – Load versus Curvature Response 

 
10.4. COLUMN LONGITUDINAL REINFORCEMENT STRAINS 
The strain histories of the column longitudinal reinforcement gauges at the interface of the 
column and bent cap for side “A” and side “B” are shown in Figure 10-22 and Figure 10-31, 
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respectively. The yield strain of the column longitudinal reinforcement occurred at ±2,376με as 
determined from tensile testing.  The strain profiles for each side of the column are shown in 
Figure 10-24 and Figure 10-25.  The onset of yielding of the main column longitudinal bars 
occurred at μ1.0 for each side of the column. 
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Figure 10-22. Strain Gauge History – C4a 
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Figure 10-23. Strain Gauge History – C4b 
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Figure 10-24. Strain Gauge Profile – Side “A” 
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Figure 10-25. Strain Gauge Profile – Side “B” 
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10.5. JOINT SHEAR REINFORCEMENT STRAIN PROFILES 
The strain gauges from the shear reinforcement are presented in this section.  The yield strain of 
the as-built and retrofit shear reinforcement occurred at ±2,626 as determined from tensile 
testing. Figure 10-26 and Figure 10-27 show the strain profiles for the stirrups in the as-built 
concrete and the stirrups in the retrofit concrete, respectively.  The stirrups stayed below the 
yield point indicating that joint shear did not occur in the longitudinal plane of the bent cap. 
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Figure 10-26. Strain Profiles – As-Built Section 
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Figure 10-27. Strain Profiles – Retrofit Section 

 
10.6. BENT CAP LONGITUDINAL REINFORCEMENT STRAINS 
The following section presents the strain in the bent cap longitudinal steel.  The yield strain for 
the as-built longitudinal steel was measured at 2,438 με, and tThe yield strain for the retrofit 
longitudinal steel was measured at 2,604 με.  For both the as-built and the retrofit steel, the steel 
did not yield, indicating that the bent cap stayed within the elastic range.  Also for similar 
locations, the strain in both the retrofit steel and the as-built steel had strain levels that were very 
close indicating that the entire bent cap acted as one unit.  The strain profiles for the bent cap 
bottom longitudinal reinforcement for the as-built and retrofit sections are shown in Figure 10-28 
and Figure 10-29, respectively. 
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Figure 10-28. Strain Profiles – As-Built Section 
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Figure 10-29. Strain Profiles – Retrofit Section 
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10.7. JOINT SHEAR ANALYSIS 
Damage within the joint was attributed to cause the progressive degradation of the lateral load as 
observed by the load deformation response curve shown in Figure 10-19. Computed joint shear 
deformation were slightly larger than the previous two units, as shown in Figure 10-30.  also, the 
post tensioning mechanism prevented excessive dilation of the bent cap preventing large strains 
in the top transverse reinforcement as shown in Figure 10-32. 
 
The bent cap flexural and shear reinforcement stayed below yield and had similar levels of strain 
for the as-built and retrofit reinforcement as shown in Figure 10-28 and Figure 10-29, 
respectively.  As with the previous two units, this indicates composite action between the as-built 
and retrofit cross-sections and that the bent cap stayed elastic forcing the plastic hinge to form in 
the column. 
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Figure 10-30. Unit 3 Joint Shear Deformation 
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Figure 10-31. Unit 3 Principle Tensile Stress vs. Joint Shear Strain 
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Figure 10-32. Unit 3 Top Transverse Reinforcement Strain Profile 
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11. DISCUSSION OF EXPERIMENTAL RESULTS 

11.1. GENERAL 
As previously shown in Sections 8.2, 9.2, 10.2, the load deformation response for the three units 
are very similar; however, slight deviations in the response of each of these three test units can 
be outlined either in terms of energy absorption capabilities, maximum achieved lateral load, 
strength degradation under increased reversed cyclic loads, and damage levels. A brief summary 
of some of the results derived from the experimental program are shown in Table 11-1. Peak 
lateral loads and peak principle tensile stresses for the three test units are shown in this table for a 
direct comparison of the test results. A reasonable comparison among the three test units was 
performed in terms of the energy dissipated through the system, and strength degradation under 
reversed cyclic loading. These parameters are discussed in the next two sections.  
 

