A RE-EVALUATION

<u>0F</u>

THE 1964 "L" STREET SLIDE

FINAL REPORT

By

Yoshiharu Moriwaki, Senior Project Engineer Ernesto E. Vicente, Assistant Project Engineer Shyn-Shiun Lai, Senior Staff Engineer

Woodward-Clyde Consultants Santa Ana, California

and

Thomas L. Moses, Jr., Regional Materials Engineer Central Region, Alaska DOT&PF, Anchorage, AK

April 1985

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES DIVISION OF PLANNING RESEARCH SECTION 2301 Peger Road Fairbanks, Alaska 99701-6394

The contents of this report reflect the views of the author who is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Alaska Department of Transportation and Public Facilities. This report does not constitute a standard, specification or regulation.

TABLE OF CONTENTS

LETTER OF TRANSMITTAL TABLE OF CONTENTS

.

1.0	INTRODUCTION	1
2.0	THE 1964 ALASKAN EARTHQUAKE	1
3.0	THE 1964 "L" STREET SLIDE	4
4.0	AREA GEOLOGY	10
5.0	SUBSURFACE CONDITIONS	12
6.0	REEVALUATION OF THE "L" STREET SLIDE	18
7.0	DISCUSSIONS AND CONCLUSIONS	28
8.0	RECOMMENDATIONS AND IMPLEMENTATIONS	31

REFERENCES

Table 2	2-1	-	Characteristics of the Prince William Sound Earthquake
Figure	1	-	Locations of Major Landslides Caused by the 1964 Alaskan Earthquake
Figure	2	-	Areal Photo of L-Street Slide Area
Figure	3a	-	L-Street Slide Damage
Figure	3b	-	L-Street Slide Damage
Figure	4	-	L-Street Slide Area
Figure	5	-	Three Cross-Sections from L Street Slide
Figure	6	-	Idealized Subsurface Conditions in
			L Street Slide Area
Figure	7	-	Evaluation Cross-Section
Figure	8	-	SPT Blowcounts in Major Sand Layers
Figure	9	-	Undrained Shear Strength from Various Tests
Figure	10	-	Backcalculation Cross Section
Figure	11	-	Liquefaction Potential of Major Sand Layers for Different Magnitude Earthquakes
Figure	12		Comparison of Estimated and Backcalculated Undrained Shear Strength
Figure	13	-	Backcalculated Normalized Undrained Shear Strength Variation with Number of Cycles
Figure	14	-	Evaluation Process for Seismic Site Stability

٠.

TABLE OF CONTENTS (Continued)

APPENDIX A - Results of Geotechnical Field Investigation APPENDIX B - Results of Laboratory Tests APPENDIX C - Undrained Shear Strength of Bootlegger Cove Clay APPENDIX D - Procedure for Calculating Seismically-Induced Ground Displacements APPENDIX E - Selected Cross-Sections with CPT Results

IMPLEMENTATION STATEMENT

This project was established when the State was planning the Knik Arm Crossing and one of the alternate routes was along "L" Street.

The report basically looks at a new theory (undrained failure through the clay which was recently studied for the 4th Avenue slide) for the cause and failure mechanism of the "L" Street slide. The predominant theory is that the landslides at both "L" Street and 4th Avenue were initiated due to liquification of a sand layer. The additional data gathered from the geotechnical investigations on this project adds to the existing geotechnical database related to the 1964 Anchorage earthquake and can be used by State or Federal agencies, consultants, etc. to aid in their decision-making processes for construction of buildings or roads.

No direct implementation of these results can be expected at this time.

Lorena A. Hegdal Research Engineer

(i)

A RE-EVALUATION OF THE 1964 "L" STREET SLIDE

1.0 INTRODUCTION

The "L" Street slide caused by the 1964 Alaskan earthquake resulted in significant damage to structures particularly in the graben and pressure ridge zones. Subsequent to the slide, the area has been re-developed to the point where no noticeable remnants of the slide are now apparent. However, apart from some studies conducted shortly after the 1964 Alaskan earthquake, the 1964 "L" Street slide has not been fully investigated in recent years.

The objective of this study is to evaluate the likely mechanisms of the "L" Street slide caused by the 1964 Alaskan earthquake based on a limited program of field investigation, laboratory tests, and analyses. The general approach adopted in this study is similar to that used in a recent study by Woodward-Clyde Consultants (1982) which addressed the seismic stability of two sites near the 1964 Fourth Avenue slide.

2.0 THE 1964 ALASKAN EARTHQUAKE

In 1964, Alaska was shaken by one of the largest earthquakes ever to occur anywhere in historic times. The earthquake occurred at 5:36 pm local time on Friday, 27 March 1964 (3:36 am GMT, 28 March). The epicenter of the earthquake was estimated at coordinates 61.04°N, 147.73°W, approximately 130 km east of Anchorage. The magnitude of the earthquake was 8.5 (surface wave magnitude) and 9.2 (moment

-1-

magnitude); the seismic moment was estimated to be about 8.2x10²⁹ dyne-cm. The key characteristics of the 1964 Alaskan earthquake are summarized in Table 2.1.

Strong motions from this earthquake were not recorded in the Anchorage area. However, based on patterns of damage (and lack of damage) to structures and their contents, peak ground acceleration levels in Anchorage were estimated to be about 0.15g to 0.2g (Housner and Jennings, 1973; Shannon and Wilson, 1964; Newmark, 1965). It is noted that this range of peak ground acceleration in Anchorage is not particularly large compared to those recorded during other earthquakes at other seismically active parts of the world.

The duration of perceptible ground motion in Anchorage was reported to range from 4 to 7 minutes, with strong shaking lasting approximately 2 to 3 minutes (Housner and Jennings, 1973; Steinbrugge, 1970). It is noted that this 2 to 3 minutes of strong ground shaking is very long compared to the recorded durations of strong ground shaking from other earthquakes.

Finally, it is noted that the 1964 Alaskan earthquake was caused by the breakage of the megathrust that dips at a shallow angle toward Anchorage from the southeast direction. The closest distance between Anchorage and the zone of aftershocks is about 65 km. It is noted that an earthquake source consisting of a megathrust is significantly different from many earthquake sources found in a place like California, where normal faults, strike-slip faults, and reverse faults (Bolt, 1978) cause earthquakes of moment magnitude generally lower than 9.2.

-2-

TABLE 2-1

CHARACTERISTICS OF THE PRINCE WILLIAM SOUND EARTHQUAKE

Date March 27, 1964; 5:36 P.M. local time (March 28, 1964; 3:36 A.M. GMT)

Location Epicenter: 61.04° N, 147.73° W Distance of epicenter from Anchorage was approximately 130 km (80 miles). Distance of aftershock zone from Anchorage was approximately 65 km (40 miles).

SizeSurface Wave Magnitude: $M_s^* = 8.5$ Moment Magnitude: $M_w^* = 9.2$ Seismic Moment: $M_o^* = 8.2 \times 10^{29}$ dyne.cm

Level of In Anchorage: peak ground acceleration Shaking estimated to be approximately 0.15 to 0.20 g; Modified Mercalli intensity of VIII to IX.

Duration In Anchorage: reported observations of the duration of felt motion were 4 to 7 minutes. The duration of strong shaking was approximately 2 to 3 minutes.

*Note:

- M_S is measured from the amplitudes of 20-second period surface waves and is a suitable measure of the size of shallow earthquakes for magnitudes less than about 8.
- M_O is equal to the product of fault area, average fault slip, and shear modulus and is a physically vigorous measure of earthquake size.
- M_w is calculated from seismic moment M_O . It is equivalent to M_S below magnitude 8 but is a more suitable measure of the size of earthquake for magnitude greater than about 8.

3.0 THE 1964 "L" STREET SLIDE

Damage to buildings, in the relatively sparsely populated regions of Alaska affected by the 1964 Alaskan earthquake, was surprisingly small. On the other hand, the number and extent of landslides in several cities, including Anchorage, was enormous. Figure 1 shows the locations of the slides, including the "L" Street slide, triggered by this earthquake in the Anchorage area.

Figure 1 - Locations of Major Landslides Caused by the 1964 Alaskan Earthquake

An aerial photograph of the 1964 "L" Street slide is shown in Figure 2; additional photographs depicting damages caused by the slide are shown in figures 3(a) and 3(b). The 1964 "L"

-4-

ί,

Figure 2 - Aerial Photo of "L" Street Slide Area

Figure 3(a) - L Street Slide Damage

Figure 3(b) - L Street Slide Damage

Street slide was a translatory slide (Hansen, 1965) involving a relatively horizontal, outward movement of a soil block toward the bluff with a graben forming behind the soil block. The areal extent of the "L" Street slide and three idealized cross-sections along the slide are shown in Figures 4 and 5, respectively. Figure 5 indicates the general nature of this translatory slide.

The 1964 "L" Street slide extended about 4,000 feet along the bluff, the width (from the bluff to the graben) of the soil block varied from about 150 feet to 400 feet, the width of the graben varied from less than 50 feet to about 250 feet, and the distance between the toe (as represented by the pressure ridges) of the slide to the back of the graben measured as much as about 1,200 feet. The available data on magnitude and direction of vertical and horizontal movements summarized in Figure 4 indicate a maximum horizontal displacement of the soil block of about 14 feet toward the northwest. Relatively few cracks were noted outside the graben (Shannon and Wilson, 1964).

Apparently, there was very little change in elevation within the slide block. Structures on the slide block, thus, suffered little, if any, damage from the slide movements (Shannon and Wilson, 1964). However, the graben areas vertically dropped by as much as about 10 feet. Many buildings and utilities in and along the edge of the graben, thus, were heavily damaged.

According to eyewitness accounts the slide occurred during the later part of the earthquake (Shannon and Wilson, 1964). While it is reasonable to assume that small local adjustments of the ground near the graben and pressure ridges occurred following the end of the earthquake, no

Figure 4 - L Street Slide Area

è e

(Hansen, 1965)

discernable ground movement following the earthquake was detected in repeated measurements of control points after the earthquake (Shannon and Wilson, 1964).

Based on investigations (Shannon and Wilson, 1964) conducted shortly after the earthquake, the slide apparently was caused by "a drastic loss of strength and consequent failure of the dynamically sensitive saturated sands, silts and clayey silts of the Bootlegger Cove formation, and in most instances occurred near the top of the soft sensitive zone". According to the same investigations, this top of the soft sensitive zone ranged from about elevation 50 to somewhat below elevation 15. However, detailed discussions or documentation regarding the possible causes of the 1964 "L" Street slide does not appear to be readily available.

4.0 AREA GEOLOGY

The "L" Street slide area sits on a ridge of sediments between Ship Creek to the north and Chester Creek to the south. The stratigraphy and recent geologic history of the Anchorage area are primarily the product of Quaternary glaciations and the intervening interglacial periods. The sediments directly underlying the 1964 "L" Street slide area are associated with the Naptowne glaciation and consist of outwash overlying the Bootlegger Cove the Naptowne The Bootlegger Cove Formation overlies a glacial Formation. till considered to be of Knik age (Reger and Updike, 1983).

The upper section of the Bootlegger Cove Formation was deposited in a proglacial lake in the Anchorage area. In the 1964 "L" Street slide area, the Bootlegger Cove Formation below elevation about 40 feet consists of normally

-10-

consolidated to slightly overconsolidated silty clay and clayey silt with lenses of silt and sand. This section of the Bootlegger Cove Formation includes the "soft sensitive clay" referred to by Shannon and Wilson (1964).

sand and silt strata within the Local interbedding of Bootlegger Cove Formation probably resulted from variations of the source sediments, streamflow velocities, distance from the sources and/or depositional environment within the lake. In the 1964 "L" Street slide area, this interbedding increases between elevations about 40 and 70 feet. The clays within this interbedded zone are stiff and have a higher degree of overconsolidation than the clay below this zone. Fluctuations of lake level during the Naptowne glaciation and subsequent draining of the lake in late Naptowne time probably exposed the lacustrine sediments to subaerial conditions. The subaerial exposure of the Bootlegger Cove Formation possibly caused desiccation, weathering, and oxidation of the sediments, resulting in the greater stiffness of the clay strata within the zone of interbedded soils relative to that of the sediments immediately beneath that zone.

Subsequent to the deposition of the Bootlegger Cove Formation, streams emanating from the retreating glaciers transported reworked silt, sand, gravel, and cobbles and deposited them on a broad plain. This deposit, known as the Naptowne outwash, overlies the Bootlegger Cove Formation and is the stratum exposed at the surface in the 1964 "L" Street slide area.

An idealized stratigraphy of the 1964 "L" Street slide area corresponding to the CPT 4 location is shown in Figure 6. From the bottom it consists of the glacial till, normally

-11-

consolidated to lightly over-consolidated Bootlegger Cove Formation, overconsolidated Bootlegger Cove Formation, and the Naptowne outwash. Note in Figure 6 the characteristic CPT shapes associated with each soil layer.

5.0 SUBSURFACE CONDITIONS

The subsurface conditions in the 1964 "L" Street slide area were investigated by advancing one boring with standard penetration tests (SPT), sampling, and in-situ vane tests; conducting 6 cone penetration test (CPT) soundings; and reviewing selected available subsurface information of the area. The locations of the boring and the CPT soundings are summarized in Figure 4 and the results of the field

-12-

investigation are summarized in Appendix A. As can be seen in Figure 4, the field investigation effort was concentrated along one section selected for the evaluation of the 1964 "L" Street slide. This section (A-A in Figure 4) will be referred to as the evaluation section or cross-section.

The evaluation cross-section indicated in Figure 4 is presented in Figure 7, together with the CPT results along the cross-section. The four main strata schematically shown in Figure 6 can be identified in Figure 7 at various CPT locations. It is interesting to note in Figure 7 the following apparent observations:

- The top elevation of the glacial till appears to become deeper toward the west or toward the bluff and Knik Arms (see the evidence of glacial till near the bottom of CPT-1A, CPT-4, and PS-7);
- 2) The Naptowne outwash appears to disappear in the area just below the bluff (see CPT-6) where the pressure ridges were observed after the 1964 Alaskan earthquake, but sandy, gravelly top layer "reappears" farther away from the bluff (see CPT-1A); and
- 3) The elevations where the pressure ridges were observed after the 1964 Alaskan earthquake appear to correspond to those of the uppermost portion of the normally consolidated to lightly overconsolidated Bootlegger Cove Formation.

The SPT blowcounts obtained within the three major sand layers between elevations 55 feet and 40 feet (about 40 feet and 55 feet below the ground surface) at the boring location

-13-

Figure 7 - Evaluation Cross-Section

which corresponds to CPT-2 location (Figures 4 and 7) are shown in Figure 8, together with the CPT-2 results. Note in Figure 8, both the original SPT blowcounts and those corrected for confining pressure effects (Seed and Idriss, 1982) are shown. It should be also noted in Figure 8 that the relatively low SPT blowcount at 43 feet below the ground

Figure 8 - SPT Blowcounts in Major Sand Layers

surface is considered primarily a result of thin clay seams observed in that sand layer. The SPT results together with the CPT results (tip resistance of up to 200 tsf or more as shown in Figure 8) indicate that at the CPT-2 location the three major sand layers appear to be dense.

A number of field and laboratory undrained shear strength determinations were made as part of the boring program at the CPT-2 location for clayey materials within the In the field the undrained shear Bootlegger Cove Formation. strength was estimated using torvane tests and field vane tests. In the laboratories the undrained shear strength was estimated usina torvane tests, mini-vane tests, unconsolidated-undrained (UU) triaxial tests, one direct simple shear (DSS) test, and one direct shear test. The results of these tests (except the direct shear test) are summarized versus depth in Figure 9, along with the corresponding CPT-2 The two values, high and low, connected with a results. line for a mini-vane and field vane results in Figure 9 (the represent initial undrained shear strength higher value) and the remolded undrained shear strength (the lower value), where the remolding was accomplished by a mutliple turning of the vane blades. Thus, the ratio of the higher value to the lower value can be viewed as a measure of the sensitivity of the materials. The dash line labeled TXCU in Figure 9 was estimated using the consolidated-undrained (CU) triaxial tests conducted on samples obtained from the 1964 Fourth Avenue slide area (Woodward-Clyde Consultants, 1982). It is noted that one direct shear test to estimate the strength loss due to large strain did not provide satisfactory results.

The following observations can be made in Figure 9:

 The undrained shear strength appears to increase above about 55 to 60 feet from the ground surface (this corresponds to the overconsolidated Bootlegger Cove Formation; see Figure 6);

- 2) Below 55 to 60 feet from the ground surface, there is no apparent trend of either the undrained shear strength or the sensitivity with depth when only the results of torvane tests, mini-vane tests, field vane tests, and the UU tests are included;
- 3) The inferred undrained shear strength (see Appendix C) based on the DSS test and the TXCU tests shows a gradual increase with depth below 65 feet from the ground surface; and
- 4) The results of the torvane tests provide consistently low values and the results of the mini-vane tests provide consistently high but variable values.

6.0 REEVALUATION OF THE "L" STREET SLIDE

The reevaluation of the 1964 "L" Street slide in this study followed an approach developed for a reevaluation of the 1964 Fourth Avenue slide by Woodward-Clyde Consultants (1982). It essentially consists of the following steps:

- Backcalculate the range of undrained shear strength necessary to compute observed values of seismically induced displacement using the observed failure geometry, the available information on the 1964 Alaskan earthquake, and estimated subsurface conditions in the Anchorage area at that time; and
- 2) Compare the range of backcalculated undrained shear strength with the range of undrained shear strength estimated for the 1964 subsurface conditions.

The process of backcalculating undrained shear strength range corresponding to the displacement values observed for the 1964 "L" Street slide involved the following steps:

1) Using the observed failure geometry (see Figures 4 and 10), compute the active soil force (F_{da}) using equation D-1 (Appendix D), the weight of the soil block (W), and the length of the soil block (L);

Figure 10 -Backcalculation Cross Section

- 2) Using Figure D-3 (Appendix D) and the value of measured soil block displacement, determine a range of K_y/K_{max} value required where K_y is the yield seismic coefficient and K_{max} is the maximum seismic coefficient as discussed in Appendix D (let K_y/K_{max} = C);
- 3) For a selected value of K_{max} , backcalculate a corresponding value of s_u (undrained shear strength) using the following equation:

$$s_{u} = \frac{K_{max} W + F_{da}}{C L}$$
(6-1)

(Because various values of C, K_{max} , W, and L are used in equation 6-1, a range of s_u value is computed.)

The main variables affecting the backcalculated shear strength range are the following: 1) the amount of earthquake induced displacement and how it varies with time during the shaking, 2) maximum seismic coefficient K_{max} , 3) weight of the soil block W as affected by the height of the soil block (or the depth of stipulated failure plane), and 4) the relationship between displacement and K_{y}/K_{max} shown in Figure D-3 (Appendix D).

The amount of earthquake induced displacement of the soil block in the evaluation cross-section shown in Figure 10 was about 10 feet. Based on the eyewitness account of the 1964 "L" Street slide (Shannon and Wilson, 1964), the amount of the displacement was assumed to be about 0.5 foot during the first half of the shaking and about 9.5 feet during the

-20-

second half of the shaking. The ground behind the graben did not move more than about 0.5 foot. The peak ground acceleration in the "L" Street slide area during the 1964 Alaskan earthquake was assumed to be between about 0.15g to 0.20g. Based on the subsurface conditions in the "L" Street slide area and the locations of the pressure ridges identified after the earthquake (Shannon and Wilson, 1964), the failure plane of the 1964 "L" Street slide was assumed for this cross-section to be horizontal and to lie within the elevation range from 25 feet to 40 feet. The details of the displacement computation are presented in Appendix D.

The undrained shear strength ranges backcalculated as outlined above do not depend on the sources of the undrained shear strength; they are just ranges required to compute the observed displacement values using the procedures described in Appendix D. However, in order to estimate the ranges of "L" undrained shear strength in the Street area corresponding to the conditions immediately before the 1964 Alaska earthquake, some additional specification of the types of soil that failed in the 1964 slide must be made. In the "L" Street slide area, the subsurface conditions are quite variable. Nevertheless, it is reasonable to evaluate whether the failure occurred primarily through the major sandy soil layers shown in Figure 6 or primarily through the normally consolidated to slightly overconsolidated clayey soils (the Bootlegger Cove clay) immediately below the sand layers.

The corrected SPT blowcount values for the three main sand layers shown in Figure 8 are shown in Figure 11 for liquefaction potential evaluation based on Seed and Idriss (1982). Note in Figure 11 that the lowest blowcount value considered to be affected by thin clay layers present in

-21-

that sand layer is not shown because the data likely was not representative of that sand layer. Based on the data shown in Figure 11, it is concluded that the liquefaction of the major sand layers was probably not the major cause of the 1964 "L" Street slide. (It is noted that the data presented in Figure 11 are very limited. However, data from other studies in the area tend to support this observation.)

Figure 11 - Liquefaction Potential of Major Sand Layers for Different Magnitude Earthquakes

The undrained shear strength of the Bootlegger Cove clay below the sand layers immediately before the 1964 Alaskan earthquake was estimated using the SHANSEP (<u>Stress History</u> and <u>Normalized Soil Enginering Properties</u>) approach described by Ladd and Foott (1974). The details of this approach are summarized in Appendix C. In essence, the approach involves the following steps:

 Based on results of the direct simple shear (DSS) tests (Appendix B of this report; Woodward-Clyde Consultants, 1982) on the appropriate Bootlegger Cove clay, obtain the following equation for undrained shear strength:

$$Su = \sigma v' (0.19) (OCR)^{0.78}$$
 (6-2)

- where $\sigma v' =$ effective vertical stress at the time of shear strength determination.
 - OCR = overconsolidation ratio (= $\sigma v'max/\sigma v'$) at the time of shear strength determination.

(see Appendix C for details)

- Perform consolidation tests on appropriate samples to estimate the range of OCR at the time of sampling.
- 3) Estimate the 1964 OCR value based on the estimated subsurface conditions in 1964 including the water table location.

-23-

4) Estimate the undrained shear strength of the Bootlegger Cove clay immediately before the 1964 Alaska earthquake using Equation 6-2, estimated 1964 OCR, and estimated 1964 effective vertical stress.

The ranges of the backcalculated undrained shear strength and the estimated undrained shear strength based on the procedures just described are compared in Figure 12 for the soil block that moved about 10 feet and for the rest of the

Figure 12 - Comparison of Estimated and Backcalculated Undrained Shear Strength

soil mass (that did not significantly move) behind the graben. As can be seen in Figure 12, the two sets of undrained shear strength ranges compare favorably.

Based on the areal distribution of the displacement in the "L" Street slide area, a surface displacement of 0.5 foot was assumed to occur without a significant reduction in undrained shear strength. Beyond this 0.5 foot displacement, the undrained shear strength was assumed to be reduced significantly to a large-strain residual value. In the analysis this strength reduction due to large straining was assumed to occur in the second half of the shaking. Thus, the backcalculated procedure, the part of initial as undrained shear strength and the residual undrained shear strength of the Bootlegger Cove clay are obtained.

The backcalculated undrained shear strength variation with time (or, equivantly, the number of cycles) during the shaking is shown in Figure 13. Note that the undrained shear strength is normalized with respect to the initial shear strength in Figure 13. The linear, 30 percent reduction of the undrained shear strength during the first half of the shaking corresponds to the assumed cyclically induced degradation in undrained shear strength (Appendix C in this report; Woodward-Clyde Consultants, 1982). The residual undrained shear strength ranging from 32 40 to percent of the initial undrained shear strength shown in Figure 13 is slightly higher than the 30 percent value backcalculated for the 1964 Fourth Avenue slide area (Woodward-Clyde Consultants, 1982).

-25-

Figure 13 - Backcalculated Normalized Undrained Shear Strength Variation with Number of Cycles

Data from previous studies in the downtown Anchorage area (for example, Shannon and Wilson, 1964; Mitchell and others, 1973) indicated zones of highly sensitive clays in the Bootlegger Cove Formation. However, the residual undrained shear strength ranging from 30 to 40 percent of the initial undrained shear strength backcalculated in this study and a previous study (Woodward-Clyde Consultants, 1982) does not indicate highly sensitive clays. The following items may be part of the reasons for this apparent discrepancy:

- The backcalculated residual undrained shear strength is an average value corresponding to the entire failure plane (longer than about 600 feet in this study) under the soil block in the evaluation cross-section;
- At the location of CPT-2 in this study the field and laboratory tests indicated no highly sensitive clay at depths of testing;
- 3) None of the previous studies identified extended zones of highly sensitive clays (thus an average value of sensitivity over extended area may be much lower than those corresponding to localized areas of high sensitivity);
- 4) Sensitivity is an index property and not necessarily a direct indicator of the residual undrained shear strength; and
- The backcalculated values of residual undrained 5) shear strength are dependent on a number of factors assumption including the on when the large displacement started to occur. (In this study the large displacement was assumed to start in the second half of the shaking. However, for example, if the large displacement was assumed to start in the last guarter of the shaking, then the backcalculated residual undrained shear strength would have been about 20 percent of the initial value).

7.0 DISCUSSIONS AND CONCLUSIONS

The following conclusions can be stated from the reevaluation of the 1964 "L" Street slide based on a limited program of field investigation, laboratory tests, and analyses presented herein:

- Because of the denseness and locations of the major sand layers (between 40 to 55 feet from the ground surface at CPT-2 location), it is not likely that the 1964 "L" Street slide was caused primarily by the liquefaction of these sand layers.
- 2) As can be seen in Figure 12, the undrained shear strength ranges backcalculated using the observed 1964 "L" Street displacement patterns and the displacement computation procedure summarized in compare very favorably with Appendix D the undrained shear strength ranges estimated for the conditions using SHANSEP 1964 the approach (Appendix C).
- 3) As can be seen in Figure 13, the backcalculated reduction in the undrained shear strength using the 1964 "L" slide conditions Street and the displacement computation procedure (Appendix D) indicates that about 60 to 70 percent strength reduction is required to compute the displacement patterns observed in the 1964 "L" Street slide. This assumes that the major part (computationally 9.5 feet during the second half of the shaking versus 0.5 foot during the first half) of the displacement occurred during the second half of the -- an assumption consistent with shaking the eyewitness accounts.

4) Based on the three preceding conclusions, it can be stated that the 1964 "L" Street slide likely was caused primarily by the failure through the upper of the normally consolidated to part lightly overconsolidated Bootlegger Cove Formation. It is also likely that the failure involved the loss of undrained shear strength due to earthquake (cyclic) loading and significant loss of undrained shear strength due to large straining of the clays, silts, and some sands in the Bootlegger Cove Formation.

It is emphasized that the displacement computation procedure described in Appendix D uses a gross average undrained shear strength below the sliding soil block. The range of the backcalculated initial undrained shear strength shown in Figure 12 and the range of the backcalculated residual undrained shear strength ratio shown in Figure 13 are, therefore, gross average values along the bottom of the sliding soil block shown in Figure 12. They say nothing about the details of the actual slide sequences involved in the 1964 "L" Street slide.

In particular, data from previous studies in the downtown Anchorage area (for example, Shannon and Wilson, 1964; and others, 1973) indicated zones of Mitchell highly sensitive clays in the Bootlegger Cove Formation. It has been also speculated that these zones of highly sensitive clays could have significantly contributed to the 1964 slides in the Anchorage area. The reevaluation of the 1964 "L" Street slide presented herein is not inconsistent with It is quite possible that the 1964 "L" Street this view. slide started in a local area (or areas) of highly sensitive clays and propagated to areas of less sensitive clays. This

-29-

possibility cannot be evaluated by the procedure described in Appendix D and probably cannot be meaningfully evaluated by any existing procedures, at least as applied to the 1964 "L" Street slide. However, the overall average initial and residual undrained shear strength over the entire "L" Street slide area may not have been significantly different from those shown in Figures 12 and 13.

It should be also emphasized that there are no data at present to suggest a direct relationship between the large strain reduction in undrained shear strength of clayey and silty soils and their sensitivity values. For example, a clay with sensitivity of 10 does not necessarily mean that the clay's undrained shear strength at large strains will be 10 percent of its initial strength.

At the boring location in this study the sensitivity value range from 1.5 to 4.9 based on the field vane tests and from 1.1 to 1.3 based on the mini-vane tests. Even if the direct relationship between the large strain reduction in undrained shear strength and the sensitivity is assumed, these values of sensitivity suggest 10 to 80 percent "individual point" reduction and 60 percent average reduction in undrained shear strength of these soils. This average value of 60 percent reduction is not incompatible with 60 to 70 percent average reduction in undrained shear strength backcalculated in this study.

