High Performance Hot Mix Asphalt Intersections

Develop A Strategy

\nearrow Recognize that intersections may need to be treated differently than posted-speed pavements.

Intersection Strategy

λ Assess the problem (if rehabilitating)
\nearrow Ensure structural adequacy
\nearrow Materials selection, mix design and quality control
\nearrow SUPERPAVE Mix Design System
\nearrow Practice proper construction techniques

MID Intersection Competition

\nearrow MD SHA formed a "Rutting Team" in 1993

π No solutions found
\rtimes In 1994 two intersections
on RT 40 given to HMA
\& PCC industries
\nearrow Use any available technology - can ignore MD DOT specs
\gtrsim Work within a budget
\nearrow Best performance wins

Maryland Asphalt Association Strategy

\nearrow Form Task Force
\nearrow MD Asphalt Association
λ NAPA
\nearrow Asphalt Institute
\nearrow Perform forensic analysis on existing roadway before deciding on a solution
\nearrow Consider new technology

Before - Eastbound Rutting

Before - 1.5" Rutting per Year

Before - Westbound RT 40

Forensics - Roadway Trench

N
 Forensics - 10" Roadway Cores
 N 1

Forensics - Hamburg Wheel Tracking Device Testing

Pavement Design

\nearrow Rutting was evident almost to bottom of existing $8^{\prime \prime}$ HMA in trench
\nearrow Remove and replace all $8^{3 \prime \prime}$ of existing HMA
\nearrow Use SUPERPAVE mixes rather than MD SHA mixes
\rtimes Coarser aggregate structure
\rtimes Specify asphalt binder to meet both climatic and traffic conditions

Pavement Design Selection

\nearrow Section 1 - $8^{\prime \prime}$
\nearrow Mill 8" \& Pave 8"
त Test Section to be compared to PCC intersection

入 Section 2 - 5"
\nearrow Mill 5" \& Pave 5"
त Compare performance to $8^{\prime \prime}$ section
$入$ Section 3 - 2"
\nearrow Mill 2" \& Pave 2"
\nearrow Cosmetic improvement

Asphalt Binder Selection

\nearrow Standard Climatic Grade－PG 64－22
入 Traffic Data
入 20 year ESAL＇s＝ 12.8 million
入 12\％Trucks
入＂Bump＂asphalt binder two grades for stopped traffic
\nearrow Selected asphalt grade was PG 76－22
\nearrow Used a stabilized SBS polymer modified asphalt

Paving Schedule

त All work done at night 7:00PM to 6:00AM
\nearrow Avoided rush hours
\nearrow Little or no traffic disruption
入 Work accomplished in 8 nights - 15,000sy of milling \& paving
$\nearrow \mathrm{PCC}$ intersection -12 days and nights (24 hour lane closure) - for 1700sy of paving

Vehicles Affected by Work Zone

Maintenance of Traffic

\nearrow Placed
temporary HMA
ramps at all
entrances after milling operation

Compaction

\nearrow Used 2 double drum vibratory rollers
\nearrow High
frequency, low amplitude
\nearrow NO TENDER ZONE
\nearrow Achieved density

QC Test Results - 25mm Mix

Completed 25mm Base Paving

After - RT 40 Eastbound

After - RT 40 Eastbound

Performance Testing - Ride

\nearrow Used California Type Profilograph
\nearrow Measured both HMA intersection and PCC intersection one year after paving

Ride Testing - Results

Performance Testing - Rutting
\nearrow Transverse Profilograph
\nearrow Pen holding device follows roadway surface
\nearrow Pen draws profile on chart paper
\nearrow After 5 years - 1/16" rutting

Performance Testing - Rutting

PCC Performance - After 4 Years (6.25" Whitetopping)

M 74 PCC Performance - March 2000

Conclusions

\nearrow Intersections require special treatment
\nearrow Develop a strategy
\nearrow Forensic investigation
\gtrsim Structural strength
$入$ Aggregate structure
\nearrow Correct Asphalt Binder grade
\nearrow Good construction practices

How do they compare?

PCC Performance - July 2000

$\star \mathrm{PCC}$ installed in Spring 1995
ォ PCC removed July 2000 \& replaced with SUPERPAVE

Conclusions

PCC Performance - July 2000

$\lambda \mathrm{PCC}$ required 288 hours to install
$\nearrow \mathrm{PCC}$ removed and replaced with HMA in 22 hours

Initial Cost Comparison

2000

Somerset Intersection Update

Kentucky Intersection Study

Somerset Statistics

Asphalt
入 8818 Square Yards
入 Worked 7 evenings
$\nearrow 5$ inches milled and replaced
\nearrow Utilized PG 76－22
入 Cost of \＄25．25 per square yard（48\％less than concrete）
\nearrow Currently meets and exceeds performance expectations

Concrete
入 7865 Square Yards
入 38 Calendar days
$\nearrow 4$ inch white－topping inlay
入 Cost of \＄50 per square yard
入 Currently 108 cracked slabs
入 Many slabs may require replacement in 2001

Asphalt Pavement Sections

May 17, 2001

Asphalt Pavement Sections

May 17, 2001

Asphalt Pavement Sections

May 17, 2001

KTC Historical Data

Average Rutting First 75' From The Stop Bar

PCC Sections

PCC Sections

PCC Sections

PCC Sections

PCC Sections

May 17, 2001

PCC Sections

May 17, 2001

PCC Sections

May 17, 2001

KTC Historical Data

PCC Inlay Cracking

I-10 Suwannee County Weight

 Stations\nearrow Westbound Lane
\nearrow SBS Modified HMA
入 PG 76-22
$\rtimes 12.5 \mathrm{~mm}$ TL 5 Mix Virgin
\nearrow Two - 2 inch thick lifts
\nearrow Eastbound Lane
\gtrsim Ultra Thin Whitetopping

Westbound Station

Eastbound Station

Westbound Station

Eastbound Station

Westbound Station

Eastbound Station

Westbound Station

Eastbound Station

Summary

\nearrow Asphalt intersections work when designed and built properly.
\nearrow PCC does not always work, is expensive, and can cause congestion.
\rtimes PCC whitetopping performance tied to the quality of the underlying HMA
\nearrow HMA is the better choice.

