

Research Goal

un

Develop a robust and sustainable research program that meets the needs of AUTC partners including USDOT, DOT&PF, local governments, and the transportation industry

Transportation Research and Education
 Environmental stewardship Operating and planning transportation systems
Designing transportation systems Impact of fines content of base courses Characterization of asphalt treated base Evaluation of warm-asphalt mixes for Alaskan conditions
Constructing and maintaining transportation systems
S Aure 5

Background

Base course saturation and weakening reflected by reductions in the resilient properties

- Excess fines content will cause thaw
- weakening

AUTO

□ Critical excess fines content with different aggregate sources, gradations, and moisture contents

17

Project Scope Objective – evaluate resilient modulus of base course materials during thawing with varied fines contents and moisture conditions D-1 material from 3 regions 3 different moisture contents (OMC-2%, OMC, OMC+0.7%) 4 fines contents (3.15%, 6%, 8%, 10%) 7 different subfreezing temperatures, 20°C, and 20°C after a freeze-thaw cycle

Background
Difficulty in achieving density in later paving season
Improved overall mix workability leads to improved compaction
Fuel savings and environmental friendliness
How well WMA functions in cold weather environments
25 25

Further Information...

Billy Connor, P.E. Director of AUTC bgconnor@alaska.edu (907) 474-5552

AUTO

Jenny Liu, Ph.D CEE, UAF

jliu6@alaska.edu (907) 474-5764

37

