Preface

This manual provides a compilation of approved Test Methods, Forms and Standard Practices to be used to test materials on Alaska Department of Transportation & Public Facilities (DOT&PF) projects.

Most of these testing procedures follow two nationally recognized standards; American Society for Testing and Materials (ASTM), and the American Association of State Highway and Transportation Officials (AASHTO). Modifications to these standards are in recognition of the necessity of adjusting test requirements to meet local demands and/or naturally occurring materials.

This manual also includes Field Operating Procedures (FOPs) for existing AASHTO test methods. These procedures are developed and maintained by the Western Alliance for Quality in Transportation Construction (WAQTC). The FOPs select options and provide concise directions in the use of the AASHTO methods.

In addition, this manual includes WAQTC test methods that are not covered by AASHTO or ASTM. These methods have been submitted to AASHTO for adoption. Other procedures were developed by the Alaska DOT&PF to address specific needs in the State of Alaska that are not adequately covered in AASHTO, ASTM or WAQTC.

The Appendix contains standardized practices to be used by all DOT&PF regional and/or field laboratories including consultant fixed and field laboratories.

The test methods (including referenced test methods) in this manual refer to the most recent issue in effect on the date of the test, including interim publications or errata; unless the test methods (including referenced test methods) are specified by year or date.

Submit suggested additions, deletions or revisions to these procedures to the Statewide Materials Engineer and the Statewide Construction Standards Engineer.
Acknowledgement

Design and Engineering Services, Statewide Materials is indebted to the following organizations for use of, or reference to, portions of their publications.

The American Association of State Highway and Transportation Officials
The American Society for Testing and Materials

Appreciation is also extended to Laboratory and Construction personnel from each Region for their dedication and patience in seeing this task to completion.

Major revisions for this edition include:

1. Global change: number all sections of ATMs. Use similar font style, list style and indents.
2. Global change: highlight revisions (except to font, list style or indents).
5. Global change: AASHTO T 87 is replaced by AASHTO R 58.
7. ATM 212: add water calibration method to Mold Calibration, Table 1, supplementary requirements.
12. New: ATM 509 Fabricating Test Specimens with Self-Consolidating Concrete.
14. SP 2 - Calibration of Mechanical Compaction Hammer/Rammer: incorporates language from ASTM D 2168, Test Method A.
15. Delete: SP 11- Contractor Quality Control.
16. Table 3 in ATM 409-1 restored from the 2012 edition.
Table of Contents

Section 200 Earthwork

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM 201</td>
<td>Sticks and Roots Content of Aggregate and Soil</td>
</tr>
<tr>
<td>ATM 202</td>
<td>WAQTC FOP for AASHTO T 255/T 265 Moisture Content of Aggregate and Soils*</td>
</tr>
<tr>
<td>ATM 203</td>
<td>Organic Content of Soils</td>
</tr>
<tr>
<td>ATM 204</td>
<td>WAQTC FOP for AASHTO T 89 Determining the Liquid Limit of Soils</td>
</tr>
<tr>
<td>ATM 205</td>
<td>WAQTC FOP for AASHTO T 90 Determining the Plastic Limit and Plasticity Index of Soils</td>
</tr>
<tr>
<td>ATM 206</td>
<td>pH of Topsoil</td>
</tr>
<tr>
<td>ATM 207</td>
<td>WAQTC FOP for AASHTO T 99/ T 180 Moisture-Density Relations of Soils*</td>
</tr>
<tr>
<td>ATM 211</td>
<td>Density of Soil In-Place by the Sand-Cone Method</td>
</tr>
<tr>
<td>ATM 212</td>
<td>Determining the Standard Density of Coarse Granular Materials using the Vibratory Compactor</td>
</tr>
<tr>
<td>ATM 213</td>
<td>WAQTC FOP for AASHTO T 310 In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)*</td>
</tr>
<tr>
<td>ATM 214</td>
<td>WAQTC FOP for AASHTO T 224 Correction for Coarse Particles in the Soil Compaction Test*</td>
</tr>
</tbody>
</table>

Section 300 Bases and Aggregates

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM 301</td>
<td>WAQTC FOP for AASHTO T 2 Sampling of Aggregates*</td>
</tr>
<tr>
<td>ATM 303</td>
<td>WAQTC FOP for AASHTO T 248 Reducing Samples of Aggregate to Test Size*</td>
</tr>
<tr>
<td>ATM 304</td>
<td>WAQTC FOP for AASHTO T 27/T 11 Sieve Analysis of Fine and Coarse Aggregates *</td>
</tr>
<tr>
<td>ATM 305</td>
<td>WAQTC FOP for AASHTO T 335 Determining the Percentage of Fracture in Coarse Aggregate*</td>
</tr>
<tr>
<td>ATM 306</td>
<td>Determining the Percentage of Flat and Elongated Particles in Coarse Aggregate</td>
</tr>
<tr>
<td>ATM 307</td>
<td>WAQTC FOP for AASHTO T 176 Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test*</td>
</tr>
<tr>
<td>ATM 308</td>
<td>WAQTC FOP for AASHTO T 85 Specific Gravity and Absorption of Coarse Aggregate*</td>
</tr>
<tr>
<td>ATM 309</td>
<td>Relative Standard Density of Soils by the Control Strip Method</td>
</tr>
<tr>
<td>ATM 312</td>
<td>Nordic Abrasion Value of Coarse Aggregate</td>
</tr>
<tr>
<td>ATM 313</td>
<td>Degradation Value of Aggregates</td>
</tr>
<tr>
<td>ATM 314</td>
<td>Expansive Breakdown of Stone on Soaking in Ethylene Glycol</td>
</tr>
</tbody>
</table>

This Test Method has specific guidelines for the use of the noted test method by the State of Alaska DOT&PF.
Section 400 Asphalt

ATM 401	WAQTC FOP for AASHTO T 40 Sampling Bituminous Materials*	401
ATM 402	WAQTC FOP for AASHTO T 168 Sampling Bituminous Mixes*	402
ATM 403	Sampling Hot Mix Asphalt	403
ATM 404	WAQTC FOP for AASHTO R 47 Reducing Samples of Hot Mix Asphalt (HMA) to Testing Size*	404
ATM 405	Asphalt Cement Content of Hot Mix Asphalt by the Nuclear Method	405
ATM 406	WAQTC FOP for AASHTO T 308 Asphalt Binder Content of Hot Mix Asphalt (HMA) by Ignition Method*	406
ATM 407	WAQTC FOP for AASHTO T 329 Moisture Content of Hot Mix Asphalt by Oven Method*	407
ATM 408	WAQTC FOP for AASHTO T 30 Mechanical Analysis of Extracted Aggregate*	408
ATM 409	WAQTC FOP for AASHTO T 209 Theoretical Maximum Specific Gravity of Hot Mix Asphalt (HMA)*	409
ATM 410	WAQTC FOP for AASHTO T 166 Bulk Specific Gravity of Compacted Hot Mix Asphalt (HMA)*	410
ATM 411	WAQTC TM 8 In-Place Density of Bituminous Mixes using the Nuclear Moisture-Density Gauge*	411
ATM 412	Relative Standard Density of treated mixes by the Control Strip Method	412
ATM 413	WAQTC TM 11 Sampling Bituminous Material after Compaction (Obtaining Cores)*	413
ATM 414	Anti-Strip Requirements of Hot Mix Asphalt	414
ATM 415	WAQTC FOP for AASHTO T 312 HMA Specimens by means of the Superpave Gyratory Compactor	415
ATM 416	WAQTC TM 13 Volumetric Properties of HMA	416
ATM 417	Hot Mix Asphalt Design by the Marshall Method	417
ATM 419	Rutting Susceptibility using an Asphalt Pavement Analyzer	419
ATM 420	Abrasion of HMA by the Prall Test Method	420

*This Test Method has specific guidelines for the use of the noted test method by the State of Alaska DOT&PF.
Section 500 Concrete

<table>
<thead>
<tr>
<th>Test Method</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM 501</td>
<td>WAQTC TM 2 Sampling Freshly Mixed Concrete</td>
<td>501</td>
</tr>
<tr>
<td>ATM 502</td>
<td>WAQTC FOP for AASHTO T 309 Temperature of Freshly Mixed Hydraulic-Cement Concrete</td>
<td>502</td>
</tr>
<tr>
<td>ATM 503</td>
<td>WAQTC FOP for AASHTO T 119 Slump of Hydraulic-Cement Concrete</td>
<td>503</td>
</tr>
<tr>
<td>ATM 504</td>
<td>WAQTC FOP for AASHTO T 121 Density (Unit Weight), Yield & Air Content (Gravimetric) of Concrete*</td>
<td>504</td>
</tr>
<tr>
<td>ATM 505</td>
<td>WAQTC FOP for AASHTO T 152 Air Content of Freshly Mixed Concrete by the Pressure Method*</td>
<td>505</td>
</tr>
<tr>
<td>ATM 506</td>
<td>WAQTC FOP for AASHTO T 23 Making and Curing Concrete Test Specimens in the Field*</td>
<td>506</td>
</tr>
<tr>
<td>ATM 507</td>
<td>WAQTC FOP for AASHTO TP 83 Field Sampling and Fabrication of 50–mm (2-in) Cube Specimens using Grout (Non-Shrink) and or Mortar *</td>
<td>507</td>
</tr>
<tr>
<td>ATM 508</td>
<td>Slump Flow of Self-Consolidating Concrete</td>
<td>508</td>
</tr>
<tr>
<td>ATM 509</td>
<td>Fabricating Test Specimens with Self-Consolidating Concrete</td>
<td>509</td>
</tr>
<tr>
<td>ATM 530</td>
<td>Concrete Mix Designs by ACI & Packing Density Methods</td>
<td>530</td>
</tr>
</tbody>
</table>

Appendix 1 Standard Practices

<table>
<thead>
<tr>
<th>Practice</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP 1</td>
<td>Terminology</td>
<td>SP 1</td>
</tr>
<tr>
<td>SP 2</td>
<td>Calibration of Mechanical Compaction Hammer/Rammer</td>
<td>SP 2</td>
</tr>
<tr>
<td>SP 3</td>
<td>Reserved for WAQTC Discipline Policy</td>
<td>SP 3</td>
</tr>
<tr>
<td>SP 4</td>
<td>Random Sampling</td>
<td>SP 4</td>
</tr>
<tr>
<td>SP 5</td>
<td>ACI 301 References</td>
<td>SP 5</td>
</tr>
<tr>
<td>SP 6</td>
<td>Rounding and Precision in Materials Test Reporting</td>
<td>SP 6</td>
</tr>
<tr>
<td>SP 7</td>
<td>Determination of Outlier Test Results</td>
<td>SP 7</td>
</tr>
<tr>
<td>SP 8</td>
<td>Calibration of Pressure Type Air Meter</td>
<td>SP 8</td>
</tr>
<tr>
<td>SP 9</td>
<td>Reserved</td>
<td>SP 9</td>
</tr>
<tr>
<td>SP 10</td>
<td>Test Method Standard Forms and Example Calculations</td>
<td>SP 10</td>
</tr>
<tr>
<td>SP 11</td>
<td>Reserved</td>
<td>SP 11</td>
</tr>
<tr>
<td>SP 12</td>
<td>Materials Sample Identification System</td>
<td>SP 12</td>
</tr>
</tbody>
</table>

This Test Method has specific guidelines for the use of the noted test method by the State of Alaska DOT&PF.
ATM 201 Sticks & Roots Content of Aggregate and Soil

1. **Scope**
This is the procedure for determining the percent of sticks & roots by wet mass of the total aggregate or soil sample.

2. **Significance**
Use this test to quantify the organic content of soils for particles that are too large to test in accordance with ATM 203, Organic Content of Soils by Ignition.

3. **Apparatus**
 - Balance or scale: Capacity sufficient for the field sample mass, readable to 0.1 percent or 0.1 g and meeting the requirements of AASHTO M 231.
 - 2.00 mm (No. 10) sieve conforming to AASHTO M 92 (ASTM E11).
 - Miscellaneous equipment including pans, gloves, etc.

4. **Sampling and Sample Preparation**
Obtain the sample in accordance with WAQTC FOP for AASHTO T 2 (ASTM D75). Perform the test on the complete as-received sample before drying.

5. **Procedure**
 1. Determine the mass of the as-received sample to 0.1 percent or 0.1 g. Record this as the Total Sample Mass.
 2. Separate the sample on a 2.00 mm (No. 10) sieve to ease identification of sticks & roots.
 3. Separate the sticks & roots from the plus 2.00 mm (No. 10) material and place in a separate pan.
 4. Determine the mass of the sticks & roots to 0.1 percent or 0.1 g. Record this as the Sticks & Roots Mass.

6. **Calculations**
Calculate the percentage of Sticks & Roots by:

\[
\text{Sticks & Roots, percent} = \left(\frac{\text{Sticks & Roots Wet Mass}}{\text{Total Wet Sample Mass}} \right) \times 100
\]

7. **Report**
 - Results on forms approved by the Department
 - Stick and Root Content to nearest 1 percent
This page left intentionally blank.
The following are DOT&PF guidelines for using WAQTC FOP for AASHTO T 255/T 265.

1. Use controlled methods of drying for most samples. It is assumed that constant mass has been reached for soils and aggregates when dried overnight (8-16 hours is sufficient in most cases). Shorter drying times require reweighing of samples until constant mass is achieved.

2. Uncontrolled methods of drying may be used when time is of the essence. These methods require reweighing of samples until constant mass is achieved.
TOTAL EVAPORABLE MOISTURE CONTENT OF AGGREGATE BY DRYING
WAQTC FOP FOR AASHTO T 255

LABORATORY DETERMINATION OF MOISTURE CONTENT OF SOILS
WAQTC FOP FOR AASHTO T 265

1. Scope

This procedure covers the determination of moisture content of aggregate and soil in accordance with AASHTO T 255 and AASHTO T 265. It may also be used for other construction materials.

2. Overview

Moisture content is determined by comparing the wet mass of a sample and the mass of the sample after drying to constant mass. The term constant mass is used to define when a sample is dry.

Constant mass – the state at which a mass does not change more than a given percent, after additional drying for a defined time interval, at a required temperature.

3. Apparatus

- Balance or scale: capacity sufficient for the principle sample mass, accurate to 0.1 percent of sample mass or readable to 0.1 g, and meeting the requirements of AASHTO M 231
- Containers, clean, dry and capable of being sealed
- Suitable drying containers
- Microwave safe containers
- Heat source, temperature controlled:
 - Forced draft oven
 - Ventilated / convection oven
- Heat source, uncontrolled:
 - Microwave oven (600 watts minimum)
 - Infrared heater, hot plate, fry pan, or any other device/method that will dry the sample without altering the material being dried
- Utensils such as spoons
- Hot pads or gloves

4. Sample Preparation

In accordance with the FOP for AASHTO T 2 (ASTM D75) obtain a representative sample in its existing condition.

For aggregates the representative sample size is based on Table 1 or other information that may be specified by the agency.
Table 1
Sample Sizes for Moisture Content of Aggregate

<table>
<thead>
<tr>
<th>Nominal Maximum Size*</th>
<th>Minimum Sample Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm (in.)</td>
<td>g (lb)</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>500 (1.1)</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>1500 (3.3)</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>2000 (4)</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>3000 (7)</td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>4000 (9)</td>
</tr>
<tr>
<td>37.5 (1 1/2)</td>
<td>6000 (13)</td>
</tr>
<tr>
<td>50 (2)</td>
<td>8000 (18)</td>
</tr>
<tr>
<td>63 (2 1/2)</td>
<td>10,000 (22)</td>
</tr>
<tr>
<td>75 (3)</td>
<td>13,000 (29)</td>
</tr>
<tr>
<td>90 (3 1/2)</td>
<td>16,000 (35)</td>
</tr>
<tr>
<td>100 (4)</td>
<td>25,000 (55)</td>
</tr>
<tr>
<td>150 (6)</td>
<td>50,000 (110)</td>
</tr>
</tbody>
</table>

* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum.

For soils the representative sample size is based on Table 2 or other information that may be specified by the agency.

Table 2
Sample Sizes for Moisture Content of Soil

<table>
<thead>
<tr>
<th>Maximum Particle Size</th>
<th>Minimum Sample Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm (in.)</td>
<td>g</td>
</tr>
<tr>
<td>0.425 (No. 40)</td>
<td>10</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>300</td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>500</td>
</tr>
<tr>
<td>50 (2)</td>
<td>1000</td>
</tr>
</tbody>
</table>

Immediately seal or cover samples to prevent any change in moisture content or follow the steps in “Procedure”.

5. Procedure

Determine and record the sample mass as follows:

- For aggregate, determine and record all masses to the nearest 0.1 percent of the sample mass or to the nearest 0.1 g.
- For soil, determine and record all masses to the nearest 0.1 g.

When determining the mass of hot samples or containers or both, place and tare a thermal buffer between the sample container and the balance. This will eliminate damage to or interference with the operation of the balance or scale.
1. Determine and record the mass of the container.

2. Place the wet sample in the container.
 a. For oven(s), hot plates, heat lamps, etc.: Spread the sample in the container.
 b. For microwave oven: Heap sample in the container with ventilated lid.

3. Determine and record the total mass of the container and wet sample.

4. Determine and record the wet mass of the sample by subtracting the container mass determined in Step 1 from the mass of the container and wet sample determined in Step 3.

5. Dry the sample:
 a. For aggregate – Controlled heat source is preferred. Uncontrolled heat source may be used when time is of the essence.
 i. Controlled heat source (oven): at 110 ±5°C (230 ±9°F).
 ii. Uncontrolled heat source (Hot plate, heat lamp, etc.): Stir frequently to avoid localized overheating.
 b. For soil – controlled heat source (oven): at 110 ±5°C (230 ±9°F).

 Note 1: Soils containing gypsum or significant amounts of organic material require special drying. For reliable moisture contents dry these soils at 60°C (140°F). For more information see AASHTO T 265, Note 2.

6. Dry until sample appears moisture free.

7. Determine mass of sample and container.

8. Determine and record the mass of the sample by subtracting the container mass determined in Step 1 from the mass of the container and sample determined in Step 7.

9. Return sample and container to the heat source for additional drying.
 a. For aggregate –
 i. Controlled heat source (oven): 30 minutes
 ii. Uncontrolled heat source (Hot plate, heat lamp, etc.): Varies with heat source and sample size from 2 to 20 minutes
 iii. Uncontrolled heat source (Microwave oven): 10 minutes

 Caution: Some minerals in the sample may cause the aggregate to overheat, altering the aggregate gradation.
 b. For soil – controlled heat source (oven): 1 hour

10. Determine mass of sample and container.

11. Determine and record the mass of the sample by subtracting the container mass determined in Step 1 from the mass of the container and sample determined in Step 10.
12. Determine percent change by subtracting the new mass determination \((M_n) \) from the previous mass
determination \((M_p) \), divide by the new mass determination \((M_n) \), and multiply by 100.

13. Continue drying, performing steps 9 through 12, until constant (dry) mass has been achieved:
 a. For Aggregate – less than a 0.10 percent change after additional drying time.
 b. For Soil – no change after additional drying time.

14. Allow the sample to cool. Immediately determine and record the total mass of the container and dry
sample.

15. Determine and record the dry mass of the sample by subtracting the mass of the container determined in
Step 1 from the mass of the container and sample determined in Step 14.

16. Determine and record percent moisture: subtract the final dry mass determination \((M_D) \) from the initial
wet mass determination \((M_W) \), divide by the final dry mass determination \((M_D) \), multiply by 100.

Table 3

Methods of Drying

<table>
<thead>
<tr>
<th>Heat Source</th>
<th>Specific Instructions</th>
<th>Drying increments (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlled:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forced draft (preferred), ventilated, or convection oven</td>
<td>110 ±5°C (230 ±9°F)</td>
<td>30</td>
</tr>
<tr>
<td>Uncontrolled:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot plate, Heat Lamp, etc.</td>
<td>Stir frequently</td>
<td>2-20</td>
</tr>
<tr>
<td>Microwave</td>
<td>Heap sample and cover with ventilated lid</td>
<td>10</td>
</tr>
<tr>
<td>Soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlled:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forced draft (preferred), ventilated, or convection oven</td>
<td>110 ±5°C (230 ±9°F)</td>
<td>1 hour</td>
</tr>
</tbody>
</table>
6. Calculation

Percent Change in Mass for Aggregates and Soils:

Calculate percent change in mass using the following formula:

\[
\frac{M_p - M_n}{M_n} \times 100 = \% \text{ Change}
\]

Where:
\(M_p\) = previous mass measurement
\(M_n\) = new mass measurement

Moisture Content of Aggregate and Soils:

Calculate the moisture content, as a percent, using the following formula:

\[
w = \frac{M_W - M_D}{M_D} \times 100
\]

Where:
\(w\) = moisture content, percent
\(M_W\) = wet mass
\(M_D\) = dry mass

7. Report

- Results on forms approved by the Department
- \(M_W\), wet mass
- \(M_D\), dry mass
- \(w\), moisture content to nearest 0.1 percent
ATM 203 Organic Content of Soils

1. Scope

This method describes the procedure for determining organic content of soils by loss on ignition as adopted from ASTM D2974.

This standard involves hazardous materials, operations and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the agency to establish appropriate safety and health practices and to train the user of this standard prior to use. It is the responsibility of the user to consult the appropriate agency authority for and to practice and maintain the appropriate safety and health practices.

2. Apparatus

- Sieves conforming to AASHTO M 92 (ASTM E11)
- Pulverizing apparatus suitable for breaking up aggregations of soil particles without reducing the size of individual grains
- Balance or scale: Class G1, sensitive to 0.01 g with a capacity sufficient for the principle sample mass, and meeting the requirements of AASHTO M 231
- For this test, this would require a scale with a capacity of at least 150 g and readable to 0.01 g
- Muffle Furnace, thermostatically controlled, capable of maintaining a temperature of 445 ± 10°C (830 ±15°F). The combustion chamber will be capable of accommodating the designated container(s) and sample(s). The furnace shall be equipped with a pyrometer recorder that will indicate chamber temperature while in use.
- Crucible, with covers, having a minimum volume of 100 ml and capable of withstanding repeated exposure to temperatures of 500°C (950°F)
- Non-asbestos, heat-resistant, gauntlet-type gloves capable of withstanding temperatures of 500°C (950°F)
- Desiccator of sufficient size containing an effective desiccant
- Miscellaneous equipment including tongs, spatulas, wire brushes, etc.

3. Sampling and Sample Preparation

1. Obtain the sample in accordance with WAQTC FOP for AASHTO T 2 (ASTM D75).
2. Dry the sample to constant mass in accordance with the soil procedure of WAQTC FOP for AASHTO T 255/T 265.
3. If the material contains lumps of organics or aggregations of soil, they shall be broken up by such means that will not reduce the size of the aggregate particles. Sieve the dry sample through the 4.75 (No. 4) sieve.

 Note 1: Sticks and roots shall not be broken up, but shall be removed by hand and reported as Sticks and Roots (see ATM 201).
4. Reduce the sample to a mass of approximately 50 g in accordance with WAQTC FOP for AASHTO T 248.
4. **Procedure**

1. Determine the mass of a crucible to the nearest 0.01 g and record as Tare.

2. Place the sample into the crucible, determine the mass to the nearest 0.01 g and record as Mass Before Ignition + Tare.

 Note 2: Sample masses for lightweight materials such as peat may be less than 50 g but should be of sufficient amount to fill the crucible to at least 3/4 depth. A cover may initially be required over the crucible during the initial phase of ignition to decrease the possibility of the sample being "blown out" from container.

3. Place the crucible into a pre-heated muffle furnace at a temperature of 445°C (835°F) for a minimum of six hours until the sample is completely ashed (no change of mass occurs after at least 1 hr. of additional heating. If a cover has been used, it shall be removed after approximately 2 hours of combustion.

4. Remove the test sample from the muffle furnace and cool it to room temperature in a desiccator.

5. Determine the mass to the nearest 0.01 grams and record as Mass After Ignition + Tare.

5. **Calculations**

 Calculate the percent organic content by the following formula:

\[
\text{Organic Content} = \left(\frac{A - B}{A - C}\right) \times 100
\]

Where:
A = Mass Before Ignition + Tare,
B = Mass After Ignition + Tare,
C = Tare.

6. **Report**

- Results on forms approved by the Department
- Organic Content to nearest 0.1 percent
ATM 204 Determining the Liquid Limit of Soils

DETERMINING THE LIQUID LIMIT OF SOILS
WAQTC FOP FOR AASHTO T 89

1. Scope

This procedure covers the determination of the liquid limit of a soil in accordance with AASHTO T 89. It is used in conjunction with the FOP for AASHTO T 90, Determining the Plastic Limit and Plasticity Index of Soils. The three values are used for soil classification and other purposes.

2. Apparatus

- Dish: preferably unglazed porcelain or similar mixing dish, about 115 mm (4.5 in.) in diameter.
- Spatula: having a blade 75 to 100 mm (3 to 4 in.) long and about 20 mm (3/4 in.) wide.
- Liquid Limit Device: manually or mechanically operated, consisting of a brass cup, carriage, and base plate.
- Grooving Tool: used to cut the soil in the liquid limit device cup.
- Gauge: part of the grooving tool or a separate metal bar, 10.0 ±0.2 mm (0.394 ±0.008 in.) thick and approximately 50 mm (2 in.) long.
- Containers: corrosion resistant, suitable for repeated heating and cooling, having close fitting lids to prevent the loss of moisture. One container is needed for each moisture content determination.
- Balance: conforming to AASHTO M 231, class G1, sensitive to 0.01 g with a 1200 g capacity.
- Oven: thermostatically controlled, capable of maintaining temperatures of 110 ± 5°C (230 ± 9°F).
- Graduated cylinders for measuring distilled or demineralized water.

3. Adjustment of Liquid Limit Device

The liquid limit device shall be inspected to determine that the device is in good working order; that the pin connecting the cup is not worn to permit side play; that the screws connecting the cup to the hanger are tight; that the points of contact on the cup and base are not excessively worn; that the lip of the cup is not excessively worn; and that a groove has not been worn in the cup. The grooving tool shall be inspected to determine that the critical dimensions are correct.

Note 1: Wear is considered excessive when the point of contact on the cup or base exceeds approximately 13 mm (0.5 in.) in diameter, or when any point on the rim of the cup is worn to approximately 1/2 the original thickness. A slight groove in the center of the cup is not objectionable. If the groove becomes pronounced, the cup shall be replaced. A base that is excessively worn may be refinished as long as it is maintained within the tolerances specified.

Adjust the height of drop of the cup so that the point on the cup that comes in contact with the base rises to a height of 10.0 ± 0.2 mm (0.394 ± 0.008 in.).

Note 2: Check the height of the drop, before each new sample, by turning the crank at two revolutions per second while holding the gauge in position against the cup. If a ringing or clicking sound is heard without the cup rising from the gauge, the adjustment is correct. If no ringing is heard or if the cup rises from gauge, readjust the height of the drop. If the cup rocks on the gauge during this checking operation, the cam follower pivot is excessively worn and should be replaced.

4. Sample Preparation

Samples must be prepared per AASHTO R 58 or T 146. Obtain a sample with a mass of about 100 g taken from the portion of the material passing the 0.425 mm (No. 40) sieve.
The mass required depends upon the method chosen. Method A (multi-point method) requires approximately 100 g. Method B (single point method) requires approximately 50 g.

5. Procedure – Method A (Multi-Point)

1. Place the sample in the dish and thoroughly mix with 15 to 20 mL of distilled or demineralized water by alternately and repeatedly stirring, kneading, and chopping with a spatula. Further additions of water shall be in increments of 1 to 3 mL. Each increment shall be thoroughly mixed with the soil before another increment is added. Once testing has begun, no additional dry soil should be added to the moistened soil. The cup of the Liquid Limit device shall not be used for mixing soil and water. If too much water is added, the sample shall either be discarded or mixed and kneaded until natural evaporation lowers the moisture content.

Note 3: Some soils are slow to absorb water. It is possible to add water so fast that a false LL value is obtained. This can be avoided by allowing more mixing and/or time. Also, tap water may be used for routine testing if comparative tests indicate no differences in results between using tap water and distilled or demineralized water.

2. Add sufficient water to form a uniform mass of a stiff consistency.

3. Place enough material in the cup so that, when squeezed and spread with the spatula, the soil will rest in the cup above the spot where the cup rests on the base and will be 10 mm thick at the point of maximum thickness. Use as few strokes of the spatula as possible, taking care to prevent the entrapment of air bubbles in the sample.

4. Divide the soil in the cup with a firm stroke of the grooving tool. Avoid tearing of the sides of the groove or slipping of the soil cake on the cup. Up to six strokes are permitted. The depth of the groove should be increased with each stroke, and only the last stroke should scrape the bottom of the cup.

5. Lift and drop the cup by turning the crank at a rate of approximately two revolutions per second until the two halves of the soil pat come together along a distance of about 13 mm (0.5 in.). Do not hold the base while the crank is turned. Record the number of shocks required to close the groove.

Note 4: Some soils tend to slide on the cup instead of flowing. If this occurs, water should be added, the sample remixed, and the procedure repeated. If the soil continues to slide on the cup, the test is not applicable and a note should be made that the liquid limit could not be determined.

6. Obtain a moisture content sample by slicing through the soil pat perpendicularly with the spatula and through the center of the groove. Place it into a suitable container for subsequent moisture determination.

7. Determine the moisture content in accordance with the FOP for AASHTO T 255/T 265 (Soil).

8. Place the soil remaining in the cup back in the mixing dish and add 1 to 3 mL of water, or use previously prepared portions to which sufficient water has been added to result in a more fluid condition.

9. Repeat Steps 3 through 8, a minimum of two times. The object is to have a determination in all three shock ranges 25-35, 20-30, & 15-25.

6. Flow Curve – Method A

Prepare a flow curve on a semi-logarithmic graph with moisture content on the arithmetic vertical axis and the number of shocks on the logarithmic horizontal axis. The flow curve is a straight line drawn as closely as possible through three or more plotted points.

7. Liquid Limit – Method A

Determine the liquid limit. The moisture content at the intersection of the flow curve and the 25 shock line is the liquid limit.
8. Procedure – Method B (Single-Point)

1. Place the sample in the dish and thoroughly mix with 8 to 10 mL of distilled or demineralized water, and following the mixing procedure in Method A, Step 1.

2. Follow the procedure in Method A except that the soil pat should be prepared with water to produce a consistency that will close the two halves of the soil pat at least 13 mm (0.5 in.) within 22 to 28 shocks of the cup.

 Note 5: Groove closures occurring between 15 and 40 blows may be accepted if variations of ± 5 percent of the true liquid limit are tolerable.

3. Return the soil remaining in the cup to the mixing dish and, without adding any additional water, repeat Step 2. If the closure again occurs within the acceptable range, obtain a moisture content specimen.

4. Determine the moisture content in accordance with the FOP for AASHTO T 255/T 265 (Soil).

9. Liquid Limit – Method B

Calculate the liquid limit as follows:

\[LL = (wN)(N/25)^{0.121} \]

<table>
<thead>
<tr>
<th>N</th>
<th>(N/25)</th>
<th>N</th>
<th>(N/25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>0.985</td>
<td>26</td>
<td>1.005</td>
</tr>
<tr>
<td>23</td>
<td>0.990</td>
<td>27</td>
<td>1.009</td>
</tr>
<tr>
<td>24</td>
<td>0.995</td>
<td>28</td>
<td>1.014</td>
</tr>
<tr>
<td>25</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Where:
LL = liquid limit
wN = moisture content of sample at N blows
N = number of blows

10. Report

- Results on forms approved by the Department
- LL, Liquid Limit to nearest 1 percent
DETERMINING THE PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS
WAQTC FOP FOR AASHTO T 90

1. Scope

This procedure covers the determination of the plastic limit and plasticity index of soil in accordance with AASHTO T 90. It is used in conjunction with the FOP for AASHTO T 89, “Determining the Liquid Limit of Soils.” The three values are used for soil classification and other purposes. This FOP will cover the hand rolling method only. If the plastic limit device method is approved by the agency, see the FOP for AASHTO T 90 for that procedure.

2. Apparatus

- Dish: preferably unglazed porcelain or similar mixing dish, about 115 mm (4.5 in.) in diameter.
- Spatula: having a blade 75 to 100 mm (3 to 4 in.) long and about 20 mm (3/4 in.) wide.
- Rolling Surface: a ground glass plate or piece of smooth, unglazed paper.
- Containers: corrosion resistant, suitable for repeated heating and cooling, having close fitting lids to prevent the loss of moisture. One container is needed for each moisture content determination.
- Balance: conforming to AASHTO M 231, class G1, sensitive to 0.01 g with a 1200 g capacity.
- Oven: thermostatically controlled, capable of maintaining temperatures of 110 ±5°C (230 ±9°F).

3. Sample

The plastic limit procedure is often run in conjunction with the liquid limit procedure. If this is the case, the plastic limit sample should be obtained from the soil prepared for the liquid limit test at any point in the process at which the soil is plastic enough to be easily shaped into a ball without sticking to the fingers excessively when squeezed. Obtain approximately 8 g of soil to run the plastic limit test.

If the plastic limit only is to be determined, the sample must be prepared per AASHTO R 58 or T 146. Obtain about 20 g of material passing the 0.425 mm (No. 40) sieve. Mix the soil with distilled or demineralized water until the mass becomes plastic enough to be easily shaped into a ball. Obtain approximately 8 g of soil to run the plastic limit test.

Note 1: Tap water may be used for routine testing if comparative tests indicate no differences in results between using tap water and distilled or demineralized water.

4. Procedure (Hand Rolling Method)

1. From the sample pull a 1.5 to 2 g mass.
2. Squeeze and form the test sample into an ellipsoidal-shape mass.
3. Roll this mass between the fingers or palm and the rolling surface with just sufficient pressure to roll the mass into a thread of uniform diameter along its length. Roll out between 80 and 90 strokes per minute, counting a stroke as one back and forth motion. The sample must be rolled into the 3 mm (1/8 in.) thread in no longer than 2 minutes.
4. Break the thread into six or eight pieces when the diameter of the thread reaches 3 mm (1/8 in.).
5. Squeeze the pieces together between the thumbs and fingers of both hands into an ellipsoidal-shape mass and reroll.

6. Continue this process of alternately rolling to a thread 3 mm (1/8 in.) in diameter, cutting into pieces, gathering together, kneading and rerolling until the thread crumbles under the pressure required for rolling and the soil can no longer be rolled into a thread.

Note 2: Crumbling may occur when the thread has a diameter greater than 3 mm (1/8 in.). This shall be considered a satisfactory end point, provided the soil has been previously rolled into a thread 3 mm (1/8 in.) in diameter. The crumbling will manifest itself differently with various types of soil. Some soils fall apart in many pieces; others form an outside tubular layer that splits at both ends; splitting progresses toward the middle, and the thread falls apart in small platy particles. Heavy clay requires much pressure to deform the thread, particularly as it approaches the plastic limit, and the thread breaks into a series of barrel-shaped segments each 6 to 9 mm (1/4 to 3/8 in.) long. At no time shall the tester attempt to produce failure at exactly 3 mm (1/8 in.) diameter. It is permissible, however, to reduce the total amount of deformation for feebly plastic soils by making the initial diameter of the ellipsoidal-shaped mass nearer to the required 3 mm (1/8 in.) final diameter.

7. Gather the portions of the crumbled soil together and place in a suitable, tared container & cover.

8. Repeat steps one through seven until 8 g of sample have been tested and placed in the covered container.

9. Determine the moisture content of the sample in accordance with the FOP for AASHTO T 255/T 265 (Soil).

5. Plastic Limit

The moisture content, as determined in Step 9 above, is the Plastic Limit. It is advisable to run several trials on the same material to ensure a proper determination of the Plastic Limit of the soil.