Table 11-1. Peak Values 
Peak Values (kN) Energy (kN-m) Unit Load Stress Rate* Dissipated Rate* 

1 +421 
-442 

0.39 
-0.41 - 986 - 

2 +440 
-460 

0.41 
-0.43 

1.05 
1.04 1,154 1.17 

3 +555   
-570 

0.53 
-0.55 

1.32 
1.29 1,007 1.02 

 * Normalized values in terms of Unit 1 results 
 
11.2. COMPARISON OF DISSIPATED ENERGY FOR THE THREE TEST UNITS 
In this section a comparison of energy dissipated through the three test units is used in the 
context of assessing joint performance. The energy dissipated through the structural system was 
calculated from the area of the hysteretic loops at each displacement level and results of these 
analyses are shown in Figure 11-1.  The total cumulative energy dissipated for Units 1, 2, and 3 
was 986 kN-m, 1,154 kN-m, and 1,007 kN-m, respectively, which shows that Unit 2 had a 
slightly higher capacity to dissipate the hysteretic energy by nearly 15%.  Also as shown in this 
figure, Unit 2 was capable of dissipating higher levels of energy beyond 228.6 mm, which can 
also be set as the limit for onset of joint shear degradation for Units 1 and 3. Also the higher 
energy dissipation capacity associated with Unit 2 is evident by the reduced pinching of the 
hysteresis loops for this unit in comparison to those of Units 1 and 3. This suggests an improved 
performance for the joint of Unit 2 and hence a greater capacity to dissipate energy.  
 
Referring to Table 11-1 it is important to note that although Unit 3 was not able to dissipate the 
same level of energy as Unit 2, the principle tensile stresses for this unit exceeded those of Unit 
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2. As such, reducing the steel shell gap from 51 mm to 13 mm for Unit 3 provided better 
confinement of the concrete cover; thus, preventing buckling and low cyclic fatigue fracture of 
the column longitudinal bars. However, the significant increase in the load capacity of Unit 3 led 
to an increased demand in the joint region. This observation suggests that in design practice 
combining details of Units 2 and 3 are likely to lead to an improved joint performance. Based on 
these results, it is desirable to limit the steel shell gap to within 38 to 51 mm, and in design 
situations where higher joint shear capacity may be needed one may opt for post-tensioning of 
the joint.  
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Figure 11-1. Cumulative Dissipated Energy 

 
11.3. STRENGTH DEGRADATION UNDER REVERSED CYCLIC LOADING 
Referring to Figure 11-2(a) it is clear that the three test units reached their peak capacity at the 
displacement level of 152.4 mm. Also, the peak load achieved in Units 1 and 2 was nearly 1.5 
times the section yield capacity. In Unit 3 the maximum achieved lateral load was nearly twice 
as the yield capacity. This increase in the ultimate capacity of Unit 3 was a direct result of 
reducing the steel shell gap from 51 mm to 13 mm, which increased the confinement action on 
the concrete core. As such, one of the immediate conclusions derived from this research project 
is to stipulate a limit for the steel shell gap length as a means to control the capacity of the 
column, which is discussed in further detail in Section 12.3.1.  
 
As in the previous section, in this section a comparison of strength degradation under reversed 
cyclic loading is used in the context of assessing joint performance. In comparison to the 
analytical models it is expected that under reversed cyclic loading reinforced concrete sections 
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will experience degradation in the lateral strength due to buckling of the longitudinal 
reinforcement and joint degradation. However for the three test units, buckling of the 
longitudinal reinforcement was more prevalent in Units 1 and 3. In addition, Unit 1 experienced 
the first drop in the lateral load capacity below the theoretical yield load level during the second 
cycle to the displacement level of 228.60 mm. Similarly, Units 2 and 3 experienced the first drop 
in the lateral load capacity below the theoretical yield load level during the first cycle to the 
displacement level 304.8 mm. These results were used in Section 12.3.3 to establish 
displacement ductility levels for the design and upgrade of existing bridge bents. 
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Figure 11-2. Strength Degradation under Reversed cyclic loading 