Another factor that could have contributed to the 1964 "L" Street slide is "liquefaction" (or significant strength loss) of silt and sand lenses prevalent in general depth range corresponding to the location of likely failure plane (this also corresponds to the upper part of the normally consolidated to lightly overconsolidated Bootlegger Cove

-30-

DEPTH	TIP	SLEEVE	FRICTION RATIO	SOIL CLASSIFICATION	RUFACIES	SJ=Sleeve+ 1.1	SU=(C-T)/14.0
(FEET)	(TSF)	(TSF)	(%)			(PSF)	(PSF)
91.	11.75	. 38 *	3.20	CLAYEY SILTS AND SILTY CLAYS	F.II	827.	866.
92.	12.05	.29*	2.42	SANDY SILTS AND SILTS	F.III	642.	900.
93.	12.22	.34+	2.76	CLAYEY SILTS AND SILTY CLAYS	F.II	742.	915.
94.	17.59	.33*	1.90	SANDY SILTS AND SILTS	F.III	735.	1674.
95	12.63	.25+	1.94	SANDY SILTS AND SILTS	F.III	539.	956.
96.	12.71	.35+	2.76	CLAYEY SILTS AND SILTY CLAYS	F. II	772.	959.
97.	12.14	26+	2.13	SANDY SILTS AND SILTS	F.III	569.	868.
QA.	11.50	.26+	2.30	SANDY SILTS AND SILTS	F.III	582.	768.
99.	11.50	.23+	1.97	SANDY SILTS AND SILTS	F.III	498.	759.
100.	12.39	. 22#	1.74	SANDY SILTS AND SILTS	F.III	474.	877.
101	13.61	25+	1.85	SANDY SILTS AND SILTS	F. 111	554.	1042.
102	13.61	.27*	2.01	SANDY SILTS AND SILTS	F. III	602.	1034.
103.	16.15	.35*	2.17	SANDY SILTS AND SILTS	F.III	771.	1387.
104.	15.40	.28#	1.81	SANDY SILTS AND SILTS	F.III	613.	1271.
105.	14.57	.25+	1.71	SANDY SILTS AND SILTS	F.III	552.	1158.
105	15.26	.26#	1.71	SANDY SILTS AND SILTS	F.III	574.	1234.
100.	15.26	.27#	1.79	SANDY SILTS AND SILTS	F.III	601.	1225.
108	14 55	26+	t. 80	SANDY SILTS AND SILTS	F.III	580.	1129.
109	14.74	.25+	1.68	SANDY SILTS AND SILTS	F.III	545.	1132.
110	15 84	27#	1.71	SANDY SILTS AND SILTS	F.III	596.	1281.
110.	15.65	264	1.54	SANDY SILTS AND SILTS	F.III	565.	1245.
112	15.92	. 26#	1.66	SANDY SILTS AND SILTS	F.III	581.	1274.
113	16.65	.27+	1.62	SANDY SILTS AND SILTS	F.IV	594.	1371.
114	15.82	.25*	1,67	SANDY SILTS AND SILTS	F.III	581.	1242.
115	15.60	.25*	1.60	SANDY SILTS AND SILTS	F.III	549.	1202.
116	15.89	. 27#	1.70	SANDY SILTS AND SILTS	F.III	594.	1234.
117	16.31	. 49#	3.00	CLAYEY SILTS AND SILTY CLAYS	F.II	1076.	1285.
118.	15.45	.53+	3.25	CLAYEY SILTS AND SILTY CLAYS	F.II	1177.	1298.
119	17,77	.41#	2.31	SANDY SILTS AND SILTS	F.IV	903.	1476.
120.	28, 14	41#	1.44	SILTY SANDS	F.IV		
121	18.77	.35#	1.88	SANDY SILTS AND SILTS	F.III	776.	1601.
122	18.55	.34#	1.84	SANDY SILTS AND SILTS	F.IV	751.	1562.
123	18, 16	.724	1.74	SANDY SILTS AND SILTS	F.IV	695.	1496.
124.	18.82	.37+	1.95	SANDY SILTS AND SILTS	F.III	807.	1581.
125	19.05	.33#	1.74	SANDY SILTS AND SILTS	F.IV	729.	1605.
125	19 36	. 36#	1.87	SANDY SILTS AND SILTS	F.IV	796.	1638.
127	20.00	.41#	2.03	SANDY SILTS AND SILTS	F.III	893.	1723.
128	19.93	424	2.09	SANDY SILTS AND SILTS	F.IV	916.	1704.
129.	20.74	. 44#	2.10	SANDY SILTS AND SILTS	F.IV	958.	1811.
130.	20.59	.41#	1.98	SANDY SILTS AND SILTS	F.IV	897.	1781.
171	22, 89	.51+	2.22	SANDY SILTS AND SILTS	F.IV	1118.	2100.
132	21.41	43*	2.02	SANDY SILTS AND SILTS	F.IV	951.	1880.
133.	28.54	.61#	2.12	SANDY SILTS AND SILTS	F.IV	1331.	2890.
174	21.51	. 46#	2.14	SANDY SILTS AND SILTS	F.IV	1017.	1891.
175	23 10	49+	2, 10	SANDY SILTS AND SILTS	F.IV	1067.	2095.
1.36	21.89	.46#	2.11	SANDY SILTS AND SILTS	F.IV	1016.	1913.
1.37	21.17	.41*	1.93	SANDY SILTS AND SILTS	F.IV	899.	1801.
1.74	21.67	47#	2.18	SANDY SILTS AND SILTS	F.IV	1039.	1864.
1.39	21.37	. 46#	2.14	SANDY SILTS AND SILTS	F.IV	1006.	1812.
140.	21.27	. 44#	2.07	SANDY SILTS AND SILTS	F.IV	969.	1789.

DEPTH	TIP	SLEEVE	FRICTION	SOIL	RUFACIES	SU=Sleeve* 1.1	SU=(C-T)/14.0
	RESISTANCE	FRICTION	RATIO	CLASSIFICATION			(005)
(FEET)	(TSF)	(TSF)	(\$)			(PSF)	(PSF)
	05 VE		7 70	PLANCY OF TO AND OF TY PLAYS	FV	2175.	3370.
41.	26.10	* 22#	3./0	CLATET SILTS AND SILTS CLAVE	E U	2654	3945.
42.	30.24	1.21*	3.33	CLAYEN CLUTE AND SILIT CLAIS	Га¥ С. U	1790	2025
43.	23.86	.01*	3, 41	CLATET SILIS HAD SILIT CLATS	F+V E-U	1908	3059.
44.	24.15	.8/*	3.33	CLATET SILIS HAD SILIT CERTS	E T	A205	4275
45.	32.46	1.91*	5.89	ULRTS	r.1 E 7	4600.	5605
46.	42.11	2.57*	6.11	CLHT5	F+1 E TT	7001	7786
47.	57.44	3.18*	5.54	LLRTS	P.11 P.77	7001.	(/00. 070A
48.	71.53	3,85*	5.38	CLAYEY SILIS AND SILIY CLAYS	F.11	0400.	3730. •1157
49.	81.16	3.98*	4, 91	CLAYEY SILIS AND SILIY LLHYS	P+11 P-11	8/6/.	11136.
50.	149.84	3.70*	2.47	SILLY SANDS		7775	4825
51.	35.15	1.67#	4.74	CLAYEY SILTS AND SILTY CLAYS	F.11	3000.	4000+
52.	33.97	1.04+	3.05	SANDY SILTS AND SILTS		22/9.	4307.
53.	171.16	2.57#	1.50	SANDS	F. V11	001	1705
54.	15.88	.37*	2.30	SANDY SILTS AND SILTS	F. 1V	804.	1760.
55.	15.63	• 36#	2.33	SANDY SILTS AND SILTS	F. IV	801.	1/46.
56.	14.54	.49*	3.35	CLAYEY SILTS AND SILTY CLAYS	F.11	1072.	13//.
57.	12.26	.52+	4.21	CLAYEY SILTS AND SILTY CLAYS	F.11	1136.	1643.
58.	12.19	.51*	4.21	CLAYEY SILTS AND SILTY CLAYS	F.11	1129.	1224.
59.	12.90	.46*	3.54	CLAYEY SILTS AND SILTY CLAYS	F.II	1005.	1316.
60.	12.61	•27 +	2.17	SANDY SILTS AND SILTS	F.III	602.	1266.
61.	12.44	.27 *	2.14	SANDY SILTS AND SILTS	F.III	586.	1233.
62.	10.81	.23*	2.14	SANDY SILTS AND SILTS	F.III	503.	991.
63.	90.85	2.85*	3.14	SANDY SILTS AND SILTS	F.IV	6276.	12416.
64.	13.06	.35+	2.71	SANDY SILTS AND SILTS	F.II	779.	1294.
65.	12.12	.20*	1.65	SANDY SILTS AND SILTS	F.III	440.	1151.
66.	11.90	.20*	1.64	SANDY SILTS AND SILTS	F.III	429.	1111.
67.	11.18	.19*	1.71	SANDY SILTS AND SILTS	F.III	421.	999.
68.	12.23	.18*	1.49	SANDY SILTS AND SILTS	F.III	401.	1140.
69.	11.08	.1 9*	1.69	SANDY SILTS AND SILTS	F.III	412.	967.
70.	10.98	. 19 *	1.72	SANDY SILTS AND SILTS	F.III	415.	944.
71.	11.36	.20*	1.75	SANDY SILTS AND SILTS	F.III	440.	989.
72.	11.87	.19 *	1.62	SANDY SILTS AND SILTS	F.III	423.	1053.
73.	11.56	.20¥	1.71	SANDY SILTS AND SILTS	F.III	435.	1000.
74.	11.65	.19*	1.59	SANDY SILTS AND SILTS	F.III	408.	1004.
75.	12.54	.24+	1.94	SANDY SILTS AND SILTS	F.III	535.	1122.
76.	29.75	.87*	2,94	SANDY SILTS AND SILTS	F.IV	1924.	3571.
77.	11.63	.19 *	1.63	SANDY SILTS AND SILTS	F.III	417.	974.
78.	11.53	.22*	1.94	SANDY SILTS AND SILTS	F.III	492.	951.
79.	11.74	.25*	2.12	SANDY SILTS AND SILTS	F.III	548.	972.
80.	12.42	.27*	2.19	SANDY SILTS AND SILTS	F.III	598.	1060.
81.	12.11	27+	2.22	SANDY SILTS AND SILTS	F.III	591.	1007.
82.	12.80	.19*	1.52	SANDY SILTS AND SILTS	F.III	428.	1095.
A3.	11.71	15+	1.27	SANDY SILTS AND SILTS	F.III	327.	932.
84.	11.80	.18*	1.52	SANDY SILTS AND SILTS	F.III	395.	936.
85.	13.47	.22*	1.66	SANDY SILTS AND SILTS	F.III	492.	1165.
AA.	24.95	.83*	3.33	SANDY SILTS AND SILTS	F.V	1828.	2796.
A7_	11.99	.29+	2.45	SANDY SILTS AND SILTS	F.III	646.	936.
AA.	11.17	.27*	2.40	SANDY SILTS AND SILTS	F.III	590.	810.
89.	11.77	29*	2.49	SANDY SILTS AND SILTS	F.III	645.	887.
90.	11.07	.29+	2.63	CLAYEY SILTS AND SILTY CLAYS	F.II	541.	778.
.

SOUNDING :ACPT5 IDENTIFICATION :ADOT-L	STREET SLIDE /	INST. NO:	F15CKE075	
LOCATION :	XCORD: .0	YCORD:	.0 ZCORD:	1.0
SOIL CHARACTERISTICS :	GAMAT: 125.0	GAMAS :	.0 WATER:	.0
DATE :10- 5-84				

DEPTH	TIP RESISTANCE	SLEEVE FRICTION	FRICTION RATIO	SOIL CLASSIFICATION	RUFACIES	SJ=Sleevet 1.1	SU=(C-T)/14.0
(FEET)	(TSF)	(TSF)	(%)			(PSF)	(PSF)
1.	274.52	3.16 *	1.15	SANDS	F.VII		
2.	416.75	2.33*	. 56	SANDS	F.VIII		
3.	424.82	2.34*	. 55	SANDS	F.VIII		
4.	531.19	1.81*	. 34	SANDS	F.VIII		
5.	548.20	2.96*	.54	SANDS	F.VIII		
6.	486.14	2.63*	. 54	SANDS	F.VIII		
7.	564.22	2.60*	. 46	SANDS	F.VIII		
8.	447.09	2.77*	.62	SANDS	F.VIII		
9.	490.45	2.21*	. 45	SANDS	F.VIII		
10.	359.04	1.62*	.45	SANDS	F.VIII		
11.	333.83	1.67*	. 50	SANDS	F.VIII		
12.	362.53	2.10*	. 58	SANDS	F.VIII		
13.	275.26	2.04*	.74	SANDS	F.VIII		
14.	311.89	2.15*	. 69	SANDS	F.VIII		
15.	430.27	2.88*	. 67	SANDS	F.VIII		
16.	422.90	3.55*	. 84	SANDS	F.VIII		
17.	421.67	4.01*	. 95	SANDS	F.VII		
18.	338.92	2.61*	.77	SANDS	F.VIII		
19.	384.84	3. 43*	. 89	SANDS	F.VIII		
20.	374.61	2.85*	.76	SANDS	F.VIII		
21.	342.83	2.23¥	.65	SANDS	F.VIII		
22.	95.30	2.91*	3.05	SANDY SILTS AND SILTS	F.IV	6395.	13418.
23.	55.42	2.02*	3.65	SANDY SILTS AND SILTS	F.V	4450.	7712.
24.	207,28	2.88*	1.39	SANDS	F.VII		
25.	245.01	2.11*	. 86	SANDS	F.VII		
26.	218.05	2.35*	1.08	SANDS	F.VII		
27.	290.06	2.87*	. 99	SANDS	F.VII		
28.	187.57	2.25*	1.20	SANDS	F.VII		
29.	188.89	1.72+	. 91	SANDS	F.VII		
30.	200.62	1.91#	. 95	SANDS	F.VII		
31.	206.62	2.60*	1.26	SANDS	F.VII		
32.	258.81	2.23*	. 86	SANDS	F.VII		
33.	288.90	2.11*	.73	SANDS	F.VIII		
34.	77.60	2.91+	3.74	SANDY SILTS AND SILTS	F.V	6401.	10811.
35.	295.56	1.92*	.65	SANDS	F.VIII		
36.	84.52	2.14+	2.53	SILTY SANDS	F.IV		
37.	33.38	1.78*	5.33	CLAYS	F.11	3914.	4438.
38.	109.01	4.19 *	3.84	SANDY SILTS AND SILTS	F. V	9 203.	15234.
39.	40.76	1.70+	4.18	CLAYEY SILTS AND SILTY CLAYS	F.V	3748.	5475.
40.	32.79	1.78*	5.42	CLAYS	F.II	3910.	4327.

215

A-25

. ****

DEPTH	TIP	SLEEVE	FRICTION	SOIL	RUFACIES	SU=Sleeve* 1.1	SU=(C-T)/14.0
	RESISTANCE	FRICTION	RATIO	CLASSIFICATION			
(FEET)	(TSF)	(TSF)	(%)			(PSF)	(PSF)
141.	21.07	.37 *	1.75	SANDY SILTS AND SILTS	F.IV	811.	1751.
142.	21.52	.38*	1.77	SANDY SILTS AND SILTS	F.IV	838.	1805.
143.	21.37	. 39*	1.81	SANDY SILTS AND SILTS	F.IV	851.	1776.
144.	21.30	.37+	1.76	SANDY SILTS AND SILTS	F.IV	825.	1757.
145.	22.72	. 38*	1.66	SANDY SILTS AND SILTS	F.IV	830.	1951.
146.	22.55	. 39*	1.72	SANDY SILTS AND SILTS	F.IV	853.	1918.
147.	29.70	.75*	2.51	SANDY SILTS AND SILTS	F.IV	1640.	2930.
148.	32.39	.85+	2.61	SANDY SILTS AND SILTS	F.IV	1860.	3306.
149.	23. 92	.41#	1.71	SANDY SILTS AND SILTS	F.IV	900.	2087.
150.	24.04	. 40 *	1.66	SILTY SANDS	F.IV		
151.	37.36	.78 *	2.08	SILTY SANDS	F.IV		
152.	101.73	2.64+	2.60	SILTY SANDS	F.1V		
153.	129.35	2.90*	2.24	SILTY SANDS	F.IV		
154.	53.36	.73 *	1.36	SILTY SANDS	F.VI		
155.	50.15	1.31*	2.61	SANDY SILTS AND SILTS	F.IV	2880.	57 8 0.
156.	47.08	.65*	1.38	SILTY SANDS	F.VI		
157.	194.22	3.13*	1.61	SANDS	F.VII		
158.	34.13	.52+	1.52	SILTY SANDS	F.VI		
159.	104.23	1.23*	1.18	SANDS	F.VII		
160.	207.45	10 . 77*	5.19	CLAYEY SILTS AND SILTY CLAYS	F.II	23687.	28207.

•

DEPTH	TIP RESISTANCE	SLEEVE FRICTION	FRICTION RATIO	SOIL CLASSIFICATION	RUFACIES	SU=Sleeve+ 1.1	SU=(C-T)/14.0
(FEET)	(TSF)	(TSF)	(%)			(PSF)	(PSF)
91.	25.64	.50*	1.96	SANDY SILTS AND SILTS	F.IV	1106.	2850.
92	14.06	. 28+	1.99	SANDY SILTS AND SILTS	F.III	616.	1187.
93.	14.05	.25+	1.78	SANDY SILTS AND SILTS	F.III	550.	1177.
94.	15.43	.26+	1.70	SANDY SILTS AND SILTS	F.III	577.	1365.
95.	14.76	.27*	1.81	SANDY SILTS AND SILTS	F.III	588.	1260.
96.	15.54	.27+	1.74	SANDY SILTS AND SILTS	F.III	595.	1363.
97.	15.10	.25*	1.63	SANDY SILTS AND SILTS	F.III	541.	1291.
98.	14.51	.22*	1.50	SANDY SILTS AND SILTS	F.III	479.	1198.
99.	14.15	.20 *	1.43	SANDY SILTS AND SILTS	F.III	445.	1137.
100.	15.83	.27+	1.69	SANDY SILTS AND SILTS	F.III	589.	1369.
101.	15.10	.23*	i. 55	SANDY SILTS AND SILTS	F.III	515.	1255.
102.	14.92	,21 *	1.43	SANDY SILTS AND SILTS	F.IV	469.	1221.
103.	13.41	.19*	1.38	SANDY SILTS AND SILTS	F.III	407.	996.
104.	13.83	.20*	1.43	SANDY SILTS AND SILTS	F. III	435.	1047.
105.	15.34	.25+	1.62	SANDY SILTS AND SILTS	F.III	547.	1254.
106.	15.80	.26*	1.62	SANDY SILTS AND SILTS	F.III	563.	1311.
107.	15.80	.26*	1.62	SANDY SILTS AND SILTS	F.III	563.	1302.
108.	16.53	.30*	1.82	SANDY SILTS AND SILTS	F.III	662.	1397.
109.	16.63	.29+	1.73	SANDY SILTS AND SILTS	F.III	633.	1402.
110.	19.21	.29*	1.49	SANDY SILTS AND SILTS	F. 1V	630.	1762.
111.	17.28	.29*	1.66	SANDY SILTS AND SILTS	F.IV	631.	1478.
112.	17.58	.27*	1.56	SANDY SILTS AND SILTS	F.IV	603.	1511.
113.	17.58	. 28*	1.60	SANDY SILTS AND SILTS	F.IV	619.	1502.
114.	17.85	.31*	1.71	SANDY SILTS AND SILTS	F.IV	672.	1532.
115.	17.09	.28*	1.66	SANDY SILTS AND SILTS	F.IV	624.	1415.
116.	17.15	.29*	1.68	SANDY SILTS AND SILTS	F.IV	634.	1414.
117.	18.30	.31*	1.69	SANDY SILTS AND SILTS	F.IV	680.	1570.
118.	17.92	.32*	1.79	SANDY SILTS AND SILTS	F.IV	706.	1506.
119.	18.03	.27*	1.47	SANDY SILTS AND SILTS	F.IV	583.	1513.
120.	17.37	•26 *	1.52	SANDY SILTS AND SILTS	F.IV	581.	1410.
121.	17.73	.28+	1.58	SANDY SILTS AND SILTS	F.IV	616.	1403.
122.	17.24	. 27 +	1.56	SANDY SILTS AND SILTS	F. 1V	592.	1374.
123.	17.42	. 28 +	1.59	SANDY SILTS AND SILTS	F.IV	609.	1390.
124.	18.86	. 30+	1.57	SANDY SILTS AND SILTS	F. IV	651.	1587.
125.	18.57	.28+	1.49	SANDY SILTS AND SILTS	F. IV	509.	103/-
126.	18.43	• 27 *	1,49	SANDY SILTS AND SILTS	F.IV	604.	1508.
127.	18.72	• 50 *	1.54	SANDY SILTS AND SILTS	F, IV	634.	1340.
128.	20.06	.32*	1.59	SANDY SILTS AND SILTS	F.IV	702.	1723.
129.	18.72	.26*	1.39	SANDY SILTS AND SILTS	F.IV	5/2.	1966.
130.	20.62	.27*	1.30	SILTY SANDS	F. IV	0.84	~~~~
131.	22.76	. 40 *	1.76	SANDY SILTS AND SILTS	F. IV	881.	2082.
132.	20.81	•32*	1.52	SANDY SILTS AND SILTS	F. IV	636.	1/94.
133.	20.68	.32+	1.56	SANDY SILTS AND SILTS	F. 1V	/10.	1/6/+
134.	18.85	.31*	1.62	SANDY SILTS AND SILTS	F. IV	5/2.	1430.
135.	19.60	. 30*	1.55	SANDY SILTS AND SILTS	F. 1V	008. 764	1090.
136.	20.31	.35*	1.71	SANDY SILIS AND SILIS	7+1V = 11	104. 750	100/.
137.	20.62	. 35×	1.68	SANDY SILTS AND SILTS	F.1V	/bC. 775	1/63.
138.	20.48	. 35*	1.72	SANDY SILIS AND SILIS	F.1V E 70	7750	1074.
139.	20.18	• 35 *	1.71	SANDY SILIS AND SILIS	F-1V	(37. AAE	1046+
140.	20.78	.37 *	1.76	SANDY SILTS AND SILTS	F.1V	902.	1/19.

A-22

DEPTH	TIP	SLEEVE	FRICTION	SOIL	RUFACIES	SU=Sleeve# 1.1	SU=(C-T)/14.0
	RESISTANCE	FRICTION	RATIO	CLASSIFICATION			
(FEET)	(TSF)	(TSF)	(%)			(PSF)	(PSF)
41.	238.59	2.51*	1.05	SANDS	F.VII		
42.	141.68	2.49 *	1.76	SANDS	F.IV		
43.	224.97	2.07*	. 92	SANDS	F.VII		
44.	278.00	2.84*	1.02	SANDS	F.VII		
45.	300.83	3.16+	1.05	SANDS	F.VII		
46.	265.19	3.24#	1.22	SANDS	F.VII		
47.	55.43	2.33+	4.21	CLAYEY SILTS AND SILTY CLAYS	F.V	5134.	7499.
48.	65,76	2.70*	4.10	CLAYEY SILTS AND SILTY CLAYS	F.V	5932.	8966.
49.	277.14	3, 44#	1.24	SANDS	F.VII		
50.	175.34	2.52*	1.44	SANDS	F.VII		
51.	21.17	.62 *	2.92	SANDY SILTS AND SILTS	F.II	1360.	2569.
52.	21.29	.52*	2,46	SANDY SILTS AND SILTS	F.IV	1152.	2577.
53.	29.50	1.07*	3.63	CLAYEY SILTS AND SILTY CLAYS	F.V	2356.	3741.
54.	15,28	.41*	2.68	SANDY SILTS AND SILTS	F.II	901.	1701.
55.	13.59	.43#	3.20	CLAYEY SILTS AND SILTY CLAYS	F.II	957.	1450.
56	17.05	.60#	3.51	CLAYEY SILTS AND SILTY CLAYS	F.11	1317.	1937.
57	13.89	. 47#	3.40	CLAYEY SILTS AND SILTY CLAYS	F.II	1039.	1475.
58	12 11	424	3.43	CLAYEY SILTS AND SILTY CLAYS	F.II	914.	1212.
50.	11 72	43#	3, 69	CLAYEY SILTS AND SILTY CLAYS	F.II	951.	1148.
53. 60	54 99	1 744	2.06	SILTY SANDS	F.VI		
21	17 45	264	1.96	SANDY STUTS AND SILTS	F.III	580.	1377.
63 01.	17 57	274	2 44	SANDY STITS AND SILTS	F.II	728.	1385.
0C.	17 72	- 00 - 284	2 13	SONDY SILTS AND SILTS	F.III	624.	1340.
00. 64	13.30	* CU* 26x	1 86	SONDY STUTS AND STUTS	F.III	523.	1253.
04. CE	12 42	- CTF 284	2 28	SONDY SILTS AND SILTS	F. III	623.	1194.
50. 77	12.92	*03*	2 15	SONDY STUTS AND STUTS	F.III	613.	1261.
66.	12.33	• C D *	2 77	CLOVEY STITS OND STITY CLOVE	F. 11	1151.	1620.
b/.	10.00	, JCT 76 ×	3.31	CLOVEN STITS OND STITY CLOVE	F.TT	797.	1269.
66.	13.13	- 30T	C. /0 2.67	PLAYER STETS AND STETT CENTS	5 17	690.	1061.
P3.	11.74	• 31×	2.0/	CONTRACTOR OF TE	FII	912.	1459.
/0.	14.05	. 41 7 075	2.04	CONTY STLTS AND STLTS	EITT	503.	999.
/1.	11.43	.23*	2.00		FII	685.	930.
72.	11.01	*15.	C. 03	CONTRY STETS AND STETT CENTS		523	1045.
/3.	11.88	, <u>∠</u> 9≭ 0=-	2.00	CONDY CTITE OND STITE	5 111	545.	971.
/4.	11.42	• COT	C.1/	CLAYCY CTLTS AND STLTS	5 TT	800	1153.
/5.	12.76	. 3b*	2.83	CLATET SILIS AND SILIT CLAIS	F 11	864	1249.
/6.	13.49	.39*	2.91	CLAYEN SILIS HAD SILIT CLAIS	5 1T	1203.	1557.
77.	15.71	*00*	3.90	CONDY OF TO AND STOLE		409	985.
78.	11.77	.19*	1.08	SHADY SILIS HAD SILIS	F 111	4031	1000.
79.	11.94	.22+	1.83	SHAUY SILIS HAD SILIS	F 111	491	1000
80.	12.00	.22*	1.83	SHADY SILIS HAD SILIS	F 111	463.	949
81.	11.70	• 20 4	1.74	SHNDY SILIS HND SILIS	r.111	797	140. 140
82.	11.21	,18*	1.57	SHNUY SILIS HAU SILIS	F.111 E 117	107. VCQ	972
83.	11.99	. 21 *	1.75	SANDY SILIS AND SILIS	F,111 C TTT	40 2.	1006
84.	12.29	.21*	1.71	SANDY SILTS AND SILTS		40C.	1461
85.	15.40	• 23*	1.49	SANDY SILTS AND SILTS	F.1V	505.	1991.
86.	12.44	.20¥	1.63	SANDY SILTS AND SILTS	F.111	440. AEC	1003.
87.	12.27	. 21 #	1.69	SANDY SILTS AND SILTS	F.111	435.	7/0.
88.	12.45	.20*	1.60	SANDY SILIS AND SILIS	F.111 - 777	400.	773. 1057
89.	13.00	.21*	1.61	SANDY SILTS AND SILTS	F.111	90V.	1003*
90.	13.46	, 23 +	1.70	SANDY SILTS AND SILTS	F.111	203.	1112*

SOUNDING :ACPT4 IDENTIFICATION :ADOT-L STREET SLIDE / INST. NO: F15CKE075 LOCATION : XCORD: .0 YCORD: .0 ZCORD: 1.0 SOIL CHARACTERISTICS : GAMAT: 125.0 GAMAS: .0 WATER: .0 DATE :10- 4-84

