

Recycling Initiative

Conservation

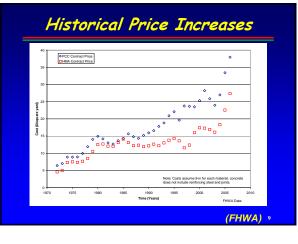
- Materials (aggregate and asphalt binder)
- Energy (burner fuel and trucking)
- Preservation
 - Environment
 - Existing materials
 - Pavement geometrics
- Economics
 - First cost (structural design and materials)
 - Life cycle cost
 - Reduced user costs (user delays)
 - Margins

Social Responsibility

- Good Environmental Stewards
 - Landfill Diversion
 - Recycling
 - Air Quality Green House Gases
 - Reduced consumption of virgin materials
- Increased pavement recycling 30-percent
 - 65-million barrels of oil saved

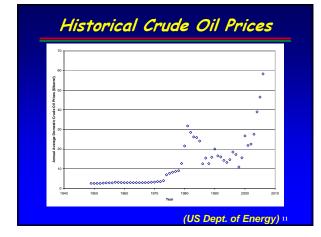
Recycling Quantities and Rates

Domestic Waste¹


- 18M tons Paper and Paperboard (25%)
- 4.2M tons Yard Waste (12%)
- 0.3M tons Plastic (2%)
- 2.6M tons Glass (20%)
- 0.4M tons Tires (17%)
- 25.5M tons
- Steel Recycling²
- 76M tons Steel (76%) US and abroad
- Asphalt Pavement Recycling¹
- 80M tons Asphalt Pavement (80%)
- ¹Ref: FHWA and EPA 1993
- ²Ref: Steel Recycling Institute

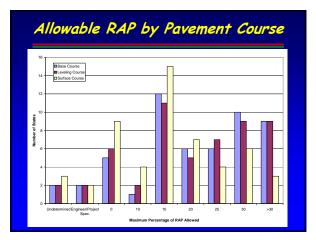
Recycling Methods

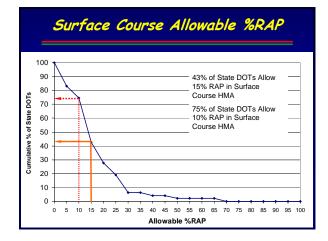
Asphalt Pavement Recycling


- Hot Central Plant
- Hot In-Place
- Cold In-Place
- Recycled Aggregate Base
- Portland Cement Concrete Recycling
 - Recycled Base
 - Aggregate for PCC
 - Aggregate for HMA
 - + Aggregate for Chip Seals

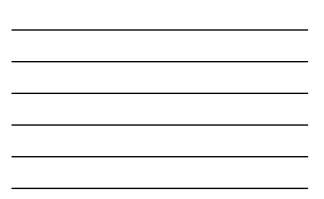
Why is Cement and Asphalt Binder Consumption so Important?

Why is Energy Consumption so Important?


		P by P		avement Co		
State	Specification Date	Section	Base	Pavement Cou Leveling	urse Surface	
Alabama	2003	410.02	Base 20	20	Surface 20	
Alabama Alaska	2003	410.02	20	20	20	
Alaska Arizona	2002	405	0	0	0	
Arkansas	1996	403	30	30	30	
California (expected)	1998	418.05	30	15	30	
Colorado	1999	401.02	15	15	15	
Connecticut	1999	401.02	15	15	15	
	2001		20	10	10	
Delaware Federal Lands	2001	823.26 403.3	20 50	50	10	
Federal Lands Florida	2004	405.5	30-50	30-50	30-50	
Georgia	2001	402.2	40	40	40	
Hawaii	2005	312 & 401	30-40	30-40	15	
Idaho	2004	405.02	0	0	0	
Illinois	1997	406.1	25	25	15	
Indiana	2005	401.06	25	25	25	
Iowa	2002	2303.02.C.2	30	30	30	
Kansas	1990	604.02	E	E	E	
Kentucky	2004	409.03.02	30	30	30	
Louisiana	2000	Table 502-4	20-30	20	0	
Maine	2002	401.03	15	15	15	
Maryland	2001	904.04.01	15	15	15	
Massachusetts	1995	M3.11.03	40	40	10	
Michigan	2003		25+	25+	25+	
Minnesota	2000	2350.2C	40	40	30	
Mississippi	2003	401.02.3.1	30	30	0	
Missouri	2004	401.3.2 & 402.3.3	15	15	15	
Montana E = Engineer – Maxim	1		PS	PS	PS	