 
11.4. JOINT PERFORMANCE 
Priestley (1993) developed a three point joint stress-strain response model for poorly confined 
joints using the two principle tensile stress limits stipulated in Eqs. (3-6) and (3-7) as starting 
points for joint design and assessment. These two points were empirically derived from testing of 
26 outrigger-bent knee joints. However, it is important to note that there is no single joint stress-
strain model that can represent the complex behavior of all possible joints (Mazzoni and Moehle, 
2001), and the model developed by Priestley has been used by Caltrans (SDC, 2004) as a starting 
point for seismic design and assessment of bridge joints.  
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In the post-test evaluation of the three test units, three different joint models were developed to 
evaluate the lateral response of the test units. These proposed models are shown in Figure 11-3 
along with the experimentally derived normalized principle tensile stresses versus joint rotation. 
The proposed models for each of the joints of Units 1, 2, and 3 are shown in Figure 11-4(a). A  
direct comparison of these figures  shows that the joint in Unit 3 achieved higher principle tensile 
stresses, and the joint in Unit 2 shows lower levels of strength degradation under increased joint 
rotations. In Figure 11-3 are also shown the models originally developed by Priestley (1993) and 
Mazzoni and Moehle (2001). These two models have been proposed in the literature, and as 
previously stated these have been used to evaluate joint performance under reversed cyclic loads. 
Joint model I is used in the evaluation of unconfined joints and was proposed by Priestley 
(1993), and Joint model II is used in the evaluation of confined joints and was proposed by 
Mazzoni and Moehle (2001). Both of these joint models are tri-linear models, in which the first 
two branches are the same for both models with expressions given by 
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Where θj is the joint shear/rotation measured in radians and ρt is the normalized principle tensile 
stresses. The principle tensile stresses were then converted to a moment relation based on the 
Mohr circle of analysis and on the relation 

( )
2 2

2 '0.8
2 4
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⎝ ⎠  

(11-2) 

Where wb and hb are the bent cap width and depth, respectively, f’
c
 
 is the concrete compression 

strength, and fa is the axial stress on the joint derived from the axial load, P, and is given by 
P/wbhb, χ is a damage parameter and is a piecewise linear function that was empirically derived 
from the test results for each test unit that was developed to simulate the damage that develops 
within the joint region, and the power N in χ is the cycle number under consideration. The 
damage parameter χ was then given for each test unit by 
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Next, substituting the piecewise Eqs. (11-3) and (11-1) into Eq. (11-2) the moment-rotation 
envelope for each of the test units is obtained and the relations for the three test units are shown 
in Figure 11-4(b). Results from this section were then used to develop the post-test analysis 
outlined in the next section. 
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(b) Unit 2 
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Figure 11-3. Normalized Principle Stresses vs. Computed Joint Rotation 
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Figure 11-4. Joint models 
 
11.5. POST-TEST ANALYSIS 
The pre-test analyses for Units 1, 2 and 3, as described in Section 7.2, were developed without 
considering any increases in deflections or loss in load capacity deriving from flexibility or 
damage in the joint. This approach leads to satisfactory results in developing the envelope 
response of members built with joint shear reinforcement designed according to current seismic 
design provisions, in which joint flexibility is negligible. However, prior to the 1970’s joints 
were built with insufficient joint shear reinforcement and for these structures other mechanisms 
of deformation must also be considered in the analysis.  
 
These mechanisms should consider rigid body rotations at the ends of members due to joint 
flexibility and elongation combined with slip of the longitudinal reinforcement from the joint 
core. Mazzoni and Moehle (2001) have successfully used these mechanisms combined in a rigid 
body moment rotation relation. As such, in this research program these additional modes of joint 
deformation were considered in the analysis in terms of the relation 

( ) ( )
12 2

, , ,

/ 2 / 21 C b C b
i i

C i B i J i

L h L h
V D

K K K

−
⎛ ⎞+ +

Δ = + + × Δ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (11-4) 

Where as before, ΔVi and ΔDi are the incremental column lateral load and top deflection, 
respectively, and KC,i and KB,i are the instantaneous tangential bending stiffness for the column 
and bent cap, respectively, and were obtained in terms of Eq. (7-2). In this form the first two 
terms consider only the column and bent cap flexibility, and the last term considers the rigid 
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body rotation at the base of the column due to joint flexibility combined with bar elongation and 
slip. As such, KJ,i is the rotational stiffness of the joint considering joint flexibility plus bar 
elongation and slip. The joint rotational stiffness was empirically derived for each of the test 
units by employing a rotational spring element with zero length and moment rotation relation 
developed based on the joint stress-strain/rotation diagrams presented earlier for joint models I 
and II.   
 