DEPTH	TIP	SLEEVE	FRICTION	SOIL	RUFACIES	SU=SIeeve+	1.1	SU=(C-T)/14.0
	RESISTANCE	FRICTION	RATIO	CLASSIFICATION				
(FEET)	(TSF)	(TSF)	(*)			(PSF)		(PSF)
1.	275.10	2.34+	. 85	SANDS	F.VII			
2.	243.14	2.58*	1.06	SANDS	F.VII			
3.	539.69	3.08+	.57	SANDS	F.VIII			
4.	502.04	2.66*	. 53	SANDS	F.VIII			
5.	492.13	2.66*	. 54	SANDS	F.VIII			
6.	415.27	3.28*	.79	SANDS	F.VIII			
7.	390.42	2.65*	.68	SANDS	F.VIII			
8.	310.52	1.49*	. 48	SANDS	F.VIII			
9,	418.83	1.68*	. 40	SANDS	F.VIII			
10.	246.14	1.28*	. 52	SANDS	F.VIII			
11.	303.44	1.15*	. 38	SANDS	F.VIII			
12.	333.14	1.47#	. 44	SANDS	F.VIII			
13.	260.11	1.90*	.73	SANDS	F.VIII			
14.	248.41	1.24*	. 50	SANDS	F.VIII			
15.	220.98	1.75*	.79	SANDS	F.VII			
16.	371.58	1.37*	.37	SANDS	F.VIII			
17.	381.37	1.50*	. 42	SANDS	F.VIII			
18.	307.37	1.44#	. 47	SANDS	F.VIII			
19.	343.89	1.58*	. 46	SANDS	F.VIII			
20.	292.67	2.46#	- 84	SANDS	F.VII			
21.	308.02	1.66*	. 54	SANDS	F.VIII			
22.	368.02	1.55*	. 42	SANDS	F.VIII			
23.	338.85	1 . 86*	. 55	SANDS	F.VIII			
24.	285.35	2.23*	. 78	SANDS	F.VIII			
25.	279.63	1.51#	. 54	SANDS	F.VIII			
26.	248.42	4.00*	1.61	SANDS	F.VII			
27.	166.46	7 .9 6*	4.78	CLAYEY SILTS AND SILTY CLAYS	F.V	17505.		23539.
28.	109.26	3 . 39 *	3.10	SANDY SILTS AND SILTS	F.IV	7452.		15359.
29.	103.57	3.85*	3.72	SANDY SILTS AND SILTS	F.V	8476.		14537.
30.	36. 61	1.59*	4.33	CLAYEY SILTS AND SILTY CLAYS	F.II	3487.		4962.
31.	165.72	7.26*	4.38	SANDY SILTS AND SILTS	F.V	15969.		23398.
32.	23.28	• 97 *	4.16	CLAYEY SILTS AND SILTY CLAYS	F.II	2131.		3040.
33.	60,42	1.74*	2.88	SANDY SILTS AND SILTS	F.IV	3828.		8337.
34.	20.81	.86*	4.12	CLAYEY SILTS AND SILTY CLAYS	F.II	1886.		2669.
35.	107.15	3.87 *	3.61	SANDY SILTS AND SILTS	F.V	8510.		14995.
36.	212.63	4.72*	2.22	SILTY SANDS	F.IV			
37.	261.26	3.42*	1.31	SANDS	F.VII			
38.	278.50	4. 48*	1.61	SANDS	F.VII			
39.	295.65	2.72*	. 92	SANDS	F.VII			
40.	263.91	2.45*	. 93	SANDS	F.VII			

DEPTH	TIP	SLEEVE	FRICTION	SOIL	RUFACIES	SU=Sleeve+ 1.1	SU=(C-T)/14.0
	RESISTANCE	FRICTION	RATIO	CLASSIFICATION			
(FEET)	(TSF)	(TSF)	(7)			(PSF)	(PSF)
Q 1	17 02	72#	1 88	SANDY SILTS AND SILTS	F.111	704.	1619.
00 31.	14.55	304	2.05	SANDY SILTS AND SILTS	F. III	659.	1257.
92.	14.02	.31#	2.24	SANDY SILTS AND SILTS	F.III	691.	1173.
93. Q4	14.53	. 35*	2,40	SANDY SILTS AND SILTS	F.IV	772.	1251.
95.	15.69	_41#	2.59	SANDY SILTS AND SILTS	F.II	894.	1393.
96.	14.93	.33*	2.24	SANDY SILTS AND SILTS	F.III	736.	1276.
97.	15.68	.41#	2.62	SANDY SILTS AND SILTS	F.II	904.	1374.
98.	15, 14	. 33#	2.03	SANDY SILTS AND SILTS	F.III	721.	1431.
99.	15.09	.40#	2.65	SANDY SILTS AND SILTS	F.11	880.	1272.
100.	16.14	.51*	3.15	CLAYEY SILTS AND SILTY CLAYS	F.II	1119.	1413.
101.	15.74	.31*	1.85	SANDY SILTS AND SILTS	F.III	681.	1490.
102.	15.44	.29*	1.76	SANDY SILTS AND SILTS	F.III	637.	1438.
103.	17.23	. 30+	1.75	SANDY SILTS AND SILTS	F.III	663.	1542.
104.	17.21	.31*	1.78	SANDY SILTS AND SILTS	F.III	674.	1530.
105.	17.49	.32+	1.82	SANDY SILTS AND SILTS	F.III	700.	1561.
106.	18.25	.34*	1.86	SANDY SILTS AND SILTS	F.III	747.	1661.
107.	18.25	.31#	1,69	SANDY SILTS AND SILTS	F.IV	679.	1653.
108.	18.41	. 32*	1.72	SANDY SILTS AND SILTS	F.IV	697.	1665.
109.	18.86	. 33*	1.77	SANDY SILTS AND SILTS	F.IV	734.	1721.
110.	18.56	. 33*	1.78	SANDY SILTS AND SILTS	F.IV	727.	1669.
111.	19.17	. 36*	1.86	SANDY SILTS AND SILTS	F.IV	784.	1748.
112.	19.32	.37*	1.92	SANDY SILTS AND SILTS	F.III	816.	1760.
113.	20, 25	. 39*	1.91	SANDY SILTS AND SILTS	F.IV	851.	1884.
114.	21.42	. 44 #	2.04	SANDY SILTS AND SILTS	F.IV	961.	2042.
115.	19.91	.33*	1.67	SANDY SILTS AND SILTS	F.IV	731.	1818.
116.	30.01	.50*	1.68	SILTY SANDS	F.IV		
117.	27.82	.80+	2,87	SANDY SILTS AND SILTS	F.IV	1757.	2930.
118.	22.18	. 37*	1.69	SANDY SILTS AND SILTS	F.IV	825.	2115.
119.	21.89	.37*	1.71	SANDY SILTS AND SILTS	F.IV	824.	2065.
120.	22.01	. 37*	1.70	SANDY SILTS AND SILTS	F.IV	823.	2073.
121.	20. 39	. 32*	1.59	SANDY SILTS AND SILTS	F.IV	713.	1832.
122.	20.56	. 32+	1.54	SANDY SILTS AND SILTS	F.IV	697.	1848.
123.	20.73	.34=	1,64	SANDY SILTS AND SILTS	F.IV	748.	1853.
124.	21.90	. 38*	1.74	SANDY SILTS AND SILTS	F. IV	838.	2021.

DEPTH	TIP RESISTANCE	SLEEVE FRICTION	FRICTION RATIO	SOIL CLASSIFICATION	RUFACIES	SU=Sleeve= 1.1	SU=(C-T)/14.0
(FEET)	(TSF)	(TSF)	(%)			(PSF)	(PSF)
41.	38.05	2.09*	5.48	CLAYS	F.II	4587.	5070.
42.	119.38	2.40*	2.01	SILTY SANDS	F.IV		
43.	226, 49	2.76+	1.22	SANDS	F.VII		
44.	242.44	3.03*	1.25	SANDS	F.VII		
45	169.61	3.05#	1.80	SANDS	F.VII		
46	223.69	3.00#	1.34	SANDS	F.VII		
40. 47	210.69	2.34+	1.11	SANDS	F.VII		
41	238,80	2.94*	1.23	SANDS	F.VII		
40. AG	374 04	3.82#	1.02	SANDS	F.VII		
50	284 07	7 494	1.23	SANDS	F.VII		
51	247 77	4 47×	1 79	SENDS	F.VII		
50	291.13	1 024	2 59	SONDY STITS AND STITS	F. IV	2251.	5201.
JC.	37.00	1.VE* 4 47#	1 86	SANDY SIELD THE SIELD	F.VII		
<u>ال</u> ت.	CTV. TO	7.762	A 06	SONDY STITS AND STITS	F.V	8231.	12682.
34. 55	26.13	0./4* 69.	9 74	CONDY STLTS AND STLTS	F. 1V	1373.	3320.
33.	26.00	• OC *	2,24	CONDY CTITE OND STITS	FIV	1171.	2604.
36.	21.73	.33*	C.4J 7 AD	CAVEV ETLITE AND ETLITY C. AVE	E 71	927	1440.
57.	13.64	.46*	3.09	CLATET SILIS HAD SILIT CLAIS		840	1241.
58.	12.31	. 38*	3.10	CLATEN OUT COND STUTY CONS	F + 1 1	1773	2150.
59.	18.74	.81*	4.30	LINTER SILIS HAD SILIT CLATS	F+11 E TT	1775.	1199
60.	12.14	.494	4.03	CLHYEY SILIS HAD SILIY CLHIS	F•11 E 11	476	1177. 977
61.	10.65	.38#	3.05	CLAYEY SILIS HAD SILIT CLATS	F+11 E 11	0J7.	1054
62.	11.25	• 36*	3.24	CLAYEY SIL 5 HAV SIL T LLATS	E 11	ADE.	1004.
63.	61.95	1.94#	3.13	SANDY SILIS AND SILIS	F.V C 117	4600.	1122
64.	12.32	.22*	1.77	SANDY SILIS HND SILIS	P.111 - 979	40V.	1105-
65.	12.16	.23*	1.92	SANDY SILIS AND SILIS	falil Filil	546	1137+
66.	13.06	• 25 *	1.90	SANDY SILTS AND SILTS	F.111	J40. E70	1102
67.	12.46	.26*	2.08	SANDY SILIS AND SILIS		5/0.	1105.
68.	10.66	• 23*	2.14	SANDY SILIS AND SILIS		JVE.	1050
69.	11.73	.24#	2.07	SANDY SILTS AND SILTS	P.111	1007	1000.
70.	17.27	. 49 *	2.86	SANDY SILTS AND SILIS	F.11	1087.	1046-
71.	13.10	.51 *	3.86	CLAYEY SILTS AND SILTY LLAYS	F.11	1112.	1230.
72.	13.67	. 46*	3.38	CLAYEY SILTS AND SILTY CLAYS	F.11	1017.	1310.
73.	16.23	. 60 *	3.68	CLAYEY SILTS AND SILTY CLAYS	F.V	1314.	1657.
74.	18.48	. 70 *	3.81	CLAYEY SILTS AND SILTY CLAYS	F.II	1549.	19/9.
75.	14.09	.42*	2.96	CLAYEY SILTS AND SILTY CLAYS	F.11	918.	1343.
76.	12.63	. 44 ¥	3.46	CLAYEY SILTS AND SILTY CLAYS	F.II	961.	1126.
77.	14.43	.28*	1.92	SANDY SILTS AND SILTS	F.III	610.	1374.
78.	15.49	. 34*	2.22	SANDY SILTS AND SILTS	F.III	757.	1516.
79.	27.60	1.15#	4.17	CLAYEY SILTS AND SILTY CLAYS	F.II	2532.	3238.
80.	20.14	. 45*	2.24	SANDY SILTS AND SILTS	F.IV	992.	2163.
81.	14.77	.28*	1.88	SANDY SILTS AND SILTS	F.III	611.	1387.
82.	14.45	.22*	1.51	SANDY SILTS AND SILTS	F.III	480.	1332.
83.	14.90	.28+	1.89	SANDY SILTS AND SILTS	F.III	620.	1387.
84.	14.47	.24#	1.65	SANDY SILTS AND SILTS	F.III	525.	1317.
85.	14.00	.23 *	1.62	SANDY SILTS AND SILTS	F. III	499.	1241.
86.	13.56	.24+	1.80	SANDY SILTS AND SILTS	F.III	537.	1169.
87.	14.16	.27 *	1.89	SANDY SILTS AND SILTS	F.III	589.	1246.
88.	15.33	.28*	1.82	SANDY SILTS AND SILTS	F.III	614.	1404-
89.	14.48	.25*	1.70	SANDY SILTS AND SILTS	F.III	542.	1274.
90.	14.78	.30*	2.00	SANDY SILTS AND SILTS	F.III	65 0.	1308.

¥		¥
ŧ	NODDWARD-CLYDE	ŧ
¥		*
ŧ	CONSULTANTS	ŧ
¥		×
*****	*****************	****

SDUNDING :ACPT3 IDENTIFICATION :ADOT_L STREET SLIDE / INST. NO: F15CKE075 XCDRD: .0 YCORD: .0 ZCORD: 1.0 LOCATION : SOIL CHARACTERISTICS : GAMAT: 125.0 GAMAS: .0 WATER: .0 DATE :10- 4-84

¥

DEPTH	TIP	SLEEVE	FRICTION	SOIL	RUFACIES	SU=Sleeve+ 1.1	SU=(C-T)/14.0
	RESISTANCE	FRICTION	RATIO	CLASSIFICATION			
(FEET)	(TSF)	(TSF)	(%)			(PSF)	(PSF)
			ŧ.	CONDC	E UTT		
1.	175.53	1.02*	.08	CONDE	C UTTT		
2.	242.76	1.02*	. 42	CONDC			
3.	264.41	1.52*	. 50	JHRU3	E UTTT		
4.	344.29	2.38*	.69	SHNDS			
5.	330.64	1.95#	. 59	SHNDS	F.VIII 2 U771		
6.	339.67	1.45#	. 42	SHADS	F. VIII F UITI		
7.	254.53	1.32*	. 52	SHADS			
8.	321.32	2.31*	.72	SANUS	F.VIII		
9.	297.12	1.75*	. 59	SANUS	F.VIII e uttt		
10.	192.47	1.02*	.53	SANDS	F.VIII		
11.	222.19	1,18*	.53	SANDS	F.VIII		
12.	187.08	. 77*	.41	SANDS	F.VIII		
13.	151.08	. 50 *	. 33	SANDS	F.V11		
14.	101.79	.47¥	. 4 6	SANDS	F.VII		
15.	133.14	.75*	. 56	SANDS	F.VII		
16.	147.56	. 86*	. 58	SANDS	F.VII		
17.	171.64	1.12#	.65	SANDS	F.VII		
18.	221.29	1.24*	. 56	SANDS	F.VIII		
19.	232.10	1.30*	. 56	SANDS	F.VIII		
20.	225.54	.88*	. 39	SANDS	F.VIII		
21.	264.22	1.03*	. 39	SANDS	F.VIII		
22.	226.25	1.00*	. 44	SANDS	F.VIII		
23.	216.68	. 89*	. 41	SANDS	F.VIII		
24.	213.96	.86*	. 40	SANDS	F.VIII		
25.	190.93	.95#	.50	SANDS	F.VIII		
26.	181.86	1.15 *	.63	SANDS	F.VII		
27.	225.06	1.35#	. 60	SANDS	F.VIII		
28.	77.62	2.30*	2.96	SANDY SILTS AND SILTS	F.IV	5055.	10839.
29.	120.82	3.44*	2.85	SILTY SANDS	F.IV		
30.	110.99	7.03+	6.33	CLAYS	F.I	15456.	15588.
31.	288.37	2.97*	1.03	SANDS	F.VII		
32.	38, 18	2.14#	5.60	CLAYS	F.II	4704.	5169.
33.	35.10	1.70#	4.84	CLAYEY SILTS AND SILTY CLAYS	F.II	3737.	4720.
.74.	36, 05	1.39+	3.86	CLAYEY SILTS AND SILTY CLAYS	F.V	3061.	4846.
35.	18.38	.67+	3.65	CLAYEY SILTS AND SILTY CLAYS	F.V	1476.	2313.
36.	17.94	.76*	4.25	CLAYEY SILTS AND SILTY CLAYS	F.II	1677.	2241.
37.	23.19	1,15*	4.94	CLAYS	F.II	2520.	2983.
74	24.69	1.23*	4.99	CLAYS	F.II	2710.	3188.
39.	16.29	.74#	4.55	CLAYS	F.II	1631.	1979.
40.	23.35	.96 *	4.11	CLAYEY SILTS AND SILTY CLAYS	F.11	2111.	2979.

DEPTH	TIP	SLEEVE	FRICTION	SOIL	RUFACIES	SJ=Sleeve≠ 1.1	SU=(C-T)/14.0
	RESISTANCE	FRICTION	RATIO	CLASSIFICATION			
(FEET)	(TSF)	(TSF)	(%)			(PSF)	(PSF)
91.	10.65	.30*	2.84	CLAYEY SILTS AND SILTY CLAYS	F.II	666.	710.
92.	10.12	.31*	3.06	CLAYEY SILTS AND SILTY CLAYS	F.II	681.	624.
93.	10.12	.29 *	2.85	CLAYEY SILTS AND SILTY CLAYS	F.II	635.	615.
94.	10.13	.32*	3.12	CLAYEY SILTS AND SILTY CLAYS	F.II	695.	608.
95.	13.63	.50*	3.64	CLAYEY SILTS AND SILTY CLAYS	F.II	1091.	1099.
%.	16.02	.45*	2.80	SANDY SILTS AND SILTS	F.II	987.	1431.
97.	20,23	.31 *	1.55	SANDY SILTS AND SILTS	F.IV	690.	2024.
98.	13.14	.20#	1.49	SANDY SILTS AND SILTS	F.III	431.	1002.
9 9.	13.44	.20*	1.51	SANDY SILTS AND SILTS	F.III	446.	1036.
100.	14.24	.21*	1.45	SANDY SILTS AND SILTS	F.III	454.	1141.
101.	14.64	,21 *	1.44	SANDY SILTS AND SILTS	F.III	464.	1190.
102.	15.03	.24#	1.60	SANDY SILTS AND SILTS	F.III	529.	1236.
103.	15.25	.22*	1.46	SANDY SILTS AND SILTS	F.IV	490.	1259.
104.	15.73	.22*	1.43	SANDY SILTS AND SILTS	F.IV	495.	1319.
105.	16.64	.23+	1.39	SANDY SILTS AND SILTS	F.IV	509.	1440.
106.	16.85	.27*	1.60	SANDY SILTS AND SILTS	F.IV	593.	1461.
107.	19.26	.25 *	1.28	SILTY SANDS	F.IV		
108.	17.46	.24*	1.39	SANDY SILTS AND SILTS	F.IV	534.	1530.
109.	18.26	.27+	1.47	SANDY SILTS AND SILTS	F.IV	591.	1635.
110.	19.86	.29*	1.45	SANDY SILTS AND SILTS	F.IV	638.	1855.
111.	18.18	• 26 *	1.43	SANDY SILTS AND SILTS	F.IV	572.	1606.
112.	18.09	.18*	1.00	SILTY SANDS	F.IV		
113.	18.57	.35*	1.88	SANDY SILTS AND SILTS	F.III	768.	1644.
114.	20.85	.32*	1.55	SANDY SILTS AND SILTS	F.IV	711.	1961.
115.	18.58	.27 +	1.47	SANDY SILTS AND SILTS	F. IV	601.	1627.
116.	19.18	,29*	1.51	SANDY SILTS AND SILTS	F.IV	637.	1704.
117.	49, 48	1.04+	2.10	SILTY SANDS	F.IV		
118.	20.56	• 35 *	1.69	SANDY SILTS AND SILTS	F.IV	764.	1884.
119.	20.57	.34=	1.55	SANDY SILTS AND SILTS	F.IV	751.	1876.
120.	20.39	• 33 *	1.63	SANDY SILTS AND SILTS	F.IV	731.	1841.
121.	24.79	. 41#	1.64	SILTY SANDS	F.IV		
122.	19.79	• 33 *	1.67	SANDY SILTS AND SILTS	F.IV	727.	1738.
123.	20.46	.33 #	1.62	SANDY SILTS AND SILTS	F.IV	729.	1825.
124.	20.49	. 35*	1.69	SANDY SILTS AND SILTS	F.IV	762.	1820.
125.	19.70	.29*	1.47	SANDY SILTS AND SILTS	F.IV	637.	1698.

DEPTH	TIP	SLEEVE	FRICTION	SOIL	RUFACIES	SU=Sleeve* 1.1	SU=(C-T)/14.0
	RESISTANCE	FRICTION	RATIO	CLASSIFICATION			
(FEET)	(TSF)	(TSF)	(#)			(PSF)	(PSF)
41.	10.30	•48 *	4.62	CLAYS	F. II	1047.	1105.
42.	15.52	, 79 *	5.06	CLAYS	Fall	1728.	1842.
43.	197.23	2.19 *	1.11	SANDS	F.VII		
44.	20.21	1.01*	4.99	CLAYS	F.II	2219.	2494.
45.	16.07	.55*	3.41	CLAYEY SILTS AND SILTY CLAYS	F.II	1206.	1894.
46.	23.71	1.01#	4.27	CLAYEY SILTS AND SILTY CLAYS	F.II	2227.	2976.
47.	177.65	2.20*	1.24	SANDS	F.VII		
48.	22.45	. 99+	4.42	CLAYEY SILTS AND SILTY CLAYS	F.II	2183.	2779.
49.	14.11	.35 *	2.48	SANDY SILTS AND SILTS	F.II	770.	1578.
50.	47.70	1.43*	2.99	SANDY SILTS AND SILTS	F.V	3138.	6368.
51.	29.52	1.02#	3, 45	SANDY SILTS AND SILTS	F.V	2241.	3762.
52.	111.12	3.19+	2.87	SILTY SANDS	F.IV		
53.	13.27	.24*	1.83	SANDY SILTS AND SILTS	F.III	534.	1423.
54.	11.71	.25+	2.14	SANDY SILTS AND SILTS	F.III	551.	1191.
55	18.53	.35#	1.88	SANDY SILTS AND SILTS	F.III	771.	2170.
55	11 03	. 264	3, 10	CLAYEY SILTS AND SILTY CLAYS	F.II	752.	1075.
57	10 47	284	2.67	CLAYEY SILTS AND SILTY CLAYS	F. 11	613.	981.
57. 50	11 26	76#	3 05	CLOVEN STLTS AND STLTY CLOYS	F. 11	754.	1088.
JO. 50	12 24	47×	7 97	CLOVEY SILTS OND SILTY CLOVES	F. 11	1031.	1222.
50	10.64	61#	7 49	CLAVEY SILTS AND STLTY CLAYS	F. 11	892.	1129.
DU.	11.00	. 41 M 76 m	2 71	CLOVEN STITS OND STITY CLOVEN	F. 17	789.	1002.
C.)	10.03	• JO* 74×	2.57	CLOVEN STITE OND STITY CLOVE	FII	742.	B11.
62.	3.00	• 34 ≭ € • •	3.33	CHIEF SILIS HAD SILIS CENTS	, ≓ 10	, .21	U 0 0 0
63.	35.19	*DI*	10/7	CONDY CTUTE OND STUTE	£ 117	484	1164.
64.	12.15	• 22*	1.01	CONTRACT SILIS HAD SILIS	E 111	519	1140.
65.	12.04	₀ <u>८</u> 4*	1.30	SHADT SILIS HAD SILIS	F + 111 22 ' 1 1 1'	440	908
66.	10.48	.20#	1.91	SHINDY SILIS HAD SILIS	E 111	400	1679
67.	14.26	. 22*	1.00	SHAUT SILIS HAD SILIS	F+111 E TTT	570	1061
68.	11.68	•26#	2.22	SHNUT SILIS HAU SILIS	Г•111 С тт	540	994
69.	11.27	.29*	2.58	CLAYEY SILIS HAD SILIT CLATS	г.11 с ттт	592	1585
70.	15.47	.27#	1.74	SHNDY SILIS HND SILIS	F + 1 1 1 E - 7 7 7	671	1417
71.	14.36	.21#	1.49	SHNUY SILIS HAU SILIS	F.111 F.711	475	1207
72.	13.48	.20*	1.47	SANDY SILIS AND SILIS	F.111	400+	1000.
73.	16.62	.51*	3.09	CLAYEY SILTS AND SILTY LLAYS	₽.1i 	1130.	1723.
74.	14.08	₊ 40 ≭	2.86	CLAYEY SILIS AND SILIY LLAYS	F.11	600.	1001-
75.	13.08	• 30#	2.28	SANDY SILTS AND SILTS	F.111	636.	1195.
76.	13.71	. 39+	2.83	CLAYEY SILTS AND SILIY CLAYS	F.11	834.	1280.
77.	11.88	. 30#	2.52	SANDY SILTS AND SILTS	F. 11	633.	1010.
78.	12.49	.36*	2.85	CLAYEY SILTS AND SILTY CLAYS	F. 11	783.	1088.
79.	15.85	. 49*	3.06	CLAYEY SILTS AND SILTY CLAYS	F. 11	1067.	1559.
80.	11.71	.32+	2.71	CLAYEY SILTS AND SILTY CLAYS	F.11	698.	959.
81.	11.23	.27*	2.41	SANDY SILTS AND SILTS	F.III	595.	881.
82.	11.24	.27±	2.36	SANDY SILTS AND SILTS	F.III	584.	874.
83.	11.18	.28+	2.48	SANDY SILTS AND SILTS	F.III	610.	856.
84.	10.80	.26*	2.44	SANDY SILTS AND SILTS	F.III	580.	793.
85.	11.00	.28*	2.56	CLAYEY SILTS AND SILTY CLAYS	F. III	620.	813.
86.	10.71	.27 +	2.53	CLAYEY SILTS AND SILTY CLAYS	F.III	596.	762.
87.	11.01	.30*	2.76	CLAYEY SILTS AND SILTY CLAYS	F.II	669.	796.
88.	12.03	.37 *	3.07	CLAYEY SILTS AND SILTY CLAYS	F.II	813.	933.
89.	10.71	.31*	2.93	CLAYEY SILTS AND SILTY CLAYS	F.11	690.	735.
90.	10.92	.32¥	2.93	CLAYEY SILTS AND SILTY CLAYS	F.11	704.	756.

~

****	*********************	*****
¥		4
ŧ	WOODWARD-CLYDE	
Ŧ		ł
¥	CONSULTANTS	ŧ
ŧ		ŧ
****	****************	****

SOUNDING :ACPT2 IDENTIFICATION :ADOT-L STREET SLIDE / INST.ND: F15CKE075 LOCATION : XCORD: .0 YCORD: .0 ZCORD: 1.0 SOIL CHARACTERISTICS : GAMAT: 125.0 GAMAS: .0 WATER: .0 DATE :10- 4-84

DEPTH	TIP	SLEEVE	FRICTION	SOIL	RUFACIES	SJ=Sleeve+ 1.1	SU=(C-T)/14.0
	RESISTANCE	FRICTION	RATIO	CLASSIFICATION			
(FEET)	(TSF)	(TSF)	(*)			(PSF)	(PSF)
1.	298.97	1.67*	.56	SANDS	F.VIII		
2.	148.00	•71 #	. 48	SANDS	F.VII		
3.	116.11	1.35#	1.15	SANDS	F.VII		
4.	85.03	. 47#	. 55	SANDS	F.VII		
5.	208.98	.96*	. 45	SANDS	F.VIII		
6.	294.83	1.50*	.51	SANDS	F.VIII		
7.	387.02	1.78*	. 46	SANDS	F.VIII		
8.	402.02	1.37*	. 34	SANDS	F.VIII		
9.	439.22	1.84+	. 42	SANDS	F.VIII		
10.	380.78	2.17+	.57	SANDS	F.VIII		
11.	489.63	1,22+	. 25	SANDS	F.VIII		
12.	448.53	3.36*	.75	SANDS	F.VIII		
13.	345.57	1.49*	. 43	SANDS	F.VIII		
14.	267.58	2.01*	. 75	SANDS	F.VIII		
15.	286.94	1.92*	.67	SANDS	F.VIII		
16.	308.90	1.85*	. 60	SANDS	F.VIII		
17.	244.84	2.30*	. 94	SANDS	F.VII		
18.	253.54	2, 16#	.85	SANDS	F.VII		
19.	291.62	1.84*	.63	SANDS	F.VIII		
20.	298.25	1.91*	. 64	SANDS	F.VIII		
21.	296.95	2.02*	. 68	SANDS	F.VIII		
22.	286.25	1.98*	. 69	SANDS	F.VIII		
23.	225.48	1.53+	.68	SANDS	F.VIII		
24.	225.00	1.26*	. 56	SANDS	F.VIII		
25.	277.46	1.61+	. 58	SANDS	F.VIII		
26.	290.82	1.86*	.64	SANDS	F.VIII		
27.	114.96	2.03*	1.77	SILTY SANDS	F.IV		
28.	167.29	2.39*	1.43	SANDS	F.VII		
29.	118.27	4.01*	3.39	SANDY SILTS AND SILTS	F.IV	8821.	16637.
30.	115.39	5.95 *	5.16	CLAYEY SILTS AND SILTY CLAYS	F.II	13099.	16216.
31.	53.77	2.27*	4.22	CLAYEY SILTS AND SILTY CLAYS	F.V	4992.	7405.
32.	49.68	1.73*	3.49	SANDY SILTS AND SILTS	F.V	3814.	6811.
33.	29.36	1.35*	4.60	CLAYEY SILTS AND SILTY CLAYS	F.II	2971.	3900.
34.	84.47	2.41*	2.85	SANDY SILTS AND SILTS	F.IV	5296.	11754.
35.	27.56	1.18#	4.29	CLAYEY SILTS AND SILTY CLAYS	F.II	2601.	3625.
36.	13.47	.71#	5.30	CLAYS	F.I	1571.	1603.
37.	12.45	.67 +	5.37	CLAYS	F.I	1471.	1448.
38.	14.89	.75 *	5.05	CLAYS	F.II	1654.	1788.
39.	13.51	.71 *	5.24	CLAYS	F.I	1557.	1582.
40.	11.92	.54*	4.56	CLAYS	F.II	1196.	1346.