6. Plasticity Index

The Plasticity Index (PI) of the soil is equal to the difference between the Liquid Limit (LL) and the Plastic Limit (PL).

\[PI = LL - PL \]

7. Report

• Results forms approved by the Department

• PL and PI to the nearest whole number
1. **Scope**

This method describes the procedure for determining the pH of topsoil.

2. **Apparatus**

 - A soil test kit capable of determining the pH of soils. These are available from commercial greenhouses. Verify reagent expiration dates and replace as needed.
 - pH Meter—Calibrate according to manufacturer’s recommendations.
 - 2.00 mm (No. 10) sieve conforming to AASHTO M 92 (ASTM E11).

3. **Sampling and Sample Preparation**

 1. Obtain the sample in accordance with WAQTC FOP for AASHTO T 2 (ASTM D75).
 2. Prepare the soil sample in accordance with AASHTO R 58 and the manufacturer's instructions for the soils kit.

4. **Procedure**

 1. Separate sample on a 2.00 mm (No. 10) sieve. Discard the plus 2.00 mm (No. 10) material unless required for other testing.
 2. Determine the pH of the minus 2.00 mm (No. 10) material in accordance with the manufacturer's instructions.

5. **Report**

 - PH value to the nearest 0.5.
Following are guidelines for the use of WAQTC FOP for AASHTO T 99/T 255 by the State of Alaska DOT&PF.

1. ASTM D4253 or ATM 212 are more appropriate to determine standard density values for compaction control of open-graded aggregate materials.

2. Moisture content shall be determined using the mass requirements listed in table 2 of WAQTC FOP for AASHTO T 255/T 265.

3. In order to properly draw the moisture-density curve, it may be helpful to plot a Zero Air Voids (ZAV) curve. The ZAV curve must be to the right of the wet side of the curve. To plot the curve, you will need to establish the specific gravity of the soil. Specific gravity of the soil can be estimated, assumed to be 2.700, or it can be determined in accordance with AASHTO T 100.

4. The points for plotting the ZAV shall be calculated by selecting dry unit masses and calculating a corresponding moisture content value as follows:

 \[W_s = \frac{(\gamma_w G_s - \gamma_d)}{(\gamma_w G_s)} \times 100 \]

 Where:

 \(W_s \) = Water content for complete saturation, %
 \(\gamma_w \) = Unit Mass of water 9.789 kN/m³ (62.4 lbf/ft³)
 \(\gamma_d \) = Dry unit mass of soil, kN/m³ (lbf/ft³)
 \(G_s \) = Specific Gravity of soil or Gavg as described below

5. When the material includes plus 4.75 mm (No. 4) materials, the plus 4.75 mm (No. 4) specific gravity may be estimated, assumed to be 2.700 or it can be tested in accordance with WAQTC FOP for AASHTO T 85. If a weighted average is used, it shall be calculated as follows:

 \[G_{avg} = \frac{1}{100 R_1 + \frac{P_1}{100 G_1} + \frac{P_1}{100 G_2}} \]

 Where:

 \(G_{avg} \) = Weighted average specific gravity of soils
 \(R_1 \) = Percent of soil particles retained on the 4.75 mm (No. 4) sieve
 \(P_1 \) = Percent of soil particles passing the 4.75 mm (No. 4) sieve
 \(G_1 \) = Apparent specific gravity of soil particles retained on the 4.75 mm (No. 4) sieve
 \(G_2 \) = Specific gravity of soil particles passing the 4.75 mm (No. 4) sieve

6. The use of an extruder is optional when the sample being tested is granular.

8. Replace the first sentence in the second paragraph in the Scope with the following:

 This test method applies to soil mixtures having 40 percent or less retained on the 4.75 mm (No. 4) sieve for methods A or B, or 40% or less retained on the 19 mm (3/4 in.) with methods C or D.
MOISTURE-DENSITY RELATIONS OF SOILS:

USING A 2.5-KG (5.5-LB) RAMMER AND A 305 MM (12-IN.) DROP
FOP FOR AASHTO T 99

USING A 4.54-KG (10-LB) RAMMER AND A 457 MM (18-IN.) DROP
FOP FOR AASHTO T 180

1. **Scope**

This procedure covers the determination of the moisture-density relations of soils and soil-aggregate mixtures in accordance with two similar test methods:

- AASHTO T 99: Methods A, B, C, and D
- AASHTO T 180: Methods A, B, C, and D

This test method applies to soil mixtures having 40% or less retained on the 4.75 mm (No 4) sieve for methods A or B, or, 30% or less retained on the 19 mm (¾ in.) with methods C or D. The retained material is defined as oversize (coarse) material. If no minimum percentage is specified, 5% will be used. Samples that contain oversize (coarse) material that meet percent retained criteria should be corrected by using the FOP for AASHTO T 224. Samples of soil or soil-aggregate mixture are prepared at several moisture contents and compacted into molds of specified size, using manual or mechanical rammers that deliver a specified quantity of compactive energy. The moist masses of the compacted samples are multiplied by the appropriate factor to determine moist density values. Moisture contents of the compacted samples are determined and used to obtain the dry density values of the same samples. Maximum dry density and optimum moisture content for the soil or soil-aggregate mixture is determined by plotting the relationship between dry density and moisture content.

2. **Apparatus**

- Mold – Cylindrical, made of metal and with the dimensions shown in Table 1 or Table 2. It shall include a detachable collar and a base plate to which the mold can be fastened. If permitted by the agency, the mold may be of the “split” type, consisting of two half-round sections, which can be securely locked in place to form a cylinder.

- Rammer – Manually or mechanically-operated rammers as detailed in Table 1 or Table 2. A manually-operated rammer shall be equipped with a guide sleeve to control the path and height of drop. The guide sleeve shall have at least four vent holes no smaller than 9.5 mm (3/8 in.) in diameter, spaced approximately 90 degrees apart and approximately 19 mm (3/4 in.) from each end. A mechanically-operated rammer will uniformly distribute blows over the sample and will be calibrated with several soil types, and be adjusted, if necessary, to give the same moisture-density results as with the manually operated rammer. For additional information concerning calibration, see the FOP for AASHTO T 99 and T 180.

- Sample extruder – A jack, lever frame, or other device for extruding compacted specimens from the mold quickly and with little disturbance.

- Balance(s) or scale(s) of the capacity and sensitivity required for the procedure used by the agency.

- A balance or scale with a capacity of 20 kg (45 lb) and a sensitivity of 5 g (0.01 lb) for obtaining the sample, meeting the requirements of AASHTO M 231.

- A balance or scale with a capacity of 2 kg and a sensitivity of 0.1 g is used for moisture content determinations done under both procedures, meeting the requirements of AASHTO M 231.
• Drying apparatus – A thermostatically controlled drying oven, capable of maintaining a temperature of 110 ± 5°C (230 ± 9°F) for drying moisture content samples in accordance with the FOP for AASHTO T 255/T 265.

• Straigntedge – A steel straightedge at least 250 mm (10 in.) long, with one beveled edge and at least one surface plane within 0.1 percent of its length, used for final trimming.

• Sieve(s) – 4.75 mm (No. 4) and/or 19.0 mm (3/4 in.), conforming to AASHTO M 92 (ASTM E11).

• Mixing tools – Miscellaneous tools such as a mixing pan, spoon, trowel, spatula, etc., or a suitable mechanical device, for mixing the sample with water.

• Containers with close-fitting lids to prevent gain or loss of moisture in the sample.

Table 1

Comparison of Apparatus, Sample, and Procedure – Metric

<table>
<thead>
<tr>
<th></th>
<th>T 99</th>
<th>T 180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mold Volume, m³</td>
<td>Methods A, C: 0.000943 ± 0.000008</td>
<td>Methods A, C: 0.000943 ± 0.000008</td>
</tr>
<tr>
<td></td>
<td>Methods B, D: 0.002124 ± 0.000021</td>
<td>Methods B, D: 0.002124 ± 0.000021</td>
</tr>
<tr>
<td>Mold Diameter, mm</td>
<td>Methods A, C: 101.6 ± 0.41</td>
<td>Methods A, C: 101.6 ± 0.41</td>
</tr>
<tr>
<td></td>
<td>Methods B, D: 152.4 ± 2.54</td>
<td>Methods B, D: 152.4 ± 2.54</td>
</tr>
<tr>
<td>Mold Height, mm</td>
<td>116.43 ± 0.13</td>
<td>116.43 ± 0.13</td>
</tr>
<tr>
<td>Detachable Collar Height, mm</td>
<td>50.80 ± 0.64</td>
<td>50.80 ± 0.64</td>
</tr>
<tr>
<td>Rammer Diameter, mm</td>
<td>50.80</td>
<td>50.80</td>
</tr>
<tr>
<td>Rammer Mass, kg</td>
<td>2.495</td>
<td>4.536</td>
</tr>
<tr>
<td>Rammer Drop, mm</td>
<td>305</td>
<td>457</td>
</tr>
<tr>
<td>Layers</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Blows per Layer</td>
<td>Methods A, C: 25</td>
<td>Methods A, C: 25</td>
</tr>
<tr>
<td></td>
<td>Methods B, D: 56</td>
<td>Methods B, D: 56</td>
</tr>
<tr>
<td>Material Size, mm</td>
<td>Methods A, B: 4.75 minus</td>
<td>Methods A, B: 4.75 minus</td>
</tr>
<tr>
<td></td>
<td>Methods C, D: 19.0 minus</td>
<td>Methods C, D: 19.0 minus</td>
</tr>
<tr>
<td>Test Sample Size, kg</td>
<td>Method A: 3</td>
<td>Method B: 7</td>
</tr>
<tr>
<td></td>
<td>Method C: 5 (1)</td>
<td>Method D: 11(1)</td>
</tr>
<tr>
<td>Energy, kN-m/m³</td>
<td>592</td>
<td>2,693</td>
</tr>
</tbody>
</table>

(1) This may not be a large enough sample depending on your nominal maximum size for moisture content samples.
Table 2
Comparison of Apparatus, Sample, and Procedure – English

<table>
<thead>
<tr>
<th></th>
<th>T 99</th>
<th>T 180</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mold Volume, ft³</td>
<td>Methods A, C: 1/30 (0.0333 ± 0.0003)</td>
<td>Methods A, C: 1/30 (0.0333 ± 0.0003)</td>
</tr>
<tr>
<td></td>
<td>Methods B, D: 1/13.33 (0.0750 ± 0.00075)</td>
<td>Methods B, D: 1/13.33 (0.0750 ± 0.00075)</td>
</tr>
<tr>
<td>Mold Diameter, in.</td>
<td>Methods A, C: 4.000 ± 0.016</td>
<td>Methods A, C: 4.000 ± 0.016</td>
</tr>
<tr>
<td></td>
<td>Methods B, D: 6.000 ± 0.100</td>
<td>Methods B, D: 6.000 ± 0.100</td>
</tr>
<tr>
<td>Mold Height, in.</td>
<td>4.584 ± 0.005</td>
<td>4.584 ± 0.005</td>
</tr>
<tr>
<td>Detachable Collar Height, in.</td>
<td>2 ± 0.025</td>
<td>2 ± 0.025</td>
</tr>
<tr>
<td>Rammer Diameter, in.</td>
<td>2.000 ± 0.025</td>
<td>2.000 ± 0.025</td>
</tr>
<tr>
<td>Rammer Mass, lb</td>
<td>5.5 ± 0.02</td>
<td>10 ± 0.02</td>
</tr>
<tr>
<td>Rammer Drop, in.</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>Layers</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Blows per Layer</td>
<td>Methods A, C: 25</td>
<td>Methods A, C: 25</td>
</tr>
<tr>
<td></td>
<td>Methods B, D: 56</td>
<td>Methods B, D: 56</td>
</tr>
<tr>
<td>Material Size, in.</td>
<td>Methods A, B: No. 4 minus</td>
<td>Methods A, B: No.4 minus</td>
</tr>
<tr>
<td></td>
<td>Methods C, D: 3/4 minus</td>
<td>Methods C, D: 3/4 minus</td>
</tr>
<tr>
<td>Test Sample Size, lb</td>
<td>Method A: 7</td>
<td>Method B: 16</td>
</tr>
<tr>
<td></td>
<td>Method C: 12(1)</td>
<td>Method D: 25(1)</td>
</tr>
<tr>
<td>Energy, lb-ft/ft³</td>
<td>12,375</td>
<td>56,250</td>
</tr>
</tbody>
</table>

(1) This may not be a large enough sample depending on your nominal maximum size for moisture content samples.

Molds Out of Tolerance Due to Use — A mold that fails to meet manufacturing tolerances after continued service may remain in use provided those tolerances are not exceeded by more than 50 percent; and the volume of the mold, calibrated in accordance with T 19M/T 19, is used in the calculations.

3. Sample

1. If the sample is damp, dry it until it becomes friable under a trowel. Drying may be in air or by use of a drying apparatus maintained at a temperature not exceeding 60°C (140°F). Thoroughly break up aggregations in a manner that avoids reducing the natural size of individual particles.

2. Obtain a representative test sample of the mass required by the agency by passing the material through the sieve required by the agency. See Table 1 or Table 2 for test sample mass and material size requirements.

 Note 1: Both T 99 and T 180 have four methods (A, B, C, D) that require different masses and employ different sieves.

 Note 2: If the sample is plastic (clay types), it should stand for a minimum of 12 hours after the addition of water to allow the moisture to be absorbed. In this case, several samples at different moisture contents should be prepared, put in sealed containers and tested the next day. In instances where the material is prone to degradation, i.e., granular material, a compaction sample with differing moisture contents should be prepared for each point.

4. Procedure

1. Determine the mass of the clean, dry mold. Include the base plate, but exclude the extension collar. Record the mass to the nearest 0.005 kg (0.01 lb).

2. Thoroughly mix the selected representative sample with sufficient water to dampen it to approximately 4 to 8 percentage points below optimum moisture content. See Note 2. For many materials this condition can be identified by forming a cast by hand.
3. Form a specimen by compacting the prepared soil in the mold (with collar attached) in approximately equal layers. For each layer, spread the loose material uniformly in the mold. Lightly tamp the fluffy material with the manual rammer or other similar device. This establishes a firm surface on which to hold the rammer sleeve. Compact each layer with uniformly distributed blows from the rammer. See Table 1 for mold size, number of layers, number of blows, and rammer specification for the various test methods. Use the method specified by the agency. If material that has not been compacted remains adjacent to the walls of the mold and extends above the compacted surface, trim it down.

Note 3: During compaction, the mold shall rest firmly on a dense, uniform, rigid, and stable foundation or base. This base shall remain stationary during the compaction process.

4. Remove the extension collar. Avoid shearing off the sample below the top of the mold. A rule of thumb is that the material compacted in the mold should not be over 6 mm (¼ in.) above the top of the mold once the collar has been removed.

5. Trim the compacted soil even with the top of the mold with the beveled side of the straightedge.

6. Determine the mass of the mold and wet soil in kg to the nearest 0.005 kg (0.01 lb) or better.

7. Determine the wet mass of the sample by subtracting the mass in Step 1 from the mass in Step 6.

8. Calculate the wet density as indicated below under “Calculations.”

9. Extrude the material from the mold. For soils and soil-aggregate mixtures, slice vertically through the center and take a representative moisture content sample from one of the cut faces, ensuring that all layers are represented. For granular materials, a vertical face will not exist. Take a representative sample. This sample must meet the sample size requirements of the test method used to determine moisture content.

Note 4: When developing a curve for free-draining soils such as uniform sands and gravels, where seepage occurs at the bottom of the mold and base plate, taking a representative moisture content from the mixing bowl may be preferred in order to determine the amount of moisture available for compaction.

10. Determine the moisture content of the sample in accordance with the FOP for AASHTO T 255 / T 265.

11. Thoroughly break up the remaining portion of the molded specimen until it will again pass through the sieve, as judged by eye, and add to the remaining portion of the sample being tested. See Note 2.

12. Add sufficient water to increase the moisture content of the remaining soil by approximately 1 to 2 percentage points and repeat steps 3 through 11.

13. Continue determinations until there is either a decrease or no change in the wet density. There will be a minimum of three points on the dry side of the curve and two points on the wet side.

Note 5: In cases of free-draining granular material, the development of points on the wet side of optimum may not be practical.

5. Calculations

When the mold meets the criteria of Table 1 or Table 2 calculating unit mass can be accomplished by multiplication using a Mold Factor, by division using a Mold volume; or by division using a measured volume (determined by performing AASHTO T 19).

For molds not meeting the criteria of Table 1 or Table 2 but within 50%, a measured volume must be used.
Mold Factor

1a. Calculate the wet density, in kg/m3 (lb/ft3), by multiplying the wet mass from Step 7 by the appropriate factor chosen from the two below.

Methods A and C molds: 1060 (30)
Methods B and D molds: 471 (13.33)

Note 6: The moist mass is in kg (lb). The factors are the inverses of the mold volumes in m3 (ft3) shown in Table 1 or Table 2. If the moist mass is in grams, use 1.060 or 0.471 for factors when computing kg/m3.

Example – Methods A or C mold:

Wet mass = 1.916 kg (4.22 lb)

\[
\frac{1.916 \text{ kg}}{0.000943 \text{ m}^3} = 2023 \text{ kg/m}^3 \text{ Wet Density}^* \quad \frac{4.22 \text{ lb}}{0.0333 \text{ ft}^3} = 126.7 \text{ lb/ft}^3 \text{ Wet Density}^*
\]

* Differences in wet density are due to rounding in the respective calculations.

Volume

1b. Calculate the wet density, in kg/m3 (lb/ft3), by dividing the wet mass from Step 7 by the appropriate volume from Table 1 or Table 2.

Example – Methods A or C mold:

Wet mass = 1.916 kg (4.22 lb)

\[
\frac{1.916}{0.000943} \text{ m}^3 = 2023 \text{ kg/m}^3 \text{ Wet Density}^* \quad \frac{4.22}{0.0333} \text{ ft}^3 = 126.7 \text{ lb/ft}^3 \text{ Wet Density}^*
\]

Measured Volume

1c. Calculate the wet density, in kg/m3 (lb/ft3), by dividing the wet mass by the measured volume of the mold (AASHTO T 19).

Example – Methods A or C mold:

Wet mass = 1.916 kg (4.22 lb)

\[
\frac{1.916}{0.000946} \text{ m}^3 = 2025 \text{ kg/m}^3 \text{ Wet Density}^* \quad \frac{4.22}{0.0334} \text{ ft}^3 = 126.3 \text{ lb/ft}^3 \text{ Wet Density}^*
\]

2. Calculate the dry density as follows.

\[
\rho_d = \left(\frac{\rho_w}{w + 100}\right) \times 100 \quad \text{or} \quad \rho_d = \frac{\rho_w}{\frac{w}{100} + 1}
\]

Where:
\[
\rho_d = \text{Dry density, kg/m}^3 \text{ (lb/ft}^3\text{)}
\]
\[
\rho_w = \text{Wet density, kg/m}^3 \text{ (lb/ft}^3\text{)}
\]
\[
w = \text{Moisture content, as a percentage}
\]
Example:

\[
\rho_w = 2030 \text{ kg/m}^3 \ (126.6 \text{ lb/ft}^3) \text{ and } w = 14.7\%
\]

\[
\rho_d = \frac{(2030 \text{ kg/m}^3)}{14.7 + 100} \times 100 = 1770 \text{ kg/m}^3 \quad \rho_d = \frac{(126.6 \text{ lb/ft}^3)}{14.7 + 100} \times 100 = 110.4 \text{ lb/ft}^3
\]

or

\[
\rho_d = \frac{(2030 \text{ kg/m}^3)}{14.7} + 1 \times 100 = 1770 \text{ kg/m}^3 \quad \rho_d = \frac{(126.6 \text{ lb/ft}^3)}{14.7} + 1 \times 100 = 110.4 \text{ lb/ft}^3
\]

6. Moisture-Density Curve Development

When dry density is plotted on the vertical axis versus moisture content on the horizontal axis and the points are connected with a smooth line, a moisture-density curve is developed. The coordinates of the peak of the curve are the maximum dry density, or just “maximum density,” and the “optimum moisture content” of the soil.

Example:

Given the following dry density and corresponding moisture content values develop a moisture-density relations curve and determine maximum dry density and optimum moisture content.

<table>
<thead>
<tr>
<th>Dry Density</th>
<th>Moisture Content, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg/m³</td>
<td>lb/ft³</td>
</tr>
<tr>
<td>1846</td>
<td>114.3</td>
</tr>
<tr>
<td>1868</td>
<td>115.7</td>
</tr>
<tr>
<td>1887</td>
<td>116.9</td>
</tr>
<tr>
<td>1884</td>
<td>116.7</td>
</tr>
<tr>
<td>1871</td>
<td>115.9</td>
</tr>
</tbody>
</table>

In this case, the curve has its peak at:

Maximum dry density = 1890 kg/m³ (117.0 lb/ft³)

Optimum water content = 13.2%

Note that both values are approximate, since they are based on sketching the curve to fit the points.
7. Report

- Results on forms approved by the Department
- Maximum dry density to the closest 1 kg/m\(^3\) (0.1 lb/ft\(^3\))
- Optimum moisture content to the closest 0.1 percent
ATM 211 Density of Soil In-Place by the Sand-Cone Method

1. Scope

This method is a Field Operating Procedure adapted from AASHTO T 191. It is intended for determining the in-place density of soils. The apparatus described herein is restricted to tests in soils containing maximum particle size not larger than 1½ in.

2. Referenced Documents

- WAQTC Standards:
 - FOP for AASHTO T 99/ T 180, Moisture-Density Relations of Soils
 - FOP for AASHTO T 255/ T 265, Total Evaporable Moisture Content of Aggregate by Drying and Laboratory Determination of Moisture Content of Soils

- AASHTO Standards:
 - AASHTO T 19, Bulk Density (“Unit Weight”) and Voids of Aggregate
 - AASHTO T 191, Density of Soil In-Place by the Sand-Cone Method

3. Significance and Use

This method has been created to have an alternate when circumstances make having a nuclear gauge for density testing difficult, if not impossible.

4. Apparatus

- Sand-cone apparatus with base plate conforming to AASHTO T 191
- Sturdy cylindrical container of known volume (V), dimensionally approximate to the largest test hole that will be dug and calibrated according to AASHTO T 19M/T 19.
- Any clean, dry, free-flowing, uncemented sand composed mostly of particles retained on the No. 200 and passing the 2.00-mm (No. 10) sieves. Determine the bulk density from multiple determinations using the same representative sample for each determination. Any sand having a variation in bulk density less than 1 percent is acceptable.
- Balances conforming to the requirements of M 231, one with capacity of at least 16 kg readable to 1g and the other with a capacity of at least 5 kg readable to 0.1g.
- Stove or oven or other suitable equipment for drying moisture content samples
- Containers, clean, dry and capable of being sealed
- Suitable drying containers
- Small pick, chisels, screw drivers and/or spoons for digging test hole
5. Bulk Density of Sand and Cone Correction (C)

1. Fill the apparatus by:
 a. Place the empty sand-cone apparatus upright on a firm level surface and fill with sand.

 Note 1: Appreciable time intervals between the bulk density determination of the sand and its use in the field may result in change in the bulk density caused by a change in the moisture content or effective gradation.

 b. Determine and record the initial mass of the sand-cone apparatus filled with sand (m_i).

2. Determining the bulk density of sand (ρ_b) to be used in the field test.
 a. Determine the mass of the empty calibration container (m_t).
 b. Position the calibration container on a clean, level, plane surface. Invert the apparatus and seat the funnel over the calibration container.
 c. Open the valve fully and keep open until the sand stops flowing.
 d. Close the valve sharply, and remove the sand-cone apparatus from the calibration container.
 e. Strike off the sand even with the top of the calibration container being careful to not disturb the sand in the container. Determine the mass of the calibration container and sand (m_f).
 f. Determine and record the bulk density of the sand (ρ_b) by dividing the mass of the sand needed to fill the calibration container (m_f - m_t), by it’s volume (V) as determined according to T 19M/T 19.

\[
\rho_b = \frac{m_f - m_t}{V}
\]

3. Determine the volume of sand required to fill the funnel and base plate (C).
 a. Fill the sand-cone apparatus, determine and record the mass in accordance with step 1.
 b. Place the base plate on a clean, level, plane surface. Close the valve and invert the sand-cone apparatus filled with sand and seat the funnel in the recess of the base plate.
 c. Open the valve fully; allow the sand to flow until the sand stops flowing.
 d. Close the valve sharply, remove the sand-cone apparatus and determine the final mass of the sand-cone apparatus and the remaining sand (m_b).
 e. Determine the volume of the cone and base plate (C) by dividing the mass of sand required to fill the cone and base plate (m_i - m_f) by the density of the sand (ρ_b). (Note 2).

\[
C = \frac{m_i - m_f}{\rho_b}
\]

Note 2: For each lot of sand there will be a unique bulk density. If the lot consists of several bags, verify that each bag is within 1% of the lot density. Each sand-cone and matched base plate will also have a unique volume. If more than one sand cone apparatus is available, the sand-cone and base plate should be marked and the associated volume recorded.
6. Procedure

1. Determine the density of the soil in place as follows:
 a. Fill the sand-cone apparatus with sand. Record the initial mass of the sand and sand-cone apparatus (m_i).
 b. Fill in surface voids with fines of the material being tested passing the 4.75 mm (No. 4) sieve or finer. Smooth the surface with the base plate or other suitable tool. The depth of the filler should not exceed approximately 3 mm (1/8 in.).
 c. Place the base plate on the prepared surface and seat. Remove the material from the test hole by digging the soil out, being careful to avoid disturbing the soil that will bound the hole. Soils that are granular require extreme care. Remove all loosened soil and place in a container, being careful to avoid losing any material. Care must be taken to avoid moisture loss during excavation. The test hole volume must conform to those given in Table 1.

 d. Close the valve and invert the sand-cone apparatus filled with sand and seat the funnel in the recess of the base plate.
 e. Open the valve fully; allow the sand to flow until the sand stops flowing.
 f. Close the valve sharply, remove the sand-cone apparatus and determine the final mass of the sand-cone apparatus and the remaining sand (m_f).
 g. Determine the final mass of the apparatus with the remaining sand (m_f) and record.
 h. Determine the mass of the moist material that was removed from the test hole.
 i. Mix the material thoroughly and determine the moisture content in accordance with WAQTC FOP for AASHTO T 255/ T 265.

7. Calculation

1. Calculate the volume of the test hole (V_h) to the nearest 0.0001 ft^3:

 \[V_h = \frac{m_i - m_f}{\rho_b} - C \]

 where:
 \(V_h \) = volume of the test hole,
 \(m_i \) = initial mass of the apparatus and sand,
 \(m_f \) = final mass of the apparatus and sand,
 \(C \) = Cone Correction, and
 \(\rho_b \) = bulk density of the sand.

 Table 1

<table>
<thead>
<tr>
<th>Maximum Particle Size</th>
<th>Minimum Test Hole, Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>Alternate</td>
</tr>
<tr>
<td>4.75</td>
<td>No. 4</td>
</tr>
<tr>
<td>12.5</td>
<td>1/2”</td>
</tr>
<tr>
<td>25.0</td>
<td>1”</td>
</tr>
<tr>
<td>37.5</td>
<td>1 1/2”</td>
</tr>
</tbody>
</table>
2. Determine the dry mass of the material removed from the test hole to the nearest 1 g by either drying the entire sample or calculate as follows:

\[
M_d = \frac{M_w}{1 + \left(\frac{w}{100}\right)}
\]

where:
- \(M_d\) = dry mass of the material removed from the test hole,
- \(M_w\) = moist mass of the material removed from the test hole, and
- \(w\) = moisture content of the material removed from the test hole as determined by WAQTC FOP for AASHTO T 255/ T 265.

3. Calculate the in-place dry density of the material removed from the test hole as follows:

\[
\rho_d = \frac{M_d}{V_h}
\]

where:
- \(\rho_d\) = in-place dry density of the material removed from the test hole,
- \(M_d\) = dry mass of the material removed from the test hole, and
- \(V_h\) = volume of the test hole (from Calculations Step 1)

4. Calculate the in-place dry density to the nearest 0.1 lb/ft³.

5. Calculate the percentage compaction by dividing the in-place dry density by the standard density determined in accordance with WAQTC FOP for AASHTO T 99/ T 180, ATM 212, or ATM 309, and report to the nearest 0.1 percent.

8. Report

Results shall be reported on standard forms approved by the Department. Report the following information:

- Date and location of test.
- Calibration bulk density of the sand
- Identification of the standard density used
- Volume of the test hole, 0.0001 ft³
- In-place dry density, 0.1 lb/ft³
- Percent compaction, 0.1%
ATM 212 Determining the Standard Density of Coarse Granular Materials Using the Vibratory Compactor

1. Scope

This method determines the maximum density values of granular materials for a standard compaction energy. The method accounts for variations in the maximum attainable density of a given material due to fluctuations in gradation.

With the specific gravity and the compacted density of the plus 4.75 mm (No. 4) and the minus 4.75 mm (No. 4) fractions, a chart and/or curve of standard density values versus percent passing the No. 4 sieve can be plotted.

This test method is conducted using the minus 75 mm (3 in) portion of the sample. It applies to free-draining cohesionless materials with the minus 4.75 mm (No. 4) portion of the sample having 10 percent or less passing the 75 µm (No. 200) sieve.

Note 1: The Vibratory Compaction Test was developed for sandy gravels whose fine fraction is non-plastic and highly permeable or free draining. When the fine fraction is primarily a soil with some plasticity and low permeability or not free draining, WAQTC FOP for AASHTO T 99/T 180 will be used. With borderline materials, both tests shall be applied, and the one yielding the highest unit weight value will be used.

Note 1a: ASTM D4253 is a suitable substitute for ATM 212.

2. Apparatus

- A vibratory spring-loaded compactor essentially conforming to specifications that can be obtained from the State Materials Engineer or the Vibratory Table specified in ASTM D4253.
- Standard Mold and base with and a piston to fit inside the mold with a maximum 1.5 mm (1/16 in) clearance between piston and mold.
- A 0.014 m³ (1/2 ft³) mold with a piston to fit inside mold having a maximum 1.5 mm (1/16 in) clearance between piston and mold.

 Note 2: The molds and pistons will be constructed of metal of such dimensions as to remain rigid and inflexible under test conditions.

- Spacer blocks of varying heights compatible with the compactor and pistons.
- Measuring device, accurate and readable to 0.1 mm (0.01 in) with a minimum 150 mm (6 in) length.
- A 75 mm (3 in) and a 4.75 mm (No. 4) sieve conforming to AASHTO M 92 (ASTM E11) requirements.
- Balance or scale: Capacity sufficient for the sample mass, readable to 0.1 percent or 0.1 g and meeting the requirements of AASHTO M 231.

 Note 3: The compaction tests require a scale with a capacity of at least 20 kg (45 lb) and readable to 5 g (0.01 lb) or better.

 Note 4: The moisture content tests require a scale with a capacity of at least 1000 g and readable to 0.1 g or better.

- A 2.5 kg (5.5 lb) metal rammer conforming to the requirements of WAQTC FOP for AASHTO T 99/T 180.
- Tamping rod of straight steel, 16 mm (5/8 in) in diameter and approximately 600 mm (24 in) long having at least one end rounded to a hemispherical tip.
- Graduated cylinder, 1000 ml capacity, readable to 5 ml.
• A stopwatch or timer accurate to 1 second.
• Miscellaneous tools including pans, spoon, trowel, mechanical mixer (optional), etc.

3. Mold Calibration

1. The following calibrations of test apparatus should be performed before initial use and at intervals not exceeding each 1000 tests, or annually, whichever occurs first. Additionally, the ATM 212 apparatus or vibrating table should be calibrated after any event (including repairs), which might affect its operation.

2. **Molds** — Determine the volume of each mold by the water-filling method described below. The volume obtained should be within ±1.5 % of the nominal value.

3. **Mold Height** - Obtain three height measurements, evenly spaced throughout the mold, made to the nearest 0.001 in. (0.025 mm). Calculate and record the average height, in feet, to four significant digits.

 \[
 \text{Height, } h = \frac{(h_1 + h_2 + h_3)}{(3 \times 12)}, \quad \text{Where: } h_1, h_2, h_3, \text{ are measured in inches.} \quad (\text{equation 3.3})
 \]

4. Completely fill the mold with water. Slide a glass plate carefully over the top surface (rim) of the mold to ensure that the mold is completely filled with water. A thin film of grease or silicone lubricant on the rim of the mold will make a watertight joint between the glass plate and rim of the mold. Determine the mass of the water in pounds mass (lbm) required to fill the mold using a balance of appropriate capacity and precision as specified below:

 a. For 0.500-ft³ molds, use a balance of at least 40-kg capacity and readability of 5 g or less (Class GP 10).

 b. For 0.100-ft³ (2830-cm³) molds, use a balance of at least 15-kg capacity and readability of 1 g or less (Class GP 5).

 \[
 \text{Mass, } m = (t + w) - t, \quad \text{Where: } t = \text{tare mass of mold + glass plate}, \quad w = \text{water mass} \quad (\text{equation 3.4})
 \]

5. Determine the temperature of this water to the nearest degree Celsius. From Table 1, obtain the density of water in pounds mass per cubic feet (lbm/ft³) at the observed temperature.

 \[
 \text{Density} = \text{Recorded here from Table 1.} \quad (\text{equation 3.5})
 \]

6. Calculate and record the volume of the mold (ft³) to four significant digits as follows:

 \[
 \text{Volume} = \frac{\text{Mass}}{\text{Density}} \quad \text{or} \quad \text{Volume} = \frac{(\text{equation 3.4})}{(\text{equation 3.5})} \quad (\text{equation 3.6})
 \]

7. Calculate the cross-sectional area (ft²) of the mold by dividing its measured volume (equation 3.6) by its measured height (equation 3.3).

 \[
 \text{Area} = \frac{\text{Volume}}{\text{Height}} \quad \text{or} \quad \text{Area} = \frac{(\text{equation 3.6})}{(\text{equation 3.3})} \quad (\text{equation 3.7})
 \]
4. Sample Preparation

1. Sample the material in accordance with WAQTC FOP for AASHTO T 2 (ASTM D75). Initially prepare the field sample by splitting out representative portions in accordance with WAQTC FOP for AASHTO T 248, Method A, to provide sufficient material for the following tests:

 a. Retain an as-received compaction sample of approximately 20 kg (45 lb) to be used if verification of the end result "Maximum Dry Density vs. the Percent Passing 4.75 mm (No. 4) Sieve" curve is needed. (See Section 8, Supplementary Requirement.)
b. Sieve Analysis in accordance with WAQTC FOP for AASHTO T 27/T 11.

c. Coarse Aggregate Apparent Specific Gravity in accordance with WAQTC FOP for AASHTO T 85.

d. Fine Aggregate Apparent Specific Gravity in accordance with AASHTO T 84 or AASHTO T100.

e. Compaction sample to provide sufficient material for the compaction specimens detailed below.

2. Dry the compaction sample to constant mass in accordance with the aggregate section of WAQTC FOP for AASHTO T 255/ T 265.

3. Scalp the plus 75 mm (3 in) material from the compaction sample (e.) and discard, if not needed for any other tests. Separate the remainder of the compaction sample into coarse [minus 75 mm (3 in) to 4.75 mm (No. 4)] and fine [minus 4.75 mm (No. 4)] aggregate fractions.

