

WHY?

THERMAL SEGREGATION Temperature Differentials

- WDOT & University of Washington-1996 Stephen Read/Dr. Joe Maloney
- Lead states of Washington, Texas, Minnesota
- Specs in Washington, Arkansas, Texas, Massachusetts, Missouri, South Dakota, South Carolina, Ontario, Illinois, etc. (26 states)
- Increased Interest (Auburn, Clemson, & TTI)
- ROADTEC Research-Technical Assistance

The Problem

- Localized "spots" of coarse surface texture
- Premature failure due to fatigue cracking, raveling, and moisture damage
- Increased roughness

The Problem

- Cooling of mix during transport is not remixed during the laydown process.
- Results in erratic mat temperatures that are not apparent to the laydown crew. (Unseen)

Damage Mechanism

- Placement of this cooler HMA creates pavement areas near cessation temperature (about 175°F)
- No significant compaction occurs below cessation temperature

What Are We Trying to Avoid?

Cool area - usually seen in a cyclic pattern.

Streak - either down the center of the paved lane or either side of center.

Effects on Pavement Insufficient compaction

- Increased raveling and moisture damage
- Reduced fatigue life
- Increased roughness
- One percent increase in air voids results in a minimum of ten percent reduction in pavement life (a rule of thumb)

Lime Line for Lemperature and Density Differentials—Washington State

- State 1995-1996: Initial field data reported in S. Read thesis and presented at TRB and Asphalt Paving Association of Washington Annual Meeting
- 1998: Four paving projects examined
- 1999: Approximately 40 paving projects examined
- 2000: Eighteen paving projects examined
- 2001-2006: Continued field monitoring and the development and evolution of specifications to address the problem

1998 Study Objectives

- Are WSDOT dense-graded mixes experiencing aggregation segregation, temperature differentials resulting in higher air voids, or a combination thereof?
- What specific roles do mix temperature differentials play in the "cyclic segregation" problem?

Study Description

- Four WSDOT paving projects—summer 1998
- Use infrared camera (provided by Astec Industries) and material tests by WSDOT Mat Lab
- Look for segregation
- Look for temperature differentials
- Measure effects

1998 Conclusions

- None of the 4 projects experienced significant aggregate segregation.
- All 4 projects experienced significant temperature differentials.
- Concentrated areas of significantly cooler HMA generally resulted in lower than desirable compaction of those areas.

1998 Conclusions (cont.)

- Concentrated areas of cooler HMA commonly occur during construction (based on this study and others).
- Good rolling practices can partially offset temperature differential related compaction problems.
- MTVs not specifically examined.
- Temperature differentials are easily identified by infrared imaging.

1999 Study Objectives

- Investigate the effectiveness of different MTVs and remixing devices/methods
- Investigate other possible mitigation techniques
- Reexamine criteria for when and where to use MTV's

Data Collected

- Haul distance and time
- Weather conditions
- Equipment
 - Type of truckMTV/MTD

 - Paver - Roller
- Nuclear density data

Temperature data

- Infrared camera
- Probes
- Hand held infrared thermometer
- Plant information Temperature of mixLoading operations
- Mat Placement

Summary of Findings—1999

- Large temperature differentials were observed under a variety of paving conditions
- Generally, the higher the temperature differentials the higher the as-compacted air voids associated with the cooler portions of the mat
- Temperature differentials generally decreased when the air temperature ≥ 85 °F (limited data)
- Large temperature differentials occurred over a wide range of pavement surface temperatures

Passing Density Profile

End Dump/No MTV

- Density Profile #1
- Readings
- Average 152.7High 156.4
- Low 149.8
- Ranges
- High Low = 6.6
- Ave Low = 2.9
- $\Delta T = 48^{\circ}F$

End Dump/Roadtec Shuttle Buggy

- Density Profile #3 ->273.8°F
- Readings
 - Average 140.7
 - High 142.9
 - Low 138.4
- Ranges
 - High Low = 4.5
- Ave Low = 2.3
- ΔT = 11°F

Summary of Findings—2000

- In general, the occurrence of temperature differentials decreased when compared to the 1999 data (more transfer devices used)
- The higher the temperature differentials, the higher the in-place air voids associated with the cooler portions of the mat
- Temperature differentials decreased when remixing occurred

Summary of 1999-2000 Projects									
Equipment	Number of Projects								
MTVs	22								
Windrow Elevators	20								
No MTV/End Dumps	9								
Other Combinations	2								

Summary of 1999-2000 Projects

	Number of Projects									
Equipment	Normal	Cool	Total							
No MTV	0	9	9							
Blaw-Knox MC-30	3		12							
Paddles working	3	4								
Paddles not working	0	5								
Roadtec Shuttle Buggy	10	0	10							
Cedarapids MS-3	1	2	3							
Cedarapids MS-2	6	5	11							
Other Windrow Elevator	3	3	6							
CMIMTP-400	1	0	1							
Windrow Elevator/MC-30	1	0	1							
"Cool" defined as $\Delta T \ge 25^{\circ} F$										

Bottom Line 1999-2000 Projects

- Temperature and density differentials can be a significant issue on paving projects.
- Approximately ½ of projects (28 out of 53) studied during 1999 and 2000 regularly had temperature differentials ≥ 25°F.
- Following three years of data collection and analyses, differential densities resulting from cooler than desirable mix can be significant. How significant?