÷

DEPTH	TIP	SLEEVE	FRICTION	SOIL RUFACIES SU=Sleevet 1.1		SU=(C-T)/14.0	
	RESISTANCE	FRICIUM	KHILU (a)	CLH331 ICH ICH		(DSE)	(PSF)
(FEE))	(ISF)	(155)	(4)				
91.	19.74	.52*	2.61	SANDY SILTS AND SILTS	F.IV	1133.	2007.
92.	20.27	.53+	2.50	SANDY SILTS AND SILTS	F.IV	1159.	2074.
93.	20.03	.53*	2,64	SANDY SILTS AND SILTS	F.IV	1163.	2031.
94.	23.45	.63 #	2,68	SANDY SILTS AND SILTS	F.IV	1383.	2511.
95.	24.53	.72 #	2.94	SANDY SILTS AND SILTS	F.IV	1587.	2656.
96.	21.07	.80×	3.81	CLAYEY SILTS AND SILTY CLAYS	F.V	1766.	2153.
97.	20.25	•66 #	3:27	CLAYEY SILTS AND SILTY CLAYS	F.II	1457.	2027.
98.	20.55	.52*	2, 51	SANDY SILTS AND SILTS	F.IV	1135.	2061.
99.	20.60	.51*	2.46	SANDY SILTS AND SILTS	F.IV	1115.	2059.
100.	21.08	.51*	2.42	SANDY SILTS AND SILTS	F.IV	1122.	2119.
101.	21.13	.51*	2.40	SANDY SILTS AND SILTS	F.IV	1116.	2117.
102.	21.73	.55 *	2.51	SANDY SILTS AND SILTS	F.IV	1200.	2194.
103.	21.19	.52+	2.44	SANDY SILTS AND SILTS	F.IV	1137.	2108.
104.	22.32	.57*	2.54	SANDY SILTS AND SILTS	F.IV	1247.	2260.
105.	22.01	.54*	2,45	SANDY SILTS AND SILTS	F.IV	1186.	2207.
106.	22.39	.57¥	2.55	SANDY SILTS AND SILTS	F.IV	1256.	2252.
107.	30.98	1.18#	3.81	CLAYEY SILTS AND SILTY CLAYS	F.V	2597.	3470.
108.	22.68	. 59#	2.62	SANDY SILTS AND SILTS	F.IV	1307.	2276.
109.	24.01	.61#	2.54	SANDY SILTS AND SILTS	F.IV	1342.	2457.
110.	23.26	. 45 *	1.93	SANDY SILTS AND SILTS	F.IV	988.	2341.
111.	23, 16	.51+	2.21	SANDY SILTS AND SILTS	F.IV	1126.	2317.
112.	24.72	.60*	2.43	SANDY SILTS AND SILTS	F.IV	1322.	2531.
113.	23.30	.59*	2.52	SANDY SILTS AND SILTS	F.IV	1292.	2320.
114.	24.07	.57 *	2.36	SANDY SILTS AND SILTS	F.IV	1250.	2421.
115.	25.27	.47±	1.87	SANDY SILTS AND SILTS	F.IV	1040.	2583.
116.	29.40	.78*	2,65	SANDY SILTS AND SILTS	F.IV	1714.	3164.
117.	42.60	1.01+	2.37	SANDY SILTS AND SILTS	F.IV	2221.	5041.
118.	66.57	1.44#	2.17	SILTY SANDS	F.IV -		
119.	42.89	1.36*	3.17	SANDY SILTS AND SILTS	F.V	2991.	5065.
120.	165.02	3.43#	2.08	SILTY SANDS	F.IV		
121.	41.97	1.37+	3.26	SANDY SILTS AND SILTS	F.V	3010.	4915.
122.	27.77	.81 #	2.90	SANDY SILTS AND SILTS	F.IV	1772.	2878.
123.	381.33	8.81*	2, 31	SANDS	F.IV		
124.	264.57	6.19 *	2.34	SILTY SANDS	F.IV		
125.	99.62	1.88*	1.89	SILTY SANDS	F.IV		
126.	41.36	.64#	1.54	SILTY SANDS	F.VI		
127.	60.11	2.03*	3.37	SANDY SILTS AND SILTS	F.V	4457.	7453.
128.	196.26	4.95+	2.52	SILTY SANDS	F.IV		
129.	205, 68	9.52*	4.63	SANDY SILTS AND SILTS	F.V	20951.	28231.

A-9

DEPTH	TIP RESISTANCE	SLEEVE FRICTION	FRICTION RATIO	SOIL CLASSIFICATION	RUFACIES	SU=Sleeve* 1.1	SU=(C-T)/14.0
(FEET)	(TSF)	(TSF)	(%)			(PSF)	(PSF)
41.	10, 85	. 41 #	3, 74	CLAYEY SILTS AND SILTY CLAYS	F.II	893.	1184.
62	11.45	. 46¥	4.04	CLAYEY SILTS AND SILTY CLAYS	F.II	1018.	1261.
47	11.80	. 45#	3, 84	CLAYEY SILTS AND SILTY CLAYS	F.11	997.	1302.
40.	17 30	.30#	2.23	SANDY SILTS AND SILTS	F.III	652.	1507.
45 45	17 59	. 33#	2,42	SANDY SILTS AND SILTS	F.II	724.	1540.
45	17 89	. 33#	2.34	SANDY SILTS AND SILTS	F.III	715.	1574.
 ▲7	14 49	.35+	2,40	SANDY SILTS AND SILTS	F.IV	765.	1649.
47+ 80	17 24	474	2.48	SANDY SILTS AND SILTS	F.IV	941.	2034.
40+ DA	16 06	40 4	2.48	SANDY SILTS AND SILTS	F.IV	876.	1857.
47.	10.00	57#	2 25	SANDY STITS AND SILTS	F. IV	1159.	2898.
JV. E1	10 10	*00 * AQ#	2 70	SONDY SILTS AND SILTS	F. IV	1080.	2142.
53.	10.10	*73* 60×	2 42	SONDY SILTS AND SILTS	F. IV	1048.	2347.
52.	15.00	, TOX 70×	2 61	GONDY STLTS AND STLTS	F. TV	827.	1755.
	13.60	• JO* 70*	5. TI 5. A 1	SONDY STEPS AND STEPS	F. TV	849.	1805.
3 4 .	16.VI	• 37* 70*	C+ T+ 2 17	CONTY STETS AND STETS	F. 171	661.	1488.
33.	13.85	.30*	C: 1/	CONTRACTOR OF THE CANE STORE	E 10	A43	1734.
56.	15.64	. 38*	C. 90	CONTY CTUTE OND STLTS	C 1U	812	1725.
57.	15.64	. 3/#	<u>ک</u> , 35	SHANDY SILIS HAD SILIS	F . 19	796	1758.
58.	15.93	• 36#	2.27	SHADT SILIS HAD SILIS	F#14 E 117	796	1792
59.	16.23	• 36#	2.23	SHNUT SILIS HNU SILIS	F. 111 E. TU	950.	1919
60.	17.18	. 447	2.54	SHNDY SILIS HND SILIS	Г•1¥ Г ТИ	945	2013.
61.	17.90	, 43 ≭	2.40	SHNUT SILIS HAU SILIS	F.1V E.TU	916	1925
. 6 2.	17.35	.42*	2,40	SHNUY SILIS HAU SILIS	F.17	1057	1923
63.	17.47	. 48*	2.75	SANDY SILIS AND SILIS	F=14 F=10	1007.	2006
64.	18.60	.50*	2.71	SANDY SILIS AND SILIS	F.1V	1107.	2107
65.	18.78	• 48*	2.56	SANDY SILTS AND SILTS	P.1V	1036.	1050
66.	17.83	, 49 *	2.74	SANDY SILTS AND SILTS	F.11	1075.	1000
67.	17.69	. 4 9 *	2.77	SANDY SILTS AND SILTS	F.11	1078.	1757.
68.	17.03	, 45 #	2,65	SANDY SILTS AND SILTS	r.li E st	333.	1000
69.	16.26	. 46#	2.82	SANDY SILTS AND SILIS		1009.	1772
70.	16.78	• 45 *	2.68	SANDY SILTS AND SILTS	F.11	363.	1//2.
71.	17.31	.45 *	2.62	SANDY SILTS AND SILTS	F. 1V	998.	1837.
72.	16.23	. 41*	2.54	SANDY SILTS AND SILTS	F.IV	907.	16/6.
73.	16.16	. 40 *	2.50	SANDY SILTS AND SILTS	F. IV	883.	163/.
74.	16.76	. 43+	2.58	SANDY SILTS AND SILTS	F.IV	931.	1/34-
75.	17.35	. 44#	2.52	SANDY SILTS AND SILTS	F. IV	962.	1809.
76.	17.65	.43 *	2.44	SANDY SILTS AND SILTS	F.IV	947.	1843.
77.	21.91	.41#	1.85	SANDY SILTS AND SILTS	F.IV	892.	2496.
78.	17.34	.40#	2,30	SANDY SILTS AND SILTS	F.IV	877.	1/81.
79.	17.03	.38#	2.26	SANDY SILTS AND SILTS	F.IV	847.	1728.
80.	17.03	.37#	2, 19	SANDY SILTS AND SILTS	F.III	821.	1719.
81.	17.84	. 43 *	2.42	SANDY SILTS AND SILTS	F.IV	950.	1825.
82.	17.92	.48#	2.66	SANDY SILTS AND SILTS	F.IV	1049.	1828.
83.	18.22	. 49#	2.70	SANDY SILTS AND SILTS	F.IV	1082.	1862.
84.	19.11	.52*	2.71	SANDY SILTS AND SILTS	F.IV	1139.	1980.
65.	19.41	.51*	2.61	SANDY SILTS AND SILTS	F.IV	1115.	2014.
86.	19.46	.47*	2.44	SANDY SILTS AND SILTS	F.IV	1045.	2012.
87.	20.69	.56*	2.73	SANDY SILTS AND SILTS	F.IV	1243.	2179.
88.	19.87	. 48*	2.42	SANDY SILTS AND SILTS	F.IV	1058.	2053.
89.	20.07	.54 *	2.67	SANDY SILTS AND SILTS	F.IV	1179.	2073.
90.	20.52	.57 +	2.80	SANDY SILTS AND SILTS	F.IV	1264.	2128.

SOUNDING :ACPTIA IDENTIFICATION :ADDT-L STREET SLIDE / INST. ND: F15CKE075 LOCATION : XCORD: .0 YCORD: .0 ZCORD: 1.0 SOIL CHARACTERISTICS : GAMAT: 125.0 GAMAS: .0 WATER: .0 DATE :10- 4-84

DEPTH	TIP	SLEEVE	FRICTION	SOIL	RUFACIES	SU=Sleeve+ 1.1	SU=(C-T)/14.0
	RESISTANCE	FRICTION	RATIO	CLASSIFICATION			
(FEET)	(TSF)	(TSF)	(¥)			(PSF)	(PSF)
1.	135.12	.76 *	. 56	SANDS	F.VII		
2.	78.23	. 49#	.63	SANDS	F.VII		
3.	38.45	. 43 +	1.11	SILTY SANDS	F.VI		
4.	27.67	• 36+	1.30	SILTY SANDS	F. IV		
5.	60.51	.65+	1.08	SILTY SANDS	F.VI		
6.	29.49	. 81*	2.74	SANDY SILTS AND SILTS	F.IV	1778.	4159.
7.	111.76	.87 *	.78	SANDS	F.VII		
8.	107.70	.58*	. 54	SANDS	F.VII		
9.	171.38	. 93+	.54	SANDS	F.VII		
10.	167.05	. 87*	.52	SANDS	F.VII		
11.	264.25	1.19*	. 45	SANDS	F.VIII		
12.	282.66	1.02*	. 36	SANDS	F.VIII		
13.	379.71	1.29*	. 34	SANDS	F.VIII		
14.	268.32	1.34*	. 50	SANDS	F.VIII		
15.	222.29	•93 *	. 42	SANDS	F.VIII		
16.	405.09	2.03*	. 50	SANDS	F.VIII		
17.	424.96	1.40#	. 33	SANDS	F.VIII		
18.	212.53	1.38*	.65	SANDS	F.VII		
19.	285.09	1.37*	. 48	SANDS	F.VIII		
20.	415.83	2.04*	. 49	SANDS	F.VIII		
21.	549.32	3.02*	.55	SANDS	F.VIII		
22.	462.43	2.08*	. 45	SANDS	F.VIII		
23.	407.47	1.34#	. 33	SANDS	F.VIII		
24.	291.31	.50*	.17	SANDS	F.VIII		
25.	29.16	.41#	1.39	SILTY SANDS	F.IV		
26.	17.76	.42 *	2.37	SANDY SILTS AND SILTS	F.IV	926.	2305.
27.	15.42	. 15 *	. 97	SANDY SILTS AND SILTS	F.IV	329.	1962.
28.	12.68	.64#	5.02	CLAYS	F.II	1400.	1561.
29.	9, 17	. 42+	4.62	CLAYS	F.II	932.	1051.
30.	8.33	.34#	4.10	CLAYS	F.II	751.	922.
31.	7.48	. 38+	5.03	CLAYS	F.I	828.	752.
32.	7.95	. 39*	4.91	CLAYS	F.I	859.	850.
33.	17.37	. 53+	3.03	SANDY SILTS AND SILTS	F.II	1158.	2187.
34.	8.78	.41*	4.68	CLAYS	F.II	904.	951.
35.	8.18	. 46*	5.66	CLAYS	F.I	1019.	856.
36.	8.53	.50*	5.84	CLAYS	F.I	1096.	897.
37.	10.33	.37*	3.59	CLAYEY SILTS AND SILTY CLAYS	F.II	816.	1145.
38.	12.54	.39*	3.08	CLAYEY SILTS AND SILTY CLAYS	F.II	850.	1452.
39.	14.40	.53*	3.68	CLAYEY SILTS AND SILTY CLAYS	F.II	1166.	1709.
40.	11.70	. 47 *	4.01	CLAYEY SILTS AND SILTY CLAYS	F.II	1032.	1314.

SOUNDING :ACPT1						
IDENTIFICATION :ADOT-L	STREET	SLIDE /	INST. NO:	F15	CKE075	
LOCATION :	XCORD:	.0	YCORD:	.0	ZCORD:	1.0
SOIL CHARACTERISTICS :	GAMAT	125.0	GAMAS :	.0	WATER:	.0
DATE :10- 4-84						

DEPTH	TIP	SLEEVE	FRICTION	SOIL	RUFACIES	SU=Sleeve+ 1.1	SU=(C-T)/14.0
	RESISTANCE	FRICTION	RATIO	CLASSIFICATION			
(FEET)	(TSF)	(TSF)	(%)			(PSF)	(PSF)
1.	3, 49	. 29 +	8.41	CLAYS	F.I	646.	490.
2.	123.14	. 48*	. 39	SANDS	F.VII		
3.	67.25	. 47 *	.70	SANDS	F.VII		
4.	44.97	. 37 +	.82	SILTY SANDS	F.VI		
5.	35.29	.16#	. 46	SILTY SANDS	F.VI		
6.	37.91	.22*	.59	SILTY SANDS	F.VI		
7.	60.69	.50+	. 83	SANDS	F.VII		
8.	117.38	. 56 *	. 48	SANDS	F.VII		
9,	179.56	1.53*	.85	SANDS	F.VII		
10.	231.98	1.14*	. 49	SANDS	F.VIII		
11.	316.80	1.90#	. 60	SANDS	F.VIII		
12.	343.72	2.61*	. 76	SANDS	F.VIII		
13.	274.33	1.29*	. 47	SANDS	F.VIII		
14.	268.55	1.58*	. 59	SANDS	F.VIII		
15.	476.07	1.52*	.32	SANDS	F.VIII		
16.	531.79	2.29*	. 43	SANDS	F.VIII		
17.	498.11	1.79+	. 36	SANDS	F.VIII		
18.	441.32	4.41*	1.00	SANDS	F.VII		

١

.

A-5

Fig. A-2 CPT-Facies Criteria for Bootlegger Cove Formation

l bar = 100kPa = 1.02 kg/cm²

Fig. A-1 Simplified Classification Chart for Standard Electric Friction Cone

Karol-Warner vane shear. For the vane shear testing, a 2-1/2 inch by 6-1/2 inch tapered vane was pushed into the soil 18 inches below the bottom of the casing and rotated by a hand cranking mechanism at rate of 1/2 degree per torsional force second. The was measured by dial After the soil had reached the initial peak indicator. shear strength, the vane was manually rotated several revolutions to insure that the soil was disturbed. The residual soil strength was then measured one minute and ten minutes after the initial test.

Seven undisturbewd samples were taken using a 3" shelby tube and an Acker piston sampler. Two shelby tube samples were sent to the Woodward-Clyde Consultants laboratory in Clifton, New Jersey for consolidation, direct shear, and direct simple shear testing. Five shelby tube samples were sent to the Alaska DOT&PF Central Laboratory for soil classification, UU triaxial, torvane, and mini-vane testing.

APPENDIX A

RESULTS OF GEOTECHNICAL FIELD INVESTIGATON

The geotechnical field investigation included six Cone Penetrometer Testing (CPT) soundings and one sample boring. The CPT work was conducted by The Earth Technology Corporation and the sample boring was drilled by Alaska DOT&PF.

The CPT consists of pushing a 1.4 inch diameter instrumented cone into the soil at a continuous rate of 2 cm/sec. Strain gauges mounted in the cone tip and the shaft measured the tip resistance and friction resistance. The strain gauge readings are transmitted through an electric cable to recorders at the surface.

The soil classification criteria used with the CPT data are shown in Figure A-1 (Robertson and Campanella, 1984) and the classification criteria for the Bootlegger Cove Formation facies also used with the CPT data are shown in Figure A-2 (updike and Ulery, 1984). The CPT and related data are summarized in a series of figures and tables identified as A-3.

The sample boring was drilled with a truck mounted CME-75 rotary drill. The boring was advanced by hollow stem auger (3.25" I.D., 8.0" O.D.). The results of the boring are summarized in Figure A-4. Three Standard Penetration Tests (SPT) were made at depths of 42', 46', and 48'. The SPT test consists of driving a standard split-barrel sampler (1.4" I.D., 2.0" O.D.) with a CME 140 pound automatic trip hammer having a free fall of 30 inches. In addition, seven field vane shear tests were conducted on the soil with a

A-1

APPENDIX A .

RESULTS OF GEOTECHNICAL FIELD INVESTIGATION

.

- Updike, R. G., and Ulery, C. A. (1984), "A Geotechnical Cross-Section for Downtown Anchorage Utilizing the Electric Cone Penetration Test", Alaska Division of Geological and Geophysical Surveys Professional Report, in press.
- Woodward-Clyde Consultants (1982), "Anchorage Office Complex, Geotechnical Investigation, Anchorage, Alaska", Report to Alaska Department of Transportation and Public Facilities, Central Region, Design and Construction, Anchorage, Alaska.

- Robertson, P. K. and Campanella, R. G. (1984), "Guidelines for Use and Interpretation of the Electronic Cone Penetration Test", Soil Mechanics Series No. 69, Department of Civil Engineering, The University of British Columbia.
- Seed, H. B., and Idriss, I. M. (1982), "Ground Motions and Soil Liquefaction During Earthquakes", Monograph No. 5, Monograph Series, Earthquake Engineering Research Institute, Berkeley, California, 134 p.
- Seed, H. B., Lee, K. L., and Idriss, I. M. (1969), "Analysis of Sheffield Dam Failure", J. Soil Mechanics and Foundation Div., ASCE, v. 95, no. SM6, November, pp. 1453-1490.
- Shannon and Wilson, (1964), "Report on Anchorage Area Soil Studies, Alaska", Report Prepared for the U.S. Army Engineer District, Anchorage, Alaska, Contract No. DA-95-507-CIVENG-64-18.
- Steinbrugge, K. V. (1970), "Earthquake Engineering", Robert
 L. Wiegel, Editor, Prentice-Hall, pp. 167-226.
- Updike, R. G. (1984), "The Turnagain Heights Landslide--An Assessment Using the Electric Cone Penetration Test", Alaska Division of Geological and Geophysical Surveys Report of Investigation, in press.
- Updike, R. G., Cole, S. A., and Ulery, C. A. (1982), "Shear Moduli and Damping Ratios for the Bootlegger Cove Formation as Determined by Resonant-Column Testing", Alaska Division of Geological and Geophysical Surveys Geologic Report 73, p. 7-12.

R-3

- Ladd, C. C., and Foott, R. (1974), "New Design Procedure for Stability of Soft Clays", J. Geotechnical Eng. Div., ASCE, v. 100, No. GT7, July, pp. 763-786.
- Long, E. L. (1973), "Earth Slides and Related Phenomena", The Great Alaska Earthquake of 1964, National Academy of Science, pp. 644-773.
- Makdisi, F. I., and Seed, H. B. (1978), "Simplified Procedure for Estimating Dam and Embankment Earthquake-Induced Deformations", J. Geotechnical Eng. Div., ASCE, v. 104, No. GT7, July, pp. 849-867.
- Mitchell, J. K., Houston, W. N., and Yamane, G. (1973) "Sensitivity and Geotechnical Properties of Bootlegger Cove Clay", <u>in</u> National Academy of Sciences, The Great Alaska Earthquake of 1964, Engineering, p. 157-178.
- Newmark, N. M. (1965), "Effects of Earthquakes on Dams and Embankments", Geotechnique, v. 15, no. 2, June, pp. 139-159.
- O'Rourke, M. J., Bloom, M. C., and Dobry, R. (1982), "Apparent Propagation Velocity of Body Waves", Earthquake Engineering and Structural Dynamics, v. 10, no. 2, March, pp. 283-294.
- Reger, P. D., and Updike, R. G. (1983), "Upper Cook Inlet Area and the Matanuska Valley", in Pewe, T. OL., and Reger, B. D., A guidebook for the 4th International Permafrost Conference: Alaska Division of Gelogical and Geophysical Surveys Guidebook 1, p. 185-263.

R-2

REFERENCES

- Bolt, B. A. (1978), "Earthquakes -- A Primer", W. H. Freeman and Company, 241 p.
- Hansen, W. R. (1965), "Effects of the Earthquake of March 27, 1964, at Anchorage, Alaska", The Alaska Earthquake, March 27, 1964, Effects on Communities, USGS, Professional Paper, 542-A.
- Harding Lawson Associates (1984) "Geotechnical Engineering Investigation, Anchorage Courthouse Addition, Anchorage, Alaska", Report to McCool-McDonald of Alaska, Inc.
- Housner, G. W., and Jennings, P. C. (1973), "Reconstituted Earthquake Ground Motion at Anchorage in The Great Alaska Earthquake of 1964", Engineering, NAS Pub. 1606, Washington: National Academy of Sciences.
- Idriss, I. M., and Seed, H. B. (1967), "Response of Earth Banks During Earthquakes", J. Soil Mechanics and Foundation Div., ASCE, v. 93, No. SM3, May, pp. 61-108.
- Ladd, C. C. (1981), "Discussion on Laboratory Shear Device", Laboratory Shear Strength of Soil, ASTM, STP 740, pp. 643-652.
- Ladd, C. C., Foott, R., Ishihara, K., Schlosser, F., and Poulos, H. G. (1977), "Stress-Deformation and Strength Characteristics", Proceedings, 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, v. 2, pp. 421-494.

R-1

3) Detailed Microzonation for Planning Purposes -Although it is always difficult to produce a microzonation map of an area that would be useful meaningful to many interested parties, a and "block-by-block" type of microzonation in certain parts of Anchorage may have some merits. As the results of more recent geotechnical studies in the Anchorage area become available, the data base required to produce such a detailed microzonation map increases. Such a microzonation map should emphasize the relative risk of ground failure associated with various parts of Anchorage, should reflect the inevitable variations in the quality of . the data base in various parts of Anchorage, and should allow for the possibility of conducting site specific studies as appropriate.

Anchorage area are summarized in Figure 14. Even for a minor structure, it is suggested that all the components shown in Figure 14 be addressed in some One additional item to be remembered in form. Figure 14 is that any seismic stability (displacement) evaluation procedure to be used for the Anchorage area should be calibrated using the observed site instability (or stability) during the 1964 Alaskan earthquake. A comprehensive guideline can outline the calibration process but should be flexible enough so that it is possible to exercise different engineering judgement and to use approaches as appropriate.

Street slide summarized herein is based on limited amount of field and laboratory information. To conduct more comprehensive, and more definitive, reevaluation of the slide would require more CPT soundings (particularly in the northern part of the slide, along the bottom of the bluff line, and in and out of the graben area), more borings to obtain soil samples from various parts inside and outside slide area for additional testing, more analyses along more cross-sections representative of various parts of the slide, mapping of the distribution of SPT blowcounts inside sensitive clays and and outside of the slide area, an evaluation of the three-dimensional and possibly progressive nature of the slide (what determined the geometry of the 1964 "L" Street slide?), and an evaluation of the role played by silty and sandy lenses present in consolidated the normally to lightly overconsolidated part of the Bootlegger Cove Formation.

2) Guideline for Conducting Seismic Site Stability Evaluation in Anchorage Area - This study involving the 1964 "L" Street slide, a previous study by Woodward-Clyde Consultants (1982) involving the 1964 Fourth Avenue slide, and similar studies by others (for example, Shannon and Wilson, 1964; 1973; Mitchell and others, Hansen, 1965; Long, 1973; Updike, 1984; Updike and others, 1982) all indicate that conducting seismic site stability evaluation in the Anchorage area may require certain approaches which may be worthwhile compiling in a guideline format. The key components of the seismic site stability evaluation process for and facilities in structures the important

-32-

Formation). The stress concentrations at edges of silt and sand lenses could have induced high pore water pressures in these lenses (Seed and others, 1969).

Finally, based on the reevaluation of the 1964 "L" Street slide presented herein, the following two conclusions can be made regarding site stability evaluation in the Anchorage area due to earthquake loading conditions:

- 1) The shear strength determination procedure and the seismic displacement calculation procedure presented herein constitute together a practical evaluation tool which has been calibrated using the 1964 "L" Street slide (this study) and the 1964 Fourth Avenue slide (Woodward-Clyde Consultants, 1982).
- 2) Carefully conducted CPT soundings and field boring and sampling program combined with a careful laboratory testing program using appropriate testing methods are important in conducting seismic site stability evaluation in the Anchorage area.

8.0 RECOMMENDATIONS AND IMPLEMENTATIONS

The reevaluation of the 1964 "L" Street slide was conducted based on a limited program of field investigation, laboratory tests, and analyses. Based on the results of this investigation summarized in this report, the following recommendations and implementations can be made:

 More Comprehensive Reevaluation of the 1964 "L" Street Slide - The reevaluation of the 1964 "L"

-31-

DEPTH	TIP RESISTANCE	SLEEVE FRICTION	FRICTION RATIO	SOIL CLASSIFICATION	RUFACIES	SU=Sleeve* 1.1	SU=(C-T)/14.0
(FEET)	(TSF)	(TSF)	(%)			(PSF)	(PSF)
141.	21.59	. 45*	2.09	SANDY SILTS AND SILTS	F.IV	993.	1825.
142.	21.35	.45*	2.09	SANDY SILTS AND SILTS	F.IV	982.	1782.
143.	21.64	.45+	2.09	SANDY SILTS AND SILTS	F.IV	995.	1815.
144.	22.00	. 46*	2.07	SANDY SILTS AND SILTS	F.IV	1002.	1857.
145	22, 23	. 44#	2.00	SANDY SILTS AND SILTS	F.IV	978.	1881.
145	46.65	1.90*	4.07	CLAYEY SILTS AND SILTY CLAYS	F.V	4178.	5362.
147	47.47	1.26*	2,65	SANDY SILTS AND SILTS	F.IV	2768.	5469.
149	37.63	- 46+	1.23	SILTY SANDS	F.VI		
149.	37.69	.50*	1.33	SILTY SANDS	F.VI		
150	40.35	. 75#	1.86	SILTY SANDS	F.IV		
151	29.69	1.85#	6.22	CLAYS	F.I	4053.	2893.
152	24.89	.53+	2,13	SANDY SILTS AND SILTS	F.IV	1166.	2199.
152	24.49	.53#	2.17	SANDY SILTS AND SILTS	F.IV	1169.	2133.
1554	22 99	50+	2, 19	SANDY SILTS AND SILTS	F.IV	1108.	1909.
157.	27 07	544	2.32	SANDY SILTS AND SILTS	F.IV	1177.	1912.
150	24.00	50# 50#	2 40	SONDY SILTS AND SILTS	F. IV	1313.	2159.
157	24 55	504	2 40	SONDY SILTS AND SILTS	F. IV	1297.	2107.
127.	24.30	20x	2 42	SONDY STITS AND STITS	F. IV	1320.	2131.
100.	24.77	- 00× 20+	2 74	SONDY SILTS AND SILTS	F. IV	1330.	2272.
133.	20.07	. OV* 67*	2 77	SONDY STITS AND STITS	F. IV	1393.	2389.
100.	20.1C	.00×	2 29	SONDY SILTS AND SILTS	F.V	7083.	12130.
101.	29. 27	3455¥ 71×	2.52	SONDY STLTS AND STLTS	F.IV	1558.	2568.
100.	20.10	+/1= £7±	2 27	SONDY SILTS AND SILTS	F. IV	1385.	2506.
103.		.00×	2 70	CONDY STITS OND STITS	F. TV	1389.	2309.
104.	20:41	.03× 27×	2 77	CONDY STLTS AND STLTS	F. TV	1391.	2337.
163.	20.07	. 0JT 57.	2.17	CONDY STETS AND STETS	FIV	1259.	2285.
165.	CD. 37	•J/≖ ≣0×	0.01	CONTRACTOR OND STUTS	FTV	1279.	2266.
167.	25.JV	.00×	2 17	CONTRACT STETS AND STETS	F. TV	1119.	1913.
166.	23.07	*10* *10*	2.13	CONTRY STETS AND STETS	F. TV	1450.	2170.
103*	2J. /J	,00×	2,00	CONTRACTOR OF CONTRACTOR	F. TV	1145.	2039.
170.	24.50	• JC* 1 CDx	2.03	CONDY SILTS AND SILTS	F. IV	3696.	6636.
1/1.	3/.14	1.00*	2 46	CONDY STETS OND STITS	F. TV	1595.	2676.
1/2.	29.48	•/3 *	C. 70 0 40	CONTRY STETS AND STETS	FTU	1633.	2731.
173.	29.93	•/4*	<u> </u>	CONDUCTING AND STEIS	FIV	1989.	3042.
1/4.	32.17	• 90*	2.01	CONTRACTING AND STETS	F 10	1365.	2873.
1/5.	31.05	*06*	2.00	CONDY SILTS AND SILTS	FIV	1415.	2979.
176.	31.85	• 54 *	2.11	CTETY CONDO	F. TV		
1//.	40.91	* 86*	2.11	CONTRACTING AND CTITE	F TU	18333.	30499.
178.	224.62	8.33*	3./1	CONDUCTIVE AND SILIS	E 10	2495	A806.
179.	44.85	1.13*	2.33	SHADA SILIS HAD SILIS	1 = 1 V E TU	5.1301	10701
180.	46.08	•89 *	1.93	DILIT DHOUD	E 10	7740	7594
181.	54.40	1.70#	2.64	SHNUY SILIS HNU SILIS	Г+1¥ С ТП	1790	7511
182.	36.65	•81*	2.22	SHNUY SILIS HAU SILIS	Г•1¥ С Т	0797	7205
183.	61.87	4.00*	5.46		F.1 E 7	20540	19721
184.	149.62	9,34+	6.24		Г.1 С Т	<u>6055</u> 0	A2025
185.	319.11	22.11*	6.93		F+1 E 11	400JC4 26794	73233. 27294
185.	202.70	11.27*	5.56	CLATEY SILIS HAU SILIT CLATS	ст Гі11	21002	18612
187.	141.98	9,91*	6. 98		F+1 E TT	18207	10010
188.	139.09	8.28*	5.95		F+11 E 11	15572	16820
189.	129.55	7.05*	5.45	ULHTEY SILIS HND SILIT CLHTS	F.11 E 11	12000	10050.
190.	150.96	7.1 9*	4.76	CLAYER SILIS AND SILIY CLAYS	r.v	12002	13003.