4. The quantity of material necessary to complete tests on both fractions is:
 a. Fine aggregate, minimum of 3 portions approximately 6 kg (13 lb) each.
 b. Coarse aggregate:
 1) For material containing 5 percent or less of 19.0 mm (3/4 in) material, a portion of the minus 19.0 mm (3/4 in) aggregate of approximately 6 kg (13 lb).
 2) For material containing more than 5 percent plus 19.0 mm (3/4 in) aggregate a portion of 18 to 20 kg (40 to 45 lb).

5. Procedure

1. Compaction Test of the Fine Fraction:
 a. Assemble the Standard Mold and determine its mass, along with the Piston, to the nearest 5 g (0.01 lb). Record this as the Mass of Mold Assembly.
 b. Using one of the fine aggregate portions, add an amount of water estimated to produce a saturated sample when compacted and mix thoroughly.
 1) When the material is at its saturation point, free water (a drop or two) will show at the base of the mold at about the 227 kg (500 lb) load of the first compression run. The ideal saturation point would be a bead of water around the base of the mold at the end of the 10-minute compaction run. Most materials will yield the highest density at that moisture content. Some materials may continue to gain density at higher moisture contents; however, this is due to the washing out of fines, which will alter the character of the sample. Therefore, if severe washing-out or pumping of fines occurs (as evidenced by dirty water flooding off of the base or pumped on top of the piston), the sample is beyond the saturation point, will be discarded and a lower moisture content tried for the saturation point.
 2) Moisture contents beyond the saturation point need not be tested.
 c. Set the piston aside and place the sample in the mold in three approximately equal layers. Consolidate each lift by 25 strokes of the tamping rod followed by 25 blows of the manual rammer. If severe displacement of the material occurs, adjust the blow strength by limiting the height of each blow to produce the maximum compaction and minimum displacement. The surface of the top lift should be finished as level as possible.
 d. Place the piston on top of the sample and mount the mold on the jack platform in the compactor. Spacers between the load spring and piston must be used to adjust the elevation of the mold so the hammers strike the mold in the center of the lift area. Elevate the mold until the loading head seats on top of the piston. Apply an initial seating load of approximately 45 kg (100 lbs) on the sample.
e. Start the vibratory hammers and, by elevating the jack, begin the loading application rate procedure.

The load application rate to 2000 lbs. is applied as follows:

<table>
<thead>
<tr>
<th>Load</th>
<th>Elapsed Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 225 kg (500 lb)</td>
<td>1 minute</td>
</tr>
<tr>
<td>225 kg to 450 kg (1000 lb)</td>
<td>1-1/2 minutes</td>
</tr>
<tr>
<td>450 kg to 900 kg (2000 lb)</td>
<td>2 minutes</td>
</tr>
</tbody>
</table>

f. Upon reaching the 900 kg (2000 lb) load at the end of the 2-minute cycle, stop the hammers, release the load on the jack, and return to zero pressure.

g. Repeat Steps (e) and (f) four additional times. After the last run remove the mold from the compactor.

h. Measure the height of the compacted sample, to the top of the piston, to the nearest 0.1 mm (0.01 in) by measuring from the top of the mold to the surface of the sample at a minimum of 4 different places evenly spaced around the circumference of the mold. Record and average these measurements. Subtract this average from the overall height of the mold and record as the Height of Sample.

i. Determine the mass of the specimen in the mold to the nearest 5 g (0.01 lb). Record this as Mass of Mold Assembly + Aggregate.

j. Remove the specimen from the mold and determine the moisture content in accordance with WAQTC FOP for AASHTO T 255, recording the data on the Vibratory Compaction Worksheet.

k. Repeat Steps (b) thru (j) at lower or higher moisture content increments of approximately 1 percent intervals to determine the maximum density value for the material. Three tests are usually sufficient.

2. Compaction Test of the Coarse Fraction:

a. For minus 19 mm (3/4 in) aggregates:

1) Determine the mass of the coarse aggregate to the nearest 5 g (0.01 lb). Record this as Net Mass of Coarse Aggregate.

2) Add 2.5 percent moisture to the sample, mix thoroughly and place in the Standard CBR mold in approximately three equal lifts. Compact each lift with 25 blows of the tamping rod (omit hammering). Avoid the loss of any material during this operation, or the net mass of coarse aggregate must be determined again, after determining the height of the sample and drying the material to constant mass.

3) Follow the procedures outlined in Steps 5.1.d. through 5.1.h.

b. For plus 19 mm (3/4 in) aggregates:

1) Determine the mass of the coarse aggregate to the nearest 5 g (0.01 lb) or better. Record this mass the Net Mass of Coarse Aggregate.

2) Divide the sample into three representative and approximately equal portions.

3) Place one of the portions into the 0.014 m³ (1/2 ft³) mold. Level the surface by hand and consolidate the layer with 25 strokes of the tamping rod, using the rounded end. Distribute the strokes evenly over the entire cross section of the material rodding full depth, if possible, without hitting the bottom too hard.
4) Repeat this procedure for the other lifts, penetrating, if possible, into the lower layer. Avoid the loss of any material during this operation, or the net mass of coarse aggregate must be re-determined after determining the height of the sample. Position the piston on the sample, mount the mold in the compactor and follow the procedure described in Steps 5.1.d. through 5.1.h.

6. Calculations

1. Determine the dry density of each of the fine aggregate points as follows:
 a. Calculate the net mass of aggregate by:

 \[e = c - d \]

 Where:

 \(e \) = net mass of aggregate, kg (lb)
 \(c \) = mass of mold assembly + aggregate, kg (lb)
 \(d \) = mass of mold assembly.

 b. Calculate the wet density by:

 \[g = \frac{e \times b}{f} \]

 Where:

 \(g \) = wet unit weight, kg/m³ (lb/ft³)
 \(e \) = net mass of aggregate, kg (lb)
 \(b \) = mold conversion factor, metric (USC), and
 \(f \) = height of sample, mm (in).

 c. Calculate the dry density of each of the fine fraction specimens as follows:

 \[h = \frac{g}{1 + n} \]

 Where:

 \(h \) = dry density for moisture content \(n \), kg/m³ (lb/ft³)
 \(g \) = wet density, kg/m³ (lb/ft³)
 \(n \) = moisture content, expressed as a decimal.

 d. The maximum dry density (\(D_f \)) for the fine fraction is the highest density at or below the saturation point.

2. Calculate the maximum dry density (\(D_c \)) of the coarse fraction by:

 \[D_c = \frac{u \times r}{v} \]

 Where:

 \(D_c \) = dry unit weight, kg/m³ (lb/ft³)
 \(u \) = net mass of aggregate, kg (lb)
 \(r \) = mold conversion factor, metric (USC)
 \(v \) = height of sample, mm (in).

3. Determine the apparent specific gravity of the fine aggregate in accordance with AASHTO T 84.

4. Determine the apparent specific gravity of the coarse aggregate in accordance with WAQTC FOP for AASHTO T 85.
5. Plotting the "Maximum Dry Density vs. the Percent Passing 4.75 mm (No. 4) Sieve" curve is based on complex theoretical formulae. Programs for solution of these formulae, which produce curve data points and charts, have been developed for spreadsheets. These programs are available from the Statewide/Regional laboratories.

7. Report

- **Results on forms approved by the Department**
- **Standard Conformance tests for the material**
 - Maximum dry density in chart form to the nearest 1 kg/m³ (0.1 lb/ft³) vs. the Percent Passing 4.75 mm (No. 4) in whole percentages from 0 to 100 percent.
 - The data may be displayed graphically in addition to the chart.

8. Supplementary Requirement

The following supplementary requirement shall apply only when specified, or when required by the Regional Quality Assurance or Materials Engineer.

1. Using the sample obtained in Step 4.1.a., adjust its moisture content to optimum as determined by the following:

\[
MC_t = \frac{(MC_f \times Pf) + (MC_c \times Pc)}{100}
\]

Where:
- \(MC_t\) = total moisture content of combined fine and coarse fractions, expressed as a % moisture
- \(MC_f\) = moisture content of the fine fraction corresponding to the maximum dry density determined in Step 6.1.d., expressed as a % moisture
- \(Pf\) = percent fine fraction determined from original gradation, in Step 4.1.b.
- \(MC_c\) = moisture content of the coarse fraction when Step 5.2 was performed, expressed as a % moisture (if moisture was not used, two (2) percent can be assumed)
- \(Pc\) = percent coarse fraction determined from original gradation, in Step 4.1.b.

2. Compact the sample per Step 5.2.b.

3. Determine maximum dry density of the sample per Step 6.1.a.b.c.

4. Plot the sample point on the graph containing the “Maximum Dry Density vs. the Percent Passing 4.75 mm (No. 4) sieve” curve generated in Step 6.5.

5. If the sample point falls more than 4 pcf below (or above) the point on the curve corresponding to its respective FA percentage then produce 2-4 additional CA/FA blends spaced evenly through the range of gradation. Compact these points per Step 5.2.b. Plot this series of dry densities at their respective FA percentages and draw a best-fit curve through the points to establish the compaction curve.
ATM 213 In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods

Following are guidelines for the use of WAQTC FOP for AASHTO T 310 by the State of Alaska DOT&PF.

1. The procedure designated as Method A will be used.

2. Report percent compaction to the nearest whole percent.

3. The visual description of the material will be the material classification, i.e. Borrow, D-1, etc.

4. The offset factor (k) shall be used to correct the moisture content reading from the gauge.
 a. Determine the offset factor (k) by:
 (1) Average minimum five gauge derived moisture contents.
 (2) Average minimum five moisture contents determined by WAQTC FOP for AASHTO T 255/T 265 taken from the locations used to determine the gauge derived moistures.
 (3) Calculate the offset factor (k) using the following formula.

\[
k = \left(\frac{\%M_{Lab} - \%M_{Gauge}}{100 + \%M_{Gauge}} \right) \times 1000
\]

b. Follow the gauge Manufacturer’s instructions to enable the offset function to correct the moisture reading.

c. Be sure to disengage the offset function upon completion of test.

Note: This procedure is set up for Troxler gauges.

5. A representative sample of material is required from beneath the gauge for purposes of: verification of moisture content for nuclear gauge according to WAQTC FOP for T 310; correcting the Standard Density determined by WAQTC FOP for T 99/T 180, according to WAQTC FOP for T 224 when greater than 5% coarse particles are present; and determining the minus No. 4 for ATM 212.

A sample of material will not be required when any one of the following conditions applies:
 a. The Standard Density is determined by ATM 212, and the test meets the minimum density requirement using the maximum density from the peak of the curve.
 b. The Project Engineer may waive this requirement when testing top layer of surface or base course and the Standard Density is determined using WAQTC FOP for AASHTO T 99/T 180. In this case, the percent coarse (oversized) for calculating the corrected density is established from proctor gradation of the material being tested.
 c. A sample is not required for moisture content when the nuclear gauge moisture has been determined to be within 1% of the oven dry moisture and is verified at least every 90 days.

6. When allowed by the Project Engineer, a standard density value may be developed using a one point proctor compacted in accordance with WAQTC FOP for AASHTO T 99/T 180, or ATM 309.
IN-PLACE DENSITY AND MOISTURE CONTENT OF SOIL AND SOIL-AGGREGATE BY NUCLEAR METHODS (SHALLOW DEPTH)
WAQTC FOP FOR AASHTO T 310

1. Scope

This procedure covers the determination of density, moisture content, and relative compaction of soil, aggregate, and soil-aggregate mixes in accordance with AASHTO T 310. This field operating procedure is derived from AASHTO T 310. The nuclear moisture-density gauge is used in the direct transmission mode.

2. Apparatus

- Nuclear density gauge with the factory matched standard reference block.
- Drive pin, guide/scaper plate, and hammer for testing in direct transmission mode.
- Transport case for properly shipping and housing the gauge and tools.
- Instruction manual for the specific make and model of gauge.
- Radioactive materials information and calibration packet containing:
 - Daily Standard Count Log.
 - Factory and Laboratory Calibration Data Sheet.
 - Leak Test Certificate.
 - Shippers Declaration for Dangerous Goods.
 - Procedure Memo for Storing, Transporting and Handling Nuclear Testing Equipment.
 - Other radioactive materials documentation as required by local regulatory requirements.
- Sealable containers and utensils for moisture content determinations.

3. Radiation Safety

This method does not purport to address all of the safety problems associated with its use. This test method involves potentially hazardous materials. The gauge utilizes radioactive materials that may be hazardous to the health of the user unless proper precautions are taken. Users of this gauge must become familiar with the applicable safety procedures and governmental regulations. All operators will be trained in radiation safety prior to operating nuclear density gauges. Some agencies require the use of personal monitoring devices such as a thermoluminescent dosimeter or film badge. Effective instructions together with routine safety procedures such as source leak tests, recording and evaluation of personal monitoring device data, etc., are a recommended part of the operation and storage of this gauge.

4. Calibration

Calibrate the nuclear gauge as required by the agency. This calibration may be performed by the agency using manufacturer’s recommended procedures or by other facilities approved by the agency. Verify or re-establish calibration curves, tables, or equivalent coefficients every 12 months.
5. Standardization

1. Turn the gauge on and allow it to stabilize (approximately 10 to 20 minutes) prior to standardization. Leave the power on during the day’s testing.

2. Standardize the nuclear gauge at the construction site at the start of each day’s work and as often as deemed necessary by the operator or agency. Daily variations in standard count shall not exceed the daily variations established by the manufacturer of the gauge. If the daily variations are exceeded after repeating the standardization procedure, the gauge should be repaired and/or recalibrated.

3. Record the standard count for both density and moisture in the Daily Standard Count Log. The exact procedure for standard count is listed in the manufacturer’s Operator’s Manual.

 Note 1: New standard counts may be necessary more than once a day. See agency requirements.

6. Overview

There are two methods for determining in-place density of soil / soil aggregate mixtures. See agency requirements for method selection.

- Method A Single Direction
- Method B Two Direction

7. Procedure

1. Select a test location(s) randomly and in accordance with agency requirements. Test sites should be relatively smooth and flat and meet the following conditions:
 a. At least 10 m (30 ft) away from other sources of radioactivity
 b. At least 3 m (10 ft) away from large objects
 c. The test site should be at least 150 mm (6 in.) away from any vertical projection, unless the gauge is corrected for trench wall effect.

2. Remove all loose and disturbed material, and remove additional material as necessary to expose the top of the material to be tested.

3. Prepare a flat area sufficient in size to accommodate the gauge. Plane the area to a smooth condition so as to obtain maximum contact between the gauge and the material being tested. For Method B, the flat area must be sufficient to permit rotating the gauge 90 or 180 degrees about the source rod.

4. Fill in surface voids beneath the gauge with fines of the material being tested passing the 4.75 mm (No. 4) sieve or finer. Smooth the surface with the guide plate or other suitable tool. The depth of the filler should not exceed approximately 3 mm (1/8 in.).

5. Make a hole perpendicular to the prepared surface using the guide plate and drive pin. The hole shall be at least 50 mm (2 in.) deeper than the desired probe depth, and shall be aligned such that insertion of the probe will not cause the gauge to tilt from the plane of the prepared area. Remove the drive pin by pulling straight up and twisting the extraction tool.

6. Place the gauge on the prepared surface so the source rod can enter the hole without disturbing loose material.

7. Insert the probe in the hole and lower the source rod to the desired test depth using the handle and trigger mechanism.
8. Seat the gauge firmly by partially rotating it back and forth about the source rod. Ensure the gauge is seated flush against the surface by pressing down on the gauge corners, and making sure that the gauge does not rock.

9. Pull gently on the gauge to bring the side of the source rod nearest to the scaler / detector firmly against the side of the hole.

10. Perform one of the following methods, per agency requirements:

 a. Method A Single Direction: Take a test consisting of the average of two one minute readings, or one four minute reading, and record both density and moisture data. When performing two one minute readings, the two wet density readings should be within 32 kg/m3 (2.0 lb/ft3) of each other. The average of the two wet densities and moisture contents will be used to compute dry density. When performing one four minute reading the gauge will average four one minute readings.

 b. Method B Two Direction: Take a one-minute reading and record both density and moisture data. Rotate the gauge 90 or 180 degrees, pivoting it around the source rod. Reseat the gauge by pulling gently on the gauge to bring the side of the source rod nearest to the scaler/detector firmly against the side of the hole and take a one-minute reading. (In trench locations, rotate the gauge 180 degrees for the second test.) Some agencies require multiple one-minute readings in both directions. Analyze the density and moisture data. A valid test consists of wet density readings in both gauge positions that are within 50 kg/m3 (3.0 lb/ft3). If the tests do not agree within this limit, move to a new location. The average of the wet density and moisture contents will be used to compute dry density.

11. If required by the agency, obtain a representative sample of the material, 4 kg (9 lb) minimum, from directly beneath the gauge full depth of material tested. This sample will be used to verify moisture content and / or identify the correct density standard. Immediately seal the material to prevent loss of moisture.

 The material tested by direct transmission can be approximated by a cylinder of soil approximately 300 mm (12 in.) in diameter directly beneath the centerline of the radioactive source and detector. The height of the cylinder will be approximately the depth of measurement. When organic material or large aggregate is removed during this operation, disregard the test information and move to a new test site.

12. To verify the moisture content from the nuclear gauge, determine the moisture content with a representative portion of the material using the FOP for AASHTO T 255/T 265 or other agency approved methods. If the moisture content from the nuclear gauge is within ±1 percent, the nuclear gauge readings can be accepted. Retain the remainder of the sample at its original moisture content for a one-point compaction test under the FOP for AASHTO T 272, or for gradation, if required.

 Note: Example: A gauge reading of 16.8 percent moisture and an oven dry of 17.7 percent are within the ±1 percent requirements. Moisture correlation curves will be developed according to agency guidelines. These curves should be reviewed and possibly redeveloped every 90 days.

13. Determine the dry density by one of the following.

 a. From nuclear gauge readings, compute by subtracting the mass (weight) of the water (kg/m3 or lb/ft3) from the wet density (kg/m3 or lb/ft3) or compute using the percent moisture by dividing wet density from the nuclear gauge by 1 + moisture content expressed as a decimal.

 b. When verification is required and the nuclear gauge readings cannot be accepted, the moisture content is determined by the FOP for AASHTO T 255/T 265 or other agency approved methods. Compute dry density by dividing wet density from the nuclear gauge by 1 + moisture content expressed as a decimal.
8. Percent Compaction

Percent compaction is determined by comparing the maximum in-place dry density of moisture-density curves.

For plastic or cohesive soil or soil-aggregate mixes, develop moisture-density curves using the FOP for AASHTO T 99/T 180. When using curves developed by the FOP for AASHTO T 99 / T 180, it may be necessary to use the FOP for AASHTO T 224 and FOP for AASHTO T 272 to determine maximum density and moisture determinations.

For non-plastic coarse granular materials, develop density-gradation curves using ATM 212 to determine maximum density and moisture determinations. Maximum density values may also be determined by ATM 309 or ASTM D4253.

See appropriate agency policies for use of density standards.

9. Calculation

Wet density readings from gauge: 1963 kg/m³ (121.6 lb/ft³) 1993 kg/m³ (123.4 lb/ft³) Avg: 1978 kg/m³ (122.5 lb/ft³)

Moisture readings from gauge: 14.2% and 15.4% = Avg 14.8%

Moisture content from the FOP’s for AASHTO T 255/ T 265: 15.9%

Moisture content is greater than 1 percent different so the gauge moisture cannot be used.

10. Calculate the dry density as follows:

\[\rho_d = \left(\frac{\rho_w}{w + 100} \right) \times 100 \quad \text{or} \quad \rho_d = \left(\frac{\rho_w}{100 + 1} \right) \]

Where:
\[\rho_d = \text{Dry density, kg/m}^3 \text{ (lb/ft}^3) \]
\[\rho_w = \text{Wet density, kg/m}^3 \text{ (lb/ft}^3) \]
\[w = \text{Moisture content from the FOP for AASHTO T 255 / T 265, as a percentage} \]

\[\rho_d = \left(\frac{1978 \text{ kg/m}^3 \text{ or } 122.5 \text{ lb/ft}^3}{15.9 + 100} \right) \times 100 \]

Corrected for moisture Dry Density: 1707 kg/m³ (105.7 lb/ft³)

Calculate percent compaction as follows:

\[\% \text{ Compaction} = \frac{\rho_d}{\text{Agency density standard}} \times 100 \]
11. Report

- Results on forms approved by the Department
- Location of test, elevation of surface, and thickness of layer tested.
- Visual description of material tested.
- Make, model and serial number of the nuclear moisture-density gauge.
- Wet density to 0.1 lb/ft3.
- Moisture content as a percent, by mass, of dry soil mass to 0.1 percent.
- Dry density to 0.1 lb/ft3.
- Standard density to 0.1 lb/ft3.
- Percent compaction.
- Name and signature of operator.
ATM 214 Correction for Coarse Particles in the Soil Compaction Test

Following are guidelines for the use of WAQTC FOP for AASHTO T 224 by the State of Alaska DOT&PF.

1. The maximum allowable oversized (+19 mm [3/4 in]) material is 40 percent. The maximum dry density to be used with material containing 30 to 40 percent oversized is the oversized correction calculated at 30 percent.

2. When testable materials have more than 40 percent retained on the 19mm (3/4 in) sieve, record the percent oversize, the moisture content, and record the test as Too Coarse To Test (TCTT).

3. When results are used for acceptance, the Specific Gravity shall be determined.
1. Scope

This procedure covers the adjustment of the maximum dry density determined by FOP for AASHTO T 99 / T 180 to compensate for coarse particles retained on the 4.75 mm (No. 4) or 19.0 mm (3/4 in.) sieve. For Methods A and B of the FOP for AASHTO T 99 / T 180 the adjustment is based on the percent, by mass, of material retained on the 4.75 mm (No. 4) sieve and the bulk specific gravity (Gsb) of the material retained on the 4.75 mm (No. 4) sieve. A maximum of 40 percent of the material can be retained on the 4.75 mm (No. 4) sieve for this method to be used. For Methods C and D of the FOP for AASHTO T 99 / T 180, the adjustment is based on the percent, by mass, of material retained on the 19.0 mm (3/4 in.) sieve and the bulk specific gravity (Gsb) of the material retained on the 19.0 mm (3/4 in.) sieve. A maximum of 30 percent of the material can be retained on the 19.0 mm (3/4 in.) sieve for this method to be used. Whether the split is on the 4.75 mm (No. 4) or the 19.0 mm (3/4 in.) sieve, all material retained on that sieve is defined as oversized material.

This method applies to soils with percentages up to the maximums listed above for oversize particles. A correction may not be practical for soils with only a small percentage of oversize material. The agency shall specify a minimum percentage below which the method is not needed. If not specified, this method applies when more than 5 percent by weight of oversize particles is present.

This procedure covers the lab-to-field corrections in accordance with AASHTO T 224 (see AASHTO T 224 for field-to-lab corrections).

2. Adjustment Equation Moisture

Along with density, the moisture content can be corrected. The moisture content can be determined by the FOP for AASHTO T 255 / T 265, other agency approved methods, or the nuclear density gauge moisture content reading from the FOP for AASHTO T 310. If the nuclear gauge moisture reading is used, or when the moisture content is determined on the entire sample (both fine and oversized particles), the use of the adjustment equation is not needed. Combined moisture contents with material having an appreciable amount of silt or clay should be performed using FOP for AASHTO T 255 / T 265 (Soil). Moisture contents used from FOP for AASHTO T 310 must meet the criteria for that method.

When samples are split for moisture content (oversized and fine materials) the following adjustment equations must be followed:

1. Split the sample into oversized material and fine material.
2. Dry the oversized material following the FOP for AASHTO T 255 / T 265 (Aggregate). If the fine material is sandy in nature, dry using the FOP for AASHTO T 255 / T 265 (Aggregate), or other agency approved methods. If the fine material has any appreciable amount of clay, dry using the FOP for AASHTO T 255 / T 265 (Soil) or other agency approved methods.
3. Calculate the dry mass of the oversize and fine material as follows:

\[M_D = \frac{M_m}{1 + M_C} \]

Where:
- \(M_D \) = mass of dry material (fine or oversize particles).
- \(M_m \) = mass of moist material (fine or oversize particles).
- \(M_C \) = moisture content of respective fine or oversized, expressed as a decimal.
4. Calculate the percentage of the fine and oversized particles by dry weight of the total sample as follows: See Note 2.
\[P_f = \frac{100M_{DF}}{M_{DF} + M_{DC}} \]

\[100 \times 15.4 \text{ lbs} \]
\[15.4 \text{ lbs} + 5.7 \text{ lbs} = 73\% \]
\[100 \times 7.034 \text{ kg} \]
\[7.03 \text{ kg} + 2.602 \text{ kg} = 73\% \]

And

\[P_c = \frac{100M_{DC}}{M_{DF} + M_{DC}} \]

\[100 \times 5.7 \text{ lbs} \]
\[15.4 \text{ lbs} + 5.7 \text{ lbs} = 27\% \]
\[100 \times 2.602 \text{ kg} \]
\[7.03 \text{ kg} + 2.602 \text{ kg} = 27\% \]

Or for \(P_c \): \(P_c = 100 - P_f \)

Where:
- \(P_f \) = percent of fine particles, of sieve used, by weight.
- \(P_c \) = percent of oversize particles, of sieve used, by weight.
- \(M_{DF} \) = mass of fine particles.
- \(M_{DC} \) = mass of oversize particles.

5. Calculate the corrected moisture content as follows:

\[M_{CT} = \frac{(M_{CF} \times P_f) + (M_{CC} \times P_c)}{100} \]

\[= \frac{(10.6\% \times 73.0\%) + (2.1\% \times 27.0\%)}{100} = 8.3\% \]

Where:
- \(M_{CT} \) = corrected moisture content of combined fines and oversized particles, expressed as a % moisture.
- \(M_{CF} \) = moisture content of fine particles, as a % moisture.
- \(M_{CC} \) = moisture content of oversized particles, as a % moisture.

Note 1: Moisture content of oversize material can be assumed to be two (2) percent for most construction applications.

Note 2: In some field applications agencies will allow the percentages of oversize and fine materials to be determined with the materials in the wet state.

3. **Adjustment Equation Density**

Calculate the corrected dry density of the total sample (combined fine and oversized particles) as follows:

\[D_d = \frac{100 \times D_f \times k}{(D_f \times P_f) + (k \times P_f)} \]

or

\[D_d = \frac{100}{P_f + \frac{P_c}{k}} \]

Where:
- \(D_d \) = corrected total dry density (combined fine and oversized particles) kg/m³ (lb/ft³)
- \(D_f \) = dry density of the fine particles kg/m³ (lb/ft³), determined in the lab
- \(P_c \) = percent of oversize particles, of sieve used, by weight.
- \(P_f \) = percent of fine particles, of sieve used, by weight.
- \(k \) = Metric: 1,000 * Bulk Specific Gravity (Gsb) (oven dry basis) of coarse particles (kg/m³).
- \(k \) = English: 62.4 * Bulk Specific Gravity (Gsb) (oven dry basis) of coarse particles (lb/ft³)

Note 3: If the specific gravity is known, then this value will be used in the calculation. For most construction activities the specific gravity for aggregate may be assumed to be 2.700.

4. **Report**

- Results on forms approved by the Department
- Adjusted maximum dry density to the closest 1 kg/m³ (0.1 lb/ft³)
- Adjusted optimum moisture to the 0.1 percent
ATM 301 Sampling of Aggregates

Following are guidelines for the use of WAQTC FOP for AASHTO T 2 (ASTM D75) by the State of Alaska DOT&PF.

1. Sample sizes in Table 2 may be used when sampling for WAQTC FOP for AASHTO T 27/T 11 (See Procedure General Note 1).

<table>
<thead>
<tr>
<th>Nominal Maximum Size*, Standard</th>
<th>Alternate</th>
<th>Minimum Mass, g</th>
<th>lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.36 mm</td>
<td>No. 8</td>
<td>10,000</td>
<td>25</td>
</tr>
<tr>
<td>4.75 mm</td>
<td>No. 4</td>
<td>10,000</td>
<td>25</td>
</tr>
<tr>
<td>9.5 mm</td>
<td>3/8</td>
<td>10,000</td>
<td>25</td>
</tr>
<tr>
<td>12.5 mm</td>
<td>1/2</td>
<td>15,000</td>
<td>35</td>
</tr>
<tr>
<td>19.0 mm</td>
<td>3/4</td>
<td>25,000</td>
<td>55</td>
</tr>
<tr>
<td>25.0 mm</td>
<td>1</td>
<td>45,000</td>
<td>100</td>
</tr>
<tr>
<td>37.5 mm</td>
<td>1-1/2</td>
<td>65,000</td>
<td>145</td>
</tr>
<tr>
<td>50 mm</td>
<td>2</td>
<td>85,000</td>
<td>190</td>
</tr>
<tr>
<td>75 mm</td>
<td>3</td>
<td>125,000</td>
<td>275</td>
</tr>
</tbody>
</table>

*Nominal Maximum Size: One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

2. As an alternate to stockpile sampling Method A, use a loader to deposit a cross section of the stockpile in a pile, mix and distribute into a flattened small stockpile or pad 12 in to 18 in thick. Sample as indicated in Roadway Method B.

3. Field samples containing +3 in. material may be reduced in the field. If allowed, the +3 in. material may be removed. Either record the mass of +3 in. material, or estimate the percentage of material if weighing is not practicable.
SAMPLING OF AGGREGATES
WAQTC FOP FOR AASHTO T 2

1. Scope
This procedure covers sampling of coarse, fine, or a combination of coarse and fine aggregates (CA and FA) in accordance with AASHTO T 2 (ASTM D75). Sampling from conveyor belts, transport units, roadways, and stockpiles is covered.

2. Apparatus
- Shovels, scoops, or both
- Sampling tubes of acceptable dimensions
- Mechanical sampling systems: normally a permanently attached device that allows a sample container to pass perpendicularly through the entire stream of material or diverts the entire stream of material into the container by manual, hydraulic, or pneumatic operation
- Belt template
- Sampling containers

3. Procedure - General
Sampling is as important as testing, and the technician shall use every precaution to obtain samples that will show the true nature and condition of the materials the sample represents. In all situations, determine the time or location for sampling in a random manner.

1. Wherever samples are taken, obtain multiple increments of approximately equal size.
2. Mix the increments thoroughly to form a field sample that meets or exceeds the minimum mass recommended in Table 1.

<table>
<thead>
<tr>
<th>Nominal Maximum Size*</th>
<th>Sample Sizes</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm (in.)</td>
<td>10,000 (25)</td>
</tr>
<tr>
<td>2.36 (No. 8)</td>
<td></td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td></td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td></td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td></td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td></td>
</tr>
<tr>
<td>25.0 (1)</td>
<td></td>
</tr>
<tr>
<td>37.5 (1 1/2)</td>
<td></td>
</tr>
<tr>
<td>50 (2)</td>
<td></td>
</tr>
<tr>
<td>63 (2 1/2)</td>
<td></td>
</tr>
<tr>
<td>75 (3)</td>
<td></td>
</tr>
<tr>
<td>90 (3 1/2)</td>
<td></td>
</tr>
</tbody>
</table>

* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size. Maximum size is one size larger than nominal maximum size.

Note 1: Based upon the tests required, the sample size may be four times that shown in Table 2 of the FOP for AASHTO T 27/T 11, if that mass is more appropriate. As a general rule the field sample size should be such that, when split twice will provide a testing sample of proper size.
4. Procedure – Specific Situations

Conveyor Belts

Avoid sampling at the beginning or end of the aggregate run due to the potential for segregation. Be careful when sampling in the rain. Make sure to capture fines that may stick to the belt or that the rain tends to wash away.

Method A (From the Belt):

1. Stop the belt.
2. Set the sampling template in place on the belt, avoiding intrusion by adjacent material.
3. Scoop off the sample, including all fines.
4. Obtain a minimum of three approximately equal increments.
5. Combine the increments to form a single sample.

Method B (From the Belt Discharge):

1. Pass a sampling device through the full stream of the material as it runs off the end of the conveyor belt. The sampling device may be manually, semi-automatic or automatically powered.
2. The sampling device shall pass through the stream at least twice, once in each direction, without overfilling while maintaining a constant speed during the sampling process.
3. When emptying the sampling device into the sample container, include all fines.
4. Combine the increments to form a single sample.

Transport Units

1. Visually divide the unit into four quadrants.
2. Identify one sampling location in each quadrant.
3. Dig down and remove approximately 0.3 m (1 ft) of material to avoid surface segregation. Obtain each increment from below this level.
4. Combine the increments to form a single sample.

Roadways

Method A (Berm or Windrow):

1. Sample prior to spreading.
2. Take the increments from a minimum of three random locations along the fully-formed windrow or berm. Do not take the increments from the beginning or the end of the windrow or berm.
3. Obtain full cross-section samples of approximately equal size at each location. Take care to exclude the underlying material.
4. Combine the increments to form a single sample.

Note 2: Sampling from berms or windrows may yield extra-large samples and may not be the preferred sampling location.

Method B (In-Place):

1. Sample after spreading and prior to compacting.
2. Take the increments from three random locations.

3. Obtain full-depth samples of approximately equal size from each location. Take care to exclude the underlying material.

4. Combine the increments to form a single sample.

Stockpiles

Method A – Coarse, Fine, or a Combination of Coarse and Fine Aggregates:

1. Create, with a loader if one is available, horizontal surfaces with vertical faces in the top, middle, and bottom third of the stockpile. When no equipment is available a shovel may be used to create the horizontal surfaces with vertical faces.

2. Prevent continued sloughing by shoving a flat board in against the vertical face. Sloughed material will be discarded to create the horizontal surface.

3. Sample from the horizontal surface as close to the intersection as possible of the horizontal and vertical faces.

4. Obtain at least one increment of equal size from each of the top, middle, and bottom thirds of the pile.

5. Combine the increments to form a single sample.

Method B – Fine Aggregate (Alternate Tube Method):

1. Remove the outer layer that may have become segregated.

2. Using a sampling tube, obtain one increment of equal size from a minimum of five random locations on the pile.

3. Combine the increments to form a single sample.

Note 3: Sampling at stockpiles should be avoided whenever possible due to problems involved in obtaining a representative gradation of material.

5. Report

- On forms approved by the Department
- Date
- Time
- Location, source and sampling method
- Quantity represented
ATM 303 Reducing Samples of Aggregates to Testing Size

Following are guidelines for the use of WAQTC FOP for AASHTO T 248 by the State of Alaska DOT&PF.

1. When determining the correct number of chutes, the chutes will be a minimum of 1.5 times larger than the largest particle, utilizing the maximum even number of chutes possible.

2. AASHTO T 248 Method C may also be used for Fine Aggregate.

3. The check for effective reduction applies to the final split.
REDUCING SAMPLES OF AGGREGATES TO TESTING SIZE
WAQTC FOP FOR AASHTO T 248

1. Scope

This procedure covers the reduction of samples to the appropriate size for testing in accordance with AASHTO T 248. Techniques are used that minimize variations in characteristics between test samples and field samples. Method A (Mechanical Splitter) and Method B (Quartering) are covered.

This FOP applies to fine aggregate (FA), coarse aggregate (CA), and mixes of the two, and may also be used on soils.

2. Apparatus

Method A – Mechanical Splitter

Splitter chutes:

- Even number of equal width chutes
- Discharge alternately to each side
- Minimum of 8 chutes total for CA, 12 chutes total for FA
- Width:
 - Minimum 50 percent larger than largest particle
 - Maximum chute width of 19 mm (3/4 in.) for fine aggregate passing the 9.5 mm (3/8 in.) sieve

Feed control:

- Hopper or straightedge pan with a width equal to or slightly less than the overall width of the assembly of chutes
- Capable of feeding the splitter at a controlled rate
- Splitter receptacles / pans capable of holding two halves of the sample following splitting

The splitter and accessory equipment shall be so designed that the sample will flow smoothly without restriction or loss of material.