Al	lowable	%RAP	Ъу І	Pavement	Course
		Specification		Pavement Course	

State				i avement course				
Sidle	Date	Section	Base	Leveling	Surface			
Nebraska	2001	1028.01 3b	15-50	15-50	15-50			
Nevada	1997		PS	PS	PS			
New Hampshire	2002	401.2.7	50	50	15			
New Jersey	2001	903.1	50	50	15			
New Mexico	2000	422.27	25	25	25			
New York	2002	Table 703-09A	70	70	70			
North Carolina	2002	610-3	50	50	50			
North Dakota	2002		0	0	0			
Ohio	2005	302.02 & 401.04	30-50	30	10-20			
Oklahoma	1999	708.04	25	25	0			
Oregon	2002	SP745	30	30	20			
Pennsylvania	2000	403.2D	15	15	15			
Rhode Island	1997	407.02.1	30	30	30			
South Carolina	2000	401.03F	30	25	20			
South Dakota	2004	320	0	0	0			
Tennessee	2006	411.03	10-25	10-25	10-25			
Texas	1993	247.2	20	20	20			
Utah	2005	2969 2.1F	25	25	25			
Vermont	2001	704.10 b1c	15	15	15			
Virginia	2002	211.03	20+	20+	20+			
Washington	2002	5-04.2	20	20	20			
West Virginia	2000	401.4.1	15+	15+	15+			
Wisconsin	2006	460.2.5	35	35	20			
Wyoming	1995	401.4.13.2	15	15	15			
E = Engineer - Maximu	um value determir	ed by the Engineer.						
PS = Project Specificati	ions - Maximum	value stated in the pro	ject specif	ications.				


RAP Sources

- Cold Milling
- Full Depth Reclamation
- Plant Waste/Reject

QC/QA Plan

- RAP Processing
- Mix Design
- **HMA Production**


 - Virgin asphalt binder
 Virgin aggregate
 RAP asphalt binder (higher RAP %)
 RAP aggregate
- Field Construction
- Performance

Processing RAP

- Scalp +2in material
- RAP breakers can be used
- Crusher
 - Horizonatl impact
 - Hammermill impact
 - Jaw/roll
- Fractionating (~>15% RAP)

RAP Processing

Stockpiling

- Separate based on sources/mix types
- Avoid consolidation
- * No loaders, dozers or trucks on stockpile
- Protect from moisture intrusion
- Protect from contamination

Stockpiling RAP

- Large, conical stockpiles preferred
- RAP does not re-compact
- Forms "crust" (200-250 mm) 8-10 inches
- Crust sheds water and easily broken
- RAP under crust easy to manage

Disadvantage of Horizontal RAP Stockpiles

- More crust develops
 May require re-crushing
 Slows production
- Drainage poor
- Increase drying costs

Feeding RAP after Rainfall

- Remove wet part of open face and set aside to dry
- Keeps RAP percentage up and drying costs down, ensures adequate drying of RAP

Feeding RAP

- "Trickle feed" RAP bin when charging bin with loader
 - * RAP more prone to bridging than fine aggregates
 - Ensures uniform and consistent feed of RAP

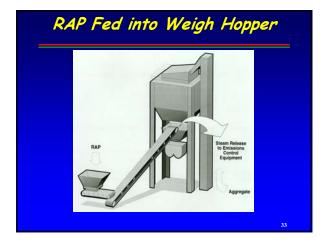
Feeding RAP

- Unload RAP bin each night and after one hour down time
- Helps keep feed uniform, especially on hot humid days
- Do not fill RAP bin completely Material may bridge
- Do not use vibrators to counteract bridging Material tends to pack

Plant Temperatures

- Virgin aggregate temperature dependent upon:
 - RAP moisture content
 - RAP content
 - Desired HMA plant discharge temperature