.

* * WOODWARD-CLYDE * * * CONSULTANTS * * * *

SOUNDING :ACPT6 IDENTIFICATION :ADOT- L STREET SLIDE / INST. ND: F15CKE075 LDCATION : XCORD: .0 YCORD: .0 ZCORD: 1.0 SOIL CHARACTERISTICS : GAMAT: 125.0 GAMAS: .0 WATER: .0 DATE :11- 2-84

DEPTH	TIP	SLEEVE	FRICTION	SOIL	RUFACIES	SU=Sleeve+ 1.	1 SU = (C - T) / 14.0
	RESISTANCE	FRICTION	RATIO	CLASSIFICATION			
(FEET)	(TSF)	(TSF)	(%)			(PSF)	(PSF)
1.	153. 91	.97 *	.63	SANDS	F.VII		
2.	33.93	. 33 *	.97	SILTY SANDS	F.VI		
3.	19.85	.11 #	.53	SILTY SANDS	F.IV		
4.	15.63	. 11 *	.72	SILTY SANDS	F.IV		
5.	19.01	.50+	2.63	SANDY SILTS AND SILTS	F.IV	1100.	2671.
6.	45.82	. 37*	.81	SILTY SANDS	F.VI		
7.	49.62	.69 +	1.39	SILTY SANDS	F.VI		
8.	29.17	.53*	1.83	SILTY SANDS	F.IV		
9.	41.45	1.34*	3.24	SANDY SILTS AND SILTS	F.V	2955.	5841.
10.	88.65	1.80#	2.03	SILTY SANDS	F.IV		
11.	22. 34	.58+	2.61	SANDY SILTS AND SILTS	F.IV	1283.	3093.
12.	16.21	• 33 *	2.02	SANDY SILTS AND SILTS	F.III	720.	2209.
13.	15.36	.35*	2.31	SANDY SILTS AND SILTS	F.IV	781.	2078.
14.	13.74	. 36*	2.65	SANDY SILTS AND SILTS	F.II	801.	1838.
15.	9, 30	.28*	2.98	CLAYEY SILTS AND SILTY CLAYS	F.II	610.	1195.
16.	8.18	· 26+	3.23	CLAYEY SILTS AND SILTY CLAYS	F.II	581.	1026.
17.	16.68	.27*	1.60	SANDY SILTS AND SILTS	F.IV	587.	2231.
18.	30.65	.81*	2.64	SANDY SILTS AND SILTS	F.IV	1780.	4218.
19.	13.77	.41 *	2.99	CLAYEY SILTS AND SILTY CLAYS	F.II	906.	1798.
20.	13.20	.37±	2.84	CLAYEY SILTS AND SILTY CLAYS	F.II	825.	1707.
21.	27.58	1.09*	3.95	CLAYEY SILTS AND SILTY CLAYS	F.V	2397.	3753.
22.	81.54	2.98*	3.65	SANDY SILTS AND SILTS	F.V	6548.	11452.
23.	97.53	2.79 *	2.86	SILTY SANDS	F.IV		
24.	44.23	1.17#	2.64	SANDY SILTS AND SILTS	F.IV	2569.	6104.
25.	58.19	.95 *	1.64	SILTY SANDS	F.VI		
26.	12.98	.25 *	1.95	SANDY SILTS AND SILTS	F.III	557.	1622.
27.	13.44	.30*	2.22	SANDY SILTS AND SILTS	F.III	656.	1679.
28.	13.25	.33*	2.46	SANDY SILTS AND SILTS	F.II	717.	1643.
29.	10.56	.27 *	2.59	CLAYEY SILTS AND SILTY CLAYS	F.III	602.	1250.
30.	10.06	. 25+	2.51	CLAYEY SILTS AND SILTY CLAYS	F.III	556.	1169.
31.	10.95	.29+	2.66	CLAYEY SILTS AND SILTY CLAYS	F.II	641.	1288.
32.	10.36	. 22+	2.08	SANDY SILTS AND SILTS	F.III	474.	1194.
33.	10.58	.22#	2.04	SANDY SILTS AND SILTS	F.III	475.	1217.
34.	8.52	.21#	2.46	CLAYEY SILTS AND SILTY CLAYS	F.III	461.	914.
35.	19.58	.52+	2.67	SANDY SILTS AND SILTS	F.IV	1150.	2485.
36.	10.66	. 35+	3.32	CLAYEY SILTS AND SILTY CLAYS	F.II	779.	1201.
37.	13.75	. 47 *	3.44	CLAYEY SILTS AND SILTY CLAYS	F.II	1041.	1634.
38.	13.83	.39+	2.81	CLAYEY SILTS AND SILTY CLAYS	F.II	855.	1636.
39.	13, 96	.37*	2.67	SANDY SILTS AND SILTS	F.II	820.	1646.
40.	10.35	.23*	2.19	SANDY SILTS AND SILTS	F.III	499.	1123.

