

Watra driven. we

Compaction Illustrated

Compaction

- Vital for Good Performance
- Compaction Goal
 - 4-8% Air Voids (Conventional Mixes)
 3-6% Air Voids (Coarse or Gap Graded Mixes)
- Requirements for Compaction
 - Compactive Effort
 - Use the right rollers - Good Mix Temperatures (Workable)
 - Haul length
 - Ambient conditions
 - Mixture Confinement
 - Lift thickness
 - Base support

ohalt institute

Watra driven. we

institute

Compaction Goals

- Increase stability
- · Reduce air voids
- Provide a smooth surface

- Mixture properties
- Ambient conditions
- Lift thickness
- Base/subgrade support (confinement)
- Compactive effort

Factors Affecting Compaction

ates delves.

Watra drivan. w

Watra driven. W

institute

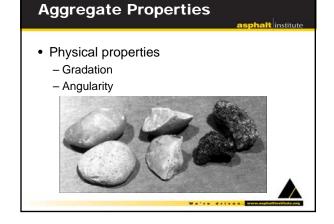
- Mixture properties
- Ambient conditions
- Lift thickness
- Base/subgrade support (confinement)
- Compactive effort

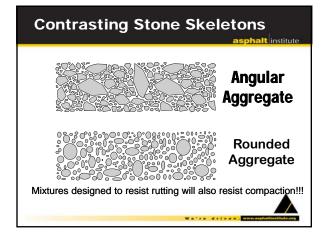
Mixture Properties

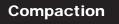
- Materials characteristics
 - Asphalt binder
 - Aggregates
- Mix design
 - Aggregate structure
 - Volumetric properties
- Production variables
 - Moisture content
 - Temperature

Asphalt Binder Properties

- · Binder grade
 - Increase high temperature grade → stiffer binder
 - Neat or modified?
 - PG grades with 92°C or more temperature difference are usually polymer modified
- Temperature
 - Must complete compaction while mix temperature exceeds:
 - 85°C (185°F) for neat binders
 - 100°C (212°F) for modified binders
 - 70°C (155°F) for warm mix binders?


Polymer-Modified Asphalt


• Stiffen at much higher temperatures than neat asphalt


- Reduce time available for compaction by half

- When specifying binders that will likely be polymer-modified (PG 70-28, PG 76-22, etc.)
 - Avoid requiring compacted lift thickness less than two inches

- Moisture Content
 - -Lubricants → tenderness
 - -Most common with:
 - Drum plants
 - Mixes with RAP
 - Absorptive aggregates
 - Stockpiles that have been sitting

12 institute

- Mixture properties
- Ambient conditions
- Lift thickness
- Base/subgrade support (confinement)

Watra delvan. www

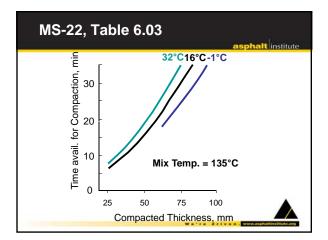
Compactive effort

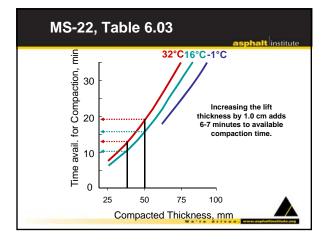
Ambient Conditions					
Mat Thickness	Base Temperatures (Minimum)				
	Degrees F	Degrees C			
3 inches or greater	40	4			
1-3 inches	45	7			
Less than 1 inch	50	10			
AK specs—40°F and rising					

Factors Affecting Compaction

- Mixture properties
- Ambient conditions
- Lift thickness
- Base/subgrade support (confinement)

Watra driven.


Compactive effort


Compaction

- Temperature
 - -Generally hotter is better
 - -But heat ages the mixture
 - -Thicker lift holds heat better
 - An extra 1.0 cm gains 6-7 minutes of compaction time
 - Generally lift should be three times the nominal maximum aggregate size

Hatta dela

halt institute

00	t Thickness, in maximum
3	6
21⁄2	4
1¾	3
1½	21/2
thinner than	n 1½ inch (40 mm
?	
	2½ 1¾ 1½ thinner than

- Mixture properties
- Ambient conditions
- Lift thickness
- Base/subgrade support (confinement)
- Compactive effort

Confinement

asphalt institute

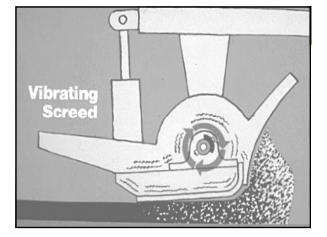
Watra drives.