	Reclaimed Material Moisture Content %	240° F/116° C	Recycled Mix Disc 260° F/127° C	280° F/138° C	300° F/149°
RATIO: 10% RAP 90% AGG	0 1 2 3 4 5	269 274 279 284 289 294 292	291 296 301 306 311 <u>316</u> 317	313 318 323 328 333 338 342	335 340 345 350 355 360 367
RATIO: 20% RAP 80% AGG	0 1 2 3 4 5	292 303 314 325 336 347 324	317 328 339 350 361 372 352	342 353 364 375 386 397 330	378 389 400 411
RATIO: 30% RAP 70% AGG	0 1 2 3 4 5	343 362 381 400	371 390 409 428	599 418 437 456	422 408 427 446 465 484 503 463
RATIO: 40% RAP 60% AGG	0 1 2 3 4 5	419 366 424 453 482 511 540	447 397 426 455 484 513 542	475 430 459 488 517 546 575	492 521 550 579
RATIO: 50% RAP 50% AGG	0 1 2 3 4	540 420 464 508 552 596 640	542 460 504 548 592 636 680	575 500 544 588 632 676 720	608 540 588 628 672 716 760
	Assume 10° F loss from dryer t				100
QUIRED	AGGREGATE TEMPERATU	RES			- 1


Batch Plants

- Plant Variations

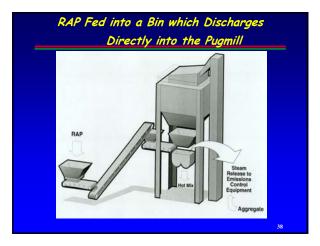
 - RAP feed into weigh hopper
 RAP feed into pugmill
 RAP feed into elevator
 - RAP dried in separate dryer

- RAP heated
- RAP fielded conductively
 Practical RAP limit 30%

RAP Fed into Weigh Hopper

- RAP added to weigh hopper
- Weighed as additional material
- Mixed with virgin materials
- Conductive heat transfer
- Significant steam release

Adding RAP into Weigh Hopper


- Cold, wet RAP into weigh hopper
- Mixed with superheated materials
- RAP heated conductively
- Significant steam release
- 25 to 30% RAP typical
- Exit gas temperature may limit % RAP

RAP Fed into Weigh Hopper

- Balancing steam release difficult
- Tower typically ducted with butterfly damper to primary
- Over-drafting dryer helps balance air flow imbalance
- +25-30% maximum
- 10-15% practical

RAP Fed into Weigh Hopper

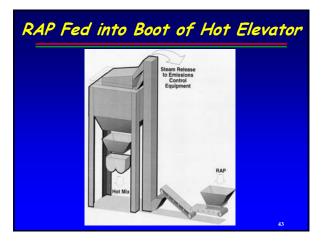
- Watch build-up in duct and duct transition areas, especially horizontal ducts
- Monitor lowering of inlet baghouse temperature and H₂O condensation on bags
- These factors can limit RAP percentages possible

RAP Fed into Pugmill

- Separate RAP weigh hopper can be used
- Slightly shorter batch cycle time
- Chute, slinger or screw conveyor used to transport RAP from RAP hopper to pugmill

Adding RAP into Pugmill

- Separate weigh hopper
- RAP added to pugmill
- Otherwise same as weigh bucket technique


RAP Fed into Pugmill

- Shortens cycle times, increases production
- Ducting for steam release easier to fit to tower
- Balancing steam release easier can draft continuous-can draft to dryer as option
- 20-25% easier to achieve (limited by heat transfer not steam management)

41

RAP Fed into Pugmill

- Watch build-up in duct and duct transition areas
- DO NOT design duct too large or horizontal
- Attempt to design duct for downward flow
- DO NOT over-draft pugmill area during idle times (RAP not being produced)

RAP Fed into Bucket Elevator

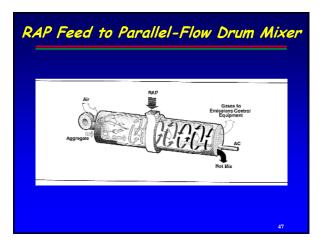
- Easier to fit to plant
- Steam management easy
- Trip up elevator short, and no agitation = low RAP %'s
- 10-20% possible
- 5-10% practical
- % impacted by whether using screens or not & size/screens

44

RAP Fed into Bucket Elevator

- RAP will buildup in hot bins on side wall requires cleanout
- Watch screen blinding
- Monitor tower for "sweating" RAP not drying in elevator
- DO NOT push percentages too high (no agitation in drying RAP in bucket elevator)

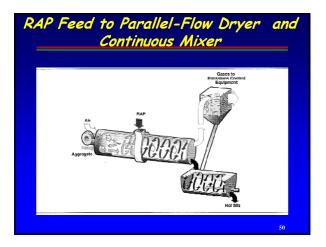
Drum Plants


 Plant Variations

 Parallel-flow
 Emissions limits RAP percent
 Counter-flow
 Can reduce gas emissions
 RAP must be shielded from burner