CHEED CHS7 CH11 CHS7 CH11 CHS7 CH11 CHS7 CH11 CHS7 CHS7 CHS7 CHS7 <t< th=""><th>DEPTH</th><th colspan="2">TIP SLEEVE FRICTION RESISTANCE FRICTION RATIO</th><th>FRICTION</th><th>SOIL CLASSIFICATION</th><th>RUFACIES</th><th>SU=Sleeve+ 1.1</th><th>SU=(C-T)/14.0</th></t<>	DEPTH	TIP SLEEVE FRICTION RESISTANCE FRICTION RATIO		FRICTION	SOIL CLASSIFICATION	RUFACIES	SU=Sleeve+ 1.1	SU=(C-T)/14.0
41. 10.50 .22* 2.14 SPADY SILTS AND SILTS F. III 494. 1134. 42. 11.53 1.84 1.60 SPADY SILTS AND SILTS F. III 407. 1275. 43. 11.27 .21* 1.82 SPADY SILTS AND SILTS F. III 451. 1226. 44. 18.23 .40* 2.25 SANOY SILTS AND SILTS F. III 453. 1433. 45. 12.02 .21* 1.78 SPADY SILTS AND SILTS F. III 453. 1516. 45. 13.61 .21* 1.45 SPADY SILTS AND SILTS F. III 455. 1516. 45. 13.61 .20* 1.45 SPADY SILTS AND SILTS F. III 455. 1516. 51. 13.27 .22* 1.67 SPADY SILTS AND SILTS F. III 456. 1445. 51. 14.09 .46* 3.23 CLAYEY SILTS AND SILTS F. III 456. 1445. 52. 13.27 .22* 1.64 SPADY SILTS AND SILTS F. III 456. 1445. 53. 14.61	(FEET)	(TSF)	(TSF)	(%)			(PSF)	(PSF)
42. 11.55 1.84 1.60 SAMOY SLITS AND SLITS F. III 407. 1225. 43. 11.27 2.1* 1.82 SAMOY SLITS AND SLITS F. III 451. 1226. 44. 18.23 400 2.20 SAMOY SLITS AND SLITS F. III 638. 2211. 45. 12.08 2.29 SAMOY SLITS AND SLITS F. III 438. 1438. 46. 12.02 2.1* 1.78 SAMOY SLITS AND SLITS F. III 437. 1365. 47. 12.45 1.64 SAMOY SLITS AND SLITS F. III 435. 1516. 48.01 3.21 1.45 SAMOY SLITS AND SLITS F. III 435. 1510. 51. 14.09 4.64 3.23 CLUYY SLITS AND SLITS F. III 446. 1445. 52. 13.22 2.54 1.92 SAMOY SLITS AND SLITS F. III 445. 1465. 53. 14.22 SAMOY SLITS AND SLITS F. IIII 445. 1465.	41.	10.50	.22*	2.14	SANDY SILTS AND SILTS	F.III	494.	1134.
43. 11.27 21+ 1.82 SANOY SILTS AND SILTS F. ILI 451. 12.28 44. 18.23 400 2.20 SANOY SILTS AND SILTS F. IV 882. 2211. 45. 12.28 2.25 SANOY SILTS AND SILTS F. III 433. 1433. 45. 12.28 2.25 SANOY SILTS AND SILTS F. IIII 433. 1353. 46. 13.61 21* 1.52 SANOY SILTS AND SILTS F. IIII 435. 1516. 50. 13.27 22* 1.67 SANOY SILTS AND SILTS F. IIII 435. 1516. 51. 14.09 .46* 3.23 CLYEY SILTS AND SILTS F. IIII 436. 1445. 52. 13.22 .25* 1.92 SANOY SILTS AND SILTS F. IIII 436. 1445. 53. 13.64 .21* 1.52 SANOY SILTS AND SILTS F. IIII 435. 1465. 54. 1.22* 1.54 SANOY SILTS AND SILTS F. III 435. 1465. 55. 14.63 .27* 1.60 SANO	42.	11.55	.18 *	1.60	SANDY SILTS AND SILTS	F.III	407.	1275.
44. 18,23 40* 2.20 SMOY SLITS AND SLITS F. III 638. 1238. 45. 12.08 2.9* 2.25 SMOY SLITS AND SLITS F. III 638. 1438. 45. 12.02 2.1* 1.78 SMOY SLITS AND SLITS F. III 638. 1438. 47. 12.45 .18* 1.42 SMOY SLITS AND SLITS F. III 485. 1516. 48. 13.61 .20* 1.45 SMOY SLITS AND SLITS F. III 485. 1516. 50. 13.62 .22* 1.67 SMOY SLITS AND SLITS F. III 486. 1449. 51. 14.09 .46* 3.23 C.RYFY SLITS AND SLITS F. III 495. 1445. 53. 13.71 .22* 1.54 SAMOY SLITS AND SLITS F. III 495. 1445. 54. .22* 1.54 SAMOY SLITS AND SLITS F. III 495. 1596. 55. 14.61 .22* 1.54 SAMOY SLITS AND SLITS	43.	11.27	.21*	1.82	SANDY SILTS AND SILTS	F.III	4 51.	1226.
45. 12.88 .29* 2.25 SAMOY SILTS AND SILTS F. III 433. 1438. 46. 12.02 .21* 1.78 SAMOY SILTS AND SILTS F. III 471. 1306. 47. 12.45 .14* SAMOY SILTS AND SILTS F. III 435. 1516. 50. 13.61 .21* 1.52 SAMOY SILTS AND SILTS F. III 435. 1516. 50. 13.27 .22* 1.67 SAMOY SILTS AND SILTS F. III 435. 1450. 52. 1.32 .22* 1.54 SAMOY SILTS AND SILTS F. III 435. 1442. 53. 13.64 .21* 1.54 SAMOY SILTS AND SILTS F. IIII 455. 1442. 53. 14.61 .22* 1.54 SAMOY SILTS AND SILTS F. IIII 455. 1466. 54. 1.52 SAMOY SILTS AND SILTS F. IIII 455. 1466. 55. 14.62 .22* 1.55 SAMOY SILTS AND SILTS F. IIII 456. 55. 14.63 .24* 1.45 SAMOY SILTS AND SILTS <td>44.</td> <td>18.23</td> <td>.40*</td> <td>2.20</td> <td>SANDY SILTS AND SILTS</td> <td>F.IV</td> <td>882.</td> <td>2211.</td>	44.	18.23	.40*	2.20	SANDY SILTS AND SILTS	F.IV	882.	2211.
46. 12.02 21# 1.78 SMOUY SILTS AND SILTS F.III 47. 1306. 47. 12.45 .18# 1.42 SMOUY SILTS AND SILTS F.III 389. 1353. 48. 13.63 .20# 1.45 SMOUY SILTS AND SILTS F.III 485. 1516. 50. 13.27 .22# 1.67 SMOUY SILTS AND SILTS F.III 486. 1449. 51. 14.09 .46# 3.23 CLRYEY SILTS AND SILTS F.III 486. 1449. 51. 14.09 .46# 3.23 CLRYEY SILTS AND SILTS F.III 486. 1442. 53. 13.64 .21# 1.52 SAMOY SILTS AND SILTS F.III 495. 1956. 54.42 .20# 1.42 SAMOY SILTS AND SILTS F.III 446. 1540. 55. 14.61 .22# 1.54 SAMOY SILTS AND SILTS F.III 445. 1645. 56. 14.23 .152 SAMOY SILTS AND SILTS F.III	45.	12.88	.29*	2.25	SANDY SILTS AND SILTS	F.III	638.	1438.
47, 12.45 .184 1.42 SMADY SILTS AND SILTS F.III 389, 1355. 48, 13.61 .21* 1.52 SMADY SILTS AND SILTS F.III 455. 1516. 50, 13.27 .22* 1.67 SMADY SILTS AND SILTS F.III 485. 1445. 51. 14.09 .64* 3.23 CLIVEY SILTS AND SILTS F.III 486. 1445. 52. 13.22 .25* 1.92 SANDY SILTS AND SILTS F.III 495. 1485. 54. 13.64 .21* 1.52 SANDY SILTS AND SILTS F.III 495. 1485. 55. 14.61 .22* 1.54 SANDY SILTS AND SILTS F.III 495. 1485. 56. 14.23 .20* 1.42 SANDY SILTS AND SILTS F.III 445. 1546. 57. 14.61 .22* 1.55 SANDY SILTS AND SILTS F.III 456. 1445. 58. 14.23 .15* .35* SANDY SILTS AND SILTS F.III 457. 1665. 59. 14.23	46.	12.02	.21*	1.78	SANDY SILTS AND SILTS	F.III	471.	1306.
48. 13.61 .21* 1.52 GANDY SLITS AND SLITS F. III 435. 1516. 49. 13.63 .20* 1.45 GANDY SLITS AND SLITS F. III 435. 1510. 50. 13.27 .22* 1.67 SANDY SLITS AND SLITS F. III 436. 1449. 51. 14.09 .46* 3.23 CLAYEY SLITS AND SLITS F. III 436. 1449. 52. 13.22 .25* 1.92 SANDY SLITS AND SLITS F. III 435. 1445. 53. 13.64 .21* 1.52 GANDY SLITS AND SLITS F. III 445. 1446. 54. 14.28 SANDY SLITS AND SLITS F. III 445. 1540. 55. 14.23 .21* 1.45 SANDY SLITS AND SLITS F. III 445. 1566. 59. 14.23 .21* 1.53 SANDY SLITS AND SLITS F. III 451. 1506. 60. 14.23 .21* .45 SANDY SLITS AND SLITS F. IV	47.	12.45	.18#	1.42	SANDY SILTS AND SILTS	F.III	389.	1359.
49. 13.63 .20* 1.45 SANDY SILTS AND SILTS F. III 485. 1510. 50. 13.27 .22* 1.67 SANDY SILTS AND SILTS F. III 486. 1443. 51. 14.09 .46* 3.23 CLARVEY SILTS AND SILTS F. III 486. 1444. 52. 13.22 .25* 1.52 SANDY SILTS AND SILTS F. III 495. 1424. 53. 13.64 .21* 1.52 SANDY SILTS AND SILTS F. III 495. 1465. 54. 13.64 .21* 1.52 SANDY SILTS AND SILTS F. III 495. 1565. 55. 14.61 .22* 1.55 SANDY SILTS AND SILTS F. III 495. 1667. 56. 14.28 .20* 1.42 SANDY SILTS AND SILTS F. III 455. 1667. 58. 15.15 .23* 1.52 SANDY SILTS AND SILTS F. III 454. 1506. 60. 14.39 1.35 SANDY SILTS AND SILTS F. III 454. 1506. 61. 14.42 .21	48.	13,61	. 21 +	1.52	SANDY SILTS AND SILTS	F.III	455.	1516.
50. 13.27 .22* 1.67 SANDY SLITS AND SILTS F. III 488. 1449. 51. 14.09 .46* 3.23 CLAYEY SILTS AND SILTY CLAYS F. III 1001. 1558. 52. 13.22 .25* 1.92 SANDY SILTS AND SILTS F. III 455. 1424. 53. 13.61 .22* 1.54 SANDY SILTS AND SILTS F. III 455. 1464. 55. 14.61 .22* 1.54 SANDY SILTS AND SILTS F. IIII 455. 1465. 56. 14.28 .20* 1.42 SANDY SILTS AND SILTS F. III 456. 159. 57. 16.63 .27* 1.60 SANDY SILTS AND SILTS F. III 507. 1645. 58. 15.15 .23* 1.55 SANDY SILTS AND SILTS F. III 507. 1646. 59. 14.23 .21* 1.35 SANDY SILTS AND SILTS F. III 517. 1506. 61. 14.82 .23* 1.57	49.	13.63	.20+	1.45	SANDY SILTS AND SILTS	F.III	435.	1510.
51. 14.09 .46* 3.23 CLAYEY SILTS AND SILTY CLAYS F. III 1501. 1558. 52. 13.22 .25* 1.92 SANDY SILTS AND SILTS F. III 455. 1424. 53. 13.71 .22* 1.64 SANDY SILTS AND SILTS F. IIII 495. 1424. 54. 13.64 .21* 1.52 SANDY SILTS AND SILTS F. IIII 495. 1456. 55. 14.61 .22* 1.64 SANDY SILTS AND SILTS F. III 446. 1540. 56. 14.62 .22* 1.60 SANDY SILTS AND SILTS F. III 446. 1540. 57. 16.63 .27* 1.60 SANDY SILTS AND SILTS F. III 457. 1666. 58. 13.15 .23* 1.57 SANDY SILTS AND SILTS F. III 457. 1506. 60. 14.33 .19* 1.35 SANDY SILTS AND SILTS F. III 451. 1571. 62. 14.67 .19* 1.36 SANDY SILTS AND SILTS F. III 451. 1573. 62.	50.	13, 27	.22*	1.67	SANDY SILTS AND SILTS	F.III	486.	1449.
52. 13.22 .25* 1.92 SANDY SLITS AND SLITS F.III 495. 1484. 53. 13.71 .22* 1.64 SANDY SLITS AND SLITS F.III 495. 1485. 54. 13.64 .21* 1.52 SANDY SLITS AND SLITS F.III 456. 1466. 55. 14.61 .22* 1.54 SANDY SLITS AND SLITS F.IIII 456. 1667. 56. 16.53 .27* 1.60 SANDY SLITS AND SLITS F.IIII 450. 1667. 58. 15.15 .23* 1.52 SANDY SLITS AND SLITS F.IIII 450. 16667. 59. 14.23 .21* 1.45 SANDY SLITS AND SLITS F.IIII 450. 1667. 60. 14.33 .19* 1.35 SANDY SLITS AND SLITS F.IIII 451. 1506. 61. 14.62 .23* 1.57 SANDY SLITS AND SLITS F.III 451. 1577. 62. 14.67 .21* 1.46 SANDY SLITS AND SLITS F.III 451. 1455. 63. 14.03	51.	14.09	. 46#	3.23	CLAYEY SILTS AND SILTY CLAYS	F.II	1001.	1558.
53. 13.71 .22* 1.64 SANDY SLITS AND SLITS F. III 456. 1465. 54. 13.64 .21* 1.52 SANDY SLITS AND SLITS F. III 456. 1466. 55. 14.28 .20* 1.42 SANDY SLITS AND SLITS F. III 455. 14.61 .22* 1.54 SANDY SLITS AND SLITS F. III 456. 1667. 56. 14.28 .20* 1.42 SANDY SLITS AND SLITS F. III 457. 16663. 57. 16.63 .27* 1.60 SANDY SLITS AND SLITS F. III 450. 16667. 58. 15.15 .23* 1.57 SANDY SLITS AND SLITS F. III 457. 1646. 60. 14.39 .13* SANDY SLITS AND SLITS F. III 457. 1500. 61. 14.82 .23* 1.57 SANDY SLITS AND SLITS F. III 457. 1455. 62. 14.87 .21* 1.35 SANDY SLITS AND SLITS F. III 457. 1455. 63. 14.97 .13* SANDY SLITS AND SLITS F. II	52.	13.22	.25+	1.92	SANDY SILTS AND SILTS	F.III	558.	1424.
54. 13.64 .21* 1.52 SANDY SILTS AND SILTS F.III 455. 1465. 55. 14.61 .22* 1.54 SANDY SILTS AND SILTS F.III 445. 1596. 56. 14.28 .20* 1.42 SANDY SILTS AND SILTS F.III 445. 1540. 57. 16.63 .27* 1.60 SANDY SILTS AND SILTS F.IV 585. 1667. 58. 15.15 .23* 1.52 SANDY SILTS AND SILTS F.IV 454. 1506. 60. 14.33 .19* 1.35 SANDY SILTS AND SILTS F.IV 427. 1520. 61. 14.82 .23* 1.47 SANDY SILTS AND SILTS F.IV 451. 1571. 63. 14.12 .21* 1.47 SANDY SILTS AND SILTS F.IV 451. 1475. 64. 14.07 .19* 1.36 SANDY SILTS AND SILTS F.IV 405. 1417. 65. 14.93 .18* 1.32 SANDY SILTS AND SILTS F.IV 411. 1415. 66. 15.03 .1	53.	13.71	.22+	1.54	SANDY SILTS AND SILTS	F.III	495.	1485.
55. 14.61 .22* 1.54 SANDY SILTS AND SILTS F. III 495. 1595. 56. 14.28 .20* 1.42 SANDY SILTS AND SILTS F. III 446. 1540. 57. 16.63 .27* 1.60 SANDY SILTS AND SILTS F. III 507. 1645. 58. 15.15 .23* 1.52 SANDY SILTS AND SILTS F. III 507. 1646. 59. 14.23 .21* 1.45 SANDY SILTS AND SILTS F. III 427. 1520. 61. 14.82 .23* 1.57 SANDY SILTS AND SILTS F. III 451. 157. 62. 14.87 .21* 1.38 SANDY SILTS AND SILTS F. III 451. 157. 63. 14.12 .21* 1.36 SANDY SILTS AND SILTS F. III 451. 1435. 64. 14.07 .19* 1.36 SANDY SILTS AND SILTS F. IV 406. 1417. 65. 14.03 .19* 1.33 SANDY SILTS AND SILTS F. IV 405. 1470. 668. 14.03 <td>54.</td> <td>13.64</td> <td>.21#</td> <td>1.52</td> <td>SANDY SILTS AND SILTS</td> <td>F.III</td> <td>456.</td> <td>1466.</td>	54.	13.64	.21 #	1.52	SANDY SILTS AND SILTS	F.III	456.	1466.
56. 14.28 .20* 1.42 SANDY SILTS AND SILTS F. III 446. 1540. 57. 16.63 .27* 1.60 SANDY SILTS AND SILTS F. IV 585. 1867. 58. 15.15 .23* 1.52 SANDY SILTS AND SILTS F. III 507. 1646. 59. 14.23 .21* 1.45 SANDY SILTS AND SILTS F. III 427. 1520. 61. 14.82 .23* 1.57 SANDY SILTS AND SILTS F. IV 427. 1520. 62. 14.47 .38 SANDY SILTS AND SILTS F. III 451. 1573. 62. 14.77 .147 SANDY SILTS AND SILTS F. III 451. 1475. 63. 14.12 .21* 1.36 SANDY SILTS AND SILTS F. III 451. 1475. 64. 14.07 .19* 1.33 SANDY SILTS AND SILTS F. III 451. 1477. 65. 14.33 SANDY SILTS AND SILTS F. IV 406. 1417. 66. 14.03 .19* SANDY SILTS AND SILTS F. IV	55.	14.61	.22*	1.54	SANDY SILTS AND SILTS	F.III	495.	1596.
57. 16.63 .27* 1.60 SANDY SILTS AND SILTS F. IV 585. 1667. 58. 15.15 .23* 1.52 SANDY SILTS AND SILTS F. III 507. 1646. 59. 14.23 .21* 1.45 SANDY SILTS AND SILTS F. III 507. 1646. 60. 14.33 .21* 1.45 SANDY SILTS AND SILTS F. IV 427. 1520. 61. 14.82 .23* 1.57 SANDY SILTS AND SILTS F. III 451. 157. 62. 14.67 .21* 1.36 SANDY SILTS AND SILTS F. III 457. 1455. 63. 14.12 .21* 1.47 SANDY SILTS AND SILTS F. III 421. 1435. 64. 14.07 .19* 1.36 SANDY SILTS AND SILTS F. III 421. 1435. 65. 13.98 .18* 1.32 SANDY SILTS AND SILTS F. III 421. 1435. 66. 14.03 .19* 1.33 SANDY SILTS AND SILTS F. IV 406. 1417. 66. 14.03	56.	14.28	.20+	1.42	SANDY SILTS AND SILTS	F.III	446.	1540.
58. 15. 15 .23* 1.52 SANDY SILTS AND SILTS F. III 507. 1646. 59. 14.23 .21* 1.45 SANDY SILTS AND SILTS F. III 454. 1506. 60. 14.33 .19* 1.35 SANDY SILTS AND SILTS F. IV 427. 1520. 61. 14.82 .23* 1.57 SANDY SILTS AND SILTS F. IV 451. 1573. 62. 14.87 .21* 1.38 SANDY SILTS AND SILTS F. IV 451. 1577. 63. 14.12 .21* 1.47 SANDY SILTS AND SILTS F. IV 451. 1435. 64. 14.07 .19* 1.36 SANDY SILTS AND SILTS F. IV 406. 1417. 65. 13.38 .18* 1.32 SANDY SILTS AND SILTS F. IV 406. 1417. 66. 14.03 .19* 1.33 SANDY SILTS AND SILTS F. IV 411. 1415. 67. 14.48 .21* 1.44 SANDY SILTS AND SILTS F. IV 450. 1594. 68. 15.41	57.	16.63	.27 *	1.60	SANDY SILTS AND SILTS	F.IV	585.	1867.
59. 14.23 .21* 1.45 SANDY SILTS AND SILTS F. III 454. 1566. 60. 14.39 .19* 1.35 SANDY SILTS AND SILTS F. IV 427. 1520. 61. 14.62 .23* 1.57 SANDY SILTS AND SILTS F. IV 427. 1520. 62. 14.87 .21* 1.38 SANDY SILTS AND SILTS F. III 451. 1571. 63. 14.12 .21* 1.36 SANDY SILTS AND SILTS F. III 451. 1433. 65. 13.38 .18* 1.32 SANDY SILTS AND SILTS F. IV 406. 1417. 66. 14.03 .19* 1.33 SANDY SILTS AND SILTS F. IV 411. 1415. 67. 14.48 .21* 1.44 SANDY SILTS AND SILTS F. IV 495. 1594. 68. 15.41 .22* 1.46 SANDY SILTS AND SILTS F. IV 495. 1594. 69. 17.20 .20* 1.19 SANDY SILTS AND SILTS F. III 666. 1670. 71. 16.47	58.	15.15	.23*	1.52	SANDY SILTS AND SILTS	F.III	507.	1646.
60. 14.39 .19* 1.35 SANDY SILTS AND SILTS F. IV 427. 1520. 61. 14.82 .23* 1.57 SANDY SILTS AND SILTS F. III 152. 1573. 62. 14.87 .21* 1.38 SANDY SILTS AND SILTS F. III 451. 1577. 63. 14.12 .21* 1.47 SANDY SILTS AND SILTS F. III 457. 1455. 64. 14.07 .19* 1.36 SANDY SILTS AND SILTS F. IV 406. 1417. 65. 13.98 .18* 1.32 SANDY SILTS AND SILTS F. IV 401. 1415. 66. 14.03 .19* 1.33 SANDY SILTS AND SILTS F. IV 401. 1415. 67. 14.48 .21* 1.46 SANDY SILTS AND SILTS F. IV 495. 1594. 68. 15.41 .22* 1.46 SANDY SILTS AND SILTS F. IV 450. 1641. 71. 16.47 .31* 1.86 SANDY SILTS AND SILTS F. III 674. 1719. 72. 16.47	59.	14.23	.21*	1.45	SANDY SILTS AND SILTS	F.III	454.	1506.
61. 14.82 .23* 1.57 SANDY SILTS AND SILTS F. III 512. 1573. 62. 14.87 .21* 1.38 SANDY SILTS AND SILTS F. IV 451. 1571. 63. 14.12 .21* 1.47 SANDY SILTS AND SILTS F. III 457. 1435. 64. 14.07 .19* 1.35 SANDY SILTS AND SILTS F. IV 406. 1417. 65. 13.98 .18* 1.32 SANDY SILTS AND SILTS F. IV 406. 1417. 66. 14.03 .19* 1.33 SANDY SILTS AND SILTS F. IV 406. 1417. 66. 14.03 .19* 1.33 SANDY SILTS AND SILTS F. IV 495. 1594. 67. 14.48 .21* 1.44 SANDY SILTS AND SILTS F. IV 495. 1594. 68. 15.41 .22* 1.46 SANDY SILTS AND SILTS F. IV 495. 1694. 71. 16.47 .31* 1.66 SANDY SILTS AND SILTS F. IV 490. 220. 73. 17.75	60.	14.39	. 19 *	1.35	SANDY SILTS AND SILTS	F.IV	427.	1520.
62. 14.87 .21* 1.38 SANUY SILTS AND SILTS F. IV 451. 157. 63. 14.12 .21* 1.47 SANUY SILTS AND SILTS F. III 457. 1455. 64. 14.07 .19* 1.36 SANUY SILTS AND SILTS F. III 421. 1433. 65. 13.98 .18* 1.32 SANUY SILTS AND SILTS F. IV 406. 1417. 66. 14.03 .19* 1.33 SANUY SILTS AND SILTS F. IV 406. 1417. 67. 14.48 .21* 1.44 SANUY SILTS AND SILTS F. IV 406. 1417. 68. 15.41 .22* 1.46 SANUY SILTS AND SILTS F. IV 495. 1594. 69. 17.20 .20* 1.19 SANUY SILTS AND SILTS F. III 676. 1841. 70. 36.75 .574 1.55 SILTY SANDS F. VI 71. 16.47 .31* 1.66 SANUY SILTS AND SILTS F. III 676. 1670. 71. 16.47 .31* 1.66 SANUY SILTS AND SILTS<	61.	14.82	. 23 *	1.57	SANDY SILTS AND SILTS	F.III	512.	1573.
63. 14.12 .21* 1.47 SGNUY SILTS AND SILTS F. III 457. 1455. 64. 14.07 .19* 1.36 SGNUY SILTS AND SILTS F. III 421. 1439. 65. 13.98 .18* 1.32 SGNUY SILTS AND SILTS F. IV 406. 1417. 66. 14.03 .19* 1.33 SGNUY SILTS AND SILTS F. IV 411. 1415. 67. 14.48 .21* 1.44 SGNUY SILTS AND SILTS F. IV 411. 1455. 68. 15.41 .22* 1.46 SGNUY SILTS AND SILTS F. IV 455. 1594. 69. 17.20 .20* 1.19 SGNUY SILTS AND SILTS F. III 457. 1451. 71. 16.47 .31* 1.66 SGNUY SILTS AND SILTS F. III 676. 1664. 1670. 72. 16.19 .30* 1.67 SGNUY SILTS AND SILTS F. III 666. 1670. 73. 17.75 .33* 1.66 SGNUY SILTS AND SILTS F. III 666. 1670. 74.	62.	14.87	.21#	1.38	SANDY SILTS AND SILTS	F.IV	451.	1571.
64. 14.07 .19* 1.36 SANDY SILTS AND SILTS F.III 421. 14.39. 65. 13.98 .18* 1.32 SANDY SILTS AND SILTS F.IV 406. 1417. 66. 14.03 .19* 1.33 SANDY SILTS AND SILTS F.IV 411. 1415. 67. 14.48 .21* 1.44 SANDY SILTS AND SILTS F.IV 495. 1594. 68. 15.41 .22* 1.46 SANDY SILTS AND SILTS F.IV 495. 1594. 69. 17.20 .20* 1.19 SANDY SILTS AND SILTS F.IV 450. 1841. 70. 36.75 .57* 1.55 SILTY SANDS F.VI 71. 16.47 .31* 1.86 SANDY SILTS AND SILTS F.III 674. 1719. 71. 16.47 .31* 1.86 SANDY SILTS AND SILTS F.III 666. 1670. 73. 17.75 .33* 1.86 SANDY SILTS AND SILTS F.III 76. 1844. 2.10 SANDY SILTS AND SILTS F.III 666. 1670. 226.	63.	14.12	.21*	1.47	SANDY SILTS AND SILTS	F.III	457.	1455.
65. 13.98 .18* 1.32 SANDY SILTS AND SILTS F. IV 406. 1417. 66. 14.03 .19* 1.33 SANDY SILTS AND SILTS F. IV 411. 1415. 67. 14.48 .21* 1.44 SANDY SILTS AND SILTS F. IV 495. 1594. 68. 15.41 .22* 1.46 SANDY SILTS AND SILTS F. IV 495. 1594. 69. 17.20 .20* 1.19 SANDY SILTS AND SILTS F. IV 450. 1841. 70. 36.75 .57* 1.55 SILTY SANDS F. VI 774. 16.19 .30* 1.87 SANDY SILTS AND SILTS F. III 666. 1670. 73. 17.75 .33* 1.86 SANDY SILTS AND SILTS F. III 764. 1719. 76. 19.53 .44* 2.10 SANDY SILTS AND SILTS F. IV 832. 2138. 77. 20.84 .43* 2.07 SANDY SILTS AND SILTS F. IV 907. 2126. 77. 20.84 .43* 2.07 SANDY SILTS AND SILTS<	64.	14.07	.19#	1.36	SANDY SILTS AND SILTS	F.III	421.	1439.
66. 14.03 .19# 1.33 SANDY SILTS AND SILTS F. IV 411. 1415. 67. 14.48 .21# 1.44 SANDY SILTS AND SILTS F. III 459. 1470. 68. 15.41 .22# 1.46 SANDY SILTS AND SILTS F. IV 495. 1594. 69. 17.20 .20# 1.19 SANDY SILTS AND SILTS F. IV 450. 1841. 70. 36.75 .57# 1.55 SILTY SANDS F. VI 71. 16.47 .31# 1.86 SANDY SILTS AND SILTS F. III 666. 1670. 72. 16.19 .30# 1.87 SANDY SILTS AND SILTS F. III 726. 1884. 74. 19.59 .38# 1.93 SANDY SILTS AND SILTS F. IV 832. 2138. 75. 18.74 .37* 1.95 SANDY SILTS AND SILTS F. IV 832. 2138. 74. 19.59 .38# 1.95 SANDY SILTS AND SILTS F. IV 907. 2126. 77. 20.84 .43# 2.07 SANDY SILTS AND SILTS<	65.	13.98	.18 *	1.32	SANDY SILTS AND SILTS	F.IV	406.	1417.
67. 14.48 .21* 1.44 SANDY SILTS AND SILTS F. III 459. 1470. 68. 15.41 .22* 1.46 SANDY SILTS AND SILTS F. IV 495. 1594. 69. 17.20 .20* 1.19 SANDY SILTS AND SILTS F. IV 495. 1841. 70. 36.75 .57* 1.55 SILTY SANDS F. VI 71. 71. 16.47 .31* 1.86 SANDY SILTS AND SILTS F. III 674. 1719. 72. 16.19 .30* 1.87 SANDY SILTS AND SILTS F. III 666. 1670. 73. 17.75 .33* 1.86 SANDY SILTS AND SILTS F. III 726. 1884. 74. 19.59 .38* 1.93 SANDY SILTS AND SILTS F. IV 832. 2138. 75. 18.74 .37* 1.95 SANDY SILTS AND SILTS F. IV 907. 2126. 77. 20.84 .43* 2.07 SANDY SILTS AND SILTS F. IV 907. 2126. 77. 20.84 .43* 2.0	66.	14.03	.19#	1.33	SANDY SILTS AND SILTS	F.IV	411.	1415.
68. 15.41 .22* 1.46 SANDY SILTS AND SILTS F. IV 455. 1594. 69. 17.20 .20* 1.19 SANDY SILTS AND SILTS F. IV 450. 1841. 70. 36.75 .57* 1.55 SILTY SANDS F. VI 71. 16.47 .31* 1.86 SANDY SILTS AND SILTS F. III 674. 1719. 72. 16.19 .30* 1.87 SANDY SILTS AND SILTS F. III 676. 1670. 73. 17.75 .33* 1.86 SANDY SILTS AND SILTS F. IV 832. 2138. 74. 19.59 .38* 1.93 SANDY SILTS AND SILTS F. IV 832. 2138. 75. 18.74 .37* 1.95 SANDY SILTS AND SILTS F. IV 907. 2126. 77. 20.84 .43* 2.07 SANDY SILTS AND SILTS F. IV 907. 2126. 77. 20.84 .43* 2.07 SANDY SILTS AND SILTS F. IV 906. 2091. 79. 19.48 .39* 2.02 SANDY SILTS AND SILTS </td <td>67.</td> <td>14.48</td> <td>.21*</td> <td>1.44</td> <td>SANDY SILTS AND SILTS</td> <td>F.III</td> <td>459.</td> <td>1470-</td>	67.	14.48	.21 *	1.44	SANDY SILTS AND SILTS	F.III	459.	1470-
69. 17.20 .20* 1.19 SANDY SILTS AND SILTS F. IV 450. 1841. 70. 36.75 .57* 1.55 SILTY SANDS F.VI 71. 16.47 .31* 1.86 SANDY SILTS AND SILTS F. III 674. 1719. 72. 16.19 .30* 1.87 SANDY SILTS AND SILTS F. III 666. 1670. 73. 17.75 .33* 1.86 SANDY SILTS AND SILTS F. III 726. 1884. 74. 19.59 .38* 1.93 SANDY SILTS AND SILTS F. IV 832. 2138. 75. 18.74 .37* 1.95 SANDY SILTS AND SILTS F. IV 832. 2138. 75. 18.74 .37* 1.95 SANDY SILTS AND SILTS F. IV 907. 2126. 77. 20.84 .43* 2.07 SANDY SILTS AND SILTS F. IV 906. 2091. 79. 19.48 .39* 2.02 SANDY SILTS AND SILTS F. IV 937. 2157. 81. 19.86 .42* 2.11 SAND	68.	15.41	.22 *	1.46	SANDY SILTS AND SILTS	F.IV	495.	1594.
70. 36.75 .57* 1.55 SILTY SANDS F.VI 71. 16.47 .31* 1.86 SANDY SILTS AND SILTS F.III 674. 1719. 72. 16.19 .30* 1.87 SANDY SILTS AND SILTS F.III 666. 1670. 73. 17.75 .33* 1.86 SANDY SILTS AND SILTS F.III 726. 1884. 74. 19.59 .38* 1.93 SANDY SILTS AND SILTS F.IV 832. 2138. 75. 18.74 .37* 1.95 SANDY SILTS AND SILTS F.IV 804. 2007. 76. 19.63 .41* 2.10 SANDY SILTS AND SILTS F.IV 907. 2126. 77. 20.84 .43* 2.07 SANDY SILTS AND SILTS F.IV 9049. 2290. 78. 19.51 .41* 2.11 SANDY SILTS AND SILTS F.IV 905. 2091. 79. 19.48 .39* 2.02 SANDY SILTS AND SILTS F.IV 937. 2157. 81. 19.86 .42* 2.11 SANDY SILTS	69.	17.20	.20*	1.19	SANDY SILTS AND SILTS	F.IV	450.	1841.
71. 16.47 .31* 1.86 SANDY SILTS AND SILTS F. III 6/4. 1/19. 72. 16.19 .30* 1.87 SANDY SILTS AND SILTS F. III 666. 1670. 73. 17.75 .33* 1.86 SANDY SILTS AND SILTS F. III 726. 1884. 74. 19.59 .38* 1.93 SANDY SILTS AND SILTS F. III 726. 1884. 75. 18.74 .37* 1.95 SANDY SILTS AND SILTS F. IV 832. 2138. 75. 18.74 .37* 1.95 SANDY SILTS AND SILTS F. IV 804. 2007. 76. 19.63 .41* 2.10 SANDY SILTS AND SILTS F. IV 907. 2126. 77. 20.84 .43* 2.07 SANDY SILTS AND SILTS F. IV 906. 2091. 78. 19.51 .41* 2.11 SANDY SILTS AND SILTS F. IV 906. 2091. 79. 19.48 .39* 2.02 SANDY SILTS AND SILTS F. IV 937. 2157. 81. 19.88	70.	36.75	• 57 *	1.55	SILTY SANDS	F.VI		
72. 16.19 .30* 1.87 SANDY SILTS AND SILTS F. III 666. 16/0. 73. 17.75 .33* 1.86 SANDY SILTS AND SILTS F. III 726. 1884. 74. 19.59 .38* 1.93 SANDY SILTS AND SILTS F. IV 832. 2138. 75. 18.74 .37* 1.95 SANDY SILTS AND SILTS F. IV 907. 2126. 76. 19.63 .41* 2.10 SANDY SILTS AND SILTS F. IV 907. 2126. 77. 20.84 .43* 2.07 SANDY SILTS AND SILTS F. IV 906. 2091. 78. 19.51 .41* 2.11 SANDY SILTS AND SILTS F. IV 906. 2091. 79. 19.48 .39* 2.02 SANDY SILTS AND SILTS F. IV 937. 2157. 81. 19.88 .42* 2.11 SANDY SILTS AND SILTS F. IV 923. 2117. 82. 19.28 .38* 1.95 SANDY SILTS AND SILTS F. IV 923. 2017. 84. 20.13	71.	16.47	.31#	1.86	SANDY SILTS AND SILTS	F.III	674.	1719.
73. 17.75 .33* 1.86 SANDY SILTS AND SILTS F. III 725. 1884. 74. 19.59 .38* 1.93 SANDY SILTS AND SILTS F. IV 832. 2138. 75. 18.74 .37* 1.95 SANDY SILTS AND SILTS F. IV 832. 2138. 76. 19.63 .41* 2.10 SANDY SILTS AND SILTS F. IV 907. 2126. 77. 20.84 .43* 2.07 SANDY SILTS AND SILTS F. IV 949. 2290. 78. 19.51 .41* 2.11 SANDY SILTS AND SILTS F. IV 906. 2091. 79. 19.48 .39* 2.02 SANDY SILTS AND SILTS F. IV 937. 2157. 80. 20.10 .43* 2.12 SANDY SILTS AND SILTS F. IV 937. 2157. 81. 19.88 .42* 2.11 SANDY SILTS AND SILTS F. IV 923. 2117. 82. 19.28 .38* 1.95 SANDY SILTS AND SILTS F. IV 923. 2117. 84. 20.13	72.	16.19	.30*	1.87	SANDY SILTS AND SILTS	F.III	666.	1670.
74. 19.59 .38* 1.93 SANDY SILTS AND SILTS F. IV 832. 2138. 75. 18.74 .37* 1.95 SANDY SILTS AND SILTS F. III 804. 2007. 76. 19.63 .41* 2.10 SANDY SILTS AND SILTS F. IV 907. 2126. 77. 20.84 .43* 2.07 SANDY SILTS AND SILTS F. IV 949. 2290. 78. 19.51 .41* 2.11 SANDY SILTS AND SILTS F. IV 906. 2091. 79. 19.48 .39* 2.02 SANDY SILTS AND SILTS F. IV 906. 2091. 80. 20.10 .43* 2.12 SANDY SILTS AND SILTS F. IV 937. 2157. 81. 19.88 .42* 2.11 SANDY SILTS AND SILTS F. IV 923. 2117. 82. 19.28 .38* 1.95 SANDY SILTS AND SILTS F. IV 923. 2117. 83. 19.60 .38* 1.93 SANDY SILTS AND SILTS F. IV 932. 2059. 84. 20.13	73.	17.75	.33*	1.86	SANDY SILTS AND SILTS	F.III	726.	1884.
75. 18.74 .37* 1.95 SANDY SILTS AND SILTS F. III 804. 2007. 76. 19.63 .41* 2.10 SANDY SILTS AND SILTS F. IV 907. 2126. 77. 20.84 .43* 2.07 SANDY SILTS AND SILTS F. IV 949. 2290. 78. 19.51 .41* 2.11 SANDY SILTS AND SILTS F. IV 906. 2091. 79. 19.48 .39* 2.02 SANDY SILTS AND SILTS F. IV 906. 2077. 80. 20.10 .43* 2.12 SANDY SILTS AND SILTS F. IV 937. 2157. 81. 19.88 .42* 2.11 SANDY SILTS AND SILTS F. IV 923. 2117. 82. 19.28 .38* 1.95 SANDY SILTS AND SILTS F. IV 923. 2059. 83. 19.60 .38* 1.93 SANDY SILTS AND SILTS F. IV 832. 2059. 84. 20.13 .40* 1.98 SANDY SILTS AND SILTS F. IV 838. 409. 2161. 85.	74.	19.59	. 38×	1.93	SANDY SILTS AND SILTS	F.IV	832.	2138.
76. 19.63 .41* 2.10 SANDY SILTS AND SILTS F. IV 907. 2125. 77. 20.84 .43* 2.07 SANDY SILTS AND SILTS F. IV 949. 2290. 78. 19.51 .41* 2.11 SANDY SILTS AND SILTS F. IV 906. 2091. 79. 19.48 .39* 2.02 SANDY SILTS AND SILTS F. IV 937. 2157. 80. 20.10 .43* 2.12 SANDY SILTS AND SILTS F. IV 937. 2157. 81. 19.88 .42* 2.11 SANDY SILTS AND SILTS F. IV 923. 2117. 82. 19.28 .38* 1.95 SANDY SILTS AND SILTS F. IV 923. 2022. 83. 19.60 .38* 1.93 SANDY SILTS AND SILTS F. IV 832. 2059. 84. 20.13 .40* 1.98 SANDY SILTS AND SILTS F. IV 832. 2059. 85. 20.44 .41* 2.00 SANDY SILTS AND SILTS F. III 877. 2126. 85. 20.44	75.	18.74	.37 *	1, 95	SANDY SILTS AND SILTS	F.III	804.	2007.
77. 20.84 .43* 2.07 SANDY SILTS AND SILTS F. IV 949. 2290. 78. 19.51 .41* 2.11 SANDY SILTS AND SILTS F. IV 906. 2091. 79. 19.48 .39* 2.02 SANDY SILTS AND SILTS F. III 866. 2077. 80. 20.10 .43* 2.12 SANDY SILTS AND SILTS F. IV 937. 2157. 81. 19.88 .42* 2.11 SANDY SILTS AND SILTS F. IV 923. 2117. 82. 19.28 .38* 1.95 SANDY SILTS AND SILTS F. IV 923. 2022. 83. 19.60 .38* 1.93 SANDY SILTS AND SILTS F. IV 832. 2059. 84. 20.13 .40* 1.98 SANDY SILTS AND SILTS F. III 877. 2126. 85. 20.44 .41* 2.00 SANDY SILTS AND SILTS F. III 879. 2161. 86. 34.84 1.40* 4.02 CLAYEY SILTS AND SILTY F. V 3081. 4209. 87. 27.38	76.	19.63	.41#	2.10	SANDY SILTS AND SILTS	F.IV	907.	2126.
78. 19.51 .41* 2.11 SANDY SILTS AND SILTS F. IV 906. 2091. 79. 19.48 .39* 2.02 SANDY SILTS AND SILTS F. III 866. 2077. 80. 20.10 .43* 2.12 SANDY SILTS AND SILTS F. IV 937. 2157. 81. 19.88 .42* 2.11 SANDY SILTS AND SILTS F. IV 923. 2117. 82. 19.28 .38* 1.95 SANDY SILTS AND SILTS F. IV 923. 2022. 83. 19.60 .38* 1.93 SANDY SILTS AND SILTS F. IV 832. 2059. 84. 20.13 .40* 1.98 SANDY SILTS AND SILTS F. III 877. 2126. 85. 20.44 .41* 2.00 SANDY SILTS AND SILTS F. III 899. 2161. 86. 34.84 1.40* 4.02 CLAYEY SILTS AND SILTY CLAYS F. V 3081. 4209. 87. 27.38 1.22* 4.45 CLAYEY SILTS AND SILTY CLAYS F. II 2681. 3135. 88.	77.	20.84	.43 *	2.07	SANDY SILTS AND SILTS	F.IV	949. Doc	2290.
79. 19.48 .39* 2.02 SANDY SILTS AND SILTS F. III 868. 2077. 80. 20.10 .43* 2.12 SANDY SILTS AND SILTS F. IV 937. 2157. 81. 19.88 .42* 2.11 SANDY SILTS AND SILTS F. IV 923. 2117. 82. 19.28 .38* 1.95 SANDY SILTS AND SILTS F. IV 923. 2022. 83. 19.60 .38* 1.93 SANDY SILTS AND SILTS F. IV 832. 2059. 84. 20.13 .40* 1.98 SANDY SILTS AND SILTS F. III 877. 2126. 85. 20.44 .41* 2.00 SANDY SILTS AND SILTS F. III 899. 2161. 86. 34.84 1.40* 4.02 CLAYEY SILTS AND SILTY F. V 3081. 4209. 87. 27.38 1.22* 4.45 CLAYEY SILTS AND SILTY F. II 2681. 3135. 88. 32.52 1.02* 3.13 SANDY SILTS AND SILTS F. II 2681. 3135. 89. 20.28<	78.	19.51	. 41*	2.11	SANDY SILTS AND SILTS	F.IV	906.	2091.
80. 20.10 .43* 2.12 SANDY SILTS AND SILTS F. IV 937. 2157. 81. 19.88 .42* 2.11 SANDY SILTS AND SILTS F. IV 923. 2117. 82. 19.28 .38* 1.95 SANDY SILTS AND SILTS F. IV 923. 2022. 83. 19.60 .38* 1.93 SANDY SILTS AND SILTS F. IV 832. 2059. 84. 20.13 .40* 1.98 SANDY SILTS AND SILTS F. III 877. 2126. 85. 20.44 .41* 2.00 SANDY SILTS AND SILTS F. III 899. 2161. 86. 34.84 1.40* 4.02 CLAYEY SILTS AND SILTY F. V 3081. 4209. 87. 27.38 1.22* 4.45 CLAYEY SILTS AND SILTY CLAYS F. II 2681. 3135. 88. 32.52 1.02* 3.13 SANDY SILTS AND SILTS F. II 2681. 3135. 89. 20.28 .61* 3.03 SANDY SILTS AND SILTS F. II 1352. 2103. 90.	79.	19.48	.39 *	2.02	SANDY SILTS AND SILTS	F. 111	866.	2077.
81. 19.88 .42* 2.11 SANDY SILTS AND SILTS F. IV 923. 2117. 82. 19.28 .38* 1.95 SANDY SILTS AND SILTS F. III 827. 2022. 83. 19.60 .38* 1.93 SANDY SILTS AND SILTS F. IV 832. 2059. 84. 20.13 .40* 1.98 SANDY SILTS AND SILTS F. III 877. 2126. 85. 20.44 .41* 2.00 SANDY SILTS AND SILTS F. III 899. 2161. 86. 34.84 1.40* 4.02 CLAYEY SILTS AND SILTY F. V 3081. 4209. 87. 27.38 1.22* 4.45 CLAYEY SILTS AND SILTY F. II 2681. 3135. 88. 32.52 1.02* 3.13 SANDY SILTS AND SILTY F. V 2239. 3860. 89. 20.28 .61* 3.03 SANDY SILTS AND SILTS F. II 1352. 2103. 90. 20.40 .54* 2.67 SANDY SILTS AND SILTS F. IV 1198. 2111.	80.	20.10	. 43≭	2.12	SANDY SILTS AND SILTS	F.IV	937.	2157.
82. 19.28 .38* 1.95 SANDY SILTS AND SILTS F. III 827. 2022. 83. 19.60 .38* 1.93 SANDY SILTS AND SILTS F. IV 832. 2059. 84. 20.13 .40* 1.98 SANDY SILTS AND SILTS F. III 877. 2126. 85. 20.44 .41* 2.00 SANDY SILTS AND SILTS F. III 899. 2161. 86. 34.84 1.40* 4.02 CLAYEY SILTS AND SILTY CLAYS F. V 3081. 4209. 87. 27.38 1.22* 4.45 CLAYEY SILTS AND SILTY CLAYS F. II 2681. 3135. 88. 32.52 1.02* 3.13 SANDY SILTS AND SILTS F. II 2681. 3135. 89. 20.28 .61* 3.03 SANDY SILTS AND SILTS F. II 1352. 2103. 90. 20.40 .54* 2.67 SANDY SILTS AND SILTS F. IV 1198. 2111.	81.	19.88	. 42*	2.11	SANDY SILTS AND SILTS	F.IV	923.	2117.
83. 19.60 .38* 1.93 SANDY SILTS AND SILTS F. IV 832. 2059. 84. 20.13 .40* 1.98 SANDY SILTS AND SILTS F. III 877. 2126. 85. 20.44 .41* 2.00 SANDY SILTS AND SILTS F. III 879. 2161. 86. 34.84 1.40* 4.02 CLAYEY SILTS AND SILTY CLAYS F. V 3081. 4209. 87. 27.38 1.22* 4.45 CLAYEY SILTS AND SILTY CLAYS F. II 2681. 3135. 88. 32.52 1.02* 3.13 SANDY SILTS AND SILTS F. II 2681. 3135. 89. 20.28 .61* 3.03 SANDY SILTS AND SILTS F. II 1352. 2103. 90. 20.40 .54* 2.67 SANDY SILTS AND SILTS F. IV 1198. 2111.	82.	19.28	.38+	1.95	SANDY SILTS AND SILTS	F.III	. 827.	2022.
84. 20.13 .40* 1.98 SANDY SILTS AND SILTS F. III 87. 2125. 85. 20.44 .41* 2.00 SANDY SILTS AND SILTS F. III 899. 2161. 86. 34.84 1.40* 4.02 CLAYEY SILTS AND SILTY CLAYS F. V 3081. 4209. 87. 27.38 1.22* 4.45 CLAYEY SILTS AND SILTY CLAYS F. II 2681. 3135. 88. 32.52 1.02* 3.13 SANDY SILTS AND SILTS F. V 2239. 3860. 89. 20.28 .61* 3.03 SANDY SILTS AND SILTS F. II 1352. 2103. 90. 20.40 .54* 2.67 SANDY SILTS AND SILTS F. IV 1198. 2111.	83.	19.60	. 38*	1.93	SANDY SILTS AND SILTS	F.IV	832.	2023.
85. 20.44 .41* 2.00 SANDY SILTS AND SILTS F. III 899. 2161. 86. 34.84 1.40* 4.02 CLAYEY SILTS AND SILTY CLAYS F. V 3081. 4209. 87. 27.38 1.22* 4.45 CLAYEY SILTS AND SILTY CLAYS F. II 2681. 3135. 88. 32.52 1.02* 3.13 SANDY SILTS AND SILTS F. V 2239. 3860. 89. 20.28 .61* 3.03 SANDY SILTS AND SILTS F. II 1352. 2103. 90. 20.40 .54* 2.67 SANDY SILTS AND SILTS F. IV 1198. 2111.	84.	20.13	.40#	1.98	SANDY SILTS AND SILTS	F.III	877.	2126.
86. 34.84 1.40* 4.02 CLAYEY SILTS AND SILTY CLAYS F. V 3081. 4209. 87. 27.38 1.22* 4.45 CLAYEY SILTS AND SILTY CLAYS F. II 2681. 3135. 88. 32.52 1.02* 3.13 SANDY SILTS AND SILTY F. V 2239. 3860. 89. 20.28 .61* 3.03 SANDY SILTS AND SILTS F. II 1352. 2103. 90. 20.40 .54* 2.67 SANDY SILTS AND SILTS F. IV 1198. 2111.	85.	20.44	.41#	2.00	SANDY SILTS AND SILTS	F.III	899.	2161.
87. 27.38 1.22* 4.45 CLAYEY SILTS AND SILTY CLAYS F. II 2681. 3135. 88. 32.52 1.02* 3.13 SANDY SILTS AND SILTS F. V 2239. 3860. 89. 20.28 .61* 3.03 SANDY SILTS AND SILTS F. II 1352. 2103. 90. 20.40 .54* 2.67 SANDY SILTS AND SILTS F. IV 1198. 2111.	86.	34.84	1.40*	4.02	CLAYEY SILTS AND SILTY CLAYS	F.V	3081.	4203. 7.75
88. 32.52 1.02* 3.13 SANDY SILTS AND SILTS F.V 2239. 3860. 89. 20.28 .61* 3.03 SANDY SILTS AND SILTS F.II 1352. 2103. 90. 20.40 .54* 2.67 SANDY SILTS AND SILTS F.IV 1198. 2111.	87.	27.38	1.22*	4.45	CLAYEY SILTS AND SILTY CLAYS	F.II	2681.	3133.
89. 20.28 .61* 3.03 SANDY SILTS AND SILTS F. II 1352. 2103. 90. 20.40 .54* 2.67 SANDY SILTS AND SILTS F. IV 1198. 2111.	88.	32, 52	1.02*	3.13	SANDY SILTS AND SILTS	F.V	2239.	3860.
90. 20.40 .54* 2.67 SANDY SILTS AND SILTS F.IV 1198. 2111.	89.	20.28	.61*	3.03	SANDY SILTS AND SILTS	F. 11	1352.	2103-
	90.	20.40	• 54+	2.67	SANDY SILTS AND SILTS	F.1V	1138*	Cili.