Method B – Quartering

- Straightedge scoop, shovel, or trowel
- Broom or brush
- Canvas or plastic sheet, approximately 2 by 3 m (6 by 9 ft)

3. Method Selection

Samples of FA which are drier than the saturated surface dry (SSD) condition shall be reduced by a mechanical splitter according to Method A. As a quick determination, if the fine aggregate will retain its shape when molded with the hand, it is wetter than SSD.

Samples of FA that are at SSD or wetter than SSD shall be reduced by Method B, or the entire sample may be dried to the SSD condition – using temperatures that do not exceed those specified for any of the tests contemplated – and then reduced to test sample size using Method A.
Samples of CA or mixtures of FA and CA may be reduced by either method. Method A is not recommended for FA / CA mixtures that adhere to the apparatus.

4. Procedure

Method A – Mechanical Splitter

1. Place the sample in the hopper or pan and uniformly distribute it from edge to edge so that approximately equal amounts flow through each chute. The rate at which the sample is introduced shall be such as to allow free flowing through the chutes into the pans below.

2. Reduce the sample from one of the two pans as many times as necessary to reduce the sample to meet the minimum size specified for the intended test. The portion of the material collected in the other pan may be reserved for reduction in size for other tests.

3. As a check for effective reduction, determine the mass of each reduced portion. If the percent difference of the two masses is greater than 5 percent, corrective action must be taken. In lieu of the check for effective reduction, use the method illustrated in Figure 1.

![Figure 1](image)

Sample (S) is an amount greater than or equal to twice the mass needed for testing. Sample (S) is reduced in a mechanical splitter to yield parts (1) and (2).

Part (1) is further reduced yielding (A) and (B) while part (2) is reduced to yield (B) and (A).

Final testing sample is produced by combining alternate pans, i.e. A/A or B/B only.

Calculation

\[
\frac{\text{Smaller Mass}}{\text{Larger Mass}} = \text{Ratio} \quad (1 - \text{ratio}) \times 100 = \% \text{ Difference}
\]
Method B – Quartering

Use either of the following two procedures or a combination of both.

Procedure # 1: Quartering on a clean, hard, level surface:

1. Place the sample on a hard, clean, level surface where there will be neither loss of material nor the accidental addition of foreign material.
2. Mix the material thoroughly by turning the entire sample over a minimum of four times. With the last turning, shovel the entire sample into a conical pile by depositing each shovelful on top of the preceding one.
3. Flatten the conical pile to a uniform thickness and diameter by pressing down with a shovel. The diameter should be four to eight times the thickness.
4. Divide the flattened pile into four approximately equal quarters with a shovel or trowel.
5. Remove two diagonally opposite quarters, including all fine material, and brush the cleared spaces clean.
6. Successively mix and quarter the remaining material until the sample is reduced to the desired size.
7. The final test sample consists of two diagonally opposite quarters.

Procedure # 2: Quartering on a canvas or plastic sheet:

1. Place the sample on the sheet.
2. Mix the material thoroughly a minimum of four times by pulling each corner of the sheet horizontally over the sample toward the opposite corner. After the last turn, form a conical pile.
3. Flatten the conical pile to a uniform thickness and diameter by pressing down with a shovel. The diameter should be four to eight times the thickness.
4. Divide the flattened pile into four approximately equal quarters with a shovel or trowel, or, insert a stick or pipe beneath the sheet and under the center of the pile, then lift both ends of the stick, dividing the sample into two roughly equal parts. Remove the stick leaving a fold of the sheet between the divided portions. Insert the stick under the center of the pile at right angles to the first division and again lift both ends of the stick, dividing the sample into four roughly equal quarters.
5. Remove two diagonally opposite quarters, being careful to clean the fines from the sheet.
6. Successively mix and quarter the remaining material until the sample size is reduced to the desired size.
7. The final test sample consists of two diagonally opposite quarters.
ATM 304
Sieve Analysis of Fine and Coarse Aggregates and Materials Finer than 75-µm (No. 200) Sieve in Mineral Aggregate by Washing

Following are guidelines for the use of WAQTC FOP for AASHTO T 27/T 11 by the State of Alaska DOT&PF.

1. Use Table 3 for all sizes through 3 in. For larger sizes refer to Table 2:

<table>
<thead>
<tr>
<th>Nominal Maximum Size*</th>
<th>Minimum Dry Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard mm in g lb</td>
<td></td>
</tr>
<tr>
<td>4.75 No. 4 500 1</td>
<td></td>
</tr>
<tr>
<td>6.3 1/4 1000 2</td>
<td></td>
</tr>
<tr>
<td>9.5 3/8 1000 2</td>
<td></td>
</tr>
<tr>
<td>12.5 1/2 2000 4</td>
<td></td>
</tr>
<tr>
<td>19.0 3/4 5000 11</td>
<td></td>
</tr>
<tr>
<td>25.0 1 10,000 22</td>
<td></td>
</tr>
<tr>
<td>37.5 1-1/2 15,000 33</td>
<td></td>
</tr>
<tr>
<td>50 2 20,000 44</td>
<td></td>
</tr>
<tr>
<td>75 3 30,000 66</td>
<td></td>
</tr>
</tbody>
</table>

*Nominal Maximum size: One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps between specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

2. DOT&PF does not allow the coarse aggregate to be run in a moist condition for sieve analysis.

3. Use Method C unless specified otherwise. Methods A or B may be used for concrete aggregate and small samples.

4. All methods may use the alternative calculation of:

\[PP = \left(\frac{M - CMR}{M} \right) \times 100 \]

Where:
CMR = Cumulative Mass Retained
M= Total Dry Sample mass before washing
PP= Percent Passing

5. For calculating Fineness Modulus, subtract reported percent passing from 100 to determine percent retained.

6. When testing Crushed Asphalt Base Course (CABC) or Recycled Asphalt Pavement (RAP), obtain samples in accordance with FOP for AASHTO T 2. Determine and record the total mass of the sample to the nearest 0.1 percent. Perform procedural Method C, steps 3-5 and step 12, except in step 4 the sample may be hand-shaken for the necessary time determined to provide complete separation; taking care not to overload sieves.
SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES
WAQTC FOP FOR AASHTO T 27
MATERIALS FINER THAN 75-µM (NO. 200) SIEVE IN MINERAL AGGREGATE BY WASHING
WAQTC FOP FOR AASHTO T 11

1. Scope

Sieve analysis determines the gradation or distribution of aggregate particle sizes within a given sample. Accurate determination of material smaller than 75 µm (No. 200) cannot be made with AASHTO T 27 alone. If quantifying this material is required, it is recommended that AASHTO T 27 be used in conjunction with AASHTO T 11.

This FOP covers sieve analysis in accordance with AASHTO T 27 and materials finer than 75 µm (No. 200) in accordance with AASHTO T 11 performed in conjunction with AASHTO T 27. The procedure includes three method choices: A, B, and C.

2. Apparatus

- Balance or scale: Capacity sufficient for the masses shown in Table 1, accurate to 0.1 percent of the sample mass or readable to 0.1 g, and meeting the requirements of AASHTO M 231
- Sieves: Meeting the requirements of AASHTO M 92
- Mechanical sieve shaker: Meeting the requirements of AASHTO T 27
- Suitable drying equipment (see FOP for AASHTO T 255)
- Containers and utensils: A pan or vessel of a size sufficient to contain the sample covered with water and to permit vigorous agitation without loss of any part of the sample or water
- Optional mechanical washing device

3. Sample Sieving

In all procedures, it is required to shake the sample over nested sieves. Sieves are selected to furnish information required by specification.

The sieves are nested in order of decreasing size from the top to the bottom and the sample, or a portion of the sample, is placed on the top sieve.

The sieves are shaken in a mechanical shaker for approximately 10 minutes, or the minimum time determined to provide complete separation for the sieve shaker being used, as established by the Time Evaluation.

4. Time Evaluation

The sieving time for each mechanical sieve shaker shall be checked at least annually to determine the time required for complete separation of the sample by the following method:

1. Shake the sample over nested sieves for approximately 10 minutes.
2. Provide a snug-fitting pan and cover for each sieve, and hold in a slightly inclined position in one hand.
3. Hand-shake each sieve by striking the side of the sieve sharply and with an upward motion against the heel of the other hand at the rate of about 150 times per minute, turning the sieve about one sixth of a revolution at intervals of about 25 strokes.
If more than 0.5 percent by mass of the total sample prior to sieving passes any sieve after one minute of continuous hand sieving adjust shaker time and re-check.

In determining sieving time for sieve sizes larger than 4.75 mm (No. 4), limit the material on the sieve to a single layer of particles.

5. Overload Determination

- For sieves with openings smaller than 4.75 mm (No. 4), the mass retained on any sieve shall not exceed 7 kg/m² (4 g/in²) of sieving surface.

- For sieves with openings 4.75 mm (No. 4) and larger, the mass, in grams shall not exceed the product of \(2.5 \times \text{(sieve opening in mm)} \times \text{(effective sieving area)}\). See Table 1.

Additional sieves may be necessary to keep from overloading sieves or to provide other information, such as fineness modulus. The sample may also be sieved in increments to prevent overload.

Table 1

<table>
<thead>
<tr>
<th>Sieve Size mm</th>
<th>Sieving Area m²</th>
<th>203 dia (8)</th>
<th>305 dia (12)</th>
<th>305 by 305 (12 × 12)</th>
<th>350 by 350 (14 × 14)</th>
<th>372 by 580 (16 × 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 (3 1/2)</td>
<td>*</td>
<td>15,100</td>
<td>20,900</td>
<td>27,600</td>
<td>48,500</td>
<td></td>
</tr>
<tr>
<td>75 (3)</td>
<td>*</td>
<td>12,600</td>
<td>17,400</td>
<td>23,000</td>
<td>40,500</td>
<td></td>
</tr>
<tr>
<td>63 (2 1/2)</td>
<td>*</td>
<td>10,600</td>
<td>14,600</td>
<td>19,300</td>
<td>34,000</td>
<td></td>
</tr>
<tr>
<td>50 (2)</td>
<td>3,600</td>
<td>8,400</td>
<td>11,600</td>
<td>15,300</td>
<td>27,000</td>
<td></td>
</tr>
<tr>
<td>37.5 (1 1/2)</td>
<td>2,700</td>
<td>6,300</td>
<td>8,700</td>
<td>11,500</td>
<td>20,200</td>
<td></td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>1,800</td>
<td>4,200</td>
<td>5,800</td>
<td>7,700</td>
<td>13,500</td>
<td></td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>1,400</td>
<td>3,200</td>
<td>4,400</td>
<td>5,800</td>
<td>10,200</td>
<td></td>
</tr>
<tr>
<td>16.0 (5/8)</td>
<td>1,100</td>
<td>2,700</td>
<td>3,700</td>
<td>4,900</td>
<td>8,600</td>
<td></td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>890</td>
<td>2,100</td>
<td>2,900</td>
<td>3,800</td>
<td>6,700</td>
<td></td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>670</td>
<td>1,600</td>
<td>2,200</td>
<td>2,900</td>
<td>5,100</td>
<td></td>
</tr>
<tr>
<td>6.3 (1/4)</td>
<td>440</td>
<td>1,100</td>
<td>1,500</td>
<td>1,900</td>
<td>3,400</td>
<td></td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>330</td>
<td>800</td>
<td>1,100</td>
<td>1,500</td>
<td>2,600</td>
<td></td>
</tr>
<tr>
<td>4.75 (-No. 4)</td>
<td>200</td>
<td>470</td>
<td>650</td>
<td>860</td>
<td>1,510</td>
<td></td>
</tr>
</tbody>
</table>

6. Sample Preparation

Obtain samples in accordance with the FOP for AASHTO T 2 and reduce to the size shown in Table 2 in accordance with the FOP for AASHTO T 248. These sample sizes are standard for aggregate testing but, due to equipment restraints, samples may need to be partitioned into several “subsamples.” For example, a gradation that requires 100 kg (220 lbs) of material would not fit into a large tray shaker in one batch.

Some agencies permit reduced sample sizes if it is proven that doing so is not detrimental to the test results. Some agencies require larger sample sizes. Check agency guidelines for required or permitted test sample sizes.
Table 2
Sample Sizes for Aggregate Gradation Test

<table>
<thead>
<tr>
<th>Nominal Maximum Size*</th>
<th>Minimum Dry Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm (in.)</td>
<td>g (lb)</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>500 (1)</td>
</tr>
<tr>
<td>6.3 (1/4)</td>
<td>1000 (2)</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>1000 (2)</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>2000 (4)</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>5000 (11)</td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>10,000 (22)</td>
</tr>
<tr>
<td>37.5 (1 1/2)</td>
<td>15,000 (33)</td>
</tr>
<tr>
<td>50 (2)</td>
<td>20,000 (44)</td>
</tr>
<tr>
<td>63 (2 1/2)</td>
<td>35,000 (77)</td>
</tr>
<tr>
<td>75 (3)</td>
<td>60,000 (130)</td>
</tr>
<tr>
<td>90 (3 1/2)</td>
<td>100,000 (220)</td>
</tr>
<tr>
<td>100 (4)</td>
<td>150,000 (330)</td>
</tr>
<tr>
<td>125 (5)</td>
<td>300,000 (660)</td>
</tr>
</tbody>
</table>

*Nominal maximum size: One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps between specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

7. Selection of Procedure

See Guidelines Items 3 and 6, for procedure method.

Overview

Method A

- Determine dry mass of original sample
- Wash through a 75µm (No. 200) sieve
- Determine dry mass of washed sample
- Sieve material

Method B

- Determine dry mass of original sample
- Wash through a 75µm (No. 200) sieve
- Determine dry mass of washed sample
- Sieve coarse material
- Determine dry mass of fine material
- Reduce fine portion
- Determine mass of reduced portion
- Sieve fine portion
Method C

- Determine dry mass of original sample
- Sieve coarse material
- Determine mass of fine material
- Reduce fine portion
- Determine mass of reduced portion
- Wash through a 75 µm (No. 200) sieve
- Determine dry mass of washed sample
- Sieve reduced fine portion

8. Procedure Method A

1. Dry the sample to a constant mass in accordance with the FOP for AASHTO T 255, and record to the nearest 0.1 percent of the total sample mass or 0.1 g.

2. When the specification requires that the amount of material finer than 75 µm (No. 200) be determined, perform Step 3 through Step 9; otherwise, skip to Step 10.

3. Nest a sieve, such as a 2.0 mm (No. 10), above the 75 µm (No. 200) sieve.

4. Place the test sample in a container and add sufficient water to cover it.

 Note 1: A detergent, dispersing agent, or other wetting solution may be added to the water to assure a thorough separation of the material finer than the 75 µm (No. 200) sieve from the coarser particles. There should be enough wetting agent to produce a small amount of suds when the sample is agitated. Excessive suds may overflow the sieves and carry material away with them.

5. Agitate vigorously to ensure complete separation of the material finer than 75 µm (No. 200) from coarser particles and bring the fine material into suspension above the coarser material. When using a mechanical washing device, exercise caution to avoid degradation of the sample.

6. Immediately pour the wash water containing the suspended and dissolved solids over the nested sieves, being careful not to pour out the coarser particles.

7. Add a second change of water to the sample remaining in the container, agitate, and repeat Step 6. Repeat the operation until the wash water is reasonably clear. If a detergent or dispersing agent is used, continue washing until the agent is removed.

8. Remove the upper sieve, return material retained to the washed sample.

9. Rinse the material retained on the 75 µm (No. 200) sieve until water passing through the sieve is reasonably clear.

10. Return all material retained on the 75 µm (No. 200) sieve to the container by flushing into the washed sample.

 Note 2: Excess water may be carefully removed with a bulb syringe as long as the removed water is discharged back over the No. 200 sieve to preclude loss of fines.

11. Dry the washed aggregate to constant mass in accordance with the FOP for AASHTO T 255, and then cool prior to sieving. Record the “dry mass after washing”.

12. Select sieves to furnish the information required by the specifications. Nest the sieves in order of decreasing size from top to bottom and place the sample, or a portion of the sample, on the top sieve.
13. Place sieves in mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes).

Note 3: Excessive shaking (more than 10 minutes) may result in degradation of the sample.

14. Determine the individual or cumulative mass retained on each sieve and the pan to the nearest 0.1 percent or 0.1 g. Ensure that all material trapped in full openings of the sieve are cleaned out and included in the mass retained.

Note 4: For sieves No. 4 and larger, material trapped in less than a full opening shall be checked by sieving over a full opening. Use coarse wire brushes to clean the 600 µm (No. 30) and larger sieves, and soft bristle brushes for smaller sieves.

15. In the case of coarse / fine aggregate mixtures, the minus 4.75 mm (No. 4) may be distributed among two or more sets of sieves to prevent overloading of individual sieves.

Calculations Method A

16. The total mass of the material after sieving, for both coarse and fine portions should check closely with the original mass of sample placed on the sieves. If performing T 11 with T 27, this would be the dry mass after wash. If performing just T 27 this would be the original dry mass. When the masses before and after sieving differ by more than 0.3 percent, do not use the results for acceptance purposes.

Check Sum: Total mass of material after sieving must agree with mass before sieving to within 0.3 percent.

\[
\frac{\text{dry mass after washing} - \text{total mass after sieving}}{\text{dry mass after washing}} \times 100
\]

17. Calculate the total percentages passing, individual or cumulative percentages retained, or percentages in various size fractions to the nearest 0.1 percent by dividing the masses for Method A, or adjusted masses for methods B and C, on the individual sieve masses or cumulative sieve masses by the total mass of the initial dry sample. If the same test sample was first tested by T 11, use the total dry sample mass prior to washing in T 11 as the basis for calculating all percentages. Report percent passing as indicated in the “Report” section at the end of this FOP.

Percent Retained:

\[
IPR = \frac{IMR}{M} \times 100 \quad \text{or} \quad CPR = \frac{CMR}{M} \times 100
\]

Where:
- IPR = Individual Percent Retained
- CPR = Cumulative Percent Retained
- M = Total Dry Sample mass before washing
- IMR = Individual Mass Retained OR Adjusted Individual mass from Methods B or C
- CMR = Cumulative Mass Retained or Adjusted Cumulative Mass from Methods B or C

Percent Passing (Calculated):

\[
PP = PPP - IPR \quad \text{or} \quad PP = 100 - CPR
\]

Where:
- PP = Percent Passing
- PPP = Previous Percent Passing

Note 5: See WAQTC Aggregate Module for examples of calculations.
9. Procedure Method B

1. Perform steps 1 through 11 from the “Procedure – Method A”, then continue as follows:

2. Select sieves to furnish information required by the specifications. Nest the sieves in order of decreasing size from top to bottom through the 4.75 mm (No. 4) with a pan at the bottom to retain the minus 4.75 mm (No. 4).

3. Place the sample, or a portion of the sample, on the top sieve. Sieves may already be in the mechanical shaker, or place the sieves in the mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes).

 Note 3: Excessive shaking (more than 10 minutes) may result in degradation of the sample.

4. Determine the individual or cumulative mass retained on each sieve to the nearest 0.1 percent or 0.1 g. Ensure that all particles trapped in full openings of the sieve are cleaned out and included in the mass retained.

 Note 4: For sieves No. 4 and larger, material trapped in less than a full opening shall be checked by sieving over a full opening. Use coarse wire brushes to clean the 600 µm (No. 30) and larger sieves, and soft hair bristle for smaller sieves.

5. Determine the mass of the material in the pan [minus 4.75 mm (No. 4)] (M1).

6. Reduce the minus 4.75 mm (No. 4) using a mechanical splitter in accordance with the FOP for AASHTO T 248 to produce a sample with a mass of 500 g minimum. Determine and record the mass of the minus 4.75 mm (No. 4) split (M2).

7. Select fine sieves to furnish information required by the specifications. Nest the sieves in order of decreasing size from top to bottom through the 75 µm (No. 200) with a pan at the bottom to retain the minus 75µm (No. 200).

8. Repeat steps 3 and 4, Method B, with the minus 4.75 mm (No. 4) including determining the mass of the material in the pan.

Calculations Method B

9.a. Compute the “Adjusted Individual Mass Retained” of the size increment of the original sample as follows when determining “Individual Mass Retained”:

\[
IMR = \frac{M_1}{M_2} \times B
\]

Where:
- IMR = adjusted individual mass retained of the size increment on a total sample basis
- \(M_1 \) = mass of minus 4.75mm (No. 4) sieve in total sample
- \(M_2 \) = mass of minus 4.75mm (No. 4) sieve actually sieved
- \(B \) = individual mass of the size increment in the reduced portion sieved

9.b. Compute the “Adjusted Cumulative Mass Retained” of the size increment of the original sample as follows when determining “Cumulative Mass Retained”:

\[
CMR = \left(\frac{M_1}{M_2} \times B \right) + D
\]

Where:
- CMR = Total cumulative mass retained of the size increment based on a total sample
- \(M_1 \) = mass of minus 4.75mm (No. 4) sieve in total sample
- \(M_2 \) = mass of minus 4.75mm (No. 4) sieve actually sieved
- \(B \) = cumulative mass of the size increment in the reduced portion sieved
- \(D \) = cumulative mass of plus 4.75mm (No. 4) portion of sample
10. Procedure Method C

1. Dry sample in accordance with the FOP for AASHTO T 255. Determine and record the total dry mass of the sample to the nearest 0.1 percent.

 Note 6: AASHTO T 27 allows for coarse aggregate to be run in a moist condition unless the nominal maximum size of the aggregate is smaller than 12.5 mm (1/2 in.), the coarse aggregate (CA) contains appreciable material finer than 4.75 mm (No. 4), or the coarse aggregate is highly absorptive.

2. Break up any aggregations or lumps of clay, silt or adhering fines to pass the 4.75 mm (No. 4) sieve. If substantial coatings remain on the coarse particles in amounts that would affect the percent passing any of the specification sieves, the sample should be tested with either Method A or Method B.

3. Select sieves to furnish information required by the specifications. Nest the sieves in order of decreasing size from top to bottom through the 4.75 mm (No.4) with a pan at the bottom to retain the minus 4.75 mm (No. 4).

4. Place the sample, or a portion of the sample, on the top sieve. Sieves may already be in the mechanical shaker or place the sieves in the mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes).

 Note 3: Excessive shaking (more than 10 minutes) may result in degradation of the sample.

5. Determine the cumulative mass retained on each sieve to the nearest 0.1 percent or 0.1 g. Ensure that all material trapped in full openings of the sieve are cleaned out and included in the mass retained.

 Note 4: For sieves No. 4 and larger, material trapped in less than a full opening shall be checked by sieving over a full opening. Use coarse wire brushes to clean the 600 µm (No. 30) and larger sieves, and soft bristle brush for smaller sieves.

6. Determine the mass of material in the pan [minus 4.75 mm (No. 4)] (M₁).

7. Reduce the minus 4.75mm (No. 4), using a mechanical splitter in accordance with the FOP for AASHTO T 248, to produce a sample with a mass of 500 g minimum.

8. Determine and record the mass of the minus 4.75mm (No. 4) split (M₄₅₄).

9. Perform steps 3 through 11 of Method A (Wash) on the minus 4.75mm (No. 4) split.

10. Select fine sieves to furnish information required by the specifications. Nest the sieves in order of decreasing size from top to bottom through the 75µm (No. 200) with a pan at the bottom to retain the minus 75 µm (No. 200).

11. Repeat steps 4 and 5, Method C, with the minus 4.75mm (No. 4) including determining the mass of the material in the pan.

Calculations Method C

12. Compute the “Cumulative Percent Retained” and “Percent Passing” for the 4.75 mm (No. 4) and larger as follows:

 \[\text{CPR} = \left(\frac{\text{CMR}}{M} \right) \times 100 \quad \text{PP} = 100 - \text{CPR} \]

 where:
 - CMR = Cumulative Mass Retained
 - CPR = Cumulative Percent Retained
 - M = Total Dry Sample mass before washing
 - PP = Percent Passing

13. Compute the “Cumulative Percent Retained” and/or “Calculated Percent Passing” for the minus 4.75 mm (No. 4) as follows:
\[\text{CPR}_{-4} = \frac{\text{CMR}_{-4}}{M_{-4}} \times 100 \quad \text{CPP}_{-4} = 100 - \text{CPR}_{-4} \quad \text{CPP} = \frac{(\text{CPP}_{-4} \times \text{CPP}_{#4})}{100} \]

where:
- \(\text{CMR}_{-4} \) = Cumulative mass retained for the sieve size based on a minus #4 split sample
- \(\text{CPR}_{-4} \) = Calculated cumulative percent retained based on the minus #4 split
- \(\text{CPP}_{-4} \) = Calculated percent passing based on the minus #4 split
- \(M_{-4} \) = Total mass of the minus #4 split before washing
- \(\text{CPP}_{#4} \) = Calculated percent passing the #4 sieve

14. Also note that for minus No. 4 material using this method that:

\[\text{CPP} = \frac{\text{CPP}_{#4} \times (M_{-4} - \text{CMR}_{-4})}{M_{-4}} \]

11. Fineness Modulus

Fineness Modulus (FM) is used in determining the degree of uniformity of the aggregate gradation in PCC mix designs. It is an empirical number relating to the fineness of the aggregate. The higher the FM, the coarser the aggregate. Values of 2.40 to 3.00 are common for FA in PCC.

The sum of the cumulative percentages retained on specified sieves in the following table divided by 100 gives the FM.

Fineness Modulus Calculation

<table>
<thead>
<tr>
<th>Sieve Size mm (in)</th>
<th>Example A</th>
<th>Example B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Percent</td>
<td>Percent</td>
</tr>
<tr>
<td></td>
<td>Retained</td>
<td>Retained</td>
</tr>
<tr>
<td></td>
<td>On Spec’d Sieves*</td>
<td>Passing</td>
</tr>
<tr>
<td>75*(3)</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>37.5*(11/2)</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>19*(3/4)</td>
<td>15</td>
<td>85</td>
</tr>
<tr>
<td>9.5*(3/8)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>4.75*(No.4)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>2.36*(No.8)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>1.18*(No.16)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>0.60*(No.30)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>0.30*(No.50)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>0.15*(100)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>∑ = 785</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM = 7.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.36*(No.30)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>1.18*(No.16)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>0.60*(No.30)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>0.30*(No.50)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>0.15*(100)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>∑ = 278</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FM = 2.78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In decreasing size order, each * sieve is one-half the size of the preceding * sieve.
12. Report

- Results on forms approved by the Department
- Individual mass retained on each sieve
- Individual percent retained on each sieve
- Cumulative mass retained on each sieve
- Cumulative percent retained on each sieve
- FM to the nearest 0.01

Report percentages to the nearest 1 percent except for the percent passing the 75 µm (No. 200) sieve, which shall be reported to the nearest 0.1 percent.
ATM 305 Determining the Percentage of Fracture in Coarse Aggregate

Following are guidelines for the use of WAQTC FOP for AASHTO T 335 by the State of Alaska DOT&PF.

1. Fracture is determined by Method 1 unless otherwise specified.
DETERMINING THE PERCENTAGE OF FRACTURE IN COARSE AGGREGATE
WAQTC FOP FOR AASHTO T 335

1. Scope
This procedure covers the determination of the percentage, by mass, of a coarse aggregate (CA) sample that consists of fractured particles meeting specified requirements in accordance with AASHTO T 335.

In this FOP, a sample of aggregate is screened on the sieve separating CA and fine aggregate (FA). This sieve shall be the 4.75 mm (No. 4) sieve, unless specified otherwise. CA particles are visually evaluated to determine conformance to the specified fracture. The percentage of conforming particles, by mass, is calculated for comparison to the specifications.

2. Apparatus
- Balance or scale: Capacity sufficient for the principal sample mass, accurate to 0.1 percent of the sample mass or readable to 0.1 g, and meeting the requirements of AASHTO M 231.
- Sieves: Meeting requirements of AASHTO M 92 (ASTM E11).
- Splitter: Meeting the requirements of FOP for AASHTO T 248.

3. Terminology
- Fractured Face: An angular, rough, or broken surface of an aggregate particle created by crushing or by other means. A face is considered a “fractured face” whenever one-half or more of the projected area, when viewed normal to that face, is fractured with sharp and well defined edges. This excludes small nicks.
- Fractured particle: A particle of aggregate having at least the minimum number of fractured faces specified. (This is usually one or two.)

4. Sampling and Sample Preparation
1. Sample and reduce the aggregate in accordance with the FOPs for AASHTO T 2 (ASTM D75) and T 248.

2. When the specifications list only a total fracture percentage, the sample shall be prepared in accordance with Method 1. When the specifications require that the fracture be counted and reported on each sieve, the sample shall be prepared in accordance with Method 2.

3. Method 1 - Combined Fracture Determination
 a. Dry the sample sufficiently to obtain a clean separation of FA and CA material in the sieving operation.
 b. Sieve the sample in accordance with the FOP for AASHTO T 27/ T 11 over the 4.75 mm (No. 4) sieve, or the appropriate sieve listed in the agency’s specifications for this material.

 Note 1: Where necessary, wash the sample over the sieve designated for the determination of fractured particles to remove any remaining fine material, and dry to a constant mass in accordance with the FOP for AASHTO T 255.

 c. Reduce the sample using Method A – Mechanical Splitter, in accordance with the FOP for AASHTO T 248, to the appropriate test size. This test size should be slightly larger than shown in Table 1, to account for loss of fines through washing if necessary.
Table 1
Sample Size
Method 1 (Combined Sieve Fracture)

<table>
<thead>
<tr>
<th>Nominal Maximum Size*</th>
<th>Minimum Cumulative Sample Mass Retained on 4.75 mm (No. 4) Sieve</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm (in.)</td>
<td>g (lb)</td>
</tr>
<tr>
<td>37.5 (1 1/2)</td>
<td>2500 (6)</td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>1500 (3.5)</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>1000 (2.5)</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>700 (1.5)</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>400 (0.9)</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>200 (0.4)</td>
</tr>
</tbody>
</table>

* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

4. Method 2 – Individual Sieve Fracture Determination

a. Dry the sample sufficiently to obtain a clean separation of FA and CA material in the sieving operation. A washed sample from the gradation determination (the FOP for T 27/T 11) may be used.

b. If not, sieve the sample in accordance with the FOP for AASHTO T 27 over the sieves listed in the specifications for this material.

Note 2: If overload (buffer) sieves are used the material from that sieve must be added to the next specification sieve.

c. The size of test sample for each sieve shall meet the minimum size shown in Table 2. Utilize the total retained sieve mass or select a representative portion from each sieve mass by splitting or quartering in accordance with the FOP for AASHTO T 248.

Note 3: Where necessary, wash the sample over the sieves designated for the determination of fractured particles to remove any remaining fine material, and dry to a constant mass in accordance with the FOP for AASHTO T 255.

Table 2
Sample Size
Method 2 (Individual Sieve Fracture)

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Minimum Sample Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm (in.)</td>
<td>g (lb)</td>
</tr>
<tr>
<td>31.5 (1 1/4)</td>
<td>1500 (3.5)</td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>1000 (2.2)</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>700 (1.5)</td>
</tr>
<tr>
<td>16.0 (5/8)</td>
<td>500 (1.0)</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>300 (0.7)</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>200 (0.5)</td>
</tr>
<tr>
<td>6.3 (1/4)</td>
<td>100 (0.2)</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>100 (0.2)</td>
</tr>
<tr>
<td>2.36 (No. 8)</td>
<td>25 (0.1)</td>
</tr>
<tr>
<td>2.00 (No. 10)</td>
<td>25 (0.1)</td>
</tr>
</tbody>
</table>

Note 4: If fracture is determined on a sample obtained for gradation, use the mass retained on the individual sieves, even if it is less than the minimum listed in Table 2. If less than 5 percent of the total mass is retained
on a single specification sieve, include that material on the next smaller specification sieve. If a smaller specification sieve does not exist, this material shall not be included in the fracture determination.

5. Procedure

1. After cooling, spread the dried sample on a clean, flat surface large enough to permit careful inspection of each particle. To verify that a particle meets the fracture criteria, hold the aggregate particle so that the face is viewed directly.

2. To aid in making the fracture determination, separate the sample into three categories:
 a. fractured particles meeting the criteria
 b. particles not meeting the criteria
 c. questionable or borderline particles

3. Determine the dry mass of particles in each category to the nearest 0.1 g.

4. If, on any determination, more than 15 percent of the total mass of the sample is placed in the questionable category, repeat the sorting procedure until no more than 15 percent is present in that category.

6. Calculation

Calculate the mass percentage of questionable fractured particles to the nearest 1 percent using the following formula:

\[
\%Q = \frac{Q}{F + Q + N} \times 100
\]

Where:
- \(\%Q\) = Percent of questionable fractured particles
- \(F\) = Mass of fractured particles
- \(Q\) = Mass of questionable or borderline particles
- \(N\) = Mass of unfractured particles

Calculate the mass percentage of fractured faces to the nearest 1 percent using the following formula:

\[
P = \left(\frac{Q + F}{2(F + Q + N)}\right) \times 100
\]

Where:
- \(P\) = Percent of fracture
- \(F\) = Mass of fractured particles
- \(Q\) = Mass of questionable or borderline particles
- \(N\) = Mass of unfractured particles

7. Report

- Results on standard forms approved by the Department.
- Fracture to the nearest 1 percent.
ATM 306 Determining the Percentage of Flat and Elongated Particles in Coarse Aggregate

1. Scope
This procedure covers the determination of the percentages of flat (thin) and elongated particles in coarse aggregates.

2. Apparatus
The apparatus used shall consist of any suitable equipment, by means of which aggregate particles may be tested for compliance, at the dimensional ratios desired, with the definitions given below. Types of acceptable apparatus are:

- ASTM Proportional Caliper Device meeting the requirements of ASTM D 4791. Illustrated in Fig.1
- Balance or scale: Capacity sufficient for the sample mass, readable to 0.1 g and accurate to 0.1 percent of test load, meeting the requirements of AASHTO M 231, Class G 2.
 Note: This test requires a scale with a capacity of at least 1200 g and readable to 0.1 g, or better.
- Sieves, meeting the requirements of AASHTO M 92 (ASTM E11)

3. Definitions
1. Length — maximum dimension of the particle.
2. Thickness — maximum dimension perpendicular to the length and width.
3. Flat & Elongated Particle — a particle having a ratio of length to thickness greater than that specified.

4. Sampling and Sample Preparation
1. Sample and reduce the aggregate in accordance with the FOPs for AASHTO T 2 (ASTM D75) and T 248.
2. Flat and Elongated Determination
 a. Dry the sample sufficiently to obtain a clean separation of FA and CA material in the sieving operation.
 b. Sieve the sample in accordance with the FOP for AASHTO T 27/ T 11 over the 4.75 mm (No. 4) sieve.
 c. Reduce the sample using Method A – Mechanical Splitter, in accordance with the FOP for AASHTO T 248, to the appropriate test size. This test size should be slightly larger than shown in Table 1, to account for loss of fines through washing if necessary.
Table 1
Sample Size

<table>
<thead>
<tr>
<th>Size Fraction</th>
<th>Minimum Sample Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>(mm)</td>
<td>(in)</td>
</tr>
<tr>
<td>-37.5 to +19.0</td>
<td>-1½ to +¾</td>
</tr>
<tr>
<td>-19.0 to +9.5</td>
<td>-⅛ to +⅛</td>
</tr>
<tr>
<td>-9.5 to +4.75</td>
<td>-⅛ to +No. 4</td>
</tr>
</tbody>
</table>

Note 1: If this test is performed using a sample obtained for gradation, use the mass retained for the size fraction, regardless of the sample mass required by Table 1. If less than 5 percent of the total mass is retained on a single specification sieve, include that material on the next smaller specification sieve.