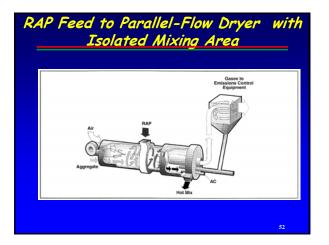
 Practical RAP limit

 30 to 50%



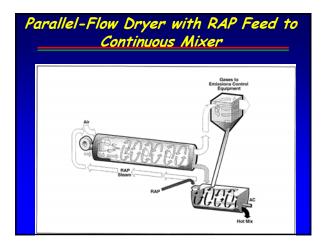
Adding RAP Parallel Flow

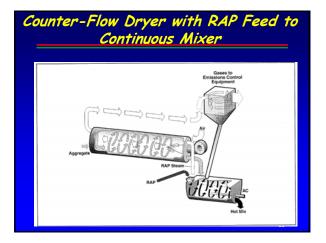
- RAP collar most common
- RAP heated convectively
- Emissions limit RAP to 50 percent
- Variations
 - Isolated mixing area
 - External mixing device
- Primary dust collector usually added


RAP Collar

- Aggregate heated convectively
- RAP heated convectively
- RAP added at mid-drum
- Emission requirements limit RAP percentage

RAP Collar with Mixer


- RAP added at mid-drum
- Virgin binder added in mixer
- Reduces hydrocarbons in gases
- Requires primary dust collector
 Fines returned to mixer



RAP Collar with Isolated Mixer

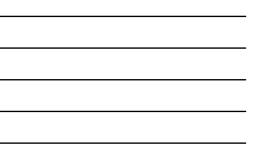
- * Similar to separate mixer
- Mixer integral to dryer
- Convective RAP heating
- Requires primary dust collector
 Fines returned to mixer

Counter-Flow Dryer RAP in Mixer

- Counter-flow reduces gas exit temperatures
- Cool, wet aggregates cool gas
- * RAP heated conductively in mixer
- Percent RAP affected by mixing space
- Gases from mixer back to dryer

Counter-Flow Mixer RAP Collar

- Burner extended into drum
- Virgin aggregate heated convectively
- RAP heated conductively
- Virgin binder added in mixing section
- Gasses in dryer


Placement of Recycled HMA

Potential for lower temperature production

Less compaction time

May be easier to compact than conventional HMA

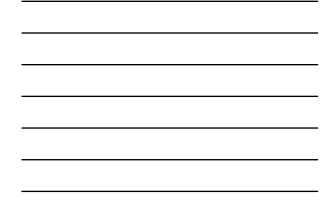
<image>

Mix Design

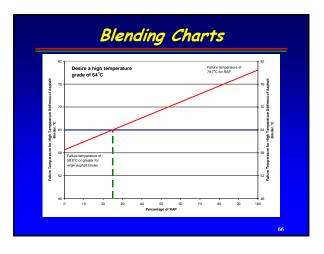
Level 1

Small quantities of RAP (<10 to 15%)
Level 2

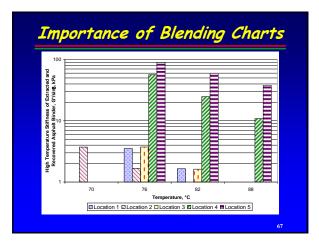
Greater than approximately 15% RAP

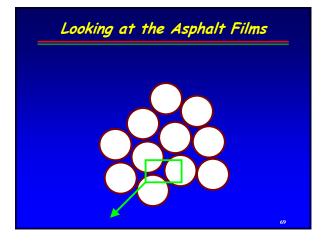

Virgin Asphalt Considerations (FHWA)

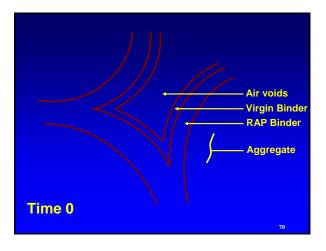
- 0 to 15% no change in binder grade
- 16 to 25% one temperature grade lower
- Greater than 25% use blending charts

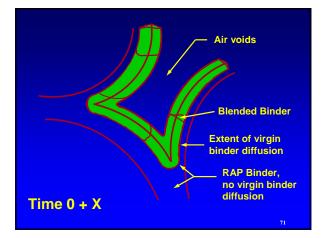

Level 1 Mix Design

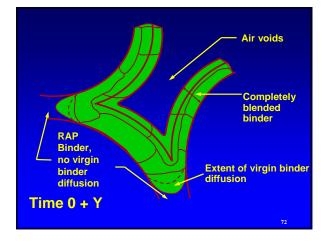
- Gradation of RAP (asphalt free)
- Gradation of new aggregate
- Combined gradation
- Trial mix design