Based on the three moment-rotation models shown in Figure 11-4(b) and the analytical model 
expressed by Eq. (11-4) the curve envelopes for each of the test units was developed and results 
from this analysis are shown in Figure 11-5. These three curves were then superimposed with the 
load deformation response curves for each of the three test units shown in Sections 8.2, 9.2, and 
10.2. Referring to these experimental results sections there is a good correlation between the 
proposed joint model results and the experimental curves.  
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12. CONCLUSIONS 

12.1. GENERAL OVERVIEW 
This report discusses in detail experimental and analytical findings from a research program 
conducted for the State of Alaska Department of Transportation and Public Facilities. Part of this 
research program a total of three 4/5 scale units were cast, retrofitted, and tested under simulated 
fully-reversed cyclic lateral loading.  These three units consisted of a cast in place steel shell 
(CISS) column foundation shaft and a bent cap configured to form a tee connection. In addition, 
these units were built to model a bridge bent and tested under simulated seismic loads at the 
University of Missouri Rolla experimental facilities. Based on these research program, an 
upgrade method was investigated that can be implemented in field conditions for improving the 
seismic performance of bridges built in the state of Alaska. Based on the research findings 
overall design recommendations are discussed in this Section 12.3. 
 
A prototype as-built unit consisting of an interior column and corresponding bent cap was 
designed and constructed in a T-configuration by including the following design deficiencies: (1) 
the CISS column foundation shafts have excessive longitudinal reinforcement ratios, (2) the 
yield moment capacity of the bent cap is below the maximum feasible moment that develops at 
the column faces, (3) the steel shells are partially embedded in the joint region, which under low 
levels of rotation impose extensive damage on the bent cap, and (4) the joints have inadequate 
amounts of joint shear reinforcement to sustain the levels of principal tensile stresses that 
develop within the joint region, which leads to anchorage failure of the column longitudinal 
reinforcement and significant strength degradation at low ductility levels. 
 
After construction of the as-built units, the units were modified in order to investigate seismic 
improvements and propose procedures for field implementation, according to the following 
seismic improvements: (1) the moment capacity of the column was reduced by cutting a portion 
of the column longitudinal reinforcement at the connection to the bent cap to levels that can 
ensure a proper ductile seismic response, (2)  a section of the steel shell was cut and removed 
leaving a gap between the steel shell and the bent cap, and (3)  the bent cap dimensions were 
increased to i) install the additional flexure and joint shear reinforcement thereby increasing the 
moment capacity of the bent cap, ii) provide adequate reinforcement spacing, iii) reduce the 
principle tensile stresses, iv) provide for a better transfer of stresses within the joint region, v) 
increase the development length of the column longitudinal reinforcement, and v) reduce 
reinforcement congestion in the joint region.  
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12.2. GENERAL CONCLUSIONS 
Overall, experimental results from the three test units cyclic tests showed that the three test units 
displayed a ductile response up to the displacement ductility of 5 without significant decreases in 
the strength of the test units, inelastic actions due to flexural yielding of the bent cap, shear 
failure of the bent cap or joint shear failure. Realizing that for a column with an aspect ratio of 
4.5, Priestley et. al (1995) recommends that the displacement ductility capacity of multiple 
column bridge bents should not be any less than 4, experimental results indicate that the 
displacement ductility levels achieved are within the recommended values.  
 
Beyond the ductility level of 5, the main failure mode of Unit 1 was attributed to joint shear 
failure due to excessive transverse dilations within the joint region. This was attributed to the 
transverse horizontal headed reinforcement not been made continuous though the joint region. 
As such it is recommended that this detail practice not be used in regions prone to seismic events 
with a combined ductility demand near 4 and under multiple reversed cycles. 
 
An improved joint detail was implemented for Units 2 and 3, in which this transverse 
reinforcement was made continuous through the joint region. In Unit 2, the main failure mode 
was attributed to low cyclic fatigue of the column longitudinal reinforcement.  Extensive joint 
degradation was recorded beyond the displacement ductility of 7.  In Unit 3 the joint was post-
tensioned in the transverse direction while also decreasing the gap length between the steel shell 
and the bent cap.  Beyond ductility level 7 degradation of the lateral load capacity of the column 
occurred due to joint shear failure. Detailed description for the design of these units and 
experimental results are discussed within this report. 
 
Based on the experimental results the research team proposes that a displacement ductility of 4 
be implemented in the retrofit design using the details proposed for Units 2 and 3.  At this level it 
is expected that some level of strength degradation will be observed in the column, but this will 
not either cause significant decrease in the column axial capacity nor significant wide open 
cracks in the joint region.  Furthermore, any cracks at this level will close under the gravity 
loads.  In addition, for columns with lower reinforcement ratios or deeper bent cap the full 
dependable moment capacity and displacement ductility of the column can be expected to 
develop. As such, for these columns higher displacement ductility levels may be accepted for 
assessment investigation. This is further addressed in the next section.  
 