5. Procedure

1. Unless specified, the caliper ratio shall be 1:5.
2. Determine and record the total dry mass of the size grouping to be tested to the nearest 0.1 g.
3. Flat and Elongated Particle Test — Recombine, if necessary, all of the particles from the above process.
4. Set the larger opening to the particle’s length. The particle is flat and elongated if the particle’s thickness can pass completely through the smaller opening.
5. Determine and record the mass of the flat and elongated particles to the nearest 0.1 g.

6. Calculation

1. Calculate the cumulative percent retained.
 \[\text{CPR} = 100 - \text{CPP} \]
 Where:
 \[\text{CPR} = \text{Cumulative percent retained on original sample gradation} \]
 \[\text{CPP} = \text{Cumulative percent passing from original sample gradation.} \]

2. Calculate the cumulative percent retained of each size group flat and elongated (F&E) in relation to the total plus 4.75 mm (No. 4).
 \[\text{F&E Group CPR} = \left(\frac{\text{CPR}}{\text{#4 CPR}} \right) \times 100 \]

3. Calculate the individual percent retained of each size.
 \[\text{F&E Group Individual Percent Retained (IPR)} = \text{F&E Group CPR} - \text{Next Larger Group CPR} \]

4. Calculate the percent flat and elongated for each size group.
 \[\% \text{F&E for Size Group} = \left(\frac{\text{(Mass F&E Size Group)} \div \text{(Size Group Mass)}}{\text{Size Group Mass}} \right) \times 100 \]

5. Calculate the weighted percent for each size to 0.1%.
 \[\text{Weighted \% F&E Size Group} = (\% \text{F&E for Size Group} \div \text{F&E Group IPR}) \div 100 \]

6. Calculate the total percentage of F&E by determining the sum of all the weighted \% F&E for Size Groups.
7. Report

- Report the total percentage for F&E on Department forms to the nearest whole percent.

Figure 1
ASTM Proportional Caliper

Caliper set to 1:5 ratio

Length Determination Flat Determination
This page intentionally left blank.
1. **Scope**

This procedure covers the determination of plastic fines in accordance with AASHTO T 176. It serves as a rapid test to show the relative proportion of fine dust or clay-like materials in fine aggregates (FA) and soils.

2. **Apparatus**

See AASHTO T 176 for a detailed listing of sand equivalent apparatus. Note that the siphon tube and blow tube may be glass or stainless steel as well as copper.

- Graduated plastic cylinder.
- Rubber stopper.
- Irrigator tube.
- Weighted foot assembly: Having a mass of 1000 ±5g. There are two models of the weighted foot assembly. The older model has a guide cap that fits over the upper end of the graduated cylinder and centers the rod in the cylinder. It is read using a slot in the centering screws. The newer model has a sand-reading indicator 254 mm (10 in.) above this point and is preferred for testing clay-like materials.
- Siphon assembly: The siphon assembly will be fitted to a 4 L (1 gal) bottle of working calcium chloride solution placed on a shelf 915 ±25 mm (36 ±1 in.) above the work surface.
- Measuring can: With a capacity of 85 ±5 mL (3 oz.).
- Funnel: With a wide-mouth for transferring sample into the graduated cylinder.
- Quartering cloth: 600 mm (2 ft) square nonabsorbent cloth, such as plastic or oilcloth.
- Mechanical splitter: See the FOP for AASHTO T 248.
- Strike-off bar: A straightedge or spatula.
- Clock or watch reading in minutes and seconds.
- Manually-operated sand equivalent shaker: Capable of producing an oscillating motion at a rate of 100 complete cycles in 45 ±5 seconds, with a hand assisted half stroke length of 127 ±5 mm (5 ±0.2 in.). It may be held stable by hand during the shaking operation. It is recommended that this shaker be fastened securely to a firm and level mount, by bolts or clamps, if a large number of determinations are to be made.
- Mechanical shaker: See AASHTO T 176 for equipment and procedure.
- Oven: Capable of maintaining a temperature of 110 ±5°C (230 ±9°F).
- Thermometer: Calibrated liquid-in-glass or electronic digital type designed for total immersion and accurate to 0.1°C (0.2°F).
- Sieve: A 4.77 mm (NO.4) sieve conforming to requirements of AASHTO M 92 (ASTM E11).
3. Materials

- Stock calcium chloride solution: Obtain commercially prepared calcium chloride stock solution meeting AASHTO E176 requirements.
- Working calcium chloride solution: Dilute one 3 oz measuring can (85 ±5 mL) of stock calcium chloride solution to 3.8 L (1 gal) with distilled or demineralized water. (The graduated cylinder filled to 111.8 mm [4.4 in.] contains 88 mL.)

Note 1: Mix the working solution thoroughly. Add 85 mL (3 oz.) of stock solution to a clean, empty 3.8 L (1 gal) jug, add approximately 1 L (1 gal), and agitate vigorously for 2 or 3 minutes. Add the remainder of the water in approximately 1 L (1 gal) increments, repeating the agitation process.

Note 2: Tap water may be used if it is proven to be non-detrimental to the test and if it is allowed by the agency.

Note 3: The shelf life of the working solution is approximately 30 days. Working solutions more than 30 days old shall be discarded.

4. Control

The temperature of the working solution should be maintained at 22 ±3°C (72 ±5°F) during the performance of the test. If field conditions preclude the maintenance of the temperature range, reference samples should be submitted to the Central/Regional Laboratory, as required by the agency, where proper temperature control is possible. Samples that meet the minimum sand equivalent requirement at a working solution temperature outside of the temperature range need not be subject to reference testing.

5. Sample Preparation

1. Obtain the sample in accordance with the FOP for AASHTO T 2 (ASTM D75) and reduce in accordance with the FOP for AASHTO T 248.

2. Prepare sand equivalent test samples from the material passing the 4.75 mm (No. 4) sieve. If the material is in clods, break it up and re-screen it over a 4.75 mm (No. 4) sieve. All fines shall be cleaned from particles retained on the 4.75 mm (No. 4) sieve and included with the material passing that sieve.

3. Split or quarter 1000 to 1500 g of material from the portion passing the 4.75 mm (No. 4) sieve. Use extreme care to obtain a truly representative portion of the original sample.

Note 4: Experiments show that, as the amount of material being reduced by splitting or quartering is decreased, the accuracy of providing representative portions is reduced. It is imperative that the sample be split or quartered carefully. When it appears necessary, dampen the material before splitting or quartering to avoid segregation or loss of fines.

Note 5: All tests, including reference tests, will be performed utilizing Alternative Method No. 2 as described in AASHTO T 176, unless otherwise specified.

4. The sample must have the proper moisture content to achieve reliable results. This condition is determined by tightly squeezing a small portion of the thoroughly mixed sample in the palm of the hand. If the cast that is formed permits careful handling without breaking, the correct moisture content has been obtained.

Note 6: Clean sands having little 75 µm (No. 200), such as sand for Portland Cement Concrete (PCC), may not form a cast.

If the material is too dry, the cast will crumble and it will be necessary to add water and remix and retest until the material forms a cast. When the moisture content is altered to provide the required cast, the altered sample should be placed in a pan, covered with a lid or with a damp cloth that does not touch the material, and allowed to stand for a minimum of 15 minutes. Samples that have been sieved without being air-dried and still retain enough natural moisture are exempted from this requirement.
If the material shows any free water, it is too wet to test and must be drained and air dried. Mix frequently to ensure uniformity. This drying process should continue until squeezing provides the required cast.

5. Place the sample on the quartering cloth and mix by alternately lifting each corner of the cloth and pulling it over the sample toward the diagonally opposite corner, being careful to keep the top of the cloth parallel to the bottom, thus causing the material to be rolled. When the material appears homogeneous, finish the mixing with the sample in a pile near the center of the cloth.

6. Fill the measuring can by pushing it through the base of the pile while exerting pressure with the hand against the pile on the side opposite the measuring can. As the can is moved through the pile, hold enough pressure with the hand to cause the material to fill the tin to overflowing. Press firmly with the palm of the hand, compacting the material and placing the maximum amount in the can. Strike off the can level full with the straightedge or spatula.

7. When required, repeat steps 5 and 6 to obtain additional samples.

6. Procedure

1. Start the siphon by forcing air into the top of the solution bottle through the tube while the pinch clamp is open.

2. Siphon 101.6 ±2.5 mm (4 ±0.1 in.) of working calcium chloride solution into the plastic cylinder. Pour the prepared test sample from the measuring can into the plastic cylinder, using the funnel to avoid spilling. Tap the bottom of the cylinder sharply on the heel of the hand several times to release air bubbles and to promote thorough wetting of the sample.

3. Allow the wetted sample to stand undisturbed for 10 ±1 minutes. At the end of the 10-minute period, stopper the cylinder and loosen the material from the bottom by simultaneously partially inverting and shaking the cylinder.

4. After loosening the material from the bottom of the cylinder, shake the cylinder and contents by any one of the following methods:
 a. Mechanical Method – Place the stoppered cylinder in the mechanical shaker, set the timer, and allow the machine to shake the cylinder and contents for 45 ±1 seconds.

 Caution: Agencies may require additional operator qualifications for the next two methods.

 b. Manually-operated Shaker Method – Secure the stoppered cylinder in the three spring clamps on the carriage of the manually-operated sand equivalent shaker and set the stroke counter to zero. Stand directly in front of the shaker and force the pointer to the stroke limit marker painted on the backboard by applying an abrupt horizontal thrust to the upper portion of the right hand spring strap.

 Remove the hand from the strap and allow the spring action of the straps to move the carriage and cylinder in the opposite direction without assistance or hindrance. Apply enough force to the right-hand spring steel strap during the thrust portion of each stroke to move the pointer to the stroke limit marker by pushing against the strap with the ends of the fingers to maintain a smooth oscillating motion. The center of the stroke limit marker is positioned to provide the proper stroke length and its width provides the maximum allowable limits of variation.

 Proper shaking action is accomplished when the tip of the pointer reverses direction within the marker limits. Proper shaking action can best be maintained by using only the forearm and wrist action to propel the shaker. Continue shaking for 100 strokes.

 c. Hand Method – Hold the cylinder in a horizontal position and shake it vigorously in a horizontal linear motion from end to end. Shake the cylinder 90 cycles in approximately 30 seconds using a
throw of 229 mm ±25 mm (9 ±1 in.). A cycle is defined as a complete back and forth motion. To properly shake the cylinder at this speed, it will be necessary for the operator to shake with the forearms only, relaxing the body and shoulders.

Set the cylinder upright on the work table and remove the stopper.

d. Insert the irrigator tube in the cylinder and rinse material from the cylinder walls as the irrigator is lowered. Force the irrigator through the material to the bottom of the cylinder by applying a gentle stabbing and twisting action while the working solution flows from the irrigator tip. Work the irrigator tube to the bottom of the cylinder as quickly as possible, since it becomes more difficult to do this as the washing proceeds. This flushes the fine material into suspension above the coarser sand particles.

Continue to apply a stabbing and twisting action while flushing the fines upward until the cylinder is filled to the 381 mm (15 in.) mark. Then raise the irrigator slowly without shutting off the flow so that the liquid level is maintained at about 381 mm (15 in.) while the irrigator is being withdrawn. Regulate the flow just before the irrigator is entirely withdrawn and adjust the final level to 381 mm (15 in.).

Note 7: Occasionally the holes in the tip of the irrigator tube may become clogged by a particle of sand. If the obstruction cannot be freed by any other method, use a pin or other sharp object to force it out, using extreme care not to enlarge the size of the opening. Also, keep the tip sharp as an aid to penetrating the sample.

5. Allow the cylinder and contents to stand undisturbed for 20 minutes ±15 seconds. Start timing immediately after withdrawing the irrigator tube.

Note 8: Any vibration or movement of the cylinder during this time will interfere with the normal settling rate of the suspended clay and will cause an erroneous result.

6. Clay and sand readings:

a. At the end of the 20-minute sedimentation period, read and record the level of the top of the clay suspension. This is referred to as the clay reading.

Note 9: If no clear line of demarcation has formed at the end of the 20-minute sedimentation period, allow the sample to stand undisturbed until a clay reading can be obtained, then immediately read and record the level of the top of the clay suspension and the total sedimentation time. If the total sedimentation time exceeds 30 minutes, rerun the test using three individual samples of the same material. Read and record the clay column height of the sample requiring the shortest sedimentation period only. Once a sedimentation time has been established, subsequent tests will be run using that time. The time will be recorded along with the test results on all reports.

b. After the clay reading has been taken, place the weighted foot assembly over the cylinder and gently lower the assembly until it comes to rest on the sand. Do not allow the indicator to hit the mouth of the cylinder as the assembly is being lowered. Subtract 254 mm (10 in.) from the level indicated by the extreme top edge of the indicator and record this value as the sand reading.

c. If clay or sand readings fall between 2.5 mm (0.1 in.) graduations, record the level of the higher graduation as the reading. For example, a clay reading that appears to be 7.95 would be recorded as 8.0; a sand reading that appears to be 3.22 would be recorded as 3.3.

d. If two Sand Equivalent (SE) samples are run on the same material and the second varies by more than ±4, based on the first cylinder result, additional tests shall be run.

e. If three or more Sand Equivalent (SE) samples are run on the same material, average the results. If an individual result varies by more than ±4, based on the average result, additional tests shall be run.
7. **Calculations**

1. Calculate the SE to the nearest 0.1 using the following formula:

 \[SE = \frac{\text{Sand Reading}}{\text{Clay Reading}} \times 100 \]

 Report the SE as the next higher whole number. As an example, 41.3 would be reported as 42. An SE of 41.0 would be reported as 41.

2. In determining the average of the two or more samples, raise each calculated SE value to the next higher whole number before averaging. For example, calculated values of 41.3 and 42.8 would be reported as 42 and 43, respectively.

 Then average the two values:

 \[\frac{42 + 43}{2} = 42.5 \]

 Report the average value (if it is not a whole number) as the next higher whole number – in this case: 43.

8. **Report**

 - Results on forms approved by the Department.
 - Results to the next higher whole number.
 - Sedimentation time if over 20 minutes.
This page intentionally left blank.
ATM 308 Specific Gravity and Absorption of Coarse Aggregate

Following are guidelines for the use of WAQTC FOP for AASHTO T 85 by the State of Alaska DOT&PF.

1. When Specific Gravity is determined on portions of the sample, determine the total sample specific gravity with the following formula:

\[
G = \frac{100}{P_1 \frac{G_1}{G_1} + P_2 \frac{G_2}{G_2} + \ldots + P_n \frac{G_n}{G_n}}
\]

Where:
- \(G\) = average specific gravity
- \(P_1, P_2, P_n\) = mass percentages of each portion tested from the original sample;
- \(G_1, G_2, G_n\) = specific gravity values of each portion tested from the original sample;

2. The sample size shown in Table 1 represents the material that will be tested. When the material contains both coarse and fine, or there will be material rejected over either the No. 4 or ¾ in. sieves; the size of the field sample must be increased to compensate for the rejected material.

3. When a specific size fraction of an aggregate is tested, the minimum mass of the test sample shall be the difference between the masses prescribed for the maximum and minimum sizes of the fraction.
SPECIFIC GRAVITY AND ABSORPTION OF COARSE AGGREGATE
WAQTC FOP FOR AASHTO T 85

1. Scope

This procedure covers the determination of specific gravity and absorption of coarse aggregate in accordance with AASHTO T 85. Specific gravity may be expressed as bulk specific gravity (G_{sb}), bulk specific gravity, saturated surface dry ($G_{sb} SSD$), or apparent specific gravity (G_{sa}). G_{sb} and absorption are based on aggregate after soaking in water. This procedure is not intended to be used with lightweight aggregates.

2. Terminology

Absorption – the increase in the mass of aggregate due to water being absorbed into the pores of the material, but not including water adhering to the outside surface of the particles, expressed as a percentage of the dry mass. The aggregate is considered “dry” when it has been maintained at a temperature of 110 ±5°C (230 ±9°F) for sufficient time to remove all uncombined water.

Saturated Surface Dry (SSD) – condition of an aggregate particle when the permeable voids are filled with water, but no water is present on exposed surfaces.

Specific Gravity – the ratio of the mass, in air, of a volume of a material to the mass of the same volume of gas-free distilled water at a stated temperature.

Apparent Specific Gravity (G_{sa}) – the ratio of the mass, in air, of a volume of the impermeable portion of aggregate to the mass of an equal volume of gas-free distilled water at a stated temperature.

Bulk Specific Gravity (G_{sb}) – the ratio of the mass, in air, of a volume of aggregate (including the permeable and impermeable voids in the particles, but not including the voids between particles) to the mass of an equal volume of gas-free distilled water at a stated temperature.

Bulk Specific Gravity (SSD) ($G_{sb} SSD$) – the ratio of the mass, in air, of a volume of aggregate, including the mass of water within the voids filled to the extent achieved by submerging in water for 15 to 19 hours (but not including the voids between particles), to the mass of an equal volume of gas-free distilled water at a stated temperature.

Size Fraction – Material retained on a single sieve, excluding material that would be retained on larger sieves.

3. Apparatus

- Balance or scale: with a capacity of 5 kg, sensitive to 0.1 g. Meeting the requirements of AASHTO M 231.
- Sample container: a wire basket of 3.35 mm (No. 6) or smaller mesh, with a capacity of 4 to 7 L (1 to 2 gal) to contain aggregate with a nominal maximum size of 37.5 mm (1 1/2 in.) or smaller; or a larger basket for larger aggregates, or both.
- Water tank: watertight and large enough to completely immerse aggregate and basket, equipped with an overflow valve to keep water level constant.
- Suspension apparatus: wire used to suspend apparatus shall be of the smallest practical diameter.
- Sieves 4.75 mm (No. 4) or other sizes as needed, conforming to AASHTO M 92 (ASTM E11).
- Large absorbent towel

4. Sample Preparation

1. Obtain the sample in accordance with the FOP for AASHTO T 2 (ASTM D75) (see Note 1).
2. Mix the sample thoroughly and reduce it to the approximate sample size required by Table 1 in accordance with the FOP for AASHTO T 248.

3. Reject all material passing the appropriate sieve by dry sieving.

4. Thoroughly wash sample to remove dust or other coatings from the surface and re-screen the washed dry sample over the appropriate sieve. Reject all material passing that sieve.

5. The sample shall meet or exceed the minimum mass given in Table 1.

Note 1: If this procedure is used only to determine the Bulk Gsb of oversized material for the FOP for AASHTO T 99 / T 180 and in the calculations for the FOP for AASHTO T 224, the material can be rejected over the appropriate sieve. For T 99 / T 180 Methods A and B, use the 4.75 mm (No.4) sieve; T 99 / T 180 Methods C and D use the 19 mm (3/4 in).

<table>
<thead>
<tr>
<th>Nominal Maximum Size</th>
<th>Minimum Mass of Test Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>(in.)*</td>
</tr>
<tr>
<td>12.5</td>
<td>(1/2) or less</td>
</tr>
<tr>
<td>19.0</td>
<td>(3/4)</td>
</tr>
<tr>
<td>25.0</td>
<td>(1)</td>
</tr>
<tr>
<td>37.5</td>
<td>(1-1/2)</td>
</tr>
<tr>
<td>50</td>
<td>(2)</td>
</tr>
<tr>
<td>63</td>
<td>(2-1/2)</td>
</tr>
<tr>
<td>75</td>
<td>(3)</td>
</tr>
</tbody>
</table>

One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

5. **Procedure**

1. Dry the test sample to constant mass at a temperature of 110 ±5°C (230 ±9°F) and cool in air at room temperature for 1 to 3 hours.

 Note 2: Where the absorption and specific gravity values are to be used in proportioning concrete mixtures in which the aggregates will be in their naturally moist condition, the requirement for initial drying to constant mass may be eliminated, and, if the surfaces of the particles in the sample have been kept continuously wet until test, the 15-to-19 hour soaking may also be eliminated.

2. Immerse the aggregate in water at room temperature for a period of 15 to 19 hours.

 Note 3: When testing coarse aggregate of large nominal maximum size requiring large test samples, it may be more convenient to perform the test on two or more subsamples, and then combine the values obtained.

3. Place the empty basket into the water bath and attach to the balance. Inspect the immersion tank to ensure the water level is at the overflow outlet height. Tare the balance with the empty basket attached in the water bath.

4. Remove the test sample from the water and roll it in a large absorbent cloth until all visible films of water are removed. Wipe the larger particles individually. If the test sample dries past the SSD condition, immerse in water for 30 min, and then resume the process of surface-drying.

 Note 4: A moving stream of air may be used to assist in the drying operation, but take care to avoid evaporation of water from aggregate pores.
5. Determine the SSD mass of the sample, and record this and all subsequent masses to the nearest 0.1 g or 0.1 percent of the sample mass, whichever is greater. Designate this mass as “B”.

6. Re-inspect the immersion tank to insure the water level is at the overflow outlet height. Immediately place the SSD test sample in the sample container and weigh it in water maintained at 23.0 ±1.7°C (73.4 ±3°F). Shake the container to release entrapped air before recording the weight. Designate this submerged weight as “C”.

Note 5: The container should be immersed to a depth sufficient to cover it and the test sample during mass determination. Wire suspending the container should be of the smallest practical size to minimize any possible effects of a variable immersed length.

7. Remove the sample from the basket. Ensure all material has been removed. Place in a container of known mass.

8. Dry the test sample to constant mass in accordance with the FOP for AASHTO T 255 / T 265 (Aggregate section) and cool in air at room temperature for 1 to 3 hours. Designate this mass as “A”.

6. Calculations

Perform calculations and determine values using the appropriate formula below. In these formulas, \(A\) = oven dry mass, \(B\) = SSD mass, and \(C\) = weight in water.

- Bulk specific gravity (\(G_{sb}\))
 \[G_{sb} = \frac{A}{B - C} \]

- Bulk specific gravity, SSD (\(G_{sb\ SSD}\))
 \[G_{sb\ SSD} = \frac{B}{B - C} \]

- Apparent specific gravity (\(G_{sa}\))
 \[G_{sa} = \frac{A}{A - C} \]

- Absorption
 \[\text{Absorption} = \left[\frac{B - A}{A}\right] \times 100 \]

7. Report

- Results on forms approved by the Department
- Specific gravity values to 3 decimal places
- Absorption to nearest 0.1 percent
ATM 309 Relative Standard Density of Soils by the Control Strip Method

1. Scope
This method describes a procedure for determining the relative standard dry density of a material by the control strip testing method. This is applicable to soils and soil mixtures.

2. Significance and Use
Site conditions and/or logistics may make determining the standard density difficult with conventional test methods used in the laboratory. When these problems occur a method that allows the determination of a relative standard density in the field can facilitate the verification of compaction efforts. This method describes a procedure to determine the relative standard density to be used in these circumstances.

3. Apparatus
- Nuclear Moisture/Density Gauge—Calibrate and standardize in accordance with ATM 213.
- Compaction equipment that meets the requirements of the contract and of sufficient size and compaction energy to compact the material.

4. Site Preparation
1. The Engineer will designate the location of the control strip, as well as minimum compaction equipment to be used. If size of control strip is not specified, use a 12 ft. x 300 ft. control strip.
2. A representative lift of the material being evaluated will be placed and prepared for compaction.

5. Procedure
1. Attention should be paid to the requirements of the material being placed so that moisture requirements are maintained in an acceptable range.
2. A minimum of 3 test locations will be selected within the control strip. The locations will be in the middle 1/2 of the control strip and at least 12 in from the edge of the control strip. The Engineer will select test locations.
3. The locations will be marked in such a way as not to be lost during the compaction of the control strip. This can be accomplished by marking the side of the strip with stakes or surveyors tape, or by marking with paint beside the location on the control strip.
4. Care should be taken when choosing and preparing the test location, so that it is flat and the surface voids filled. If necessary, use a small quantity of native fines to fill the voids. The thickness of added fines shall not exceed 1/8 in.
5. Tests shall be taken with nuclear moisture/density gauge in backscatter mode. A test will consist of the average of two 15 second readings (fast mode), or one 1 minute reading. Record all readings, and in the case of the 15 second readings record the average dry density determination at each location.
6. After the first pass with the compaction equipment, an initial density is determined by averaging the densities of the selected test locations.

 \textbf{Note 1:} One pass of the roller will be defined as one roll over the location.

7. After each subsequent pass and for each piece of compaction equipment used, a test is taken at each location, recorded and then averaged to produce the density value for that pass.
8. Continue the compaction and testing cycle until there is a pass with less than 16 kg/m³ (1 lb/ft³) increase in the average dry density of the test locations; and a second consecutive pass with less than 16 kg/m³ (1 lb/ft³) increase in the average density of the test locations.

9. Select ten random locations on the completed control strip, and test by averaging two one minute readings or one four minute reading, at each location in accordance with ATM 213. Average the results from the ten locations and this value will be the relative standard dry density for this material. Tests shall be performed in direct transmission mode when practicable.

 Note 2: It may be necessary to repeat the procedure for additional roller types depending on the material to be tested and the requirements of sequencing for the finished surface.

10. Additional control strips may be required if there are changes in the material, lift thickness or compaction equipment.

6. Calculations

The Relative Standard Dry Density value will be calculated as follows:

$$D_S = \left(\frac{A_1 + A_2 + A_3 + A_4 + A_5 + A_6 + A_7 + A_8 + A_9 + A_{10}}{10} \right)$$

Where:

- D_S = Relative Standard Dry Density for the material.
- A_n = Average Dry Density for random test location n.

7. Report

- Report the average dry density for each pass
- Report the relative standard dry density to the nearest 0.1 lb/ft³
1. **Scope**

This method describes the test procedure for the simulation of the abrasive action of traffic on coarse aggregates used in a surface layer to determine the ability of the aggregate to resist wear by abrasion from studded tires.

The test shall be performed on the specific size aggregate fraction of 11.2 to 16.0 mm (7/16" to 5/8").

Note 1: Variations from this size range will not give consistent results.

The test is applicable to crushed and uncrushed natural and artificial aggregates.

This test method involves potentially hazardous materials, operations and equipment. This method does not purport to address all of the safety problems associated with its use.

2. **Principle**

A specimen of an individual size fraction is rotated in a steel drum that contains a steel ball charge and water. The interior of the drum has three ribs, which add to the abrading. The drum is rolled causing the contents within to tumble. After the specified number of revolutions, the contents are removed from the drum and the aggregate is sieved over a 2.00 mm (No. 10) sieve. The measure of wear, as a percentage loss, is calculated.

3. **Apparatus**

- Testing machine conforming to the design shown in Figure 1.
- The test drum shall have an inside diameter of 206.5 ± 2 mm and an inside length of 335 ± 1 mm. The drum shall be water-tight and made of a seamless steel tube conforming to grade TS 5 of ISO 2604-2, of outside diameter 219.1 mm and wall thickness of 6.3 mm. The drum shall rotate centrically with the axis in a horizontal position at a rate of 90 ± 3 rpm. A revolution counter shall automatically stop the rotation after 5400 revolutions.
 - Three ribs, each with a length of 333 ± 1 mm, shall be equally spaced around the internal circumference of the drum. The three ribs shall be removable and made from spring steel as specified in ISO 683-14 and designed in accordance with Figure 1. The ribs, prior to their use in a test, shall be preground in the drum for 25 h using a hard aggregate, together with the normal proportions of steel balls and water.
 Note 2: Over time, and with repeated use, the ribs will wear and their action will change. Each rib shall be replaced, when its loss in original mass exceeds 15 g.
- Steel balls (7000 ± 10 g), 14.50-15.01 mm diameter, of a hardness between 62 and 65 HRC, as specified in ISO 3290.
- Gauge to control minimum steel ball size, e.g. two parallel bars 14.50 mm apart.
- Magnet (optional) for removal of the steel ball charge from the test specimen after abrasion.
 Note 3: Do not use too strong a magnet as the steel balls may become magnetized.
- Oven capable of maintaining a uniform temperature of 110 ± 5 °C (230 ± 9°F).
- Balance or scale: Capacity sufficient for the principle sample mass, readable to 0.1 percent or 0.1 g, of the total sample mass and meeting the requirements of AASHTO M 231.
- Sieves of the following sizes: 2.00 mm, 11.2 mm, and 16.0 mm (No. 10, 7/16" and 5/8").
- Bucket.
4. Sampling

Obtain a sample in accordance with WAQTC FOP for AASHTO T 2 (ASTM D75).
5. Preparation of Test Sample

Unprocessed Aggregate

1. Separate the sample on the 19 mm (3/4") sieve by hand or mechanical shaker, sieving the material for 5 minutes. Discard the minus 19 mm (3/4") material.
2. Crush the plus 19 mm (3/4") material, or a representative portion obtained in accordance with WAQTC FOP for AASHTO T 248, to pass the 19 mm (3/4") sieve.
3. Separate the crushed material into a test sample, using 16 mm (5/8") sieve and 11.2 mm (7/16") sieves, in accordance with WAQTC FOP for AASHTO T 27/T 11. Discard all particles retained on the 16 mm (5/8") sieve and all the particles passing the 11.2 mm (7/16") sieve.
4. Proceed to Step 2 below.

Processed (already crushed) Aggregate

1. Separate the material into a test sample, using 16 mm (5/8") and 11.2 mm (7/16") sieves, in accordance with WAQTC FOP for AASHTO T 27/T 11. Discard all particles retained on the 5/8" (16 mm) sieve and all the particles passing the 11.2 mm (7/16") sieve.
2. The test sample must have no more than 8 percent Flat and Elongated particles when tested in accordance with ATM 306 using a caliper ratio of 1:5. Remove Flat and Elongated particles until the test sample meets this requirement.
3. Reduce the test sample to a minimum of 3500 g in accordance with WAQTC FOP for AASHTO T 248.
4. Wash the sample and dry to a constant mass in accordance with WAQTC FOP for AASHTO T 255/T 265.
5. Determine the apparent specific gravity of the test sample, or a portion thereof, in accordance with WAQTC FOP for AASHTO T 85.
6. Determine the individual test specimen mass by:

 \[m_i = \frac{P_i}{2.66} \times 1000 \]

 Where:

 \(m_i \) = mass of the individual test specimen
 \(p_i \) = apparent specific gravity of the test sample

7. Batch 3 test specimens at the calculated weight ± 5 g.

6. Procedure

1. Place the steel ball charge (7000 ± 10 g) and the test specimen in the drum and add (2000 ± 10) ml. of water.
2. Rotate the drum at a speed of 90 ± 3 rpm for 5400 ± 10 revolutions.
3. After the specified number of revolutions, discharge the contents (steel ball charge, test specimen, and water) from the drum into a container.
4. Remove the steel ball charge with a magnet, being careful not to degrade and or lose aggregate particles.
5. Wash the remaining contents (test specimen and water) over a 2.00 mm (No. 10) sieve.
Note 4: To avoid overloading the sieve, it may be necessary to divide the test specimen into smaller portions.

6. Dry the test specimen fractions retained on the 2.00 mm (No. 10) sieve, to a constant mass in accordance with WAQTC FOP for AASHTO T 255 and weigh to the nearest 0.1 g.

7. Calculation and Expression of Results

1. Calculate the individual Nordic Abrasion Values (A_n) to the nearest 0.1 percent as follows:

$$A_n = \left(\frac{M_i - M_f}{M_i} \right) \times 100$$

Where

- A_n = Nordic Abrasion Values
- M_i = Initial dry mass of the test specimen.
- M_f = Final dry mass of the test specimen after the test.

2. Compute and record the average of the individual Nordic Abrasion Values to the nearest 0.1 percent.

8. Report

- The individual and average Nordic Abrasion values shall be reported on Department forms to the nearest 0.1 percent.
1. **Scope**

This test method describes the procedure for determining the durability of an aggregate. The durability of an aggregate as measured by the Degradation Value indicates the relative resistance of an aggregate to produce detrimental clay-like fines when subjected to a prescribed abrasion process in the presence of distilled or demineralized water.

2. **Apparatus**

- Jaw crusher with 150 mm (6") capacity.
- Sieves of the following sizes: 12.5 mm (½"), 6.3 mm (¼"), 2.00 mm (No. 10) and 75 μm (No. 200). Sieves shall conform to AASHTO M 92 (ASTM E22).
- Balance or scale: Capacity sufficient for the principle sample mass, readable to 0.1 percent or 0.1 g of the total sample mass and meeting the requirements of AASHTO M 231.
- 200 mm (8") sieve shaker with 45 mm (1¾") throw on cam at 285 ± 10 oscillations per minute.
- General Laboratory Interval Timer to control On-Off operation of sieve shaker. Timer will have a minimum 20 minute range accurate to ± 5 seconds.
- Plastic canister 190 mm (7 ½") in diameter and 150 mm (6") high, having a flat bottom; or metal washing vessel conforming to AASHTO T 210 - 5.1.
- Distilled or demineralized water maintained at 22 ±3ºC (72 ± 5°F).
- Sample Washing Apparatus, consisting of a ring stand and ring capable of mounting a 230 mm mouth funnel with a 2.00 mm (No. 10) and 75 μm (No. 200) sieve setting on top of the funnel and a graduated cylinder calibrated at 500 ml with a rubber stopper.
- Graduated cylinder or pipette with 10 ml capacity graduated in 1 ml increments.
- Stock Sand Equivalent Solution prepared in accordance with WAQTC FOP for AASHTO T 176, using distilled water only. This solution should be stored in dark or opaque containers and protected from direct sunlight and heat. Solutions that have turned cloudy or formed precipitates will be discarded.
- Standard Sand Equivalent Cylinder with rubber stopper as described in WAQTC FOP for AASHTO T 176.
- Timer or Stopwatch, preferably with an alarm to indicate end of timed interval.
- Miscellaneous equipment including 500 ml wash bottle with a fine spray nozzle, pans, scoops, etc.

3. **Degradation Test Area**

The degradation test area must be free of vibration and direct sunlight, and maintained at a temperature of 22 ±3ºC (72 ± 5°F).

4. **Sample Preparation**

1. **Unprocessed Aggregate**

 a. Separate the aggregate on the 12.5 mm (½") sieve by hand or by mechanical shaker, sieving the material for 5 minutes. Discard the minus 12.5 mm (½") material unless required for other testing.
b. Crush the plus 12.5 mm (½") aggregate, or a representative portion obtained in accordance with WAQTC FOP for AASHTO T 248, to pass the 12.5 mm (½") sieve.

c. Proceed to Step 2 and process the same as already crushed aggregate.

2. Processed (already crushed) Aggregate
 a. Separate the material by hand sieving or by mechanical shaker, sieving the material for 5 minutes, into 2 size groups: minus 12.5 mm (½") to plus 6.3 mm (¼") and minus 6.3 mm (¼") to plus 2.00 mm (No. 10).
 b. Reduce each size grouping to a representative sample in accordance with WAQTC FOP for AASHTO T 248, Method A, such that there will be a minimum of 500 grams after washing.
 c. Wash each size grouping over a 2.00 mm (No. 10) sieve and dry to a constant mass in accordance with WAQTC FOP for AASHTO T 255/T 265.
 d. Weigh out a 500 ±1 g portion of each size grouping.

5. Procedure

1. Combine both sample portions in the plastic canister, add 200 ml of distilled or demineralized water and cover tightly. Do not allow the sample to soak more than 5 minutes before testing.

2. Place the canister in the degradation sieve shaker and run for 20 minutes ±5 seconds. Do not allow the sample to set for more than 5 minutes after agitation is completed.