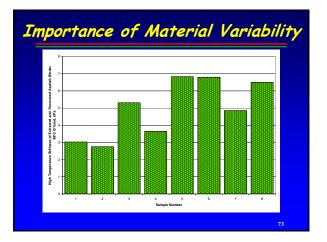

Combine Stockpile Apgregates for Gradation	Heat Aggregates	Add RAP at Prodelermined Percent	Heat RAP and Virgin Materials	Add Virgin Binder at 4 Asphalt Contents -2 gyratory samples esc
Compact to Requirements	Determine AC content for 90% Gue @ Nas	Prepare Gyratory Samples at Optie Virgin Bindor Cor	MAL NWA	
Performance Testing Rut, Perm. Def., Thermal Cracking.	Final			
Fatigue, Modulus, Moisture Sanativity Durability	Design			

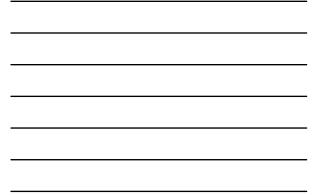








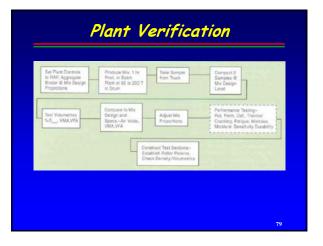




<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-row>

Test #	Content, %DWA						No. 50	
2	3.25	100	98 99	89 91	66 70	48 42	27 23	12.3
3	3.93	100	100	96	74	46	26	11.8
4	3.83	100	98	92	74	45	22	8.6
5	3.79	100	98	92	73	45	25	11.7
6	3.05	100	98	91	66	39	22	11.4
7	3.31	100	97	90	68	41	23	11.3
8	3.47	100	98	91	72	44	24	10.4
Average	3.52	100	98	92	70	44	24	11.1
Standard Deviation	n 0.31	0.0	0.9	2.1	3.4	2.9	1.9	1.1

Combine Stockpile Apgregates for Gradation	Heat Apprepates	Add RAP at Prodelermined Percent	Heat RAP and Virgin Matarials	Add Virgin Binder at 4 Asphalt Contents -2 gyratory samples each
Compact to Requirements	Determine AC content for 96%	Prepare Oyratory Samples at Optie Virgin Bindor Cor	AMV_B# NA	
Performance Testing Hut, Perm. Def.				
Thermal Cracking, Fatigue, Modulue, Moisture Senistivity Durability	Final Design			


Mix Considerations

- Volumetrics
- Gradation
- Asphalt binder
- Engineering properties

Mix Considerations

PRODUCT CODE	ADDRED	ATE	PERCEN	TAGE	SEVE	8.000		AGLE	TARGET	CON	T. ₽OI	NTS
	Tracy 1		16.0			8,84060	1 1	ACLE	VALUES	LL		UL
	Tracy 3-9" C		16.0		1-in/25.0-mm	100		100				_
	Tracy Root		23.0	0	3/4-in / 12-D-mm	98		97	98	95		100
	Tracy Se		21.0	0	1/2-in / 12.5-mm	87		87				_
	Traty 3		14.0		3/9-in / 9.5-mm	79		77	79	85		80
	FC Ra	p	10.0	0	No. 4 / 4.75-mm	54		43	54	49		59 42
					No. 9 / 2.36-mm			27	- 27	32		42
					No. 95 / 1.10-mm	26						_
			100	0	No. 30 / 0.60-mm	19		22	10	14		24
					No. 50 / 0.30-mm	10	-	34				
					No. 100 / 0.15-mm	9	-	ý.				
					No. 200 / 0.075-enm	6.8		5.7	5.6	3		
	687-00	Lours	PERMIT	1980	-	METHOD	Logta	REPAY	3465	-		
T OFTER AL ADPINALT					DURPACE AREA		1.0	27.4	-	_		
(Costa (Vagar + Racyolar)					SPECIFIC DRAVITY							
TAM (cirgs a Baryole)			4.4		(frac	176-10		2.142				
Marinia AC		14	0.3		0.0	(76-10)		2.498				
Drive (virger)			4.5			1794.807		2.44				
Taski (dvges			4.1		AT DEDKIN AR YOOD							
Absorbed AC:	76.6	2	172		Lex Reals		8.47	145.2				
Ar Veda	10.1	121	4.18	12	Marytal Danity	176.10		34	- 14	_		
Ar Vede	101	121	10		Marynal Danny		12		_	_		
An inerty	1946.007	121	12.42	41	TENIAR ITRESOTH				_	_		
Public Ingent mark	Uniterest (Pro	131	12.80		Dry literath		19		-	-		
	49.5	131	02.54				27		-	_		
Every 18 August	121		100	10			1.5	-				
	98.4	100	8.04			Tatan Are	2	5.4				
ECOND TEMP.		4	290	270-301	MVS.	1.000		36.0	28			
ONPACTION TEMP		4	239	216-224	beet				1.19			
			_									
					-							
											78	