.

DEPTH	TIP	SLEEVE	FRICTION	SOIL.	RUFACIES	SU=Sleeve+ 1.1	SU=(C-T)/14.0
	RESISTANCE	FRICTION	RATIO	CLASSIFICATION			
(FEET)	(TSF)	(TSF)	(*)			(PSF)	(PSF)
91.	21.40	.40 1	1.85	SANDY SILTS AND SILTS	F.IV	871.	2245.
92.	21.61	.37 #	1.70	SANDY SILTS AND SILTS	F.IV	808.	2266.
93.	20.16	.37+	1.84	SANDY SILTS AND SILTS	F.IV	816.	2050.
94.	30.87	. 86*	2. 78	SANDY SILTS AND SILTS	F.IV	1888.	3571.
95.	20.19	. 45*	2.22	SANDY SILTS AND SILTS	F.IV	986.	2036.
96.	20.38	.41*	2.02	SANDY SILTS AND SILTS	F.III	906.	2054.
97.	20.70	. 42*	2.04	SANDY SILTS AND SILTS	F.IV	923.	2091.
98.	20.63	.43*	2.08	SANDY SILTS AND SILTS	F.IV	944.	2072.
99.	21.26	43 *	2.04	SANDY SILTS AND SILTS	F,IV	954.	2153.
100.	20.54	.45*	2.24	SANDY SILTS AND SILTS	F.IV	1012.	2041.

•

APPENDIX B

RESULTS OF LABORATORY TESTS

APPENDIX B RESULTS OF LABORATORY TESTS

Seven undisturbed samples were taken using a 3" shelby tube and an Acker piston sampler. Two shelby tube samples were sent to the Woodward-Clyde Consultants laboratory in Clifton, New Jersey for consolidation, direct shear, and direct simple shear testing. Five shelby tube samples were sent to the Alaska DOT&PF Central laboratory for soil classification, UU triaxial, torvane, and mini-vane testing.

The mini-vane test is a laboratory test consisting of pushing a 1/2 inch by 1/2 inch vane into a sample of "undisturbed" soil and applying a rotational force at a rate of 10 degrees per minute. After the soil had reach the initial peak shear strength, the vane was rotated rapidly to insure that the sample was disturbed. The residual soil strength was measured approximately five minutes after the initial test.

The results of these laboratory tests are summarized in the following pages.

RESULTS OF LABORATORY TESTS

CONDUCTED BY ALASKA DOT&PF

.

B-3

B-4

STATE OF ALASKA

DEPARTMENT OF TRANSPORTATION & PUBLIC FACILITIES

.

MATERIALS SECTION

	Proje	ct No	Project Name "L" Street Slide									sheet of sheets									
	Borina	Depth	Laboratory	Gri	ading Anciysis					ng	Atte	rberg	Nat.	Nat.	Specific	F.S.V.	AASHO	Unified	AK DOT&PH	ŧ.	
	and	in	Number		Grave		• Sa	nd	S	111	Clay	Lin	nite	Dry	Molst	Gravity	(Corps	Group			
	Sample No	Foot		1"	1/2"	#4	#10	#40	1200	.02	.005	Llquld Llmit	Plastic Index	Density P.C.F	%		of Eng)	Classif			
	1	37-39	84A-1934					100	99	77	30	31	· 9	105.3	22.1			A-4(9)	CL	ClySi	
	1	42-44	84A-1991					100	73			20	3		24.8			A-4(0)	ML	SaSi	
	1	46.5- 47	84A-1993					100	91	50	18	22	5		21.8			A-4(2)	CL-ML	ClySi	
h-1	1	46-48	84A-1992					100	75			NV	NP		22.2			A-4(0)	MI.	SaSi	
ິ ດ	1	50- 50,2	84A-1994					100	38_	15	5	NV	NP		22.5			A-4(0)	SM	SaS i	
	1	50.2- 52	84A-1995					100	84			NV	NP		19.6			A-4(0)	ML	Si	
	1	53-55	84A-2022					100	99	37	16	22	4		-			A-4(1)	CL-ML	Si	
	1	53-55	84A-1933					100	97	62	28	26	9	96.5	27.4			A-4(7)	CL	clysi	*
	1	58-60	84A-1931		-				100	91	48	36	12	93.5	30.6			A-6(13)	C1.	SiC1	
	1	70-72	84A-1932						100	95	50	34	11	87.3	34.5			A-6(12)	C1	SiCl	
	1	100- 102	84A-1935						100	99	51	35	13	90.1	33.0			A-6(14)	C1	sic1	
																				Í	
	, ,															·					
	1	<u> </u>																			
	Rema	rksi _																			
																····					

					Torva	ne*	Field Vane Shear Mini Vane			ľ			
DEPTH	LL	PI	LI	Mt	Field	Lab	Initial	Residual**	Sens.	Initial	Residual	Sens.	00
37'-39'	31	9	0	22.1	1.28					6.50	5.20	1.25	2.55
40.25'							4.04	1.98	2.0				
53'-55'	26	9	1.15	27.4	. 30					3.4 3.4	2.6	1.3	2.0
56.5'							1.96	1.28	1.5				
58'-60'	36	12	- 55	30.6	.72	.90							1.71
61 5'							1.96	. 50	3.9				
63'-65'	36	16	. 53	28.5	.73								
66.5'							2.30	. 62	3.7				
70'-72'	34	11	1.05	34.5	.76	80				2.34 2.60			1.27
73.5'							2.44	. 50	4.9				
75'-77'					.72								
78.5'							1.30	. 46	2.8				
100-102'	35	13	. 85	33.0	.54					3.10	2.70	1.15	1.28
103.5'							2.04	. 56	3.7				

SHEAR STRENGTH (KSF)

*Average **1 minute reading

В-7

46 0700

NO X 10 TO THE INCH+ / X 10 10 00ES

ž

B-8

B-10

RESULTS OF LABORATORY TESTS

CONDUCTED BY WCC

:

LABORATORY TESTING ASSIGNMENT AND DATA SUMMARY

Reviewed by <u>PF</u> Date <u>12/6/84</u>

Project No. 84C4232 Project Engr . S. LAND Assigned By Date: Assigned 1184 Required

Identification Tests

Required ASAP

•

1 1				Identification Tests							S	itrength			Consol.		Com	paction					
Boring No.	Sample No.	Depth f t	Water Content %	LL %	PL %	Sieve -200 %	Hyd 2 µ %	G _S	¥t pcf		Perme- ability	Torvane S _u tsf	Pocket Penetr. ^q u tsf	T <u>ype Test</u> G _{C kSF}	Peak 07-03 tsf	Axial Strain %	Method	Mod.	Std.	Max Min pcf	- %		han, D V V S V S V S V S V S V S V S V S V S
тн-1	FS - 1063	63-65								- -	e	led.											
	A	63.1																					
		63.3	21.6									0.35	1.0,0.0	e sa	idy m	atil							
	в	63.4				ļ																	
		63.6	32.3									0.42	0.5,0.5										
	C	63.8												•									
		63.9	34.2									0.57	0.8,0.8										
	D	64.1																					
		64.2	31.8	trim	(4)							0.55	0.8,0.8	e e					,				
	E	64.3	31.8	36	20			2.748	120.0	,					Concolida T	tion est	1-94.	W0=	33.99 0.93E	• 50	=10	0.1	6
		64.45	34.1	PZ	- 16							0.58	0.8,0.8		TMAX (KSF)	(de)							
	F	64.6	34.7						116.6					055 Tru:=16.00	2.971	9.19	د ودیا د مربا	39.4	He =	124.6	0.1	26	Π
		64.7	35.0									0.57	0.8,0.8						-70	20			Π
	G	64.8	35,0						119.9					direct sinur	* 26°	res	idual 2	20°	Ī.	= 16 K	4		П
														/									Π
					-							1											\square
						1				·		[1			 			T
																							П
										1	İ												╉
										<u> </u>		<u> </u>											+
										<u> </u>		<u> </u>								<u> </u>			+
											<u> </u>	 				ļ							┽┥
																<u> </u>				 			┽┥

• •

Indicates hold point

CONSOLIDATION TEST

LR-302

THIS DIPECT SIMPLE SHEAP TEST HAS BEEN CALCULATED USING CLIFTON LABORATORY PROGRAM NO. CL-C-DSS-1 ON FILE NO. D-190

PROJECT NO. 84C4232 BORING NO. TH-1 SAMPLE NO. FS-1063 SPECIMEN NO. F. DEPTH(FT) 64.6

INPUT DATA CHECKED BY DATE RESULTS REVIEWED BY ------

TEST NO. NONE and a second
۰.

TEST SPECIMEN CONSOLIDATED WITH AN AMBIENT SHEAR STRESS NO

~

PRE SHEAR STRESS CONDITIONS

.... SPECIMEN HEIGHT = 0.6151' INCH SPECIMEN AREA = 37.898 SQR. FT.+10E-3

VERTICAL CONSOLIDATION STRESS = 16.0014 KSF OCR = 1.0000

..

PRE SHEAR VERTICAL CONSOLIDATION STRESS USED TO NORMALIZE TEST DATA

				.	A		<u> </u>		10			.•
 			PORE		SECANT	TANGENT	NORM	NORM	NORM	NORM	NORM	
SHEAR	SHEAR	VERT	PRESSURE	STRESS	SHEAR	SHEAR	SHEAR	PORE PRESS	VERT	SECANT	TANGENT	
 STRAIN	STRESS	STRESS -	CHANGE -	RATIO	HODULUS	MODULUS	_ STRESS _	- CHANGE	STRESS	MODULUS	HODULUS	
7	KSF	K8F	KSF		KSF	KSF					•	·. •
 0.0000						0.000		0.0000				
0.0016	0.0187	15.9956	0.0058	0.0012	1152.359	860.212	0.0012	2 0.0004	0.9996	72.016	53.759	
0.0033	0.0280	15.9929	0.0084	0,0017	860.212	722,253	0.0017	7 0.0005	0.9995	53.759	45.137	
0.0049		15.9929	0-0084-			-1079-322	-0.0024				67,482-	
0.0065	0.0631	15,9903	0.0111	0.0039	969.767	762.829	0.0039	9 0.0007	0.9993	60.605	47.673	
0.0098	0.0710	15,9929	0.0084	0.0044	727.663	876.442	0.0044	0.0005	0.9995	45.475	54.773	
 0-0114-	0. 0765 -				839, 344	1822.778		9-0-0-0007-			82.667	
0.0130	0.1140	15.9903	0.0111	0.0071	876.442	706.023	0.0071	0.0007	0.9993	54.773	44.123	
0.0163	0.1230	15.9877	0.0137	0.0077	756.337	413,875	0.0077	7 0.0009	0.9991	47.267	25.865	
0.0179	0.1319	15.9877	0.0137	- 0,0083		485.725	0,0082	2 -0.0009	0,9991	46. 105	42.855	
0.0211	0.1586	15.9877	0.0137	0.0099	750.344	1310.605	0.0099	9 0,0009	0,9991	46.892	81.905	
0.0228	0.1879	15.9824	0.0190	0.0118	825.432	1042.804	0.0117	7 0.0012	0.9988	51,585	65.170	
0,0240			0.0190	0,0123	757.,757	- 1447, 474	0,0123	30.0012	0,.9988		104,221-	
0.0293	0.2963	15.9718	0.0296	0.0186	1012.597	2004,455	0.018	5 0.0018	0.9982	63.282	125.268	
0.0309	0.3119	15.9718	0.0296	0.0195	1009.702	734.426	0.019	5 0.0018	0.9982	63, 101	45.898	
0.0341	0.3285	15.9718	0.0296	0.0204	- 962-231		0,020	5 0.0018	0.9982	60, 134	31.190	
0.0374	0.3443	15.9718	0.0296	0.0216	920.899	427.401	0.021	5 0.0018	0,9982	57,551	26.710	
0.0423	0.3623	15,9639	0.0375	0.0227	857.090	470.682	0.0226	6 0.0023	0.9977	53,564	29.415	
 0.0520	0.4192	15.9540	0.0454	0,0242	802.912	499,761	0+0261	0,0028				
0.0715	0.5013	15.9423	0.0596	0.0314	700.859	420.773	0.0313	3 0.0037	0.9963	43.800	26.296	
0.0797	0.5351	15.9349	0.0665	0.0336	671.740	403,867	0.0334	4 0.0042	0,9958	41.980	25.240	
0.0792	0.6116	15,9164	0.0850	0.0384	616.756	299.033	0.0382	2 0.0053	0.9947	38.544	18.688	
0.1349	0.6853	15.8900	0.1114	0.0431	507.836	287.247	0.0428	B 0,0070	0.9930	31.737	17.951	-
0.1463	0.7272	15.8742	0.1272	0.0458	·· 497.011	471.841	0.0454	0.0079	0.9921	31.061	29.488	_

in the second
- . .

.

. .

1	0.1463	0.7272	15.8742	0,1272	0.0458	497.011	471.841	0.0454	0.0079	0.9921	31.061	29.488	
<u></u>	0.1577	0.7927	15.8478	0.1536	0.0500	502.641	380.097	0.0495	0.0096	0.9904	31.412	23.754	
	0.1935	0.8589	15.8161	0,1852	0.0543	443.949	223.445	0,0537	0.0116	0.9834	27.744	13.964	
	0,2065	0.8929	15.7977	0,2037	0.0565	432.470	250.199	0.0558	0.0127	0,9873	27.027	15.636	-
	0.2341	0,9599	15.7634	0.2390	0.0608	409 593	222.131	0.0500	0.0149	0,9851	25.597	13.882	
	0.2634	1.0191	15.7264	0.2749	0.0649	386.925	212.799	- 0.0637 -	0.0172	0.9828	24.181	- 13,299	
ï	0.2780	1.0512	15,7080	0.2934	0.0669	378,140	270.958	0.0657	0.0183	0.9817	23.632	16. 933	ŀ
	0 2975	1 1140	15.6631	0.3383	0.0711	374.452	243.070	0.0696	0.0211	0 9789	23 401	15 191	
1	0 3458	1 2262	15.5734	0.4280	0.0787	335.212	148.779	0.0766	0.0267	0 9733	20.949	0 799	
	0 4113	1 2849	15.5204	0.4309	0.0829	312.848	146 680	0.0804	0.0200	0.9700	19 552	9 147	1
ie.	0 4912	1 3999	15.4177	0.5837				0.0074		0.9435	12.000	9.107	لو)
7	0.5706	1 4964	15.3016	0.6998	0.0978	262.230	107 829	0.0935	0.0437	0.9563	14 209	4 729	
•	0 4113	1 5397	15 2409	0 7605	0.1010	251 873	104 590	0.0942	0.0475	0.9525	15 741	4 534	4
•	0.4959	1 4745	15 1149	0.9945	0.1076	222 749	97.390	0.0702	0.0553	0.9447	13.741	6.030	3
	0 7852	1 7088	14.9987	1.0032	0.1139	217.615	89 799	0 1048	0.0427	0.9272	13 400	5 412	
.1	0 8308	1 7496	14 9348	1 0645	0 1171	210 487	94 449	0 1092	0.0647	0 0333	12 154	5.012	* I
[at	0.0300	1 8320	14 9092	1 1932	0 1227	194-320	74 274	0.1145	0.0744	0.9754	10.104	A. 747	
· . [1.0307	1 9014	14.4789	1 3225	0.1295	194.474	A7 337	0 1189	0.0826	0 9174	11 529	4 200	
1.e.]	1 0976	1 9374	14 4076	1 3937	0 1222	179 144	59 171	0 1211	0.0971	0 9129	11.027	7.200	1.1
	1 1094	1 9927	14 4757	1.5257	- 0-1277	147.477	- 56 005	0 1245	0.0852	0.9047	10 479	3.570	
	1 2957	2 0542	14 3517	1 6497	0 1431	159.527	54 716	0 1294	0 1031	0 8949	9 909	3 419	,
	1 2494	2,0072	14 2921	1 7192	0 1459	154 304	49 249	0.1204	0 1074	0.0707	9 143	3.417	h-1
1	1.0427	2.0011	14 1544	1 9450	0.1509	145 929	47.367	0.1224	0.1152	0.0720	7.040	3.000	
	1 5902	2 1922	14 0298	1 9714	0 1543	139 727	42 019	0 1370	0 1222	0 9749	9 470	2 74K	
	1 4055	2.1/44	12 9444	2 0349	0.1505	138.727	40 207	0.1370	0.1232	0.0700	0.070	2.743	11
ist.	1 7801	2.2130	13.7004	2.0347	0.1363	133.301	37 203	0.1384	0.12/2	0.0/20	. 8.437	T.919	
1.e	1 9779	2 30.29	- 10,0390 10 7105	2 2909	0 1490	100 05A		0 1430	0 1400		7 404	21331	
- E	1.0727	2,3020	13./103	2.2707	0.1304	122.734	34.43Z	0.1437	0.1432	0.0500	7.684	2.152	13
5 a l	1.93/7	2.3260	13.6472	2.3042	0.1704	120.028	33.800	0.1454	0.14/1	0.8529	7.501	2.116	(7) (7)
	210382 -	2.3043	- 13.0284	··· 2.4/30	•• VF1748-								72
1.	2.1/07	2.3717	13.4097	2.3917	0.1784	107.879	24.841	0.1495	0.1620	0.8360	6.86/	1 30Z	13
-	2.2484	2.4109	13.3543	2.64/1	0.1805	107.229	28.644	0,1507	0.1654	0.8346	6.701	1.790	1
1	2 4004			21/0/7 -		101 014				0.02/0-	0 1 900	1 000	/_
<u>.</u>	2.4224	2.4004	13.1880	2.0133	0.1870	101.316	30.384	0.1341	0.1756	0.8242	0.303	1.879	•
i.	2.4907	2.4843	13.1300	2.8/14	0.1892	97.743	20.009	0.1003	0.1794	0.8208	6.234	1.000	
	2.3341	2.3013	13.0//2	2.9242	0.1913	97.940	23.717	·· 0,1363	0.1827	0.81/3	6-141 E 000	-1+48Z	······
	2.00/9	2.3286	12.9611	3.0403	0.1951	94.093	21.636	0.1580	0.1900	0.8100	5.880	1.302	34
- 1	2.8142	2.5377	12.8006	3.1408	0.1990	90.885	20,747	0.1598	0.1966	0.8034	5.680	1.29/	35
. •	2+74/3	⊻. 3823-	12,7800		····•0,2028			~~~~ _}\$\$!\$ ~~			8,4/8	1 021	
	3.0792	2.6091	12.69/1	3.3043	0.2063	84.734	16.502	0.1831	0.2096	0.7904	5.295	1.031	14
	3.2237	2.02/0	12.0442	3.45/2	0.2095	81.504	15.723	0.1842	0.2181	0.7839	5.094	0.983	13
	3.4824	2.6/09	12.3542	3.64/2	0.2166	76.841	18,410	-0.16/2	0.2279	0.7721	4:002	1.151	······································
	3.6203	2.7009	12.2019	3.7395	0.2203	74.600	13.939	0.1688	0.2337	0.7663	4.662	0.8/1	• 2
··.	3,7587	2.7144	12.1669	3.8345	0.2231	72.215	12.274	0.1696	0.2396	0,7604	4.513	0.767	
•	3.0000	2.7337	- 12.0772	3.9242	0.2263-	70: 296		0.1700 -	- 0.2452-	0;7548			4-
	4.0319	2.7497	11.9927	4.0087	0.2293	68.200	13.039	0.1/18	0.2505	0.7495	4.262	0.815	
	4.1636	2.7693	11.9083	4.0931	0.2326	66.512	12.854	0.1731	0.2558	0.7442	4.157	0.803	
	4.3110	2./854	11.8238	4.1773	0.2356	- 64:603	11.4/9	0,1741	0.2611	0,7389	4.037	• • 0.717	
	4.4013	2.8023	11./44/	4.2567	0.2386	62.954	9.038	0.1/51	0.2660	0,7340	3.934	0.565	-4
	4.6009	2.8112	11.65/6	4.3438	0.2411	61.102	6.113	0.1/5/	0.2/15	0.7285	3.817	0.382	2
	- 4,8805	2.8286	11 4966	4.004/	0,2460-			0,1774	0-5819	0,7180	· 3.622 ·	· ···Q_442	
•	0.0108	2.0307	11.4280	4.0/33	0.2484	36.639	8.558	0.1774	0.2858	0.7142	3.341	0.535	54
	5.1683	2.8034	11.3568	4.6446	0.2513	55.211	9.871	0.1783	0.2903	0.7097	3.450	0.617	<u>ر د</u>
	o.∠y34	2.3666	11.2882	4.7132	0.2540	54.155	8,658	0.1791	0.2945	0.7055	3,384	0.541	
•	3.4414	2.8/6/	11.2170	4./844	0.2565	52.866	6.094	0.1798	0.2990	0,7010	3.304	0.381	4
	5.5926	2.8848	11.1457	4.8557	0.2588	51.583	3.789	0.1803	0,3035	0.6965	3.224	0.249	· [٣
	5.8495	2.8914	11.0428	4.9586	0.2618	49.431	4.337	0.1807	0.3099	0.6901	3.089	0.271	[*]
	6.0267	2.9023	10.9425	5.0583	0.2652	48.157	6,530	0.1814	0.3162	0.6878	3.010	0.408	
	6.2656	2.9189	10,8528	5.1486	0.2690	46.586	4.203	0.1824	0.3218	0.6782	2.911	0,306	
	6.7225	2.9318	10.6628	5.3385	0.2750	43.612	4.139	0.1832	0.3336	0.6664	2.726	0.259	1
	6.9501	2.9442	10,5784	5.4230	0.2783	42.362	2,901	0.1840	0.3389	0.5611	2.447	0.181	

· ·	6.9501	2.9442	10.5784	5.4230	0.2783	42.362	2,901	0.1840	0.3389	0.6611	2.647	0.181	
2010 1	7.1744	2,9450	10.4887	5.5127	0.2808	41.049	1.204	0.1840	0.3445	0.6555	2.565	0.075	
۳ .		2.9500 /	- 10.4069	5.5945			1.620	0.1844			- 2,485	-0.101	
1	7.6410	2.9527	10.3224	5.6789	0.2860	38.642	0.111	0.1845	0.3549	0.6451	2.415	0.007	
£ (7.8605	2,9506	10.2433	5.7581	0.2880	37.536 -	0,227	0.1844	0.3598	0.6402	2.346 -	0.014	
1	8.0686	2.9516	10.1720	5.8293	0,2902		2.699	0.1845	0.3643	0,4357	··· 2,284 ·····	-0.149	
ř.	8.3060	2.9632	10.0955	5.9059	0.2935	35,676	3.080	0.1852	0.3691	0.6309	2,230	0.192	1
	8.5141	2.9659	10.0243	5.9771	0.2959	34.835	1.067	0.1854	0,3735	0.6265	2.177	0.067	
Ľ	8,7579	2.96804	9.9504				0.661		0.3782	0,6218	- 2.118	- 0.041	
	8.9872	2.9630	9.8818	6.1196	0.2998	32.969	1.018	0.1852	0.3824	0.6176	2.060	0.064	
	9.1871	2.9714	9.8158	6.1856	0.3027	32.343	2,058	0.1857	0.3866	0.6134	2.021	0.129	
	9.4359	2.9711	9.7525	6.2489	0.3047	31.488 -	9.278	0.1257	0.3905	0.6095	1.968 -	0.017	
· · · · · · · · · · · · · · · · · · ·	9.6700	2.9701	9.6839	6.3175		30.714	086	0.1856				0.068	
1	9.8846	2.9664	9.6232	6.3782	0,3083	30.010 -	0.742	0.1854	0.3986	0.6014	1.875 -	0.046	
	10.1073	2.9669	9.5625	6.4389	0.3103	29.354	0.765	0.1854	0.4024	0.5976	1,834	0.048	1
	10,3317	2.9698	9.4992	6.5022	0.3126	28.745 -	1.111	0.1856	0.4064	0.5936	1.796 -	0.069	
1	10.5267	2,9630	9.4438	6.5576	0.3137	28.147 -	2,191	0.1852	0.4098	0,5902	1.759 -	0.137	1
te l	10.7706	2.9608	9.3831	6.6183	0.3154	27,490	.1.497 -	0.1850	0.4136	0.5364		- 0.094	
1	10.9689	2,9566	9.3250	6.6763	0.3171	26,954 -	2.113	0.1848	0.4172	0.5828	1.685 -	0.132	
1 .	11.2079	2,9516	9.2696	6.7318	0.3194	26,335	0.561	0.1845	0.4207	0.5793	1.646	0.035	3
11	11.4128 _		9.2168 -	6.7845	0.3210	25.920	. 0.930	0.1849		0.5760	1.620		
•	11.7233	2.9540	9.1482	6.8531	0.3229	25.198 -	2.276	0.1846	0.4283	0.5717	1.575 -	0.142	
	12,0208	2.9445	9.0796	6.9217	0.3243	24.495 -	1.376	0.1840	0.4326	0.5674	1.531 -	0.086	
<u>-</u>	12,3199	2.9458	9.0110	6.9903	0.3269	23.911 -	0. 432	. 0.1841	0.4369	0+5631-	. 1,494. =.	0.027_	/*
	12.6841	2.9411	8.9477	7.0537	0.3287	23.187 -	1.986	0.1838	0.4408	0.5592	1.449 -	0.124	· · · · · · · · · · · · · · · · · · ·
14	13,0304	2.9318	8.8791	7.1223	0.3302	22.500 -	2.875	0.1832	0.4451	0.5549	1.406 -	0,180	
· •	13.3214			. 7. 1882	0.3316		2.714	0.1827	0.4492_	0.5508		0.170	/
.04	13.6027	2.9162	8.7498	7.2516	0.3333	21.439 -	3.224	0.1822	0.4532	0.5468	1.340 -	0.201	13
14	13.8986	2,9041	8.6918	7.3096	0.3341	20.895 -	2.809	0.1815	0.4568	0.5432	1.306 -	0.176	15
	14.1944	2.8996	8.6311	7.3703	0.3360		0.937	0.1812		0. 5394	1.277=-	0-059	i*
11	14.4887	2.8986	8.5704	7.4310	0.3382	20.006 -	1.949	0.1811	0.4644	0.5356	1,250 -	0.122	
:1	14.8317	2.8964	8.5123	7.4890	0.3391	19.461 -	3.563	0.1804	0.4680	0.5320	1.216 -	0.223	
			B.4543	7.5471	. 0.3401	18.991 =	2.540	0.1797	0.4717	0, 5283	1.187 .=-	0.159	
·**	15.4235	2.8711	8,3936	7.6078	0.3421	18.615 -	1.635	0.1794	0,4754	0.5246	1.163 -	0,102	24
	15.7649	2.8651	8.3355	7.6658	0.3437	18.174 -	2.875	0.1791	0.4791	0.5209	1.136 -	0.180	• [7]
· •.	16.0771	2.8527	8.2775	7.7239	0.3446	.17.744 .=	3.544	0.1783	0.4827.	0.5173 -	1.109	0.221	
1.3	16.3990	2.8426	8.2221	7.7793	0.3457	17.334 -	3.207	0.1776	0.4862	0.5138	1,083 -	0.200	2
	16.6948	2.8329	8.1667	7.8347	0.3469	16.969 -	4.471	0.1770	0.4896	0.5104	1.060 -	0.279	24
- til	16.9989	2.8157	8.1112	7.8901	0.3471	16.564 📼	4.423	0.1760	0.4931	0.5069	1.035 -		
	17.2541	2.3075	8.0558	7.9455	0.3485	16.272 -	1.982	0.1755	0.4966	0.5034	1.017 -	0.124	1
1	17,5321	2.8054	7.9978	8.0036	0.3508	16.002 -	3.485	0.1753	0.5002	0.4998	1.000 -	0.218	1
1	17.3508	2.7356	7.9371	8.0643	0.3510	15.605 ~	5.516	0.1741	0.5040	0.4960	0.975 -	0.345	
1.1	18.2393	2.7669	7.8817	8.1197	0.3511	15.170 -	3.786	0.1729	0.5074	0.4926	0.948 -	0.237	
. 1	18.5271	2.7590	7.8210	8.1804	0.3528	14.892 -	4.317	0.1724	0.5112	0.4888	0.931 -	0.270	1-1
· 1	18.7872	2.7437	7.7577	8.2437	0.3537	14.604 -	5,309	0.1715	0.5152	0.4848	0.913 -	0.332	
·.	19.1774	2.7252	7.6970	8.3044	0.3541	14.211 -	5.164	0.1703	0.5190	0.4810	0.888 -	0.323	
	19.4651	2.7091	7.6336	8.3677	0.3549	13.918 -	4.670	0.1693	0.5229	0.4771	0.870 -	0.292	
	19.7821	2.6972	7.5703	8.4311	0.3563	13.435 -	5.460	0.1686	0.5269	0.4731	0.852 -	0.341	
1.1	20.0764	2.6761	7.5070	8.4944	0.3565	13.330 -	6.408	0.1672	0.5302	0.4691	0.833 -	0,400	[]
1. 1.	20.3804	2.6590	7.4410	8.5603	0.3573	13.047 -	5.568	0.1662	0.5350	0.4650	0.815 -	0.348	1•1
	20.6926	2.6418	7.3698	8.6316	0.3585	12.767	3.636	0.1651	0.5394	0.4606	0.798	0.227	