12.3. SEISMIC DESIGN RECOMMENDATIONS 
Following on the discussion of the experimental results presented in Section 11, this section 
outlines design recommendations to establish an improved seismic performance of bridge bents 
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built in the state of Alaska using CISS columns. Based on the design and performance of the 
three test units, the following design recommendations are made for seismic retrofit/upgrade 
design of multi-column bridge bents with circular CISS-columns. It is assumed that multi-
column bents are designed using the capacity design philosophy with hinges forming at the 
column end. 
 
12.3.1. Column Design 
The following seismic upgrade design procedures are proposed for the seismic rehabilitation of 
circular CISS-columns built with reinforcement ratios greater 4% and/or the steel shell 
embedded into the bent cap: 
 

i) A section of the steel shell must be cut and removed in order to leave a gap between the 
steel shell and the new bent cap section, as previously discussed in Sections 3, 4, and 5 during 
construction of the test units, see Figure 3-2. All the concrete surrounding the column 
longitudinal reinforcement and located below the line of the new bent cap section should be 
removed as shown in Figure 4-3. 

ii) Following up on the previous recommendation, confining reinforcement shall be required 
in terms of field welded hoops installed below the steel shell gap region and placed immediately 
in contact with the column longitudinal reinforcement, as shown in Figure 4-4. Higher number of 
welded hoops may be required to satisfy the following anti-buckling spacing, s, requirements 
(Caltrans, 2004):  

blds 6≤  (12-1) 
Where dbl is the bar diameter of the column longitudinal reinforcement. This detail is 

necessary to prevent buckling of the column longitudinal reinforcement within the gap region 
beyond the damage level corresponding to crushing of the cover concrete. 

iii) The steel shell gap should be limited between 38 and 51 mm. The lower gap value will 
limit increases in the flexural capacity of the column due to excessive confinement of the inner 
core. The upper bound will be within values that can ensure sufficient displacement ductility 
capacity, minimum confinement of the plastic hinge region and prevent shear failure of the 
column. 

iv) The column longitudinal reinforcement ratio should be reduced to limits below 4% but 
not lower than 1% using the procedures outlined in Section 3.5 and 4.1. The upper limit avoids 
significant amounts of joint shear reinforcement and practical difficulties involving construction 
of the upgrade bent cap section in columns with large reinforcement ratios.  

v) In the evaluation of the flexural capacity of circular CISS columns with a gap region the 
concrete core should be assumed confined by an equivalent spiral confined section with a spiral 
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area corresponding to the square of the steel shell thickness and a pitch equivalent to the gap 
length. 

 
12.3.2. Bent Cap Design 
The following seismic upgrade design procedures are proposed for the seismic rehabilitation of 
reinforced concrete bridge bent caps built with insufficient longitudinal, shear and joint shear 
reinforcement capable of ensuring plastic hinges to form at the column ends: 

 
i) The minimum width of the upgrade bent cap section must be within 1.5 times the outside 

diameter of the steel shell.  This limit will ensure a uniform flow of forces through the joint 
region. However, as previously discussed in Section 3.2.2, the minimum width of the bent cap, 
Wb, must satisfy current ACI (ACI 2002) bar spacing and cover concrete specifications for the 
installation of the new bent cap flexural and joint shear reinforcement.  

ii) Redesign of the bent cap height shall be dimensioned according to limits stipulated by Eq. 
(3-4) (Priestley, 1996), which was established based on the required development length for the 
column longitudinal reinforcement. A higher bent cap height may be necessary in order to reduce 
the principle tensile stresses within the joint region as stipulated in Section 12.3.3. 

iii) As previously discussed in Section 3.2.1 and Eq. (3-1), the maximum moment demand 
placed on the bent cap can be established at the column face and may included the effects of the 
axial load on the columns. 

iv) Based on the maximum moment demand computed from Eq. (3-1) increase in the yield 
moment capacity of the bent cap must be achieved in terms of Eq. (3-2). 

v) Referring to a section in its upright position, when an increase in the bent cap bottom 
longitudinal reinforcement is required (that is top in the test units) at least a minimum of 4 bars 
shall be placed within the width of the exiting bent cap section, as shown in Figure 3-22. If at 
least 4 bars are already present in the as-built section this limit shall be considered null. 
Furthermore, at least two of these bars must be placed through the existing concrete core as 
shown in Figure 3-23. 