Plant Verification

Date		Test	% Passing	Asphalt Content						
Sampled	Sample Location	Purpose	3/4 in.	1/2 in.	3/8 in.	No. 4	No. 16	No. 50	No. 200	%. DWA
Min Require		Pulpose	100	95	80	54	100.10	140.00	3.00	70, DHA
Max Require Max Require									7.00	
Max Regul Mix Design			100	100 98	90 87	64 60	32	16	6.21	
	Hot Sample	1								
		Process	100.0	98.7	90.8	65.1	33.6	17.4	6.8	4.82
	Hot Sample	Process	100.0	98.8	87.5	59.5	30.0	15.3	6.1	4.80
	Hot Sample	Process	100.0	97.5	86.7	61.6	31.4	15.5	5.8	5.04
	Hot Sample	Process	100.0	97.9	89.7	65.5	31.5	15.2	5.6	5.07
	Hot Sample	Process	100.0	97.9	89.7	65.5	31.5	15.2	5.6	5.07
	Hot Sample	Process	100.0	98.4	89.3	63.8	32.9	15.8	6.5	5.09
	Hot Sample	Process	100.0	97.4	82.9	55.3	28.6	15.0	5.5	5.14
	Hot Sample	Process	100.0	100.0	92.0	66.7	33.3	16.5	6.1	4.80
	Hot Sample	Process	100.0	100.0	93.0	69.0	34.8	16.3	6.4	5.31
	Hot Sample	Process	100.0	100.0	96.1	67.5	34.0	17.0	6.4	
4/16/2007	Hot Sample	Process	100.0	100.0	88.6	62.0	34.9	18.3	7.1	
4/16/2007	Hot Sample	Process	100.0	98.6	90.5	64.9	38.6	21.5	9.4	
	Hot Sample	Process	100.0	97.1	85.3	57.4	30.0	15.4	5.4	5.01
4/17/2007	Hot Sample	Process	100.0	100.0	91.4	60.0	31.1	16.1	5.2	4.96
4/17/2007	Hot Sample	Process	100.0	97.2	86.1	59.7	31.8	17.1	6.8	5.19
4/17/2007	Hot Sample	Process	100.0	97.3	86.3	64.4	36.4	18.7	7.1	5.07
4/17/2007	Hot Sample	Process	100.0	96.7	86.7	60.0	31.1	16.3	6.3	4.77
	Hot Sample	Process	100.0	97.3	87.8	58.1	31.2	15.9	6.1	
Number			18	18	18	18	18	18	18	14
Mean			100.0	98.4	88.9	62.6	32.6	16.6	6.35	5.01
Standard D	eviation		0.0	1.2	3.1	3.8	2.5	1.6	0.94	0.16

RAP Field Performance

- Widespread use began in mid-1970's
- High RAP contents allowed by some agencies (>40%)
- Results in higher stabilities, but prone to longitudinal, transverse and reflective cracking
- Agencies applied conventional mix design policies to RAP designs

Published Field Performance of RAP Mixtures

Washington DOT

- + 24 recycled HMA pavements prior to 1985
- RAP content: 8 to 79%
- Performance was equivalent to conventional HMA
- Predicted service life: 9 to 16 years
- Texas SPS-5 section

RAP content: 30%

- Visual condition survey: 10 years after const.
- No significant distresses

83

Published Field Performance of RAP Mixtures

Connecticut - Route 4

- RAP content: 30%
- Visual condition survey: 6 years after const.
- No permanent deformation
- Transverse cracking similar to conventional HMA
 Longitudinal cracking greater than conventional HMA