1999 Study Objectives

- Investigate the effectiveness of different MTVs and remixing devices/methods
- Investigate other possible mitigation techniques
- Reexamine criteria for when and where to use MTV's

Bottom Line 1999-2000 Projects

- How significant is the problem?
- Densities 3 pcf less than the density lot mean result in an air void increases of about 2%.
- The following table provides examples.

Bottom Line 1999-2000 Projects

Percent of	Mix Air	Mix Air	Mix Air							
Rice	Voids @	Voids @	Voids @							
Density	Density	Mean – 3	Mean – 6							
Mean	Mean	pcf	pcf							
9 5%	5.0%	7.0%	9.0%							
9 4%	6.0%	8.0%	10.0%							
93%	7.0%	9.0%	11.0%							
92%	8.0%	10.0%	12.0%							
(1) Assumed Rice Density of 155 lb/ft ³ ; (2) Long Term WSDOT										

- 2001-2006 A number of State DOTs have developed and implemented specifications to address this issue.
- WSDOT's current specification
 - Cyclic density areas are defined as less than 89.0 percent of maximum density.
 - If four or more low cyclic density areas are identified in a lot, a price adjustment will be assessed for that lot (a lot is 400 tons). – If <mark>f</mark>
 - The price adjustment will be calculated as 15% of the unit bid price of HMA represented by that lot.
 - This assessment starts with examining the mat for temperature differences of 25°F or greater. If these do not exist, then no further special density testing is performed.

Washington Conclusions 2009

- Survey results of DOT & Contractors-Use of MTV greatest improvement in quality.
- Temperature testing and MTV use increased life of HMA by 50%
- All 2010 projects require use of MTV

End Dump/Roadtec Shuttle Buggy *-200.0TF 200.0 200.0 248.8 228.8 144.8 200.0 SR 12 186.0 100.0 148.0 128.8 100.0 81.1 *JUF

End Dump/Blaw-Knox MC-30

Thermal Segregation

- 20° Differential-1% to 2% Air Voids
- Over 7% Air Voids Reduces Life
- Each 1% Over-Reduces Life 10%

Fairbanks Airport/Shuttle Buggy

UPDATE

- TTI-Research on thermal segregation----Tom Scullion/Steve Sebeste
- Auburn----Dr. M. Stroup-Gardiner
- **TRB** Report----"Initial Ride Quality of HMA Pavements"
- Clemson----Dr. Serji A. Amirkhanian

CONCLUSION:

- Initial Ride Quality can be improved by minimizing stops and including a material transfer device
- When used properly, MTV's improved the ride quality and eliminated thermal & physical segregation
- Results show no significant thermal segregation when a material transfer device was used

SAVINGS

- Eliminate Truck Delay
- Reduce Trucking Costs (25%)
- Increase Productivity (25%)
- Smoother Roads

Purchas	e Price					\$ 375,000			
20%	Residual Value					\$ 75,000	_		
NET:						\$ 300,000			
5	Year Depreciation					\$ 60,000			
1%	Annual Insurance					\$ 3,000			
1%	Тах					\$ 3,000	_		
ANNUAL	TOTAL:					\$ 66,000			
Hourly Cost Based		 500	hrs	750	hrs	1000	hrs	1200	hrs
On Annual Usage		\$ 132.00		\$ 88.00		\$ 66.00		\$ 55.00	

				OPERATIONAL:											
Labor:			500		750			1000			1200				
1.	Operator	\$ 20.00	/hr	\$	\$ 20.00		\$	20.00	/hr	\$	20.00	/hr	\$	20.00	/hr
Fuel:															
12	gal/hr @	\$ 2.25	/gal	\$	27.00	/hr	\$	27.00	/hr	\$	27.00	/hr	\$	27.00	/hr
Daily Maintenance:															
Grease, Oil, Filters, etc.			\$	2.00	/hr	\$	2.00	/hr	\$	2.00	/hr	\$	2.00	/hr	
Repa	airs & Parts:														
	\$20,000	/year		\$	40.00	/hr	\$	32.00	/hr	\$	24.00	/hr	\$	20.00	/hr
SUBTOTAL:			\$	89.00	/hr	\$	81.00	/hr	\$	73.00	/hr	\$	69.00	/hr	
	OWNERSHIP	> 1		\$	132.00	/hr	\$	88.00	/hr	\$	66.00	/hr	\$	55.00	/hr
	OVERHEAD:	15%		\$	19.80	/hr	\$	13.20	/hr	\$	9.90	/hr	\$	8.25	/hr
	TOTAL COST	T/HOUR		\$	240.80	/hr	\$	182.20	/hr	\$	148.90	/hr	\$	132.25	/hr
	@300t/h			\$0	.81	\$0.61		.61		\$0.50			\$0.44		
ANNUAL COST			\$ 120,400			\$ 136,650			\$ 148,900			\$ 158,700			

ROADTEC SERVICES

- Thermography ResearchCertified Thermographer
- Research on your projects, your materials, your timetable
- Equipment
- "Birth of a Pothole" (Technical Papers)
 Recommended Specifications