 
12.3.3. Reinforced Concrete Joint Design 
Design of the reinforcement within the joint region should follow the procedure outlined in 
Section 3.3.1, which establish design of the joints in terms of the principle compressive and 
tensile stress limits. Furthermore, design of the joint shear reinforcement shall be performed in 
terms of the strut and tie model presented in Section 3.3.2.  

 
i) In addition to the longitudinal reinforcement required to increase the yield moment 

capacity of the bent cap given by Eq. (3-2), additional longitudinal reinforcement shall be 
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required to resist the joint shear forces and shall be placed in the bent cap according to the design 
strategy discussed in Section 3.3.3. 

ii) Additional internal and external vertical joint shear reinforcement required within the joint 
region shall be provided according to the limits defined in Section 3.3.4. 

iii) An area of horizontal joint shear reinforcement is required within the joint region 
according to the design philosophy presented in Section 3.3.5.  

 
Based on the experimental results and observed damage levels the following methodology is 
recommended in addition to the design parameters set by Section 3.3.5. 

 
iii.a) For an upgrade bent cap section when the principle tensile stress are less than 

),(42.0 ' Mpafcf ×φ  installation of the transverse reinforcement may be provided in terms of 

any of the details used in the construction of Unit 1 (two pieces, see detail in Figure 3-1), Unit 2 
(single piece, see detail in Figure 4-1), and/or Unit 3 (single piece post-tensioned, see detail in 
Figure 5-1). At this principle tensile stress limit no reduction in the available displacement 
ductility capacity of the system is imposed. 

  iii.a.1) In retrofit situations that meet Unit 3 design and when the principle tensile stress 

limits are less than '0.55 ( )f cf Mpaφ × ; once again, no reduction in the available displacement 

ductility capacity of the system  shall be imposed. 
iii.b) For bent cap sections with the height, hb, initially computed based on Eq. (3-4) and that 

do not meet the limits set above, the bent cap height may be computed based on the following 
expression: 

2 2
'

1
0.8

2 4

U
b

f a a
b all c

Mh
f fw f

φ
ρ

=
⎛ ⎞× + −⎜ ⎟
⎝ ⎠

 
(12-2) 

Where MU is the ultimate moment capacity of the column, φf is the flexural strength reduction 
factor equal to 0.9, fa is the axial stress in the joint and is computed based on Eq. (3-9), f’

c is the 
nominal design concrete compressive strength, and ρall is the allowable principle tensile stress 
limit in the joint in terms of the values shown in Table 12-1. Bent caps meeting the requirements 
set by this expression shall have no required reduction in the available displacement ductility 
capacity of the system.  

iii.c) For bent cap designed according to Eq. (12-2) the maximum available displacement 
ductility capacity must be set in terms of the values shown in Table 12-1. 

Table 12-1. Allowable  
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Transverse Reinforcement Details Allowable  
ρall 

Allowable 
μΔ 

Two Pieces per Figure 3-1 φf 0.42 4 
Single Piece per Figure 4-1 φf 0.42 8 

Post-Tensioned per Figure 5-1 φf 0.55 8 
 
iii.d) Reductions in the displacement ductility capacity of the system as shown in Table 12-2 

are required when the principle tensile stress limits exceed '0.42 ( )f cf Mpaφ × for Units 1 and 2 

details, and '0.55 ( )f cf Mpaφ ×  for uUnit 3 details. 

 
Table 12-2. Modified Displacement Ductility Capacity 

Number of Peak Cycles, Nf Transverse Reinforcement Details Nf ≤ 2 2 ≤  Nf ≤ 4 Nf > 4 
Two Pieces per Figure 3-1 6 4 2 
Single Piece per Figure 4-1 6 6 2 

Post-Tensioned per Figure 5-1 6 4 2 
*Maximum number of peak cycles, Nf, is computed based on Eq.(12-3). 

 
In Table 12-2 the number of cycles of loading, Nf, expected at the maximum displacement 
amplitude may be estimated from (NCHRP, 2003): 

105.32 3
1

≤×≤= −
Nf TN  (12-3) 

Where TN  is the natural period of vibration of the structure. 
 

When a multiple column bridge bent is designed based on the above recommendations, a ductile 
seismic response can be expected up to the design drift limit state. 
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