Louisiana DOT

- 10 sections
- RAP content: 25 to 20%
- Visual condition survey: every year for 5 years
- Comparable performance

Published Field Performance of RAP Mixtures

- Kansas DOT Reflective Cracking
 - RAP content: 50 to 70% Visual condition survey: 3 years after const.
 - Comparable performance: <1% reflective</p> cracking

Utah DOT

- 5 test sections
- RAP content: 40 to 60%
 Visual condition survey: 3 years after const. Control section showed greater trans cracking than test sections

Published Field Performance of RAP Mixtures

Georgia

- 5 test sections
- * RAP content: 15 to 25%
- Visual condition survey: 2 years after const.
- No difference in rutting, raveling and fatigue

Kansas DOT – US 56

- RAP content: 50%
- Visual condition survey: 11 years after const.
- More trans. and long. cracking than
- conventional HMA
- 12 year service life

Unpublished Field Performance of RAP Mixtures

Arizona DOT

- Mix designs based on conventional HMA designs
- Considers recovered asphalt binder properties

Florida DOT

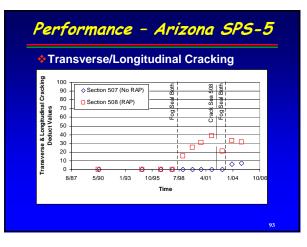
- Comparable performance
- Established specs for sampling and controlling RAP
- Minnesota DOT
 - + 1 test section: full depth AC
 - Comparable performance: 15 years

Unpublished Field Performance of RAP Mixtures

- Massachusetts DPW
 - 1 test section

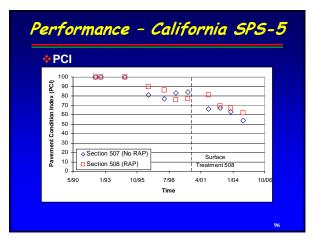
 - RAP content: 35%
 Visual condition survey: 11 years after const.
 No trans, long, or reflective cracking
- New Jersey DOT
 1 test section
 RAP content: 50%
 - Visual condition survey: 3 years after const.
 Control section showed more significant reflective cracking

Section ID	Start of Section (m)	End of Section (m)	Section Length (m)	RAP Content (%)
04-0502	1597	1750	153	30
04-0503	469	622	153	30
04-0504	233	385	152	0
04-0505	2028	2180	152	0
04-0506	1884	1996	152	0
04-0507	0	152	152	0
04-0508	884	1036	152	30
04-0509	1165	1317	152	30

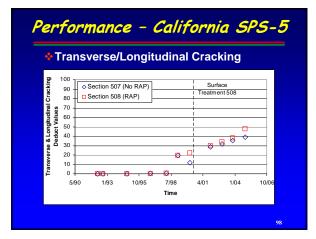


🔶 F	PCI				
Pavement Condition Index (PCI)	100 90 80 70 60 50 40 30 20 10 8/87	Section 5		S S	10/0

Fa	atigue Cracking
ue Cracking Deduct Value	80 -



Section ID	Start of Section (m)	End of Section (m)	Section Length (m)	RAP Content (%)
06-0506	1052	1204	152	0
06-0507	1281	1434	153	0
06-0508	1494	1647	153	30
06-0509	1727	1879	152	30
06-0559	7403	7708	305	0
06-0571	2652	2957	305	30



F	atigue Cracking	
Fatigue Cracking Deduct Values		Surface atment 508

Cold In-Place Recycling: Advantages

- Significant Structural Improvements
- Most Pavement Distress Treated
- Ride Quality Improved
- Hauling Costs Minimized
- Minimal Air Quality Problems
- Pavement Widening Possible

Problem Areas

- Depth of removal
- Degree of pulverization
- Uniformity of mixing
- In-place density
- Curing
- Protection from traffic

Material	Energy, Btu/yd ² in	Cost, \$/yd ² in	Estimated Servic Life w/o Routine Maint, Yrs
HMA Asphalt Concrete	28,000	3.25	10
HMA Milling	1,500	0.45	
CIPR Cold In-Place Recycling – Full Depth	17,500	0.45	18
		ukliki	1

Hot In-Place Recycling: Advantages

- Surface Cracks Eliminated
- Ruts, Shoves, Bumps Corrected
- Aged Asphalt is Rejuvenated
- Aggregate Gradation and Asphalt Content Can be Modified
- Reduced Traffic Interruption During Construction
- Hauling Cost Minimized