•

DIRECT SAMPLE SHEAR TEST WCC 1-1000 (Set Up/ Take Down, (2/82) Type Test Q.S. Soil Soil FILE NO D -Project No SEC4232 Proj. Eng RS Test No-C Reconstituted D Undisturbed Dynamic D Constant E550rt Boring No TH-Composite No _ Kneading . loyers; ____ 10 honora Specimien No 4 Static . Sample NoF 5-100 ____ Blows-Tamps /layer Depth (51) 64.8 Remarks _____ Tamping Under Compaction D Other Block No _ layers; ____ 95 HC Water Contont 2 3 Ave Specimen Weight 1 Wet + Stone, etc. = +10,2/ gm Location Stone, etc = 55/.53 17-139 Container No . 686 -gm 27.90 Initial Wet = 154.68 gm Ut Cont. + Wet Soil (gm) 179.25 10360 117.30 gm Wt Cont + Dry Soil (gm) K7.58 Final Wat = Wt. Container (9m) 75.24 Excess Oven Dyr - Pish No _ST 42.34 <u>4/6.329m</u> Wt. Dry Soil (gm) Dry Soil + Dish = 873.35 35.02 27.56 Dish-Water Content (%) - 9 m See Attached For Additional Water Contents Excess Dry Soil = 12.97 ---- For Trimmed Specimen Height (in) or_ Diameter (in) or. Membrane -Regular: Thickness -_ in Initial (Ho) Final (Hs) Initial Final 1,000 8 Cir. = ____/TT = dia (in) 1.T 2 1,0028 2-01 - Wire Reinforced : Thekness =. 3 1,00/9 3-8 Stress Dia by P. Tape (in) Area ノーナ 4 1,00/0 (ts5) Meus. Corr. (in2) 5 2'-11 1.00/5 Ave 11.0016 3-B Ave 1 He = _____ in Ao = 4.909 in 2 ∆#<u>,</u> •__ In + 0.144 . 34.0885 x03 512 EDH -in Volume : <u>80.573</u> cm³ Ho-Hg = _ For Reconstituted Ho . 1 Vi= BO. 5-73 cm3 DA- 4.909 Trimminy Ring Final Visual Classification :_ I more detailed sketch on attached sheep Trimming Remarks - CH, moist gran plants perb Preliminary Cal. by Leviewed by RA - Checked by. Trimmed Comp by Date: Setup by Helly Taken down by 1412-605 Date 1385 Date VIE KY 117.31 (See Back for Summary Calculations)

B-19

DIRECT SHEAR TEST CALCULATIONS Type Testi Residual Static 0,000 R2 / min How 0.000286 "/min & 4th stoge. Static 0,000 R2 / min How 0.000286 "/min & 4th stoge. Trey (aster cy-loading) =_____ D Lyclic . . 655 Strain Rate = ____ %/hr Gydic Rate: 1 Haor_ きいっしょう/(シェー ディ う) DCRey = ____ Jus = 16.000 tofor KEE Te. 0.0 tofor __ DVcy . tosor ____ ~ ~ Tc/ove ~____ Treeman F Te consol path : Ko or 1. 450 AHey -DCL = = Consolidation time at Tyl: Overnight; Dudays; Dudays; The hrs; Tylemans) at_ Ho= 1.0016 in Ao(spoc) 4.909 in Aormen) 4.909 in Vo: 80.573 cm3 INITAL By Initial By Final By Total Aster Varriation of During Cal. 05 WH During Height & Volume Initial Consol. water Contest Water Contest Over dried Test of Dry Soil Rebund <u>1</u>16 Ūvc. $\omega_1(\%)$ 35.03 2 1 to Uve or Uv my During to Frc= $\omega_{\lambda}(\%)$ Consolidation 8.0_to 0.0 too Wave (%) 27.56 3 Wt: Wet Sign Convention: (+) DYout + DH down; (-) DV in & DH up Soil, WT (9m) 154.68 ల్) : 146.12 AH (in) 0.1148 Portial Wt Dry AV(cm) durin Soil (am) Trest & Unload 42.34 Equip. (in) Compressibility 1.003.3 CorroWat Wt. W. Excess Oven-22.97 Corr. AH (in) Dried Soil (gm) let Ove=Wy + AV, 1115 ŝ Total Wt. Dry Soil, We (91) 114.55 AVm (cm) measured 91.96 65.3/ 37 A. soil 8.970 ·· -= 114.55 gm Ws used: a Am-memb. Assumed Specific Gravity, G= 2.788 DV ms ed Sor OV - measured. Measured DVc by DW △VL Sor S=100% Ser Calculation by Measurements DVc using DV measured We - We-Ws = _ Ve= H'c · Anoninana OS DVC $= \Delta V_1 + \Delta V_2$ = W_- W_during consol. Hc=_ $V_{c}=(t_{c}+\omega_{c})W_{s}/Y_{\omega}$ by disserent Wo-Wc= ____ An"_ 8.56 Vc=_____ Cm3 Procedures V<u>è</u>≉_ = OVC (cm3) = <u>8.970</u> cm³ ٥٧٫٠٠___ CA _ cn³ AH = 0.1115 DVc used = <u>B.970</u> cm 3 □ based on ave volues in Hc = 0.8901 Vc - 7/1603 cm3 AY in in . in Conclusions ____×10⁻³5+2 Ac= Ve(cm3) /16.3871+Hecin) = _____ in 2/0.144 " Tremas Eac=___ Eac= 11.13 %; Eve= 11.13 \$; Yc=____ -%; Eyc= .-Water Saturation Total Dry Arca Spec, Wat. Height Volume Content Summary Hat Weight ins or with Induced (%) (in) E+2210-3/ (cm3) (%) 116/5/5) OCR Initial 19,85 102.0 Sor 5= 101 % Wc + DV2= 1,0016 34.0885 80.573 35,03 88,76 - X 855 20. 1)=6232 In. 12427 Conul. assume 127.21 27.37) 0.9982 71,603 0.8901 11 100.0 40 = 2,855 (-) In (4) out 99,88 0-100165 0.081 div/16 + 0.0 div S= wGord wGsYt 1 Div = 0.052 11 + 2.9 11 100-150 Gorw (1+w) -Yt GYW-YI 0.040 " + % 7 11 150-200 0.0001 in 0.0324 " +6.22 * 200-1000 WCC 1-1000 (2:/82) - Checked by _ Calculated by Reviewed by. Dute 183 Date Date B-20

PREPARED BY	DATE					PROJECT NO	TASK
		2					1 ASK.
TM		l I V	Voodward-Ct	vde Consulta	nts 🕊		1
CHECKED BY:	DATE:	-	ORANGE COUN	TY, CALIFORN	IIA	PROJECT NAME:	
ł						1	
	L	SUM	IMARY OF DIR	ECT SHEAR TE	ST		
l						1	SHEET:
		<u> </u>					OF:
					+		REFERENCE:
-DnO	INTE-	Tet 1		In TO IN	לבדרתאר כ	21011	· · · · · · · · · · ·
			SAMPLE A	U	J DEPIN	04.8 <i>5</i> L	
	-	 					
╴╸╺╻╶╻╶╸╌╸╴╸╶╻╶╻╴╸		vc =	16 KSF		• • • • • <u>• • • • • • • • • • • • • • </u>		· · · · · · · · · · ·
┝╌┿╾╇╼╉╴╋╶╋╶┛╶┨╶┨╶╽					- · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
					· · · · · · · · · · · · · · · · · · ·		
<mark>╴╷╼┽╶╴╸┥╺╪╺╪╶</mark>		++-		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · ·
						+ + + + + + + + + + + + + + + + + + +	······
	HOR	CANALT	MAX SHEAR	MOLLANE TRIC	BICYICA ANKI		
GYLLE			(Ket)	· · (#/2) · · ·	· · / Dec De-		
+++++++++++++++++++++++++++++++++++++++					UCORCES J		
						++++++	
······	0,20	03	1,706	3.0Z	-26.5		· · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·						
2	+0.11	66	- 7.884 . +-	6.83	26.2		
	· +				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · ·
	0.70	17	0.00	a c 2	270	• • • • • • • •	
3	v.20	τ	0.170	///	61.0	+ + + + + + + + + + + + + + + + +	
<u> </u>	- 0.10	27	- 6.466		22.0		· · · · · · · · · · · · · · · · · · ·
					+ + + +	+	· · · · · · · · · ·
···-5	071	15	7.510	1522	25.1	+	
		······					·····
			107	1071	10 1		
b	-0,10	75	-0.006	10,11	17.0		
1 4 4 5 6 6 4 4 4 8 1 4 4 4 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	4 . 1				· · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	1 22	295	6,769	22.43	- 22,9		
· • • • • • • • • • •	+			• • • • • • •	· · · · · · · · · · · · · · · · · · ·	+	
	+ • • + • •	+-+-+			* • · · • • • • •		
			· • · · · · · · · · · · · · · · · · · ·	·		<u>┥┥╸</u> ╼╼╼╼╌┥┥╺╹	
					i	+	
}	· • · · · · · · · · · · · · · · · · · ·	++++++			· · · · · · · · · · ·	╡╷╡╺╴╸╴╪┊┇ <mark>╺</mark> ╺╶ <mark>╏</mark>	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·		i		·		······································	
	-	+				· · · · · · · · · · · · · · · · · · ·	
	+					__	
		+++	· • • • • • • • • • • • • • • • • • • •	· • • • • • • • • • • • • • • • • • • •			· · · · · · · · · · · · ·
• • -	+	<u> </u>					
			++-+-++++++++++++++++++++++++++++++++++				
	+ • • † • † • †	······	† èn èn ∱ri† grane as pri†. Euro en pripi en arian de ∱ri	· + + ++++++++++++++++++++++++++++++++		· · · · · · · · · · · ·	· · · · · · · ·
! · { } · { → → → + +	╉╍╍╁╽┧	+ + + + + + + + + + + + + + + + + + + +					· · · · · · · · · · · · · · · · · · ·
	╉╼╍┞╃╀						
	╪╾╕╪┮╡	╺╸╸╺╶╡╶┽╶┪ ┱╼╍┿╍┿╸╋	·····································	· <mark>···································</mark>	· · · · · · · · · · · ·		
<u> </u>	╋╾┦┨┊						· · · · · · · · · · · · · · · · · · ·
┝┿┿┯┿┿╃┥╃	+						
╡┊╷╴╸╡╞╎┊		}- + + + ⊷ + + + + + + + + + + + + + + + + + + +		· · · · · · · · ·			
┋╏╴╍┨╂╂┲╧				· · · · · · · · · · · · · · · · · · ·	• • • • • •		· · · · · · · · · · ·
		-++++				<u>┼┍┍┍┍┍┍┍┍┍</u>	·
		╇╋					
╏╡┥╸╸┽┾┿╼╼	╺╋ <u>┙</u> ╡╺┛╍┿	┽┼┊┯┨	╍╍╼┱╌┩╌╕╺╍╴╼╴┥╶╿╺╿╺ ╶╾╍╼┿╼┽╼┱╼╾┲╍╶╄╌╋╼╅╼╉	· · · · · · · · · · · ·	· · · · · · · ·		
			<u>·</u> <u></u>		· · · · · · · ·		
$\left \begin{array}{c} + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + $	┥┼┿╾╾┽	-+					
		┥┝╧┥	╺╼┼┽╼╍╸╵┼┊┆╎	• • • • • • • • • • • • • • • • • • •)	

APPENDIX C

UNDRAINED SHEAR STRENGTH OF BOOTLEGGER COVE CLAY

.

.

APPENDIX C UNDRAINED SHEAR STRENGTH OF BOOTLEGGER COVE CLAY

A primary tool for estimating the in-situ undrained shear strengths of the clay was the SHANSEP (<u>Stress History and</u> <u>Normalized Soil Engineering Properties</u>) approach described by Ladd and Foott (1974). SHANSEP was developed to provide a systematic method for estimating the undrained shear strength of clay soils, taking into account the factors that most strongly influence the undrained strength.

The SHANSEP method is based on the empirical observations that the results of laboratory tests on samples at the same overconsolidation ratio (OCR), but different consolidation stresses, exhibit similar stress-strain and strength characteristics when normalized with respect to consolidation stress (σ'_{VC}). This observation, coupled with the fact that sample disturbance effects can be minimized by consolidating the laboratory sample to about twice its maximum past consolidation stress (σ'_{VT}), provide the basis for the SHANSEP method.

SHANSEP, as developed by Ladd and Foott, involves the following basic steps: (1) obtain high quality undisturbed soil samples and evaluate the stress history (present effective stresses and OCR's) of the soil profile using consolidation tests, total unit weights, and the in-situ pore pressure conditions; (2) decide which shear strength tests best model the situation under consideration and the range of OCR values for which data are required; (3) consolidate the soil samples to be tested to about twice the

maximum past consolidation pressure and then reduce the stresses to give the desired OCR; and (4) perform the shear test.

Results from the direct simple shear (DSS) and triaxial (TX) slide from areas the 1964 Fourth Avenue tests near (Woodward-Clyde Consultants, 1982) which in the soil specimens were sheared monotonically to failure are shown in Figures C-1 and C-2. Figure C-1 shows the influence of overconsolidation on the normalized strength of the soil, It is noted that for simulating horizontal shear $S_{ij}/\sigma' vc$ stresses imposed by earthquake shaking and translational sliding, the DSS test provides better loading conditions than those of the TX test. The trend of increasing strength with increasing OCR for the Bootlegger Cove clay under TX and DSS conditions is described in the following expression:

 $S_{u/\sigma'vc} = (S_{u/\sigma'vc})_{NC} OCR^{0.78}$ (C-1)

in which $S_u/\sigma \cdot v_c$ is the normalized undrained shear strength ratio at a given OCR and $(S_u / \sigma' v_c)_{NC}$ is that ratio for a normally consolidated (OCR=1) condition. The exponent of 0.78 on the OCR term is consistent with the data for many other soils (Ladd et al, 1977). As illustrated by Figure C-2, the test results indicated that there is a slight undrained shear strength ratio decrease of the with increasing plasticity index (PI) for the Bootlegger Cove The DSS values for normally consolidated conditions clay. varied from about 0.24 at a PI of 11 to about 0.18 at a PI One DSS test on a sample from the "L" Street slide of 25. Ladd (1981) has summarized similar data area gave 0.185. for other soft sedimentary clays that, in the range of PI values appropriate to the proposed site, have DSS undrained

strength ratios in the 0.20 to 0.22 range. The values are consistent with the DSS results obtained during this investigation. The Ladd (1981) data, however, show a trend of increasing strength ratio with increasing PI - opposite to the trend mentioned above. The reasons for these differences are not clear, and for the purposes of this study are thought to be not significant.

For comparative purposes, the results of the TX tests are also included in Figures C-1 and C-2. As is predicted by theory, and as shown from experience, shear strength ratios measured in TX tests are greater than those obtained from DSS tests. As discussed earlier in this Appendix for the conditions to be analyzed in this study, the DDS test provides a more appropriate measure of the undrained strength than does the TX test. From the range of DSS results obtained, a (S $_{\rm u}/$ $\sigma'_{\rm vc})_{\rm NC}$ value of 0.19 was selected estimate undrained strengths of the clay for the to analyses. The expression:

$$S_{11} = 0.19 (OCR)^{0.78} \sigma' v$$
 (C-2)

was thus felt to provide an appropriate estimation of the undrained shear strength of the Bootlegger Cove clay underlying the "L" Street slide area.

To obtain an estimate of the in situ undrained shear strength using equation C-2, the OCR of the soil must be known. This was evaluated from the results of one consolidation test performed on a soil sample at 64.5 feet from the ground surface at CPT-2 location. The results of this test are presented in Appendix B. The data from the test indicate OCR values ranging between about 1.2 and 1.6

being appropriate for estimating the undrained shear as strength of the clay in the zone about 65 feet from the ground surface at CPT-2 location. The clay in this zone is critical thought to be from seismic ground stability considerations. With the OCR and the vertical effective stress calculated from soil density and water table conditions, estimates of the undrained shear strengths were made using equation C-2 for the evaluation cross-section.

It should noted that the undrained be shear strength discussed this to point, represents peak strength appropriate for static undrained shear loading conditions. Changes to this existing strength condition can result due to cyclic shear strains induced by earthquake loading and/or due to large displacements from slide movements. The potential for changes due to these conditions was based on the cyclic DDS tests and large deformation direct shear tests conducted by Woodward-Clyde Consultants (1982). One large deformation direct shear test conducted as part of this study resulted in excessive loss of material to be of meaningful use.

To estimate the strength changes that could take place in the clay due to cyclic loading, DSS specimens tested by Woodward-Clyde Consultants (1982) were sheared cyclically at different levels of applied shear stress. During the tests, excess pore pressure accumulation was monitored with the number of applied stress cycles to develop an understanding of the clay response to a set of conditions equivalent to some given earthquake loading. Following the cyclic loading, the specimens were sheared to failure, while maintaining undrained conditions, to measure changes of the shear strength. The measured strength change and the

effective stress remaining at the end of cyclic loading for each specimen used to develop the relationship was illustrated in Figure C-3. Because it is the effective stress state of a soil at any given time during cyclic loading that determines the strength at that time, this relationship could be used with some assumed level of excess pore pressure accumulation to estimate the change to the undrained strength condition described earlier in the Appendix. For example, if the accumulated excess pore pressure reached 50 percent of the initial effective stress, the availagble strength at that time would be approximately 92 percent of the initial undrained shear strength.

Project No.	VARIATION OF NORMALIZED UNDRAINED SHEAR STRENGTH RATIO WITH OVERCONSOL IDATION	FigureC-1
Woodward-Clyde Consultants	OVERCONSOLIDATION	

••

1		· · · · · · · · · · · · · · · · · · ·	
	Project No.	STRENGTH CHANGES DUE TO CYCLIC LOADING	Figure C-3
	Woodward-Ciyde Consultants		
APPENDIX D

PROCEDURE FOR CALCULATING SEISMICALLY-INDUCED GROUND DISPLACEMENTS

.

APPENDIX D PROCEDURE FOR CALCULATING SEISMICALLY-INDUCED GROUND DISPLACEMENTS

A procedure used to calculate seismically-induced ground displacements of translatory slides such as the 1964 "L" Street slide is discussed in this Appendix. The method is based on Newmark's (1965) approach as refined by Makdisi and Seed (1977). The procedure is summarized in Figures D-1, D-2, and D-3 and example results are schematically summarized in Figure D-4.

In Figure D-1, the soil blocks shown are assumed to be riaid. The horizontal forces applied to the soil blocks by the grabens in Figure D-1 are labeled as "active" and "passive" resisting forces because they are forces exerted by the grabens under undrained conditions and not true active and passive forces. Note in Figure D-la when the ground is shaking in the direction away from the bluff, the soil block is free to move in the direction of the bluff as long as the "active" soil force plus the inertia force on the soil block is greater than the resisting force at the bottom of the soil block. However, when the direction of shaking is toward the bluff, the soil block cannot move significantly in the direction away from the bluff because the "passive" soil force induced by the graben can be large.

The active soil force, due to the presence of a graben, in Figure D-la was computed as follows:

 $F_{da} = 1/2 \gamma_t H^2 K_a$

(D-1)

where γ_t = total unit weight of soil H = height of the soil block K_a = "active" soil pressure coefficient (0.3 was used in this study)

It is noted that this "active" soil force in fact represents the part of the horizontal component of the graven weight that acts in the direction of the sliding block.

As summarized in Figure D-1, the inertia force on the soil block can be calculated by multiplying the total weight of the soil block by the maximum seismic coefficient. The maximum seismic coefficient is the product of a freefield peak ground surface acceleration (a_{max}) and a constant. The constant represents the effects of the height of the soil block, bluff topography, the length of the soil block, and others.

The effect of the height of the soil block can reduce the overall inertia force on the soil block by about 10 percent for the height range estimated in the 1964 "L" Street slide block because the ground acceleration at depth, in general, is lower than that at the ground surface (Seed and Idriss, 1982). The effect of the bluff topography can increase the ground acceleration by about 20 percent (Idriss and Seed, The effect of the length of the soil block is 1967). difficult to quantify because it depends on the predominant wave field (body waves or surface waves), apparent wave speed, wave lengths, and others. However, if the predominant waves are body waves, then using the concept of apparent wave velocity (O'Rourke and others, 1980), a reduction in a_{max} of 5 to 10% can be easily expected for a soil block length of about 1,000 feet to 2,000 feet. If, on

D-2

the other hand, the predominant waves are surface waves, then a reduction of a_{max} of up to 90% or more can be expected for the same range of soil block length. To incorporate the effect of these factors, a value of 1.1 was selected for the constant to modify the free field peak ground acceleration as discussed in the previous paragraph.

The resisting force due to soil shear strength acting at the bottom of the soil block in Figure D-1 can be computed by mutliplying the length of the soil block by the average undrained shear strength of the soils involved. As discussed later, the average undrained shear strength of the soil depends on the level and length of shaking and the amount of displacement the soil block has undergone.

Using three of the forces just discussed, it is possible to calculate the yield seismic coefficient as follows:

$$F_{rs} - F_{da}$$

$$K_{y} = ------$$

$$W$$
(D-2)

where

F_{rs} = resisting force due to soil shear strength F_{da} = driving force due to active soil pressure W = weight of soil block

The yield seismic coefficient is that seismic coefficient which, when multiplied by the total weight of the block, gives large enough driving force due to earthquake inertia to make the total driving force equal to the total resisting force. Once the yield seismic coefficient (K_y) and the maximum seismic coefficient (K_{max}) are known, the displacement of the soil block can be calculated. The basic process is schematically shown in Figure D-2. Every time the soil block is shaken beyond the yield point (between t₁ and t₃ in Figure D-2) as represented by the yield seismic coefficient, velocity in the direction of the movement is initiated that lasts for a certain period (t₁ to t₃ in Figure D-2). By integrating over this velocity (from t₁ to t₃ in Figure D-3), displacement is accumulated (from t₁ to t₃ in Figure D-2) in the direction of the bluff.

Based displacement calculation on the type of just described, Makdisi and Seed (1977) have graphically amount of expected displacement versus summarized the K_{y}/K_{max} for various magnitude earthquakes. Thus, using this graphical summary, it is possible to estimate seismicallyinduced displacements of a soil block if an earthquake magnitude and K_v/K_{max} are known.

However, the results by Makdisi and Seed cover only up to magnitude 8-1/4 earthquakes and concern only the displacements associated with earthdams. Because in this study the 1964 Alaska earthquake having a seismic moment magnitude of 9.2 had to be considered, the results of Makdisi and Seed were extrapolated to 9 plus earthquakes and expressed as displacement per number of cycles as shown in Figure D-3. Based on the relationship between the number of equivalent cycles (NC) and magnitude m presented by Seed and Idriss (1981), the following equation can be obtained by curve fitting and slight extrapolation:

 $NC = 0.24 e^{-0.55m}$

(D-3)

ł

D-4

It is to be noted that the results of Makdisi and Seed (compiled for earthdams) based on our experience do provide reasonable numbers for offshore clay slopes of few degrees. Thus, using equation D-3 and Figure D-3, the displacement for any magnitude in 9 plus range for any number of cycles can be obtained if the K_y/K_{max} value is known.

Results of example calculations using the procedure just described are schematically summarized in Figure D-4. The procedure involves the following steps:

- Calculate the weight of the soil block and the "active" force using the given geometry, equation D-1, and the unit weight of soils;
- (2) Calculate the resisting force by multiplying the appropriate undrained shear strength by the length of the soil block;
- (3) Calculate the maximum seismic coefficient (K_{max}) based on a_{max} as discussed earlier;
- (4) Calculate the yield seismic coefficient (K_y) using equation D-2; and
- (5) Calculate displacement for various number of cycles using Figure D-3 and a K_y/K_{max} value obtained from Steps 3 and 4.

In calculating the yield seismic coefficient, the value of undrained shear strength used varies depending on the level and length of shaking and the current displacement of the

soil block. This is summarized in Figure D-5. The strength-displacement relationship schematically shown in Figure D-5 is from a Woodward-Clyde Consultants (1982) study involving the 1964 Fourth Avenue slide.

The procedure discussed so far involves computing displacements given the geometry and shear strength; this is the conventional application of the procedure. However, the evaluation of the 1964 "L" Street slide involved computing the shear strength given the geometry and displacement values. In this case the procedure is similar to the previous one and the following steps are involved.

- Calculate the weight of the soil block and the "active" force using the given geometry, equation D-1, and the unit weight of soils;
- 2) Calculate the maximum seismic coefficient (K_{max}) based on a_{max} as discussed earlier;
- 3) For each cycle, using the assumed displacement versus number of cycle relationship, enter into Figure D-3 to obtain K_y/K_{max} values corresponding to the displacement for that cycle;
- 4) Using the valus of K_y obtained from steps 2 and 3, compute the valus of F_{rs} by the following equation:

$$F_{rs} = K_V W + F_{da}$$
 (D-4)

5) Compute the required values of undrained shear strength by dividing F_{rs} by L.

The computation steps become slightly more complicated when the effect of cyclic degradation in undrained shear strength is included because, then, the displacement versus number of cycle relationship cannot be assumed. However, an iterative scheme using a computer makes it relatively straight forward to compute the required values of initial and residual undrained shear strengths.

 $K_v = \frac{F_{rs} - F_{da}}{w}$

Project No.

Woodward-Clyde Consultants

FORCES AND EQUATIONS IN DISPLACEMENT ANALYSIS

 $k_{yi+1} \leq k_{yi}$ due to cyclic degradation of soil strength

Project No.	INTERGRATION OF ACCELEROGRAMS TO DETERMINE DISPLACEMENTS	Figure D-2
Woodward-Clyde Consultants	TOWARD BLUFF	

Project No. SEISMICALLY-INDUCED DISPLACEMENT PER CYCLIC FOR MAGNITUDE 9+ EARTHQUAKES

D-10

- S_u = Undrained Shear Strength Initial S_u may be reduced by at most 25% due to cyclic loading as long as displacement is less than 0.5 ft; Initial S_u is reduced by 70% if displacement is more than 0.5 ft. (See Figure E-5)
- K_{max} = Maximum Seismic Coefficient

 K_{max} is proportional to $a_{max i}$ (where $a_{max i}$ is ith value of peak free-field surface acceleration)

Displacement at Ground Surface, feet

Project No.	IDEALIZED STRENGTH-DISPLACEMENT	Figure D -5
Woodward-Clyde Consultants	RELATIONSHIP FOR CLAYS	

APPENDIX E

SELECTED CROSS-SECTIONS WITH CPT RESULTS

APPENDIX E SELECTED CROSS-SECTIONS WITH CPT RESULTS

The cross-sections identified as A-A, B-B, C-C, D-D, and E-E in Figure E-1 are shown in Figures E-2, E-4, E-5, E-6, and E-7, respectively, based only on the CPT results from this study and the studies by Updike and Ulery (1984) and Harding-Lawson Associates (1984). The cross-section A-A is also shown in Figure E-3 along with the appropriate boring logs from Shannon and Wilson (1964).

:

Fig. E-3 L STREET SLIDE CROSS SECTION A-A

Horizontal Scale

100