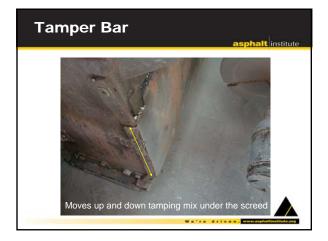
Watra driven. w

- Stable platform
- Good grip on underlying surface
 - Clean surface
 - Properly tacked
- Use temperature to confine edges
 - Delay rolling unsupported edge to allow "internal confinement" to develop

- Mixture properties
- Ambient conditions
- Lift thickness
- Base/subgrade support (confinement)

Vatra delvan. www


Watra driven.


institute

Compactive effort

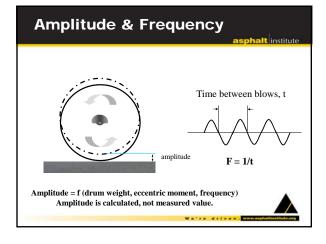
Compaction Equipment

- Screed
 - Screed weight
 - Screed vibration
 - Tamper bar
- Rollers
 - Vibratory steel
 - Pneumatic
 - Static steel
 - Combination

Rolling Procedures

- Breakdown rolling

 Provides nearly all needed density
- Intermediate rolling
 - Provides final density level
- Seals surfaceFinish rolling
 - Removes roller marks


Wates drives.

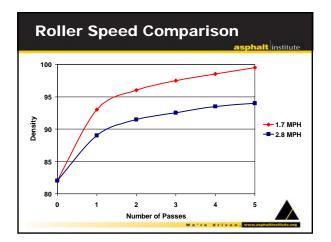
Rollers

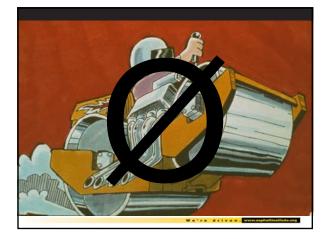
- Vibratory
 - Used for breakdown (initial) compaction
 - Offers greatest compactive effort
 Speed of roller
 - needs to match its frequency

It institute

Vibratory Rollers

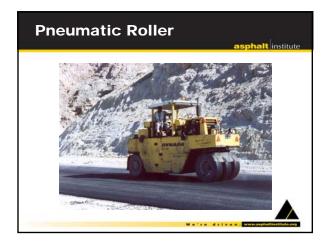
asphalt institute


- Commonly used for initial (breakdown) rolling
- 8-18.5 tons, 57-84 in wide ("heavy" rollers)
 50-200 lbs/linear inch (PLI)
- Frequency: 2700 4200 impacts/min. – Trend to increase frequency
- Amplitude: 0.4 0.8 mm
 For thin overlays (< 150 mm) use lowest amplitude setting or static mode
- Operate to attain at least 30 impacts/meter - 3-6.5 km/hr


Why are vibratory rollers more effective?

- Movement of drum initiates particle motion
- Resistance to deformation is much less when particles are moving than when static (inertia)
- Force applied by weight of drum has greater effect, thus achieving more compaction per pass than other roller types

Watra driven. W



Frequency vs. Travel Speed								
]		
	VPM	2 mph	2.5 mph	3 mph	3.5 mph	4 mph		
	2000	11.4						
	2500	14.2	11.4					
	3000	17.0	13.3	11.4				
	3500	19.9	15.9	13.3	11.4	10.0		
	4000	22.7	18.2	15.2	13.3	11.4		

13

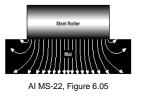
<section-header><section-header><text><list-item><list-item><list-item>

Pneumatic Roller

- · Generally used as intermediate roller
- Reorients particles through kneading action
- Load/tire: 1050 6730 #/tire depending on model/ballast
- Tire pressure of ~70 psi-must be consistent

1 institute

- Be sure to ballast
- Tires must be hot to avoid pickup
- · Use skirts

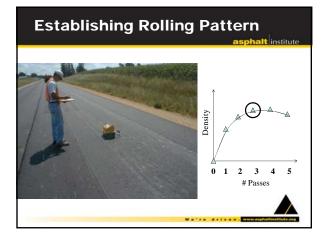

Compaction Issues - Tire Pick-up asphalt institute

Watra drives.