Hot In-Place Recycling: Advantages

- Pavement Geometrics Preserved
- Corrects Surface Distresses Not Caused by Structural Inadequacy
- Can Modify Existing Surface Mix
- Can Improve Surface Frictional Resistance

107

- Relatively Cheap
- Needs Minimal Traffic Control

Project Considerations

- Uniformity
- Depth of HMA
- Presence of Chip Seals
- Asphalt Content (Bleeding)
- Aggregate Gradation
- Asphalt Properties
- Traffic
- Type of Pavement Distress

Project Considerations

Modifiers or additives

- Mix design
- Sampling and testing

Equipment Development and Typical Use

Early concerns

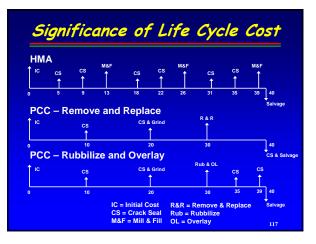
- In-place air voids
- * Overheating
- Air quality
- Safety
- Depth
- Production / cost
- Vegetation

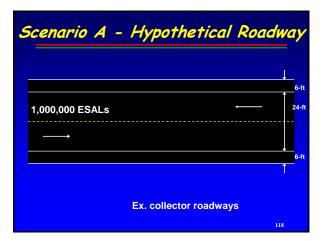
Equipment Development and Typical Use

Developments in the late 1980s, early

1990s

- Greater depths
- Uniformity and control
- Air quality
- Production





Life Cycle Cost Analysis

- An economic analysis
- Compare design/rehabilitation alternatives
- Considers all significant costs
- Evaluates the alternatives over the same analysis period

Scenarios	Initial Rehabilitation	Rehabilitation	Year (s) of Rehab
A1	4.5-in Overlay	1.5-in Overlay	11 / 22 / 33
A2	2-in Mill/Fill 2.5-in Overlay	2-in Mill/Fill 1.5-in Overlay	14 / 28
A3	3-in CIPR – Partial Depth 4.5-in Overlay	1.5-in Overlay	14 / 28
A4	7-in CIPR – Full Depth 4-in Overlay	1.5-in Overlay	19/33
A5	2-in HIPR 2.75-in Overlay	1.5-in Overlay	16 / 30

Energy for Initial Construction, BTU/yd ^{2*}	Energy over 40 Years, BTU/yd ^{2*}	Asphalt Binder Consumed, Ibs/yd ^{2*}	First Cost, \$/yd²⁺	NPV 4.0, \$/yd²*
126,000	278,200	0.017	14.63	25.11
109,300	295,300	0.019	13.06	26.02
143,500	250,800	0.014	13.26	21.83
234,500	340,600	0.017	16.15	22.71
103,700	209,800	0.012	11.80	19.47
	BTU/yd ^{2*} 126,000 109,300 143,500 234,500	Construction, BTU/yd* 278,200 126,000 278,200 109,300 295,300 143,500 250,800 234,500 340,600	Construction, BTU/yd** Consumed, Ibs/yd** 126,000 278,200 0.017 109,300 295,300 0.019 143,500 250,800 0.014 234,500 340,600 0.017	Construction, BTU/yd** Consumed, lbs/yd* 126,000 278,200 0.017 14.63 109,300 295,300 0.019 13.06 143,500 250,800 0.014 13.26 234,500 340,600 0.017 16.15

Scenarios	Energy for Initial Construction % Savings, BTU/yd ^{2*}	Energy over 40 Years % Savings, BTU/yd ²⁺	Asphalt Binder Consumed % Savings, Ibs/yd ^{2*}	First Cost % Savings, \$/yd²*	NPV 4.0 % Savings, \$/yd²*
A1 (Overlay)	-	-	-	-	-
A2 (Mill/Fill)	13.25	(6.15)	(11.76)	10.73	(3.62)
A3 (CIPR - Partial)	(13.89)	9.85	17.65	9.36	13.06
A4 (CIPR – Full)	(86.11)	(22.43)	0.00	(10.39)	9.56
A5 (HIPR)	17.70	24.59	29.41	19.34	22.46

Benefits Recycling Offers*

	Initial Construction**	Life Cycle of Pavement**
Cost savings	3 to 21%	4 to 19%
Asphalt Binder savings	3 to 40%	10 to 36%
Energy savings	8 to 21%	10 to 25%

