

by Steve Saboundjian Research Implementation Engineer ADOT&PF - Research & T2

Asphalt Pavement Summit Anchorage, Dec-11-03

Distresses in Hot Mix Asphalt Surfaces:

- Deformation >>> Rutting
- Cracking >>> Fatigue

- Cracking >>> Low Temperature Shrinkage

High Temperature Phenomenon

Intermediate Temperature Phenomenon

FATIGUE CRACKING

Viscosity

S = Temp. Susceptibility = Δ Visc. / Δ Temp.

Binder 1 \mathbf{P} S₁

Binder 2 **P** $S_2 < S_1$

Viscosity

Conventional Binder, S₁

Modified Binder, S₂

Rutting Resistance

Florida DOT: Superpave mixes PG 67-22 & PG 76-22 (~4%SBS) 1- Lab Asphalt Pavement Analyzer: Greater rut resistance with the PMA mix 2- Test track HVS: PMA mix showed less rutting

FLDOT mixes tested with HVS PG 67-22 (unmodified) vs PG 76-22 (modified)

• Studded Tire Wear: PRALL Test Results

Anchorage Mixes	Binder	PRALL Abrasion Value	Average
1996 New Seward Hwy SB, Huffman-Dearmoun	AC-5	46	
1982 New Seward Hwy SB, Rabbit Crk	AC-5	45	47
1993 Muldoon Rd SMA	AC-5	50	
2003 N. Seward Hwy Superpave Dense Graded	PG 58-28	26	
2003 N. Seward Hwy SMA SB , Fireweed-Benson	PG 64-28	23	20
2003 N. Seward Hwy SMA NB , 36th-Benson	PG 64-28	32	20
2003 N. Seward Hwy SMA SB , Tudor-Dowling	PG 58-28	30	

Low-Temperature Cracking Resistance

UAF-1997 study (Report No. INE/TRC 97.05) - Lab testing of binders and field mix samples - Field crack survey

Main findings:

- Significant Improvement in LTC resistance with PMA

 Estimated 30%-40% reduction in crack sealing cost when PMA are used instead of neat asphalt

• Fatigue cracking:

- Research and field observations show the enhancement imparted by polymers

- Magnitude of improvement unknown
- Research project initiated

• Objectives:

Fatigue testing of Alaskan Mixes in the Lab
Inclusion of fatigue equations into the AK pavement design software (AKFPD)

Materials from the 3 Regions

 Northern Region: PG 52-28 & PG 58-28 PMA (EPA) Aggregate: Elliott Hwy Material source

 Central Region: PG 52-28 & PG58-28 PMA (EPA) Aggregate: Central Paving Products source

•South Eastern Region: PG58-28 & PG 64-28 PMA (US Oil&Refining) Aggregate: DuPont, WA Material source

Materials used in Mixes

Roller Compaction

Steel Mold with 2 Ingots Slabs

Mold & Heating Device

Mold Heating Device

Mold Heater

Beam Specimens from Slabs

Fatigue Testing

Four-point bending beam test (SHRP M009 protocol) at 3 Temperatures

Four-Point Bending Beam Fatigue

Beam Testing

Tensile Strain, ϵ_t

Mix Fatigue

Mix Fatigue

TAI Fatigue Eq. for Conventional Dense Graded Mixes

$N_f = 0.116 \times e_t^{-3.291} \times |E^*|^{-0.854}$

Tensile Strain

Cycles to Failure or Fatigue Life Mix Stiffness

PMA Mix Fatigue

Cycles to Failure, N_f

PMA Mix Fatigue

Fatigue Equation for PMA Mixes

—Multiplication Factor

 $\mathbf{N}_{\mathrm{f}}^{\mathrm{PMA}} = \mathbf{C} \times \begin{bmatrix} -3.291 \\ 0.116 \times \varepsilon_{\mathrm{t}} & |\mathbf{E}^{*}|^{-0.854} \end{bmatrix}$ $N_{f}^{PMA} = C \times N_{f}^{Conv.HMA}$

PMA Mix Fatigue

Important Question:

- Is "C" unique for all mixes or depends on the mix tested?

 Current Project Status: Slabs are being fabricated and saw-cut

Summary

Use of PMA reduces mix Temperature Susceptibility

• Use of PMA in HMA improves mix resistance to:

- Rutting and studded tire wear
- Low temperature cracking
- Fatigue cracking ADOT&PF research
 - new Transfer Function in AKFPD software

• Economics of PMA:

- Higher initial cost
- LCCA >>> lower annual cost