3. Remove the canister and wash the material through nested 2.00 mm (No. 10) and 75 μm (No. 200) sieves. Continue washing until the wash water is clear and has reached the 500-ml mark on the graduated cylinder.

4. In instances where highly degradable materials are encountered and the sample cannot be washed clean with 500-ml of water:
 a. Continue washing using water sparingly, until the wash water is clear. If a change in receiver cylinders is required, be very careful not to lose any of the wash water.
 b. To achieve the required 500 ml volume, allow the wash water to settle until clear, then siphon or pipette off the excess water, being careful not to remove any of the settled material.
 c. Use of a centrifuge to settle the material is allowed but extreme care must be taken to preclude any loss of material in transferring from the cylinders to the centrifuge bottles and then back to a single cylinder. The solution must be brought to a volume of 500 ml before proceeding to Step 5. Removal of extra water by oven-dried evaporation is not allowed.

5. Place the Sand Equivalent Cylinder upright in a vibration free area out of direct sunlight. Measure and pour 7 ml of the Stock Sand Equivalent Solution into the cylinder.

6. Bring all of the solids in the 500 ml of wash water into suspension by capping the graduated cylinder with the palm of the hand or a rubber stopper, then turning the cylinder upside down and right side up allowing the bubble to traverse from one end to the other and back again. This is one cycle. Repeat this cycle 10 times as rapidly as possible (approximately 35 seconds).

7. Immediately pour the solution into the Sand Equivalent Cylinder, fill to the 15 mark, and plug with a rubber stopper.

8. Mix the contents of the Sand Equivalent Cylinder by turning the cylinder upside down and right side up allowing the bubble to traverse from one end to the other and back again. This is one cycle. Repeat this cycle 20 times as rapidly as possible (approximately 60 seconds).
9. Place the cylinder on a vibration free platform out of direct sunlight, remove stopper and immediately start the timer or stopwatch that is pre-set for 20 minutes.

10. After 20 minutes, immediately read and record the height of the sediment to the nearest 0.1 graduation.

6. Calculations

Determine the Degradation Value using the following formula, or by using Table 1 on next page which is derived from the formula.

$$D = \left(\frac{15 - H}{15 + 1.75H} \right) \times 100$$

Where:
- D = Degradation value.
- H = Height of sediment in cylinder.

Values may range from 0 to 100 with high values representing more suitable material. The formula and chart place doubtful materials at about the midrange (30-70) of the scale, with poor ones below and good ones above that range.

7. Report

- Report degradation values to the nearest whole number.
Table 1
Degradation Value, "D"

<table>
<thead>
<tr>
<th>H</th>
<th>D</th>
<th>H</th>
<th>D</th>
<th>H</th>
<th>D</th>
<th>H</th>
<th>D</th>
<th>H</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>98</td>
<td>3.1</td>
<td>58</td>
<td>6.1</td>
<td>35</td>
<td>9.1</td>
<td>19</td>
<td>12.1</td>
<td>8</td>
</tr>
<tr>
<td>0.2</td>
<td>96</td>
<td>3.2</td>
<td>57</td>
<td>6.2</td>
<td>34</td>
<td>9.2</td>
<td>19</td>
<td>12.2</td>
<td>8</td>
</tr>
<tr>
<td>0.3</td>
<td>95</td>
<td>3.3</td>
<td>56</td>
<td>6.3</td>
<td>33</td>
<td>9.3</td>
<td>18</td>
<td>12.3</td>
<td>7</td>
</tr>
<tr>
<td>0.4</td>
<td>93</td>
<td>3.4</td>
<td>55</td>
<td>6.4</td>
<td>33</td>
<td>9.4</td>
<td>18</td>
<td>12.4</td>
<td>7</td>
</tr>
<tr>
<td>0.5</td>
<td>91</td>
<td>3.5</td>
<td>54</td>
<td>6.5</td>
<td>32</td>
<td>9.5</td>
<td>17</td>
<td>12.5</td>
<td>7</td>
</tr>
<tr>
<td>0.6</td>
<td>90</td>
<td>3.6</td>
<td>54</td>
<td>6.6</td>
<td>32</td>
<td>9.6</td>
<td>17</td>
<td>12.6</td>
<td>6</td>
</tr>
<tr>
<td>0.7</td>
<td>88</td>
<td>6.7</td>
<td>53</td>
<td>6.7</td>
<td>31</td>
<td>9.7</td>
<td>17</td>
<td>12.7</td>
<td>6</td>
</tr>
<tr>
<td>0.8</td>
<td>87</td>
<td>3.8</td>
<td>52</td>
<td>6.8</td>
<td>30</td>
<td>9.8</td>
<td>16</td>
<td>12.8</td>
<td>6</td>
</tr>
<tr>
<td>0.9</td>
<td>85</td>
<td>3.9</td>
<td>51</td>
<td>6.9</td>
<td>30</td>
<td>9.9</td>
<td>16</td>
<td>12.9</td>
<td>6</td>
</tr>
<tr>
<td>1.0</td>
<td>84</td>
<td>4.0</td>
<td>50</td>
<td>7.0</td>
<td>29</td>
<td>10.0</td>
<td>15</td>
<td>13.0</td>
<td>5</td>
</tr>
<tr>
<td>1.1</td>
<td>82</td>
<td>4.1</td>
<td>49</td>
<td>7.1</td>
<td>29</td>
<td>10.1</td>
<td>15</td>
<td>13.1</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>81</td>
<td>4.2</td>
<td>48</td>
<td>7.2</td>
<td>28</td>
<td>10.2</td>
<td>15</td>
<td>13.2</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>79</td>
<td>4.3</td>
<td>48</td>
<td>7.3</td>
<td>28</td>
<td>10.3</td>
<td>14</td>
<td>13.3</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>78</td>
<td>4.4</td>
<td>47</td>
<td>7.4</td>
<td>27</td>
<td>10.4</td>
<td>14</td>
<td>13.4</td>
<td>4</td>
</tr>
<tr>
<td>1.5</td>
<td>77</td>
<td>4.5</td>
<td>46</td>
<td>7.5</td>
<td>27</td>
<td>10.5</td>
<td>13</td>
<td>13.5</td>
<td>4</td>
</tr>
<tr>
<td>1.6</td>
<td>75</td>
<td>4.6</td>
<td>45</td>
<td>7.6</td>
<td>26</td>
<td>10.6</td>
<td>13</td>
<td>13.6</td>
<td>4</td>
</tr>
<tr>
<td>1.7</td>
<td>74</td>
<td>4.7</td>
<td>44</td>
<td>7.7</td>
<td>26</td>
<td>10.7</td>
<td>13</td>
<td>13.7</td>
<td>3</td>
</tr>
<tr>
<td>1.8</td>
<td>73</td>
<td>4.8</td>
<td>44</td>
<td>7.8</td>
<td>25</td>
<td>10.8</td>
<td>12</td>
<td>13.8</td>
<td>3</td>
</tr>
<tr>
<td>1.9</td>
<td>71</td>
<td>4.9</td>
<td>43</td>
<td>7.9</td>
<td>25</td>
<td>10.9</td>
<td>12</td>
<td>13.9</td>
<td>3</td>
</tr>
<tr>
<td>2.0</td>
<td>70</td>
<td>5.0</td>
<td>42</td>
<td>8.0</td>
<td>24</td>
<td>11.0</td>
<td>12</td>
<td>14.0</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>69</td>
<td>5.1</td>
<td>41</td>
<td>8.1</td>
<td>24</td>
<td>11.1</td>
<td>11</td>
<td>14.1</td>
<td>2</td>
</tr>
<tr>
<td>2.2</td>
<td>68</td>
<td>5.2</td>
<td>41</td>
<td>8.2</td>
<td>23</td>
<td>11.2</td>
<td>11</td>
<td>14.2</td>
<td>2</td>
</tr>
<tr>
<td>2.3</td>
<td>67</td>
<td>5.3</td>
<td>40</td>
<td>8.3</td>
<td>23</td>
<td>11.3</td>
<td>11</td>
<td>14.3</td>
<td>2</td>
</tr>
<tr>
<td>2.4</td>
<td>66</td>
<td>5.4</td>
<td>39</td>
<td>8.4</td>
<td>22</td>
<td>11.4</td>
<td>10</td>
<td>14.4</td>
<td>1</td>
</tr>
<tr>
<td>2.5</td>
<td>65</td>
<td>5.5</td>
<td>39</td>
<td>8.5</td>
<td>22</td>
<td>11.5</td>
<td>10</td>
<td>14.5</td>
<td>1</td>
</tr>
<tr>
<td>2.6</td>
<td>63</td>
<td>5.6</td>
<td>38</td>
<td>8.6</td>
<td>21</td>
<td>11.6</td>
<td>10</td>
<td>14.6</td>
<td>1</td>
</tr>
<tr>
<td>2.7</td>
<td>62</td>
<td>5.7</td>
<td>37</td>
<td>8.7</td>
<td>21</td>
<td>11.7</td>
<td>9</td>
<td>14.7</td>
<td>1</td>
</tr>
<tr>
<td>2.8</td>
<td>61</td>
<td>5.8</td>
<td>37</td>
<td>8.8</td>
<td>20</td>
<td>11.8</td>
<td>9</td>
<td>14.8</td>
<td>0</td>
</tr>
<tr>
<td>2.9</td>
<td>60</td>
<td>5.9</td>
<td>36</td>
<td>8.9</td>
<td>20</td>
<td>11.9</td>
<td>9</td>
<td>14.9</td>
<td>0</td>
</tr>
<tr>
<td>3.0</td>
<td>59</td>
<td>6.0</td>
<td>35</td>
<td>9.0</td>
<td>20</td>
<td>12.0</td>
<td>8</td>
<td>15.0</td>
<td>0</td>
</tr>
</tbody>
</table>
ATM 314 Expansive Breakdown of Stone on Soaking in Ethylene Glycol

1. Scope

This method covers a procedure for subjecting samples of stone to immersion in ethylene glycol and observation of the effects of such immersion in accordance with CRD-C 148-69.

2. Principle of Method

Ethylene glycol is one of the materials that reacts with swelling clays of the montmorillonite group to form an organo-clay complex having a larger basal spacing than that of the clay mineral itself. Hence a sample of stone containing swelling clay of the montmorillonite group will be expected to undergo expansive breakdown upon soaking in ethylene glycol, if the amount, distribution, state of expansion, and ability to take up glycol is such as to cause such breakdown to occur. If such breakdown does occur, it may be expected that similar breakdown may occur if similar rock samples are exposed, for longer times, to wetting and drying or freezing and thawing in a water soaked condition in service.

3. Reagent

Ethylene Glycol – The regent used in this method shall be ethylene glycol meeting the requirements of ASTM D 2693.

4. Apparatus

- Jaw crusher with 150 mm (6 in) capacity.
- Sieves of the following sizes: 75 mm (3 in) and 19.0 mm (¾ in) and conforming to AASHTO M 92 (ASTM E11).
- Balance or scale: Capacity sufficient for the principle sample mass, readable to 0.1 percent or 0.1 g of the total sample mass and meeting the requirements of AASHTO M 231.
- Container shall be of suitable plastic, non-reactive with the reagent and of sufficient size to hold the test sample and sufficient reagent to cover all particles of the sample to a depth of not less that 10 mm (1/2 in) capped with a tight-fitting cover.

5. Sampling and Sample Preparation

1. Obtain representative samples of the stone in accordance with WAQTC FOP for AASHTO T 2 (ASTM D75).

2. Crush the rock to pass a 75 mm (3 in) sieve.

3. Separate the material into the required test size, using 75 mm (3 in) and 19 mm (¾ in) sieves, in accordance with WAQTC FOP for AASHTO T 27/T 11. Discard all particles retained on the 75 mm (3 in) sieve and all particles passing the 19 mm (¾ in) sieve, unless required for other testing.

4. Reduce the sample to a test size of 5 ± 2 kg (11 ± 1 lb) in accordance with WAQTC FOP for AASHTO T 248, Method A.

5. When a sample of the required mass and particle size has been prepared, it shall be washed to remove dust, loosely adherent coatings, and chips. After being washed, dry to a constant mass in accordance with WAQTC FOP for AASHTO T 255/T 265 except that constant mass shall be regarded as having been attained when the loss in weight between successive weighing at intervals of not less than 4 hours does
not exceed 0.1 percent. Determine the number of particles and the mass before immersion to the nearest 0.1 percent of the total sample mass.

6. Procedure

1. The sample shall be placed in the container and immersed in the reagent so that all particles are covered to a depth of at least 12.5 mm (½ in).

2. At intervals not to exceed 3 days, examine the sample and note significant changes. The normal duration of the test shall be 15 days.

 Note 1: Further information of value may be obtained in certain cases by continuing the treatment beyond 15 days: in other cases expansive breakdown may have been too extensive at earlier periods that no information of value will be obtained by continuing the treatment for the full 15 days.

3. When the exposure has been terminated, the sample shall be thoroughly washed and sieved by hand over a 19 mm (¾ in) sieve to remove the reagent from the surfaces of the particles and to remove fragments that will pass a 19 mm (¾ in) sieve. The material remaining on the sieve shall be dried to constant weight as described in Step 4 of the Sampling and Sample Preparation, and the total mass after immersion determined to the nearest 0.1 percent of the total sample mass.

7. Calculations

Calculate the total percent loss by:

\[
\% \text{ Loss} = \frac{M_B - M_A}{M_B} \times 100
\]

where:

- \(M_B\) = Mass before immersion, and
- \(M_A\) = Mass after immersion.

8. Report

- Report the percent loss to the nearest 1 percent on department forms.
ATM 401 Sampling Bituminous Materials

The following guidelines for the use of WAQTC FOP for AASHTO R 66 by the State of Alaska DOT&PF.

1. When obtaining samples from HMA plants, sample only from the line between the storage tank and the mixing plant while the plant is in operation.

2. Sample containers for elastomer modified asphaltic cements shall conform to requirements under containers/asphalt binders.

3. When sampling emulsified asphalt, use 1 gallon wide mouth plastic containers.

4. When material is sampled by other than DOT&PF personnel or their agent(s), the sampling must be witnessed and possession of the sample transferred immediately to DOT&PF personnel or their agent(s).

5. Sampling locations are described in AASHTO R 66. They include the spigot at HMA plant, from barrels, from the delivery truck or the distributor spray bar.
SAMPLING BITUMINOUS MATERIALS
WAQTC FOP FOR AASHTO R 66

1. Scope

This procedure covers obtaining samples of liquid bituminous materials in accordance with AASHTO R 66. Sampling of solid and semi-solid bituminous materials – included in AASHTO R 66 – is not covered here. Agencies may be more specific on exactly who samples, where to sample, and what type of sampling device to use.

Warning: Always use appropriate safety equipment and precautions for hot liquids.

2. Procedure

1. Coordinate sampling with contractor or supplier.
2. Allow a minimum of 4 L (1 gal) to flow before obtaining a sample(s).
3. Obtain samples of:
 a. Asphalt binder from hot mix asphalt (HMA) plant from the line between the storage tank and the mixing plant while the plant is in operation, or from the delivery truck.
 b. Cutback and emulsified asphalt from distributor spray bar or application device; or from the delivery truck before it is pumped into the distributor. Sample emulsified asphalt at delivery or prior to dilution.

3. Containers

Sample containers must be new, and the inside may not be washed or rinsed. The outside may be wiped with a clean, dry cloth.

All samples shall be put in 1 L (1 qt) containers and properly identified on the outside of the container with contract number, date sampled, data sheet number, brand and grade of material, and sample number. Include lot and sublot numbers when appropriate.

- Emulsified asphalt: Use wide-mouth plastic jars with screw caps. Protect the samples from freezing since water is a part of the emulsion. The sample container should be completely filled to minimize a skin formation on the sample.
- Asphalt binder and cutbacks: Use metal cans.

Note: The sample container shall not be submerged in solvent, nor shall it be wiped with a solvent saturated cloth. If cleaning is necessary, use a clean dry cloth.

4. Report

- On forms approved by the Department
- Date
- Time
- Sampling point
- Quantity represented
ATM 402 Sampling of Bituminous Paving Mixtures

Following are guidelines for the use of WAQTC FOP for AASHTO T 168 (derived from ASTM D979) by the State of Alaska DOT&PF.

1. ATM 403 contains additional sampling methods.

2. When sampling asphalt mixture from a mat after compaction, sample in accordance with Section 413, WAQTC TM 11, “Sampling Bituminous Material after Compaction (Obtaining Cores).”
SAMPLING OF BITUMINOUS PAVING MIXTURES
WAQTC FOP FOR AASHTO T 168

1. Scope

This procedure covers the sampling of bituminous paving mixtures from HMA plants, haul units, and roadways in accordance with AASHTO T 168. Sampling is as important as testing, and every precaution must be taken to obtain a truly representative sample.

2. Apparatus

- Shovel
- Sample containers: such as cardboard boxes, metal cans, stainless steel bowls, or other agency-approved containers
- Scoops, trowels, or other equipment to obtain mix
- Sampling plate: heavy gauge metal plate 380 mm x 380 mm (15 in x 15 in) minimum 8 gauge thick, with a wire attached to one corner long enough to reach from the center of the paver to the outside of the farthest auger extension. Holes ¼” in diameter should be provided in each corner.
- Cookie cutter sampling device: A 330 mm (13 in.) square sampling template, constructed from 75 mm x 50 mm x 3 mm (3 in. x 2 in. x 1/8 in.) formed steel angle with two 100 mm x 150 mm x 9 mm (4 in. x 6 in. x 3/8 in.) handles. (See diagram) Sampling Plate and cookie cutter may be sized appropriately to accommodate sample size requirements.
- Mechanical sampling device

3. Sample Size

Sample size depends on the test methods specified by the agency for acceptance. Check agency requirement for the size required.

4. Sampling

General

1. The material shall be tested to determine variations. The supplier/contractor shall provide equipment for safe and appropriate sampling, including sampling devices on plants when required.

2. Place dense graded mixture samples in cardboard boxes, stainless steel bowls or other agency-approved containers. Place open graded mixture samples in stainless steel bowls. Do not put open graded mixture samples in boxes until they have cooled to the point that bituminous material will not migrate from the aggregate.

Attached Sampling Devices

Some agencies require mechanical sampling devices for hot mix asphalt (HMA) and cold feed aggregate on some projects. These are normally permanently attached devices that allow a sample container to pass perpendicularly through the entire stream of material or divert the entire stream of material into the container. Operation may be hydraulic, pneumatic, or manual and allows the sample container to pass through the stream twice, once in each direction, without overfilling. Special caution is necessary with manually operated systems since a consistent speed is difficult to maintain and non-representative samples may result. Check agency requirements for the specifics of required sampling systems.

1. Lightly coat the container attached to the sampling device with an agency-approved release agent or preheat it or both, to approximately the same discharge temperature of the mix.
2. Pass the container twice through the material perpendicularly without overfilling the container.

3. Repeat until proper sample size has been obtained.

4. Transfer the HMA to an agency-approved container without loss of material.

Sampling from Haul Units

1. Visually divide the haul unit into approximately four equal quadrants.

2. Identify one sampling location in each quadrant.

3. Dig down and remove approximately 0.3 m (1 ft) of material to avoid surface segregation. Obtain each increment from below this level.

4. Combine the increments to form a sample of the required size.

Sampling from Roadway Prior to Compaction (Plate Method)

Plate method using the “cookie cutter” sampling device.

There are two conditions that will be encountered when sampling hot mix asphalt (HMA) from the roadway prior to compaction. The two conditions are:

1. Laying HMA on grade or untreated base material requires Method 1.

2. Laying HMA on existing asphalt or laying a second lift of HMA requires Method 2.

5. Safety

Sampling is performed behind the paving machine and in front of the breakdown roller. For safety, the roller must remain at least 3 m (10 ft) behind the sampling operation until the sample has been taken and the hole filled with loose HMA.

Method 1 requires a plate to be placed in the roadway in front of the paving operation and therefore there is always concern with moving, operating equipment. It is safest to stop the paving train while a plate is installed in front of the paver. When this is not possible the following safety rules must be followed.

1. The plate placing operation must be at least 3 m (10 ft.) in front of the paver or pickup device. The technician placing the plate must have eye contact and communication with the paving machine operator. If eye contact cannot be maintained at all time, a third person must be present to provide communication between the operator and the technician.

2. No technician is to be between the asphalt supply trucks and the paving machine. The exception to this rule is if the supply truck is moving forward creating a windrow, in which case the technician must be at least 3m (10 ft.) behind the truck.

If at any time the Engineer feels that the sampling technique is creating an unsafe condition, the operation is to be halted until it is made safe or the paving operation will be stopped while the plate is being placed.
6. **Method 1 - Obtaining a Sample on Untreated Base:**

1. Following the safety rules detailed above, the technician is to:
 a. Smooth out a location in front of the paver at least 0.5 m (2 ft.) inside the edge of the mat.
 b. Lay the plate down diagonally with the direction of travel, keeping it flat and tight to the base with the lead corner facing the paving machine.
 c. Secure the plate in place by driving a nail through the hole in the lead corner of the plate.

2. Pull the wire, attached to the outside corner of the plate, taut past the edge of the HMA mat and secure with a nail.

3. Let the paving operation proceed over the plate and wire. Immediately proceed with the sampling.

4. Using the exposed end of the wire, pull the wire up through the fresh HMA to locate the corner of the plate. Place the “cookie cutter” sample device, just inside the end of the wire; align the cutter over the plate. Press “cookie cutter” device down through the HMA to the plate.

5. Using a small square tipped shovel or scoop, or both carefully remove all the HMA from inside of the cutter and place in a sample container. Care shall be taken to prevent contamination of bituminous mixes by dust or other foreign matter, and to avoid segregation of aggregate and bituminous materials.

6. Remove the sample cutter and the plate from the roadway. The hole made from the sampling must be filled by the contractor with loose HMA.

7. **Method 2 - Obtaining a Sample on Asphalt Surface:**

1. After the paving machine has passed the sampling point, immediately place the “cookie cutter” sampling device on the location to be sampled. Push the cutter down through the HMA until it is flat against the underlying asphalt mat.

2. Using a small square tipped shovel or scoop, or both, carefully remove all the HMA from inside of the cutter and place in a sample container. The hole made from the sampling must be filled by the contractor with loose HMA.

8. **Identification and Shipping**

1. Identify sample containers as required by the agency.

2. Ship samples in containers that will prevent loss, contamination, or damage.

9. **Report**

 - On forms approved by the Department
 - Date
 - Time
 - Location
 - Quantity represented
1. **Scope**

This method describes procedures used for sampling Hot Mix Asphalt (HMA).

2. **Significance and Use**

This method provides procedures for sampling HMA in the field. Sampling is equally as important as the testing, and the sampler shall use every precaution to obtain samples that will yield an acceptable estimate of the nature and conditions of the materials for which they represent. Care shall be taken in sampling to avoid segregation of the material being sampled, and to prevent contamination by dust or other foreign matter.

If material is sampled by other than DOT&PF personnel or their agent(s), the sampling must be witnessed and possession of the sample transferred immediately to DOT&PF personnel or their agent(s).

The method of sampling must be approved at the project level.

3. **Equipment**

- Flat scoop with vertical sides or a square point shovel.
- Plate with small lip (approximately ½”) and of sufficient size and rigidity to accommodate required sample. Plate to have wire(s) attached to allow the plate to be located and removed from the mat after paver travels past it.
- Approved sample containers including new cardboard boxes, clean metal buckets, cans or bowls.
- Miscellaneous tools, scraper, scoop, gloves, etc.

4. **Sampling from the Auger (Not Allowed on FHWA Projects)**

 1. Obtain samples from the accessible portion of the auger, using a square point shovel.
 2. Place the shovel in front of the auger, with the blade flat upon the surface to be paved.
 3. Allow the front face of the HMA coming off the auger to cover the shovel. Remove the shovel before the auger reaches the shovel by lifting it upward as vertically as possible being careful not to lose material.
 4. Repeat the procedure at least three times, but as many times as necessary to obtain a sample of the required size.
 5. Place the sample in an approved container for transport to Lab.

5. **Lipped Plate Sampling**

 1. When using a pickup machine:
 a. Stop the paver and pickup machine.
 b. Place plate(s) underneath the pickup machine, midway between and just behind the rear tires and right in front of the paver.
 2. When using dump trucks:
 a. Stop the paver after the truck is attached to the paver.
 b. Place plate(s) at the midpoint of the axis of the paver and behind the truck tires.

 Note 1: When placing plate(s), avoid influence from truck tires, pickup machine tires, and paver tracks or tires.
3. Run an attached wire perpendicular to the direction of the paver, beyond the farthest auger extension and/or the ski.

4. Hold the wire to the ground with your foot.

5. Allow the paving operation to resume.

6. When the paver has passed over the plate position, pull up on the wire to locate the plate. Remove the plate(s) laden with mix from the HMA mat by lifting vertically being careful not to disturb the mix at the edge of the plate.

7. Place the entire sample in an approved container(s) for transport to the Lab

 Note 2: Make sure to hold the wire down on the ground so the ski will not snag it.

6. **Windrow Sampling**

 1. Sample from the windrow created by a single truck. Visually divide the windrow length into three equal sections.

 2. Sample from the middle of each of the three sections as shown in the diagrams below. Remove and discard the top 12 inches of material. Remove one increment for each required sample, from each location by digging vertically down with a square point shovel.

 3. Place each sample increment from the first location into separate approved containers. Move to the second location and add one sample increment to each container. Move to third location and repeat sampling.

 4. Place the acceptance sample containers in an insulated box for transport to the Lab.
ATM 404 Reducing Samples of Hot Mix Asphalt to Testing Size

Following are guidelines for the use of WAQTC FOP for AASHTO R 47 by the State of Alaska DOT&PF.

1. The incremental method may be done without sheeting.

2. When project specifications allow the use of a mechanical splitter, care must be taken to ensure the splitter is level.

3. Aerosol vegetable cooking spray is approved as a release agent.
REDDUCING SAMPLES OF HOT MIX ASPHALT (HMA) TO TESTING SIZE
WAQTC FOP FOR AASHTO R 47

1. Scope
This procedure covers sample reduction of Hot Mix Asphalt (HMA) to testing size in accordance with AASHTO R 47. The reduced portion is to be representative of the original sample.

2. Apparatus

- Thermostatically controlled oven capable of maintaining a temperature of at least 110°C (230°F) or high enough to heat the material to a pliable condition for splitting.
- Non-contact temperature measuring device.
- Metal spatulas, trowels, metal straightedges, or drywall taping knives, or a combination thereof; for removing HMA samples from the quartering device, cleaning surfaces used for splitting, etc.
- Square-tipped, flat-bottom scoop, shovel or trowel for mixing HMA prior to quartering.
- Miscellaneous equipment including hot plate, non-asbestos heat-resistant gloves or mittens, pans, buckets, and cans.
- Sheet: Non-stick heavy paper, heat-resistant plastic, or other material as approved by the agency.
- Agency-approved release agent, free of solvent or petroleum-based material that could affect asphalt binder.
- Mechanical Splitter Type A (Quartermaster): having four equal-width chutes discharging into four appropriately sized sample receptacles. Splitter is to be equipped with a receiving hopper that will hold the sample until the release lever is activated with four sample receptacles of sufficient capacity to accommodate the reduced portion of the HMA sample from the mechanical splitter. Refer to AASHTO R 47, Figures 1 through 3, for configuration and required dimensions of the mechanical splitter.
- Mechanical Splitter Type B (Riffle): having a minimum of eight equal-width chutes discharging alternately to each side with a minimum chute width of at least 50% larger than the largest particle size. A hopper or straight-edged pan with a width equal to or slightly smaller than the assembly of chutes in the riffle splitter to permit uniform discharge of the HMA through the chutes without segregation or loss of material. Sample receptacles of sufficient width and capacity to receive the reduced portions of HMA from the riffle splitter without loss of material.
- Quartering Template: formed in the shape of a cross with equal length sides at right angles to each other. Template shall be manufactured of metal that will withstand heat and use without deforming. The sides of the quartering template should be sized so that the length exceeds the diameter of the flattened cone of HMA by an amount allowing complete separation of the quartered sample. Height of the sides must exceed the thickness of the flattened cone of HMA.
- Non-stick mixing surface that is hard, heat-resistant, clean, level, and large enough to permit HMA samples to be mixed without contamination or loss of material.

3. Sampling
Obtain samples according to the WAQTC FOP for AASHTO T 168.

Sample Preparation
The sample must be warm enough to separate. If not, warm in an oven until it is sufficiently soft to mix and separate easily. Do not exceed either the temperature or time limits specified in the test method(s) to be performed.

4. Selection of Procedure (Method)

Refer to department requirements when determining the appropriate method(s) of sample reduction. In general, the selection of a particular method to reduce a sample depends on the initial size of the sample vs. the size of the sample needed for the specific test to be performed. It is recommended that, for large amounts of material, the initial reduction be performed using a mechanical splitter. This decreases the time needed for reduction and minimizes temperature loss. Further reduction of the remaining HMA may be performed by a combination of the following methods, as approved by the agency. The methods for reduction are:

- Mechanical Splitter Method
 - Type A (Quartermaster)
 - Type B (Riffle Splitter)
- Quartering Method
 - Full Quartering
 - By Apex
- Incremental (Loaf) Method
5. Mechanical Splitter Method

Type A (Quartermaster)

![Figure 1](image)

1. Clean the splitter and apply a light coating of approved release agent to the surfaces that will contact HMA.
2. Close and secure hopper gates.
3. Place the four sample receptacles in the splitter so that there is no loss of material.
4. Remove the sample from the agency-approved container(s) and place in the mechanical splitter hopper. Avoid segregation, loss of HMA or the accidental addition of foreign material.
5. Release the handle, allowing the HMA to drop through the divider chutes and discharge into the four receptacles.
6. Any HMA that is retained on the surface of the splitter shall be removed and placed into the appropriate receptacle.
7. Close and secure the hopper gates.
8. Reduce the remaining HMA as needed by this method or a combination of the following methods as approved by the agency.
9. Combine the material contained in the receptacles from opposite corners and repeat the splitting process until an appropriate sample size is obtained.
10. Retain and properly identify the remaining unused portion of the HMA sample for further testing if required by the agency.
Mechanical Splitter Type B (Riffle)

1. When heating of the testing equipment is desired, it shall be heated to a temperature not to exceed 110 °C (230°F).
2. Clean the splitter and apply a light coating of approved release agent to the surfaces that will come in contact with HMA (hopper or straight-edged pan, chutes, receptacles).
3. Place two empty receptacles under the splitter.
4. Carefully empty the HMA from the agency-approved container(s) into the hopper or straight-edged pan without loss of material. Uniformly distribute from side to side of the hopper or pan.
5. Discharge the HMA at a uniform rate, allowing it to flow freely through the chutes.
6. Any HMA that is retained on the surface of the splitter shall be removed and placed into the appropriate receptacle.
7. Reduce the remaining HMA as needed by this method or a combination of the following methods as approved by the agency.
8. Using one of the two receptacles containing HMA, repeat the reduction process until the HMA contained in one of the two receptacles is the appropriate size for the required test.
9. After each split, remember to clean the splitter hopper and chute surfaces if needed.
10. Retain and properly identify the remaining unused HMA sample for further testing if required by the agency.

6. Quartering Method

1. When heating of the testing equipment is desired, it shall be heated to a temperature not to exceed the mix temperature.
2. If needed, apply a light coating of release agent to quartering template.
3. Dump the sample from the agency approved container(s) into a conical pile on a hard, “non-stick”, clean, level surface where there will be neither a loss of material nor the accidental addition of foreign material. The surface can be made non-stick by the application of an approved asphalt release agent, or sheeting.
4. Mix the material thoroughly by turning the entire sample over a minimum of four times with a flat-bottom scoop; or by alternately lifting each corner of the sheeting and pulling it over the sample diagonally toward the opposite corner, causing the material to be rolled. Create a conical pile by either depositing each scoop or shovelful of the last turning on top of the preceding one, or lifting both opposite corners.

5. Flatten the conical pile to a uniform diameter and thickness where the diameter is four to eight times the thickness. Make a visual observation to ensure that the material is homogeneous.

6. Divide the flattened cone into four equal quarters using the quartering template. Press the template down until it is in complete contact with the surface on which the sample has been placed, assuring complete separation.

 Note 1: Straightedges may be used in lieu of the quartering device to completely separate the material in approximately equal quarters.

7. Reduce the sample by quartering the sample completely or by removing the sample from the apex.

8. Full Quartering
 a. Remove two diagonally opposite quarters, including all of the fine material.
 b. Remove the quartering template and combine the remaining quarters, again forming a conical pile.
 c. Repeat steps 4, 5, 6, 8a, and 8b until a sample of the required size has been obtained. The final sample must consist of the two remaining diagonally opposite quarters.
 d. Retain and properly identify the remaining unused portion of the HMA sample for further testing if required by the agency.

9. By Apex
 a. Using a straightedge, slice through a quarter of the HMA from the center point to the outer edge of the quarter.
 b. Pull or drag the material from the quarter with two straight edges or hold one edge of the straightedge in contact with quartering device.
 c. Remove an equal portion from the opposite quarter and combine these increments to create the required sample size.
 d. Continue using the apex method with the unused portion of the HMA until samples have been obtained for all required tests.
 e. Retain and properly identify the remaining unused portion of the HMA sample for further testing if required by the agency.

7. Incremental Method
 1. Cover a hard, clean, level surface with sheeting. This surface shall be large enough that there will be neither a loss of material nor the accidental addition of foreign material.
 2. Place the sample from the agency approved container(s) into a conical pile on that surface.
 3. Mix the material thoroughly by turning the entire sample over a minimum of four times with a flat-bottom scoop; or by alternately lifting each corner of the sheeting and pulling it over the sample diagonally toward the opposite corner, causing the material to be rolled. Create a conical pile by either depositing each scoop or shovelful of the last turning on top of the preceding one, or lifting both opposite corners.
 4. Grasp the sheeting and roll the conical pile into a cylinder, then flatten the top. Make a visual observation to determine that the material is homogenous.
5. Pull the sheeting so at least ¼ of the length of the sample is off the edge of the counter. Allow this material to drop into a container to be saved. As an alternate, using a straightedge, slice off approximately ¼ of the length of the sample and place in a container to be saved.

6. Pull material off the edge of the counter and drop into an appropriate size sample pan or container for the test to be performed. Continue removing material from the sample until the proper size sample has been acquired. As an alternate, using a straightedge, slice off an appropriate size sample from the length of the sample and place in a sample pan or container.

7. Repeat step 6 until all the samples for testing have been obtained.

 Note 2: When reducing the sample to test size it is advisable to take several small increments, determining the mass each time until the proper minimum size is achieved. Unless the sample size is grossly in excess of the minimum or exceeds the maximum test size, use the sample as reduced for the test.

8. Retain and properly identify the remaining unused portion of the HMA sample for further testing if required by the agency.

8. Sample Identification

 1. Identify the sample as required by the agency.

 2. Samples shall be submitted in agency approved containers and secured to prevent contamination and spillage.

9. Report

 • On forms approved by the Department
 • Date
 • Time
 • Location
 • Quantity represented
This page intentionally left blank.
1. **Scope**

This method covers the quantitative determination of the asphalt cement content of Hot Mix Asphalt by testing a sample with a device that utilizes neutron thermalization techniques. This is an adaptation of AASHTO T 287. Job mix design (JMD) calibration, cross calibration of master and field gauges and calibration transfer are included.

2. **Referenced Documents**

- **WAQTC Standards:**
 - FOP for AASHTO T 2 (ASTM D75), Sampling of Aggregates
 - FOP for AASHTO T 168 (ASTM D979), Sampling Bituminous Paving Mixtures
 - FOP for AASHTO R47, Reducing Samples of Hot Mix Asphalt to Testing Size
 - FOP for AASHTO T 329, Moisture Content of Bituminous Mixes by Oven

- **Other Documents:**
 - Manufacturer’s instruction manual.