Static Steel-Wheeled Rollers

- 10-14 ton rollers normally used for HMA compaction
 - Commonly use vibratory rollers operated in static mode
- Lighter rollers used for finish rolling
- Drums must be smooth and clean
- For initial compaction, drive wheel must face paver

Valva delvan. we



Test (Control) Strip

- At least 300 feet long, two "pulls" wide
- Closely Simulate Paving Conditions
 - Base conditions
 - Haul times
 - Mixture storage
 - Paver speed
 - Joint construction
- Monitor Compaction After Each Pass
 - Density will climb, then peak, then fall

ohalt institute

Rolling Pattern

- Speed & lap pattern for each roller
- Number of passes for each roller - One trip across a point on the mat
- · Minimum temperature by which each roller must complete pattern

IMPORTANT:

Paver speed must not exceed that of the compaction operation!!!

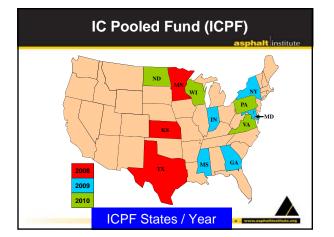
General Rules

- Avoid Stopping and Sitting on Hot Mat
- Never Turn a Stopper Roller
- Angle all Stops

asphalt institute

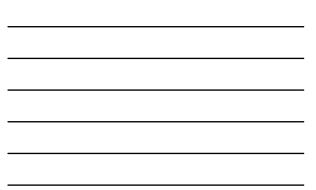
How Does IC Help with QC?

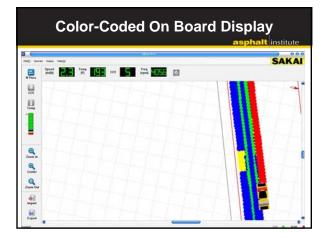
- "Real-Time" Feedback to Roller Operator
 On-Board, Color-Coded Mapping
 - Improved roller patterns
 - Improved temperature control
 - Ability to make adjustments "on-the-fly"
- Permanent Records of Compaction Data
- "Mapping" of Underlying Materials
 - RMV (Roller Measurement Values) readings
 - Locates "soft spots"Identifies irregular support for compaction


Why Intelligent Compaction?

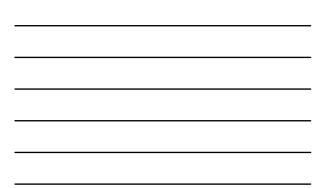

Why Do We Need IC?

- Proper in-place density is vital for good performance
- Conventional compaction equipment and procedures have shortcomings and too often produce poor results
- Intelligent compaction technology appears to offer "a better way"

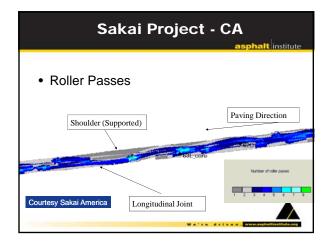


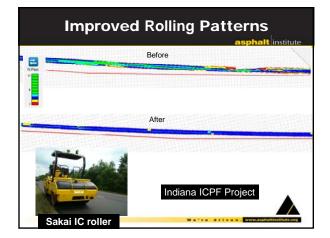


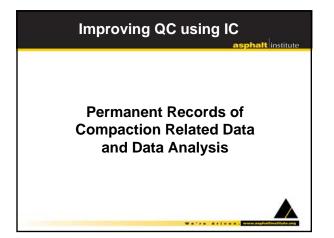
IC Roller Requirements


- IC Roller Requirements
 - Roller Measurement Value (RMV)
 - GPS-Based documentation system
 - Color-coded display (on-board)
 - Surface temperature measurement system
 - Optional: automatic feedback system

institute







Improving QC using IC

"Mapping of Underlying Layers Prior to Paving

a're driven.

"Mapping" of Underlying Materials

- Use of RMV color-coded mapping to measure support prior to paving of:
 - Subgrade soil materials
 - Stabilized subbase materials
 - Aggregate base materials
 - Existing asphalt pavements
 - Rubblized concrete pavements
- Underlying Support affects compatibility of subsequent layers

Future Research Needs - IC

- Improve correlation of Density vs. RMV
- Standardization of RMV
- Explore GPS Technology
 - Use of advanced, high prec. GPS technology
 - "Stand-Alone" (non RTK) GPS Technology
- IC Data Management
 - Improvements in on-board roller software
 - Data collection/storage
 - Data analysis/reporting

Summary

- Intelligent Compaction is a major innovation in compaction technology
- Research/field projects show that IC can offer a valuable tool to improve QC of the compaction process
- IC technology is now readily available in U.S.
- More work is need to address various issues

• Stay tuned!