3. **Significance and Use**

This method can be used for rapidly determining the asphalt content of HMA. Testing can be completed in a matter of minutes so that adjustments, if necessary, can be made in the asphalt metering system with a limited amount of mix production. The procedure is useful in the determination of asphalt content only, as it does not provide extracted aggregate for the gradation analysis.

4. **Apparatus**

- Nuclear asphalt content gauge system consisting of:
 - Neutron source: an encapsulated and sealed radioactive source
 - Thermal neutron detectors
 - Read-out instrument displaying, at a minimum, percent asphalt cement
 - Two or more stainless steel sample pans conforming to gauge requirements

- Sample containers with lids or other methods of closing to prevent contamination and of sufficient size to hold the entire sample. The containers should be able to withstand the reheating of the mix to mixing temperature.

- Sample quartering apparatus conforming to requirements of the WAQTC FOP for AASHTO R 47.

- Balance or scale: capable of determining mass to 15 kg, readable to 1 g and conforming to AASHTO M 231.

- Drying oven, of either of the following types, capable of handling the volume and sample size expected for the project:
 - Forced air, ventilated or convection oven capable of maintaining a temperature of 177 ±3°C (350 ±5°F)
• Leveling plate: Flat, rigid plate of metal with a minimum thickness of 10 mm (⅜ in) and slightly larger than the sample pans
• Thermometer with a temperature range of 10-300°C (50-500°F)
• Assorted pans, spoons, spatulas, and mixing bowls
• Radioactive materials information and calibration packet containing:
 o Daily Background Count Log
 o Leak Test Certificate
 o Shippers Declaration for Dangerous Goods
 o Procedure Memo for Storing, Transporting and Handling Nuclear Testing Equipment
 o Other radioactive materials documentation as required by local regulatory requirements

5. Precautions

1. The equipment shall be so constructed as to be licensable in accordance with applicable health and safety regulations.

2. Equipment operators shall wear an approved form of radiation dosimetry (i.e., film badges, thermoluminescent dosimeter, etc.) capable of monitoring the occupational radiation exposure.

3. Since nuclear equipment measures the total amount of hydrogen in the sample, this procedure is sensitive to changes in moisture content. It must be remembered that both asphalt cement and water contain hydrogen.

4. Keep any other source of neutron radiation at least 10 m (30 ft.) from the equipment. Do not place the equipment where large amounts of hydrogenous material may be moved during the calibration or testing procedures (for example, water or plastic materials).

5. All personnel shall be kept at least 1 m (3 ft.) away from the gauge during testing.

6. Standardization

1. Obtain and record a 16 minute background count, in accordance with manufacturer’s procedure, each day prior to taking test measurements or whenever the gauge has been moved or the conditions within 1 m (3 ft) of the gauge have changed. The measurement time for the background count is the same as that used for test measurements.

2. If the background count has not changed by more than 2 percent from the previous background count, then the apparatus shall be considered stable and acceptable for use. If the gauge has been moved or if the surrounding conditions have changed, additional background counts must be obtained until the 2 percent standard is met.

7. Calibration

1. This method is sensitive to the type of aggregate, percentage and source of asphalt cement, and to the aggregate gradation. Accordingly, a calibration curve must be developed for each mix type. When changes occur, a new calibration should be run. The curve shall be established with 3 points. (See Appendix A)

2. Prior to the start of each test, verify that the activated calibration is correct.
8. Procedure

1. Determine the mass of a clean gauge sample pan, and use this to determine the sample mass in the pan, or tare the pan on the scale.

2. Using a hot asphalt concrete mixture sample having a temperature of 121° to 149°C (250° to 300°F) obtained in accordance with WAQTC FOP for AASHTO T 168, and reduced in accordance with WAQTC FOP for AASHTO R 47, fill the sample pan one-half full, evenly distributing the sample in the pan. Level the asphalt concrete mixture with a preheated trowel or spatula, spading as necessary to compact (usually 10 to 15 spades are sufficient), being careful to avoid segregating the mix or driving the fines into the bottom.

3. Fill the remainder of the pan until the mass of the asphalt concrete mixture in the pan is approximately equal to or up to 5 grams above the mass of mix used for the calibration samples. Level the top of the asphalt concrete mixture using a spatula or trowel and spade as necessary to compact (usually 10 to 15 spades are sufficient), avoiding segregation of the mix. Compact the sample into the pan, until it is level with the top of the pan, by standing on the metal plate and rocking/twisting back-and-forth.

4. Verify that the mass of mix is ± 5 g of the calibration mass. Record the mass of the asphalt concrete mixture in the pan.

5. If the gauge does not have temperature compensation capability, measure and record the temperature of the compacted specimen. This temperature must be within ± 5°C (± 9°F) of the calibration test specimen temperature.

6. Place the pan into the gauge. Perform a 16 minute count.

7. Determine and record the uncorrected asphalt cement content to the nearest 0.01 percent by direct readout from the gauge, from the calibration graph, or by the formula supplied by the manufacturer.

8. Using a representative portion of the original sample or a portion of the material removed from the gauge pan, determine the moisture in the mixture in accordance with the WAQTC FOP for AASHTO T 329 and record to the nearest 0.01 percent.

 Note 1: When taking the moisture from the gauge pan sample, remove it immediately after completing the oil content test.

9. Calculation

1. Subtract the moisture content from the uncorrected asphalt cement content. Record this as the corrected asphalt cement content.

10. Report

- Results shall be reported on standard forms approved by the Department.
- Make, model, and serial number of the nuclear asphalt content gauge.
- Date and source of calibration.
- Date of test.
- Name and signature of operator.
- Background count for the day of the test.
- Mix identification.
- Aggregate type and source(s); Asphalt cement source, type and grade.
• Calibration sample mass and temperature.
• Test sample mass and temperature, if gauge does not have temperature compensation capability
• Gauge reading, including print-out from gauge.
• Asphalt cement content value to the nearest 0.1 %.
• Attach the Nuclear Gauge print out to the report.
1. **Gauge Calibration**

1. Obtain samples of aggregate in accordance with WAQTC FOP for AASHTO T 2 (ASTM D75). Approximately 50 kg (110 lb.) total will be required for calibration specimens. Dry the aggregates in accordance with WAQTC FOP for AASHTO T 255/T 265, separate into sieve sizes determined by the JMD.

2. Blend the aggregate together at the proper proportion to match the job mix formula following steps 3 and 4.

3. Calculate the required cumulative mass for each specified sieve using the following formula:

 \[X = \frac{(100 - P)}{100} \times T \]

 where:
 - \(X \) = Required cumulative batch mass for each specified sieve
 - \(P \) = Percent passing for each specified sieve according to the job mix formula
 - \(T \) = Initial total aggregate mass

4. Correct for aggregate dust as follows.
 a. Prepare a wash gradation sample from the mass calculated in Step 4.
 b. Perform a washed gradation following WAQTC FOP for AASHTO T 27/T 11.
 c. Compute the corrected batch mass for each specified sieve for the calibration points using the following formula:

 \[Z_n = \frac{X^2}{Y} \]

 where:
 - \(Z_n \) = Adjusted cumulative batch mass for sieve size \(n \).
 - \(X \) = Pre-wash cumulative batch mass for each specified sieve.
 - \(Y \) = Post-wash cumulative batch mass for each specified sieve.

5. Obtain samples of bituminous materials in accordance with WAQTC FOP for AASHTO T 40. Approximately 4 L (1 gal) will be required.

6. Calculate the mass of asphalt cement for each calibration point as follows:

 \[B = E \times P_{bm} \]

 where:
 - \(B \) = mass of asphalt cement to the nearest 0.1 g
 - \(E \) = mass of mix
 - \(P_{bm} \) = percent asphalt cement content by total mass of mixture, expressed as a decimal.

7. Use the three following asphalt cement contents:
 a. Specified minus 1.0 percent
 b. Specified (mix design value)
8. Calculate the mass of aggregate required for each calibration point as follows:

\[A = E - B \]

where:

- \(A \) = mass of aggregate to the nearest 0.1 g
- \(B \) = mass of asphalt cement to the nearest 0.1 g
- \(E \) = mass of mix

2. Preparation of Calibration Specimens

1. Heat the prepared aggregate specimens to the mixing temperature range midpoint for the asphalt cement ± 5°C (± 9°F) and hold at that temperature for three hours or to constant mass.

2. Heat the asphalt cement to the mid-point of the mixing temperature range ± 5°C (± 9°F) in a covered container(s). It is best to use the asphalt cement as soon as it reaches mixing temperature. If this is not possible, maintain the asphalt cement at this temperature, rather than cool and reheat it, but do not hold the sample at this temperature for more than 4 hours.

3. All bowls, sample pans, and tools should be heated to the mid-point of the mixing temperature range ± 5°C (± 9°F). An initial or “butter” mix is required to condition the mixing equipment. Mix a minimum of three asphalt concrete specimens to cover the approximate range of the design asphalt content. Mix one at the design asphalt content, one 1.0 percent above, and one 1.0 percent below, use the same grade and type of asphalt as will be used in the asphalt concrete mixture to be tested. Mix 7000-9000g for each specimen.

4. Fill the sample pan one-half full, evenly distributing the sample in the pan. Level the asphalt concrete mixture with a spatula or trowel and spade as necessary to compact, avoiding segregation of the mix. Fill the remainder of the pan until the asphalt concrete mixture is mounded slightly above the top of the pan. Record the weight of the asphalt concrete mixture in the pan. This is the weight that is to be used for all calibration and test samples using this calibration. Level the top of the asphalt concrete mixture using a spatula or trowel and spade as necessary to compact, avoiding segregation of the mix. Use the metal plate to consolidate the asphalt concrete mixture until it is level with the top edge of the pan. All specimens should be compacted at the mid-point of the mixing temperature range ± 5°C (± 9°F) to ensure that the mix will compact properly.

5. Place each calibration pan into the gauge and proceed in accordance with the manufacturer’s instructions for operation of the equipment and the sequence of operations. Count each calibration sample for 16 minutes.

Note 1: Do not forget to perform and record a background count as per the manufacturer’s instructions.

6. For gauges that generate the calibration internally, print out the formula coefficients (“A” Values), the coefficient of fit and the calculated percent difference for each calibration point. The coefficient of fit must be between 0.998 and 1.000 for dense graded mix or 0.995 and 1.000 for open graded mix. Calibration points must have a calculated percent difference of less than 0.09 percent. If either requirement is not met, the calibration must be redone.

7. Store the acceptable calibration in the gauge’s memory, using the job mix formula and the Contract number or an easily recognizable calibration number, according to the manufacturer’s instructions.

8. For gauges other than the Troxler, prepare a calibration curve by plotting the calibration sample gauge readings versus asphalt cement content on linear graph paper, choosing convenient scale factors for gauge readings and asphalt cement content.
9. Calculate the correlation factor for gauges without internal calculations according to the following formula:

\[
CorrelationFactor = \sqrt{1 - \frac{\sum (Y_i - \hat{Y}_i)^2}{\sum (Y_i - \overline{Y}_i)^2}}
\]

where:
- \(Y_i \) = actual percent asphalt values for each sample
- \(\hat{Y}_i \) = calculated percent asphalt values from curve
- \(\overline{Y}_i \) = mean value of the actual percentages asphalt, and
- \(i \) = number of calibration samples.
Appendix B ATM 405

1. Cross Calibration (Troxler 3241)

1. Cross calibrating creates a relationship between the field gauge and a master gauge. This allows testing of production mix with a field gauge without the need to perform physical calibrations. When several gauges are cross calibrated, the mix calibrations may be transferred to each. The master gauge is normally located where the calibration sample pans are fabricated.

2. The central lab shall prepare the cross calibration samples. Prepare six calibration samples, using a locally available specification aggregate, with binder contents between 3 and 8 percent at 1 percent increments or per the gauge manufacturer’s instructions. Mix the samples so that each pan of mix equals the base mass ± 5 g. Run each sample in the master gauge using a 16 minute count in the normal calibration mode. After all samples are run, the gauge will automatically calculate a coefficient of fit. The coefficient of fit must be at least 0.999.

3. Seal each pan to prevent change in hydrogen content and repeat steps 1 and 2. Sealed pans must meet same criteria.

4. Run each of the six sealed calibration samples in the field gauge while in cross calibration mode utilizing a 16 minute count. For each calibration sample, input the information from the master gauge into the field gauge. When the six cross calibration samples have been counted, print out the cross calibration data. The coefficient of fit must be .999 or 1.000. If this requirement is met, the master gauge and the field gauge are cross calibrated.

2. Calibration Transfer

When the field gauge has been cross calibrated with the master gauge a calibration transfer can be performed. JMD calibrations can now be transferred to the field gauge, using input data only. This transfer would be in lieu of calibrating the field gauge with a JMD calibration. Follow the manufacturer’s instructions to perform this transfer.
ATM 406 Determining the Asphalt Binder Content of Hot Mix Asphalt (HMA) by the Ignition Method

Following are guidelines for the use of WAQTC FOP for AASHTO T 308 by the State of Alaska DOT&PF.

1. Delete Step 9 in Correction Factors – Procedure.
2. Unless otherwise specified, Method A (using step 14 calculation) shall be used.
3. Verify oven balance accuracy with standard masses to 0.1 gram tolerance, prior to calibration and testing. Recommend sending 1.00 kilogram standard mass with all field labs.
4. Asphalt binder content shall be calculated with masses determined on an external balance. This applies to all test samples as well as calibration samples.
5. Nominal Maximum size shall be determined by the Job Mix Formula target value gradation.
6. Determine M_f 30 to 60 minutes after removing from oven. M_f shall be determined no later than 3 hours after removal from oven.
7. Corrected asphalt binder content reported to 0.1 percent.
8. Use of the printed ticket is optional.
DETERMINING THE ASPHALT BINDER CONTENT OF HOT MIX ASPHALT (HMA) BY THE IGNITION METHOD
WAQTC FOP FOR AASHTO T 308

1. Scope
This procedure covers the determination of asphalt binder content of hot mix asphalt (HMA) by ignition of the binder in accordance with AASHTO T 308.

2. Overview
The sample is heated in a furnace at 538°C (1000°F) or less; samples may be heated by convection or direct infrared irradiation (IR). The aggregate remaining after burning can be used for sieve analysis using the FOP for AASHTO T 30.

Some agencies allow the use of recycled HMA. When using recycled HMA, check with the agency for specific correction procedures.

Binder in the HMA is ignited in a furnace. Asphalt binder content is calculated as the difference between the initial mass of the HMA and the mass of the residual aggregate, correction factor, and moisture content. The asphalt binder content is expressed as percent of moisture-free mix mass.

Two methods, A and B, are presented.

3. Apparatus

Note 1: The apparatus must be calibrated for the specific mix design. See “Correction Factors” at the end of this FOP.

There are two methods – A and B. The apparatus for the two methods are the same except that the furnace for Method A has an internal balance.

- Ignition Furnace: A forced-air ignition furnace that heats the specimens by either the convection or direct IR irradiation method. The convection-type furnace must be capable of maintaining the temperature at 578°C (1072°F).

For Method A, the furnace will be equipped with an internal scale thermally isolated from the furnace chamber and accurate to 0.1 g. The scale shall be capable of determining the mass of a 3500 g sample in addition to the sample baskets. A data collection system will be included so that mass can be automatically determined and displayed during the test. The furnace shall have a built-in computer program to calculate the change in mass of the sample baskets and provide for the input of a correction factor for aggregate loss. The furnace shall provide a printed ticket with the initial specimen mass, specimen mass loss, temperature compensation, correction factor, corrected binder content, test time, and test temperature. The furnace shall provide an audible alarm and indicator light when the sample mass loss does not exceed 0.01 percent of the total sample mass for three consecutive minutes.

Note 2: The furnace shall be designed to permit the operator to change the ending mass loss percentage from 0.01 percent to 0.02 percent.

For both Method A and Method B, the furnace chamber dimensions shall be adequate to accommodate a 3500 g sample. The furnace door shall be equipped so that it cannot be opened during the ignition test. A method for reducing furnace emissions shall be provided and the furnace shall be vented so that no emissions escape into the laboratory. The furnace shall have a fan to pull air through the furnace to expedite the test and to eliminate the escape of smoke into the laboratory.

- Sample Basket Assembly: consisting of sample basket(s), catch pan, and basket guards. Sample basket(s) will be of appropriate size allowing samples to be thinly spread and allowing air to flow through and around the sample particles. Sets of two or more baskets shall be nested. A catch pan: of sufficient size
to hold the sample basket(s) so that aggregate particles and melting binder falling through the screen mesh are caught. Basket guards will completely enclose the basket and be made of screen mesh, perforated stainless steel plate, or other suitable material.

- Thermometer, or other temperature measuring device, with a temperature range of 10 - 260°C (50-500°F).
- Oven capable of maintaining 110 ±5°C (230 ±9°F).
- Balance or scale: Capacity sufficient for the sample mass and conforming to the requirements of M 231, Class G2.
- Miscellaneous equipment: A pan larger than the sample basket(s) for transferring sample after ignition, spatulas, bowls, and wire brushes.
- **Safety equipment:** Safety glasses or face shield, high temperature gloves, long sleeved jacket, a heat resistant surface capable of withstanding 650°C (1202°F), a protective cage capable of surrounding the sample baskets during the cooling period, and a particle mask for use during removal of the sample from the basket assembly.

4. **Sampling**

1. Obtain samples of HMA in accordance with the FOP for AASHTO T 168.

2. Reduce HMA samples in accordance with the FOP for AASHTO R 47.

3. If the mixture is not sufficiently soft to separate with a spatula or trowel, place it in a large flat pan in an oven at 110 ±5°C (230 ±9°F) until soft enough.

4. Test sample size shall conform to the mass requirement shown in Table 1.

Note 3: When the mass of the test specimen exceeds the capacity of the equipment used or for large samples of fine mixes, the test specimen may be divided into suitable increments, tested, and the results appropriately combined through a weighted average for calculation of the binder content.

<table>
<thead>
<tr>
<th>Nominal Maximum Aggregate Size*</th>
<th>Minimum Mass Specimen</th>
<th>Maximum Mass Specimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm (in.)</td>
<td>g</td>
<td>g</td>
</tr>
<tr>
<td>37.5 (1 ½)</td>
<td>4000</td>
<td>4500</td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>3000</td>
<td>3500</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>2000</td>
<td>2500</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>1500</td>
<td>2000</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>1200</td>
<td>1700</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>1200</td>
<td>1700</td>
</tr>
</tbody>
</table>

* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

5. **Procedure – Method A (Internal Balance)**

1. For the convection-type furnace, preheat the ignition furnace to 538°C (1000°F) or to the temperature determined in the “Correction Factor” section, Step 9 of this method. Manually record the furnace
temperature (set point) prior to the initiation of the test if the furnace does not record automatically. For the direct IR irradiation-type furnace, use the same burn profile as used during the correction factor determination.

2. Dry the sample to constant mass, according to the FOP for AASHTO T 329; or determine the moisture content of a companion sample in accordance with the FOP for AASHTO T 329.

3. Determine and record the mass to the nearest 0.1 g of the sample basket assembly.

4. Evenly distribute the sample in the sample basket assembly, taking care to keep the material away from the edges of the basket. Use a spatula or trowel to level the sample.

5. Determine and record the total mass of the sample and sample basket assembly to the nearest 0.1 g. Calculate and record the initial mass of the sample (total mass minus the mass of the sample basket assembly) to the nearest 0.1 g. Designate this mass as \(M_i\).

6. Record the correction factor or input into the furnace controller for the specific HMA.

7. Input the initial mass of the sample \(M_i\) into the ignition furnace controller. Verify that the correct mass has been entered.

 Caution: Operator should wear safety equipment – high temperature gloves, face shield, fire-retardant shop coat – when opening the door to load or unload the sample.

8. Open the chamber door and gently set the sample basket assembly in the furnace. Carefully position the sample basket assembly so it is not in contact with the furnace wall. Close the chamber door and verify that the sample mass displayed on the furnace scale equals the total mass recorded in step 5 (the sample and sample basket assembly) within ±5 g.

 Note 4: Furnace temperature will drop below the set point when the door is opened, but will recover when the door is closed and ignition begins. Sample ignition typically increases the temperature well above the set point – relative to sample size and binder content.

9. Initiate the test by pressing the start button. This will lock the sample chamber and start the combustion blower.

 Safety note: Do not attempt to open the furnace door until the asphalt binder has been completely burned off.

10. Allow the test to continue until the stable light and audible stable indicator indicate that the change in mass does not exceed 0.01 percent for three consecutive minutes. Press the stop button. This will unlock the sample chamber and cause the printer to print out the test results.

 Note 5: An ending mass loss percentage of 0.02 may be used, if allowed by the agency, when aggregate that exhibits an excessive amount of loss during ignition testing is used.

11. Open the chamber door, remove the sample basket assembly, and place on the cooling plate or block. Place the protective cage over the sample basket assembly and allow it to cool to room temperature (approximately 30 minutes).

12. Determine and record the total after ignition mass to the nearest 0.1 g. Calculate and record the mass of the sample, after ignition (total after ignition mass minus the mass of the sample basket assembly) to the nearest 0.1 g. Designate this mass as \(M_f\).

13. Use the asphalt binder content percentage from the printed ticket. Subtract the moisture content from the printed ticket asphalt binder content and report the difference as the corrected asphalt binder content.
\[P_b = BC - MC - C_f \] (if not input in the furnace controller)

where:
- \(P_b \) = corrected asphalt binder content as a percent by mass of the HMA
- \(BC \) = asphalt binder content shown on printed ticket
- \(MC \) = moisture content of the companion HMA sample, percent, as determined by the FOP for AASHTO T 329 (if the specimen was oven-dried prior to initiating the procedure, \(MC = 0 \))
- \(C_f \) = correction factor as a percent by mass of the HMA sample

14. Asphalt binder content percentage can also be calculated using the formula from “Method B” Step 16.

6. Procedure – Method B (External Balance)

1. Preheat the ignition furnace to 538°C (1000°F) or to the temperature determined in the “Correction Factor” section, Step 9 of this method. Manually record the furnace temperature (set point) prior to the initiation of the test if the furnace does not record automatically.

2. Dry the sample to constant mass, according to the FOP for AASHTO T 329; or determine the moisture content of a companion sample in accordance with the FOP for AASHTO T 329.

3. Determine and record the mass of the sample basket assembly to the nearest 0.1 g.

4. Place the sample basket(s) in the catch pan. Evenly distribute the sample in the sample basket(s), taking care to keep the material away from the edges of the basket. Use a spatula or trowel to level the sample.

5. Determine and record the total mass of the sample and sample basket assembly to the nearest 0.1 g. Calculate and record the initial mass of the sample (total mass minus the mass of the sample basket assembly) to the nearest 0.1 g. Designate this mass as (\(M_i \)).

6. Record the correction factor for the specific HMA.

7. Open the chamber door and gently set the sample basket assembly in the furnace. Carefully position the sample basket assembly so it is not in contact with the furnace wall. Burn the HMA sample in the furnace for 45 minutes or the length of time determined in the “Correction Factors” section.

8. Open the chamber door, remove the sample basket assembly, and place on the cooling plate or block. Place the protective cage over the sample and allow it to cool to room temperature (approximately 30 min).

9. Determine and record the total after ignition mass to the nearest 0.1 g. Calculate and record the mass of the sample, after ignition (total after ignition mass minus the mass of the sample basket assembly) to the nearest 0.1 g.

10. Place the sample basket assembly back into the furnace.

11. Burn the sample for at least 15 minutes after the furnace reaches the set temperature.

12. Open the chamber door, remove the sample basket assembly, and place on the cooling plate or block. Place the protective cage over the sample basket assembly and allow it to cool to room temperature (approximately 30 min.).

13. Determine and record the total after ignition mass to the nearest 0.1 g. Calculate and record the mass of the sample, after ignition (total after ignition mass minus the mass of the sample basket assembly) to the nearest 0.1 g.

14. Repeat Steps 10 through 13 until the change in measured mass of the sample after ignition does not exceed 0.01 percent of the previous sample mass after ignition.
Note 5: An ending mass loss percentage of 0.02 may be used, if allowed by the agency, when aggregate that exhibits an excessive amount of loss during ignition testing is used.

15. Determine and record the total after ignition mass to the nearest 0.1 g. Calculate and record the mass of the sample, after ignition (total after ignition mass minus the mass of the sample basket assembly) to the nearest 0.1 g. Designate this mass as M_f.

16. Calculate the asphalt binder content of the sample as follows:

$$P_b = \frac{M_i - M_f}{M_i} \times 100 - C_f - MC$$

where:
- P_b = the corrected asphalt binder content as a percent by mass of the HMA sample
- M_f = the final mass of aggregate remaining after ignition
- M_i = the initial mass of the HMA sample prior to ignition
- C_f = correction factor as a percent by mass of the HMA sample
- MC = moisture content of the companion HMA sample, percent, as determined by the FOP for AASHTO T 329 (if the specimen was oven-dried prior to initiating the procedure, $MC=0$).

7. Gradation

1. Empty contents of the basket(s) into a flat pan, being careful to capture all material. Use a small wire brush to ensure all residual fines are removed from the baskets.

 Note 6: Particle masks are a recommended safety precaution.

2. Perform the gradation analysis in accordance with the FOP for AASHTO T 30.

8. Report

- Results on forms approved by the Department.
- Method of test (A or B)
- Corrected asphalt binder content, P_b, per agency standard
- Correction factor, C_f, to 0.01 percent
- Temperature compensation factor (if applicable)
- Total percent loss
- Sample mass
- Moisture content to 0.01%
- Test temperature
- Attach the original printed ticket with all intermediate values (continuous tape) to the report for furnaces with internal balances.
Appendix A. Annex – Correction Factors

(Mandatory Information)

1. Asphalt Binder and Aggregate

Asphalt binder content results may be affected by the type of aggregate in the mixture and by the ignition furnace. Asphalt binder and aggregate correction factors must, therefore, be established by testing a set of correction specimens for each Job Mix Formula (JMF) mix design. Each ignition furnace will have its own unique correction factor determined in the location where testing will be performed.

This procedure must be performed before any acceptance testing is completed, and repeated each time there is a change in the mix ingredients or design. Any changes greater than 5 percent in stockpiled aggregate proportions should require a new correction factor. Historical data or scientific studies may be used to determine the correction factor(s) in lieu of using this testing procedure if the testing agency provides reference to the studies/data.

All correction samples will be prepared by a central / regional laboratory unless otherwise directed.

Asphalt binder correction factor: A correction factor must be established by testing a set of correction specimens for each Job Mix Formula (JMF). Certain aggregate types may result in unusually high correction factors (> 1.00 percent). Such mixes should be corrected and tested at a lower temperature as described below.

Aggregate correction factor: Due to potential aggregate breakdown during the ignition process, a correction factor will need to be determined for the following conditions:

- Aggregates that have a proven history of excessive breakdown
- Aggregate from an unknown source.

This correction factor will be used to adjust the acceptance gradation test results obtained according to the FOP for AASHTO T 30.

2. Procedure

1. Obtain samples of aggregate in accordance with the FOP for AASHTO T 2.
2. Obtain samples of asphalt binder in accordance with the FOP for AASHTO T 40.

 Note 7: Include other additives that may be required by the JMF.
3. Prepare an initial, or “butter,” mix at the design asphalt binder content. Mix and discard the butter mix prior to mixing any of the correction specimens to ensure accurate asphalt content.
4. Prepare two correction specimens at the JMF design asphalt binder content. Aggregate used for correction specimens shall be sampled from material designated for use on the project. An agency approved method will be used to combine aggregate. An additional “blank” specimen shall be batched and tested for aggregate gradation in accordance with the FOP for AASHTO T 30. The gradation from the “blank” shall fall within the agency specified mix design tolerances.
5. Place the freshly mixed specimens directly into the sample basket assembly. If mixed specimens are allowed to cool prior to placement in the sample basket assembly, the specimens must be dried to constant mass according to the FOP for AASHTO T 329. Do not preheat the sample basket assembly.
6. Test the specimens in accordance with Method A or Method B of the procedure.
7. Once both of the correction specimens have been burned, determine the asphalt binder content for each specimen by calculation or from the printed oven tickets, if available.
8. If the difference between the asphalt binder contents of the two specimens exceeds 0.15 percent, repeat with two more specimens and, from the four results, discard the high and low result. Determine the correction factor from the two original or remaining results, as appropriate. Calculate the difference between the actual and measured asphalt binder contents for each specimen to 0.01 percent. The asphalt binder correction factor, Cf, is the average of the differences expressed as a percent by mass of HMA.

9. If the asphalt binder correction factor exceeds 1.00 percent, the test temperature must be lowered to 482 ±5°C (900 ±8°F) and new samples must be burned. The temperature for determining the asphalt binder content of HMA samples by this procedure shall be the same temperature determined for the correction samples.

10. For the direct IR irradiation-type burn furnaces, the default burn profile should be used for most materials. The operator may select burn-profile Option 1 or Option 2 to optimize the burn cycle. The burn profile for testing HMA samples shall be the same burn profile selected for correction samples.
 a. **Option 1** is designed for aggregate that requires a large asphalt binder correction factor (greater than 1.00 percent) – typically very soft aggregate (such as dolomite).
 b. **Option 2** is designed for samples that may not burn completely using the default burn profile.

11. Perform a gradation analysis on the residual aggregate in accordance with the FOP for AASHTO T 30, if required. The results will be utilized in developing an “Aggregate Correction Factor” and should be calculated and reported to 0.1 percent.

12. From the gradation results subtract the percent passing for each sieve, for each sample, from the percent passing each sieve of the “Blank” specimen gradation results from Step 4.

13. Determine the average difference of the two values. If the difference for any single sieve exceeds the allowable difference of that sieve as listed in Table 2, then aggregate gradation correction factors (equal to the resultant average differences) for all sieves shall be applied to all acceptance gradation test results determined by the FOP for AASHTO T 30. If the 75 µm (No. 200) is the only sieve outside the limits in Table 2, apply the aggregate correction factor to only the 75 µm (No. 200) sieve.

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Allowable Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sizes larger than or equal to 2.36 mm (No. 8)</td>
<td>± 5.0%</td>
</tr>
<tr>
<td>Sizes larger than 75 µm (No. 200) and smaller than 2.36 mm (No. 8)</td>
<td>± 3.0%</td>
</tr>
<tr>
<td>Sizes 75 µm (No. 200) and smaller</td>
<td>± 0.5%</td>
</tr>
</tbody>
</table>
Following are guidelines for the use of WAQTC FOP for AASHTO T 329 by the State of Alaska DOT&PF.

1. Two additional drying options are offered for step 7 that do not require constant mass determinations:
 a. Dry test sample for 4 – 6 hours at 138 ± 5°C (280 ± 9°F)
 b. Dry test sample for 8 – 16 hours at 110 ± 5°C (230 ± 9°F)
1. **Scope**

This procedure covers the determination of moisture content of HMA in accordance with AASHTO T 329.

2. **Overview**

Moisture content is determined by comparing the wet mass of a sample and the mass of the sample after drying to constant mass.

Constant mass – the state at which a mass does not change more than a given percent, after additional drying for a defined time interval, at a required temperature.

3. **Apparatus**

- Balance or scale: 2 kg (4.4 lb.) capacity, readable to 0.1 g and conforming to AASHTO M 231.
- Forced-air, ventilated, or convection oven: Capable of maintaining the temperature surrounding the sample at 163 ±14°C (325 ±25°F).
- Sample Container: Clean, dry, not affected by heat and of sufficient size to contain a test sample without danger of spilling.
- Thermometer or other suitable device with a temperature range of 10-260°C (50-500°F).

4. **Sample**

The test sample shall be obtained in accordance with the FOP for AASHTO T 168, and reduced in accordance with the FOP for AASHTO R 47. The mass of the test sample shall be a minimum of 1000 g.

5. **Procedure**

1. Preheat the oven to a minimum of 105°C (221°F), but do not exceed the Job Mix Formula (JMF) mixing temperature. If the mixing temperature is not supplied, a temperature of 163 ±14°C (325 ±25°F) is to be used.

 Note 1: For repeatability between laboratories, the preferred practice is to dry the sample at no less than 9°C (15°F) below the JMF mixing temperature.

2. Determine and record the mass of the sample container, including release media, to the nearest 0.1 g.

 Note 2: Ensure the release media is dry before performing Step 2.

3. Place the test sample in the sample container.

4. Determine and record the temperature of the test sample.

5. Determine and record the total mass of the sample container and test sample to the nearest 0.1 g.

6. Calculate the initial, moist mass (M_i) of the test sample by subtracting the mass of the sample container as determined in Step 2 from the total mass of the sample container and the test sample as determined in Step 5.

7. The test sample shall be initially dried for 90 ± 5 minutes, and its mass determined. Then it shall be dried at 30 ± 5 min intervals until further drying does not alter the mass by more than 0.05 percent.

 Note 3: Constant mass shall be defined as the mass at which further drying does not alter the mass by more than 0.05 percent.
8. Cool the sample container and test sample to ±9°C (15°F) of the temperature determined in Step 4.

9. Determine and record the total mass of the sample container and test sample to the nearest 0.1 g.

 Note 4: Do not attempt to remove the test sample from the sample container for the purposes of determining mass.

10. Calculate the final, dry mass (M_f) of the test sample by subtracting the mass of the sample container as determined in Step 2 from the total mass of the sample container and the test sample as determined in Step 9.

 Note 5: Moisture content and the number of samples in the oven will affect the rate of drying at any given time. Placing wet samples in the oven with nearly dry samples could affect the drying process.

6. Calculations

Constant Mass:

Calculate constant mass using the following formula:

$$\% \text{ Change} = \frac{M_p - M_n}{M_p} \times 100$$

Where:
- M_p = previous mass measurement
- M_n = new mass measurement

Moisture Content:

Calculate the moisture content, as a percent, using the following formula.

$$\text{Moisture Content} = \frac{M_i - M_f}{M_i} \times 100$$

Where:
- M_i = initial, moist mass
- M_f = final, dry mass

7. Report

- Results on forms approved by the Department
- Moisture content to 0.01 percent
This page intentionally left blank.
Following are guidelines for the use of WAQTC FOP for AASHTO T 30 by the State of Alaska DOT&PF.

1. Calculate the minus 75 µm (No. 200) by dividing the sum of the loss from washing plus the mass of the material in the pan by the initial sample weight.

2. When the conditions stated in No.6 Mass Verification are not met, a new portion of the sample shall be tested for Acceptance for both asphalt binder content and gradation in accordance with WAQTC FOPs for AASHTO T 308 and T 30.
MECHANICAL ANALYSIS OF EXTRACTED AGGREGATE
WAQTC FOP FOR AASHTO T 30

1. Scope
This procedure covers mechanical analysis of aggregate recovered from bituminous mix samples in accordance with AASHTO T 30. This FOP utilizes the aggregate recovered from the ignition oven used in AASHTO T 308. AASHTO T 30 was developed for analysis of extracted aggregate and thus includes references to extracted bitumen and filter element, which do not apply in this FOP.

Sieve analyses determine the gradation or distribution of aggregate particles within a given sample in order to determine compliance with design and production standards.

2. Apparatus
- Balance or scale: Capacity sufficient for the sample mass, accurate to 0.1 percent of the sample mass or readable to 0.1 g
- Sieves
- Mechanical sieve shaker
- Suitable drying equipment (see FOP for AASHTO T 255)
- Containers and utensils: A pan or vessel of a size sufficient to contain the sample covered with water and to permit vigorous agitation without loss of any part of the sample or water

3. Sample Sieving
- In this procedure it is required to shake the sample over nested sieves. Sieves are selected to furnish information required by specification.
- Sieves are nested in order of decreasing size from the top to the bottom and the sample, or a portion of the sample, is placed on the top sieve.
- Sieves are shaken in a mechanical shaker for approximately 10 minutes, or the minimum time determined to provide complete separation for the sieve shaker being used. As established by the Time Evaluation.

4. Time Evaluation
The minimum time requirement should be evaluated for each shaker at least annually by the following method:

1. Shake the sample over nested sieves for approximately 10 minutes.
2. Provide a snug-fitting pan and cover for each sieve, and hold in a slightly inclined position in one hand.
3. Hand-shake each sieve by striking the side of the sieve sharply and with an upward motion against the heel of the other hand at the rate of about 150 times per minute, turning the sieve about one sixth of a revolution at intervals of about 25 strokes.

If more than 0.5 percent by mass of the total sample prior to sieving passes any sieve after one minute of continuous hand sieving adjust shaker time and re-check.

In determining sieving time for sieve sizes larger than 4.75 mm (No. 4), limit the material on the sieve to a single layer of particles.
5. Overload Determination

- For sieves with openings smaller than 4.75 mm (No. 4), the mass retained on any sieve shall not exceed 6 kg/m² (4 g/in²) of sieving surface.
- For sieves with openings 4.75 mm (No. 4) and larger, the mass (in kg) shall not exceed the product of 2.5 x (sieve opening in mm) x (effective sieving area). See Table 1.

Additional sieves may be necessary to keep from overloading the specified sieves. The sample may also be sieved in increments.

| Table 1 |
| Maximum Allowable Mass of Material Retained on a Sieve, g |
| Nominal Sieve Size, mm (in.) |

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>203 dia (8)</th>
<th>305 dia (12)</th>
<th>305 by 305 (12 x 12)</th>
<th>350 by 350 (14 x 14)</th>
<th>372 by 580 (16 x 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieving Area m²</td>
<td>0.0285</td>
<td>0.0670</td>
<td>0.0929</td>
<td>0.1225</td>
<td>0.2158</td>
</tr>
<tr>
<td>90 (3 1/2)</td>
<td>*</td>
<td>15,100</td>
<td>20,900</td>
<td>27,600</td>
<td>48,500</td>
</tr>
<tr>
<td>75 (3)</td>
<td>*</td>
<td>12,600</td>
<td>17,400</td>
<td>23,000</td>
<td>40,500</td>
</tr>
<tr>
<td>63 (2 1/2)</td>
<td>*</td>
<td>10,600</td>
<td>14,600</td>
<td>19,900</td>
<td>34,000</td>
</tr>
<tr>
<td>50 (2)</td>
<td>3,600</td>
<td>8,400</td>
<td>11,600</td>
<td>15,300</td>
<td>27,000</td>
</tr>
<tr>
<td>37.5 (1 1/2)</td>
<td>2,700</td>
<td>6,300</td>
<td>8,700</td>
<td>11,500</td>
<td>20,200</td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>1,800</td>
<td>4,200</td>
<td>5,800</td>
<td>7,700</td>
<td>13,500</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>1,400</td>
<td>3,200</td>
<td>4,400</td>
<td>5,800</td>
<td>10,200</td>
</tr>
<tr>
<td>16.0 (5/8)</td>
<td>1,100</td>
<td>2,700</td>
<td>3,700</td>
<td>4,900</td>
<td>8,600</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>890</td>
<td>2,100</td>
<td>2,900</td>
<td>3,800</td>
<td>6,700</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>670</td>
<td>1,600</td>
<td>2,200</td>
<td>2,900</td>
<td>5,100</td>
</tr>
<tr>
<td>6.3 (1/4)</td>
<td>440</td>
<td>1,100</td>
<td>1,500</td>
<td>1,900</td>
<td>3,400</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>330</td>
<td>800</td>
<td>1,100</td>
<td>1,500</td>
<td>2,600</td>
</tr>
<tr>
<td>-4.75 (-No. 4)</td>
<td>170</td>
<td>400</td>
<td>560</td>
<td>740</td>
<td>1,300</td>
</tr>
</tbody>
</table>

6. Mass Verification

Using the aggregate sample obtained from the FOP for AASHTO T 308, determine and record the mass of the sample $M_{f(T30)}$ to 0.1 g. This mass shall agree with the mass of the aggregate remaining after $M_{f(T308)}$ within 0.10 percent. If the variation exceeds 0.10 percent the results cannot be used for acceptance.

$$\frac{M_{f(T308)} - M_{f(T30)}}{M_{f(T308)}} \times 100$$

7. Procedure

1. Nest a sieve, such as a 2.0 mm (No. 10) or a 1.18 mm (No. 16), above the 75µm (No. 200) sieve.
2. Place the test sample in a container and add sufficient water to cover it. Add a detergent, dispersing agent, or other wetting solution to the water to assure a thorough separation of the material finer than the 75µm (No. 200) sieve from the coarser particles. There should be enough wetting agent to produce a small amount of suds when the sample is agitated. Excessive suds may overflow the sieves and carry material away with them.
3. Agitate vigorously to ensure complete separation of the material finer than 75µm (No. 200) from coarser particles and bring the fine material into suspension above the coarser material. When using a mechanical washing device, exercise caution to avoid degradation of the sample.

Note 1: When mechanical washing equipment is used, the introduction of water, agitating, and decanting may be a continuous operation. Use care not to overflow or overload the 75µm (No. 200) sieve.

4. Immediately pour the wash water containing the suspended and dissolved solids over the nested sieves, being careful not to pour out the coarser particles.

5. Add a second change of water to the sample remaining in the container, agitate, and repeat Step 5. Repeat the operation until the wash water is reasonably clear. Continue washing until the agent is removed.

6. Rinse the material on the nested sieves until water passing through the sieve is reasonably clear.

7. Remove the upper sieve, return material retained to the washed sample.

8. Rinse the material retained on the 75 µm (No. 200) sieve until water passing through the sieve is reasonably clear.

9. Return all material retained on the 75 µm (No. 200) sieve to the washed sample by flushing into the washed sample.

10. Dry the washed aggregate to constant mass in accordance with the FOP for AASHTO T 255, and then cool prior to sieving. Record the “dry mass after washing”.

11. Select sieves to furnish information required by the specifications. Nest the sieves in order of decreasing size from top to bottom and place the sample, or a portion of the sample, on the top sieve.

12. Place sieves in mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes).

Note 2: Excessive shaking (more than 10 minutes) may result in degradation of the sample.

13. Determine the mass retained on each sieve (individual/cumulative) to the nearest 0.1 g. Ensure that all material trapped in full openings of the sieves are cleaned out and included in the mass retained.

Note 3: For sieves #4 and larger, material trapped in less than a full opening shall be checked by sieving over a full opening. Use coarse wire brushes to clean the 600 µm (No. 30) and larger sieves, and soft bristle brushes for smaller sieves.

8. Calculation

1. The total mass of the material after sieving should check closely with the original mass of sample placed on the sieves (dry mass after washing). When the masses before and after sieving differ by more than 0.2 percent, do not use the results for acceptance purposes.

2. Divide the masses for each sieve (individual/cumulative) by the total dry mass before washing and multiply by 100 to determine the percent retained on and passing each sieve.

3. Calculate the percent retained and passing each sieve to the nearest 0.1 percent.

4. Apply the Aggregate Correction Factor to the calculated percent passing, as required in the FOP for AASHTO T 308 “Correction Factor” Steps 10 through 12, to obtain the reported percent passing. Report percentages to the nearest 1 percent except for the percent passing the 75 µm (No. 200) sieve, which shall be reported to the nearest 0.1 percent.
Check Sum

Total mass of material after sieving must agree with mass before sieving to within 0.2 percent.

\[
\frac{\text{dry mass after washing} - \text{total mass after sieving}}{\text{dry mass after washing}} \times 100
\]

Percent Retained:

\[
\text{IPR} = \frac{\text{IMR}}{\text{M}} \times 100 \quad \text{or} \quad \text{CPR} = \frac{\text{CMR}}{\text{M}} \times 100
\]

Where:
- IPR = Individual Percent Retained
- CPR = Cumulative Percent Retained
- M = Total Dry Sample mass before washing
- IMR = Individual Mass Retained
- CMR = Cumulative Mass Retained

Percent Passing and Reported Percent Passing:

\[
\text{PP} = \text{PCP} - \text{IPR} \quad \text{or} \quad \text{PP} = 100 - \text{CPR}
\]

\[
\text{RPP} = \text{PP} + \text{Aggregate Correction Factor}
\]

Where:
- PP = Calculated Percent Passing
- PCP = Previous Calculated Percent Passing
- RPP = Reported Percent Passing

9. Report

- Results on forms approved by the Department
- Individual mass retained on each sieve
- Individual percent retained on each sieve
- Cumulative mass retained on each sieve
- Cumulative percent retained on each sieve
- Aggregate Correction Factor for each sieve from AASHTO T 308
- Calculated percent passing each sieve to 0.1 percent
- Reported percent passing to the nearest 1 percent, except 75 µm (No. 200) sieve to the nearest 0.1 percent.
Following are guidelines for the use of WAQTC FOP for AASHTO T 209 by the State of Alaska DOT&PF. Delete Table 1 and replace with the Table 3

<table>
<thead>
<tr>
<th>Nominal Maximum Aggregate Size*</th>
<th>Minimum Mass g</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 mm (1)</td>
<td>2500</td>
</tr>
<tr>
<td>19 mm (3/4)</td>
<td>2000</td>
</tr>
<tr>
<td>12.5 mm (1/2)</td>
<td>1500</td>
</tr>
<tr>
<td>9.5 mm (3/8)</td>
<td>1000</td>
</tr>
<tr>
<td>4.75 mm (No. 4)</td>
<td>500</td>
</tr>
</tbody>
</table>

* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum.
THEORETICAL MAXIMUM SPECIFIC GRAVITY (G_{mm}) AND DENSITY OF HOT MIX ASPHALT (HMA),
WAQTC FOP FOR AASHTO T 209

1. Scope

This procedure covers the determination of the maximum specific gravity (G_{mm}) of uncompacted hot mix asphalt (HMA) paving mixtures in accordance with AASHTO T 209. Two methods using two different containers – bowl and flask – are covered.

Specimens prepared in the laboratory shall be cured according to agency standards.

2. Apparatus

- Balance or scale: 10,000 g capacity, readable to 0.1 g
- Container: A glass, metal, or plastic bowl or volumetric flask between 2000 and 10,000 mL as required by the minimum sample size requirements in Table 1 sample and capable of withstanding a partial vacuum
- Container cover: A glass plate or a metal or plastic cover with a vented opening
- Vacuum lid: A transparent lid with a suitable vacuum connection, with a vacuum opening to be covered with a fine wire mesh
- Vacuum pump or water aspirator: Capable of evacuating air from the container to a residual pressure of 4.0 kPa (30 mm Hg)
- Residual pressure manometer or vacuum gauge: Traceable to NIST and capable of measuring residual pressure down to 4.0 kPa (30 mm Hg) or less
- Manometer or vacuum gauge: Capable of measuring the vacuum being applied at the source of the vacuum
- Water bath: A constant-temperature water bath (optional)
- Thermometers: Standardized liquid-in-glass, or electronic digital total immersion type, accurate to 0.5°C (0.9°F)
- Bleeder valve to adjust vacuum
- Timer

3. Standardization of Flask

Use a volumetric flask that is standardized to accurately determine the mass of water, at 25 ±0.5°C (77 ±0.9°F), in the flask. The volumetric flask shall be standardized periodically in conformance with procedures established by the agency.

4. Test Sample Preparation

1. Obtain samples in accordance with the FOP for AASHTO T 168 and reduce according to the FOP for AASHTO R 47.
2. Test sample size shall conform to the requirements of Table 1. Samples larger than the capacity of the container may be tested in two or more increments. Results will be combined and averaged. If the increments have a specific gravity difference greater than 0.014 the test must be re-run.

Table 1
Test Sample Size for G_{mm}

<table>
<thead>
<tr>
<th>Nominal Aggregate Size (in.)</th>
<th>Minimum Mass g</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.5 or greater (1 ½)</td>
<td>4,000</td>
</tr>
<tr>
<td>19 to 25 (3/4 to 1)</td>
<td>2,500</td>
</tr>
<tr>
<td>12.5 or smaller (1/2)</td>
<td>1,500</td>
</tr>
</tbody>
</table>

*Nominal maximum size: One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained.

5. Procedure – General

Two procedures – bowl and flask – are covered. The first 11 steps are the same for both.

1. Separate the particles of the sample, taking care not to fracture the mineral particles, so that the particles of the fine aggregate portion are not larger than 6.3 mm (1/4 in.). If the mixture is not sufficiently soft to be separated manually, place it in a large flat pan and warm in an oven only until it is pliable enough for separation.

2. Cool the sample to room temperature.

3. Determine and record the mass of the dry bowl or flask, including the cover, to the nearest 0.1 g.

4. Place the sample in the bowl or flask.

5. Determine and record the mass of the dry bowl or flask, cover, and sample to the nearest 0.1 g.

6. Determine and record the mass of the sample by subtracting the mass determined in Step 3 from the mass determined in Step 5. Designate this mass as “A”.

7. Add sufficient water at approximately 25°C (77°F) to cover the sample by about 25 mm (1 in.).

 Note 1: The release of entrapped air may be facilitated by the addition of a wetting agent. Check with the agency to see if this is permitted and, if it is, for a recommended agent.

8. Place the lid on the bowl or flask and attach the vacuum line. To ensure a proper seal between the flask and the lid, wet the O-ring or use a petroleum gel.

9. Remove entrapped air by subjecting the contents to a partial vacuum of 3.7 ±0.3 kPa (27.5 ±2.5 mm Hg) residual pressure for 15 ±2 minutes.

10. Agitate the container and contents, either continuously by mechanical device or manually by vigorous shaking, at 2 minute intervals. This agitation facilitates the removal of air.

11. Turn off the vacuum pump, slowly open the release valve, and remove the lid. When performing the flask method, complete steps 12B through 16B within 10±1 minutes.
6. Procedure – Bowl

12A. Suspend and immerse the bowl and contents in water at 25 ±1°C (77 ±2°F) for 10 ±1 minutes. The holder shall be immersed sufficiently to cover both it and the bowl.

13A. Determine and record the submerged weight of the bowl and contents to the nearest 0.1 g.

14A. Empty and re-submerge the bowl following Step 12A to determine the submerged weight of the bowl to the nearest 0.1 g.

15A. Determine and record the submerged weight of the sample the nearest 0.1 g by subtracting the submerged weight of the bowl from the submerged weight determined in Step 13A. Designate this submerged weight as “C”.

7. Procedure – Flask

12B. Immediately fill the flask with water without reintroducing air.

13B. Stabilize the temperature of the flask and contents in a water bath so that the final temperature is within 25 ±1°C (77 ±2°F).

Note 2: In lieu of placing the flask in the water bath, determine the temperature of the water in the flask and make the appropriate density correction using Table 2 when the temperature is outside 25 ±1°C (77 ±2°F).

14B. Finish filling the flask with water that is 25 ±1°C (77 ±2°F), place the cover or a glass plate on the flask, and eliminate all air from the flask.

Note 3: When using the metal flask and cover, place the cover on the flask and push down slowly, forcing excess water out of the hole in the center of the cover. Use care when filling flask to avoid reintroducing air into the water.

15B. Towel dry the outside of the flask and cover.

16B. Determine and record the mass of the flask, cover, de-aired water, and sample to the nearest 0.1 g. within 10 ±1 minutes of completion of Step 11. Designate this mass as “E”.

8. Procedure – Mixtures Containing Uncoated Porous Aggregate

If the pores of the aggregates are not thoroughly sealed by a bituminous film, they may become saturated with water during the vacuuming procedure, resulting in an error in maximum density. To determine if this has occurred, complete the general procedure and then:

1. Carefully drain water from sample through a towel held over the top of the container to prevent loss of material.

2. Spread sample in a flat shallow pan and place before an electric fan to remove surface moisture.

3. Determine the mass of the sample when the surface moisture appears to be gone.

4. Continue drying and determine the mass of the sample at 15-minute intervals until less than a 0.5 g loss is found between determinations.

5. Record the mass as the saturated surface dry mass to the nearest 0.1 g. Designate this mass as “ASSD”.

6. Calculate, as indicated below, \(G_{\text{mm}} \), using “A” and “ASSD”, and compare the two values.

9. Calculation

Calculate the \(G_{\text{mm}} \) to three decimal places as follows:
Bowl Procedure

\[G_{mm} = \frac{A}{A - C} \quad \text{or} \quad G_{mm} = \frac{A}{A_{SSD} - C} \]

(for mixes containing uncoated aggregate materials)

where:
- \(A \) = mass of dry sample in air, g
- \(A_{SSD} \) = Mass of saturated surface dry sample in air, g
- \(C \) = submerged weight of sample in water, g

Flask Procedure

\[G_{mm} = \frac{A}{A + D - E} \times R \quad \text{or} \quad G_{mm} = \frac{A}{A_{SSD} + D - E} \times R \]

(for mixtures containing uncoated materials)

where:
- \(A \) = Mass of dry sample in air, g
- \(A_{SSD} \) = Mass of saturated surface-dry sample in air, g
- \(D \) = Mass of flask filled with water at 25°C (77°F), g, determined during the Standardization of Flask procedure
- \(E \) = Mass of flask filled with water and the test sample at test temperature, g
- \(R \) = Factor from Table 2 to correct the density of water – use when a test temperature is outside 25 ±1°C (77 ±1.8°F)

Example (in which two increments of a large sample are averaged):

Increment 1
- \(A = 2200.3 \) g
- \(D = 7502.5 \) g
- \(E = 8812.3 \) g
- Temperature = 26.2°C

\[G_{mm1} = \frac{2200.3 \text{ g}}{2200.3 \text{ g} + 7502.5 \text{ g} - 8812.3 \text{ g}} \times 0.99968 = 2.470 \]

Increment 2
- \(A = 1960.2 \) g
- \(D = 7525.5 \) g
- \(E = 8690.8 \) g
- Temperature = 25.0°C

\[G_{mm2} = \frac{1960.2 \text{ g}}{1960.2 \text{ g} + 7525.5 \text{ g} - 8690.8 \text{ g}} \times 1.00000 = 2.466 \]

Allowable variation is: 0.014

2.470 - 2.466 = 0.004, which is < 0.014, so they can be averaged.

Average
- \(2.470 - 2.466 = 0.004 \quad 0.004 ÷ 2 = 0.002 \quad 0.002 + 2.466 = 2.468 \)
- or \(2.470 + 2.466 = 4.936 \quad 4.936 ÷ 2 = 2.468 \)
<table>
<thead>
<tr>
<th>°C</th>
<th>°F</th>
<th>"R"</th>
<th>°C</th>
<th>°F</th>
<th>"R"</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.0</td>
<td>68.0</td>
<td>1.00117</td>
<td>23.3</td>
<td>73.9</td>
<td>1.00042</td>
</tr>
<tr>
<td>20.1</td>
<td>68.2</td>
<td>1.00114</td>
<td>23.4</td>
<td>74.1</td>
<td>1.00040</td>
</tr>
<tr>
<td>20.2</td>
<td>68.4</td>
<td>1.00112</td>
<td>23.5</td>
<td>74.3</td>
<td>1.00037</td>
</tr>
<tr>
<td>20.3</td>
<td>68.5</td>
<td>1.00110</td>
<td>23.6</td>
<td>74.5</td>
<td>1.00035</td>
</tr>
<tr>
<td>20.4</td>
<td>68.7</td>
<td>1.00108</td>
<td>23.7</td>
<td>74.7</td>
<td>1.00033</td>
</tr>
<tr>
<td>20.5</td>
<td>68.9</td>
<td>1.00106</td>
<td>23.8</td>
<td>74.8</td>
<td>1.00030</td>
</tr>
<tr>
<td>20.6</td>
<td>69.1</td>
<td>1.00104</td>
<td>23.9</td>
<td>75.0</td>
<td>1.00028</td>
</tr>
<tr>
<td>20.7</td>
<td>69.3</td>
<td>1.00102</td>
<td>24.0</td>
<td>75.2</td>
<td>1.00025</td>
</tr>
<tr>
<td>20.8</td>
<td>69.4</td>
<td>1.00100</td>
<td>24.1</td>
<td>75.4</td>
<td>1.00023</td>
</tr>
<tr>
<td>20.9</td>
<td>69.6</td>
<td>1.00097</td>
<td>24.2</td>
<td>75.6</td>
<td>1.00020</td>
</tr>
<tr>
<td>21.0</td>
<td>69.8</td>
<td>1.00095</td>
<td>24.3</td>
<td>75.7</td>
<td>1.00018</td>
</tr>
<tr>
<td>21.1</td>
<td>70.0</td>
<td>1.00093</td>
<td>24.4</td>
<td>75.9</td>
<td>1.00015</td>
</tr>
<tr>
<td>21.2</td>
<td>70.2</td>
<td>1.00091</td>
<td>24.5</td>
<td>76.1</td>
<td>1.00013</td>
</tr>
<tr>
<td>21.3</td>
<td>70.3</td>
<td>1.00089</td>
<td>24.6</td>
<td>76.3</td>
<td>1.00010</td>
</tr>
<tr>
<td>21.4</td>
<td>70.5</td>
<td>1.00086</td>
<td>24.7</td>
<td>76.5</td>
<td>1.00007</td>
</tr>
<tr>
<td>21.5</td>
<td>70.7</td>
<td>1.00084</td>
<td>24.8</td>
<td>76.6</td>
<td>1.00005</td>
</tr>
<tr>
<td>21.6</td>
<td>70.9</td>
<td>1.00082</td>
<td>24.9</td>
<td>76.8</td>
<td>1.00002</td>
</tr>
<tr>
<td>21.7</td>
<td>71.1</td>
<td>1.00080</td>
<td>25.0</td>
<td>77.0</td>
<td>1.00000</td>
</tr>
<tr>
<td>21.8</td>
<td>71.2</td>
<td>1.00077</td>
<td>25.1</td>
<td>77.2</td>
<td>0.99997</td>
</tr>
<tr>
<td>21.9</td>
<td>71.4</td>
<td>1.00075</td>
<td>25.2</td>
<td>77.4</td>
<td>0.99995</td>
</tr>
<tr>
<td>22.0</td>
<td>71.6</td>
<td>1.00073</td>
<td>25.3</td>
<td>77.5</td>
<td>0.99992</td>
</tr>
<tr>
<td>22.1</td>
<td>71.8</td>
<td>1.00070</td>
<td>25.4</td>
<td>77.7</td>
<td>0.99989</td>
</tr>
<tr>
<td>22.2</td>
<td>72.0</td>
<td>1.00068</td>
<td>25.5</td>
<td>77.9</td>
<td>0.99987</td>
</tr>
<tr>
<td>22.3</td>
<td>72.1</td>
<td>1.00066</td>
<td>25.6</td>
<td>78.1</td>
<td>0.99984</td>
</tr>
<tr>
<td>22.4</td>
<td>72.3</td>
<td>1.00064</td>
<td>25.7</td>
<td>78.3</td>
<td>0.99981</td>
</tr>
<tr>
<td>22.5</td>
<td>72.5</td>
<td>1.00061</td>
<td>25.8</td>
<td>78.4</td>
<td>0.99979</td>
</tr>
<tr>
<td>22.6</td>
<td>72.7</td>
<td>1.00059</td>
<td>25.9</td>
<td>78.6</td>
<td>0.99976</td>
</tr>
<tr>
<td>22.7</td>
<td>72.9</td>
<td>1.00057</td>
<td>26.0</td>
<td>78.8</td>
<td>0.99973</td>
</tr>
<tr>
<td>22.8</td>
<td>73.0</td>
<td>1.00054</td>
<td>26.1</td>
<td>79.0</td>
<td>0.99971</td>
</tr>
<tr>
<td>22.9</td>
<td>73.2</td>
<td>1.00052</td>
<td>26.2</td>
<td>79.2</td>
<td>0.99968</td>
</tr>
<tr>
<td>23.0</td>
<td>73.4</td>
<td>1.00050</td>
<td>26.3</td>
<td>79.3</td>
<td>0.99965</td>
</tr>
<tr>
<td>23.1</td>
<td>73.6</td>
<td>1.00047</td>
<td>26.4</td>
<td>79.5</td>
<td>0.99963</td>
</tr>
<tr>
<td>23.2</td>
<td>73.8</td>
<td>1.00045</td>
<td>26.5</td>
<td>79.7</td>
<td>0.99960</td>
</tr>
</tbody>
</table>

* Correction factor applied in the non-shaded temperatures.
10. Theoretical Maximum Density

To calculate the theoretical maximum density at 25°C (77°F) use one of the following formulas. The density of water at 25°C (77°F) is 997.1 in Metric units or 62.245 in English units.

Metric: Theoretical maximum density $\text{kg/m}^3 = G_{mn} \times 997.1 \text{ kg/m}^3$, or

English: Theoretical maximum density $\text{lb/ft}^3 = G_{mn} \times 62.245 \text{ lb/ft}^3$

11. Report

- Results on forms approved by the Department
- G_{mn} to three decimal places
- Theoretical maximum density to 1 kg/m^3 (0.1 lb/ft^3)
This page left intentionally blank.
Following are guidelines for the use of WAQTC FOP for AASHTO T 166 by the State of Alaska DOT&PF.

1. Report compaction to the 0.1%. Calculate as follows:

\[C_p = \left(\frac{G_{mb}}{G_{mm}} \right) \times 100 \]

Where:
- \(C_p \) = Percent Compaction
- \(G_{mm} \) = Theoretical Maximum Specific Gravity
- \(G_{mb} \) = Bulk Specific Gravity

2. Method C/A is the only accepted method for DOT&PF projects, regardless of the absorption calculated.

3. As an alternate to drying to constant mass in an oven, ASTM D 7227 may be used.

4. For Method C (Rapid Test for Method A or B) two additional drying options are offered for step 4 that do not require constant mass determinations:
 a. Dry test sample for 4 – 6 hours at 138 ± 5°C (280 ± 9°F)
 b. Dry test sample for 8 – 16 hours at 110 ± 5°C (230 ± 9°F)
BULK SPECIFIC GRAVITY (G_{mb}) OF COMPACTED HOT MIX ASPHALT (HMA) USING SATURATED SURFACE-DRY SPECIMENS
WAQTC FOP FOR AASHTO T 166

1. Scope
This procedure covers the determination of bulk specific gravity (G_{mb}) of compacted hot mix asphalt (HMA) using three methods – A, B, and C – in accordance with AASHTO T 166. This FOP is for use on specimens not having open or interconnecting voids or absorbing more than 2.0 percent water by volume, or both. When specimens have open or interconnecting voids or absorbing more than 2.0 percent water by volume, or both, AASHTO T 275 or AASHTO T 331 should be performed.

2. Overview
 - Method A: Suspension
 - Method B: Volumeter
 - Method C: Rapid test for A or B

3. Test Specimens
Test specimens may be either laboratory-molded or from HMA pavement. For specimens it is recommended that the diameter be equal to four times the maximum size of the aggregate and the thickness be at least one and one half times the maximum size.

Test specimens from HMA pavement will be sampled according to WAQTC TM 11.

4. Terminology
Constant Mass: The mass at which further drying at 52 ±3°C (125 ±5°F) does not alter the mass by more than 0.05 percent. Samples shall initially be dried overnight and that mass determinations shall be made at 2-hour drying intervals. Recently molded laboratory samples that have not been exposed to moisture do not need drying.

5. Apparatus - Method A (Suspension)
Balance or scale: 5 kg capacity, readable to 0.1 g, and fitted with a suitable suspension apparatus and holder to permit weighing the specimen while suspended in water, conforming to AASHTO M 231.

 - Suspension apparatus: Wire of the smallest practical size and constructed to permit the container to be fully immersed.
 - Water bath: For immersing the specimen in water while suspended under the balance or scale, and equipped with an overflow outlet for maintaining a constant water level.
 - Towel: Damp cloth towel used for surface drying specimens.
 - Oven: Capable of maintaining a temperature of 110 ±5°C (230 ±9°F) for drying the specimens to a constant mass.
 - Pan: Pan or other suitable container of known mass, large enough to hold a sample for drying in oven.
 - Thermometer: Having a range of 19 to 27°C (66 to 80°F), graduated in 0.1°C (0.2°F) subdivisions.

6. Procedure - Method A (Suspension)
 1. Dry the specimen to constant mass, if required.
Note 1: To expedite the procedure, steps 1 and 2 may be performed last. To further expedite the process, see Method C.

2. Cool the specimen in air to 25 ±5°C (77 ±9°F), and determine and record the dry mass to the nearest 0.1 g. Designate this mass as “A”.

3. Fill the water bath to overflow level with water at 25 ±1°C (77 ±1.8°F) and allow the water to stabilize.

4. Zero or tare the balance with the immersion apparatus attached, ensuring that the device is not touching the sides or the bottom of the water bath.

5. Immerse the specimen shaking to remove the air bubbles. Place the specimen on its side in the suspension apparatus. Leave it immersed for 4 ±1 minutes.

6. Determine and record the submerged weight to the nearest 0.1 g. Designate this submerged weight as “C”.

7. Remove the sample from the water and quickly surface dry with a damp cloth towel within 5 seconds.

8. Zero or tare the balance.

9. Immediately determine and record the mass of the SSD specimen to nearest 0.1 g. Designate this mass as “B”. Any water that seeps from the specimen during the mass determination is considered part of the saturated specimen. Do not exceed 15 seconds performing Steps 7 through 9.

7. **Calculations - Method A (Suspension)**

\[
G_{mb} = \frac{A}{B - C}
\]

where:

- \(A\) = Mass of dry specimen in air, g
- \(B\) = Mass of SSD specimen in air, g
- \(C\) = Weight of specimen in water at 25 ±1°C (77 ±1.8°F), g

\[
\text{Percent Water Absorbed (by volume)} = \frac{B - A}{B - C} \times 100
\]

8. **Apparatus - Method B (Volumeter)**

- Balance or scale: 5 kg capacity, readable to 0.1 g and conforming to AASHTO M 231.
- Water bath: Thermostatically controlled to 25 ±0.5°C (77±0.9°F).
- Thermometer: Range of 19 to 27°C (66 to 80°F), and graduated in 0.1°C (0.2°F) subdivisions.
- Volumeter: Calibrated to 1200 mL or appropriate capacity for test sample and having a tapered lid with a capillary bore.
- Oven: Capable of maintaining a temperature of 110 ±5°C (230 ±9°F) for drying the specimens to a constant mass.
- Pan: Pan or other suitable container of known mass, large enough to hold a sample for drying in oven.
- Towel: Damp cloth towel used for surface drying specimens.

1. Dry the specimen to constant mass, if required.
Note 1: To expedite the procedure, steps 1 and 2 may be performed last. To further expedite the process, see Method C.

2. Cool the specimen in air to 25 ±5°C (77 ±9°F), and determine and record the dry mass to the nearest 0.1 g. Designate this mass as “A”.

3. Immerse the specimen in the temperature-controlled water bath for at least 10 minutes.

4. Fill the volumeter with distilled water at 25 ±1°C (77 ±1.8°F) making sure some water escapes through the capillary bore of the tapered lid. Wipe the volumeter dry. Determine the mass of the volumeter to the nearest 0.1 g. Designate this mass as “D”.

5. At the end of the ten minute period, remove the specimen from the water bath and quickly surface dry with a damp cloth towel within 5 seconds.

6. Immediately determine and record the mass of the SSD specimen to the nearest 0.1 g.

7. Designate this mass as “B”. Any water that seeps from the specimen during the mass determination is considered part of the saturated specimen.

8. Place the specimen in the volumeter and let stand 60 seconds.

9. Bring the temperature of the water to 25 ±1°C (77 ±1.8°F) and cover the volumeter, making sure some water escapes through the capillary bore of the tapered lid.

10. Wipe the volumeter dry.

11. Determine and record the mass of the volumeter and specimen to the nearest 0.1 g. Designate this mass as “E”.

Note 2: Method B is not acceptable for use with specimens that have more than 6% air voids.

10. Calculations - Method B (Volumeter)

\[G_{mb} = \frac{A}{B + D - E} \]

where:
- A = Mass of dry specimen in air, g
- B = Mass of SSD specimen in air, g
- D = Mass of volumeter filled with water at 25 ±1°C (77 ±1.8°F), g
- E = Mass of volumeter filled with specimen and water, g

\[\text{Percent Water Absorbed (by volume)} = \frac{B - A}{B + D - E} \times 100 \]

11. Apparatus - Method C (Rapid Test for Method A or B)

See Methods A or B.

Note 3: This procedure can be used for specimens that are not required to be saved and contain substantial amounts of moisture. Cores can be tested the same day as obtained by this method.

12. Procedure - Method C (Rapid Test for Method A or B)

1. Determine which method to perform, A or B. Proceed with Method A or B, except that the dry mass, A, is determined last. In method A and B, start on Step 3 and complete that procedure, then continue as follows to determine mass “A”.

2. Place the specimen on a large, flat-bottom pan of known mass.
3. Heat at a minimum of 105°C (221°F), until the specimen can be easily separated to the point where the fine aggregate particles are not larger than 6.3 mm (¼ in.). In no case should the Job Mix Formula mixing temperature be exceeded.

4. Dry to constant mass. Constant mass is defined as the mass at which further drying at the temperature in Step 3 does not change by more than 0.05% after an additional 2 hour drying time.

 Note 4: See Guidelines Item 4, for alternate methods of drying to constant mass.

5. Cool in air to 25 ±5°C (77 ±9°F).

6. Determine and record the mass of the pan and specimen to the nearest 0.1 g.

7. Determine and record the mass of the dry specimen to the nearest 0.1 g by subtracting the mass of the pan from the mass determined in Step 6. Designate this mass as “A”.

13. Calculations - Method C (Rapid Test for Method A or B)

 Complete the calculations as outlined in Methods A or B, as appropriate.

14. Report

 • Results on forms approved by the Department
 • \(G_{mb} \) to 3 decimal places
 • Absorption to 2 decimal places
 • Method performed.
This page intentionally left blank.
ATM 411 In-Place Density of Bituminous Mixes Using the Nuclear Moisture-Density Gauge

Following are guidelines for the use of WAQTC TM 8 by the State of Alaska DOT&PF.

1. Testing under this method shall be used for quality control and when specified, acceptance testing.
2. All testing done in accordance with this FOP shall use the Backscatter method.
3. Report percent compaction to the nearest 0.1 percent.
IN-PLACE DENSITY OF BITUMINOUS MIXES USING THE NUCLEAR MOISTURE-DENSITY GAUGE
WAQTC TM 8

1. Scope

This test method describes a test procedure for determining the density of bituminous mixes by means of a nuclear gauge employing either direct transmission or backscatter methods. Correlation with densities determined under the FOP for AASHTO T 166 is required by some agencies.

2. Apparatus

- Nuclear density gauge with the factory-matched standard reference block.
- Drive pin, guide/scraper plate, and hammer for testing in direct transmission mode.
- Transport case for properly shipping and housing the gauge and tools.
- Instruction manual for the specific make and model of gauge.
- Radioactive materials information and calibration packet containing:
 - Daily standard count log
 - Factory and laboratory calibration data sheet
 - Leak test certificate
 - Shippers’ declaration for dangerous goods
 - Procedure memo for storing, transporting and handling nuclear testing equipment
 - Other radioactive materials documentation as required by local regulatory requirements

3. Material

Filler material: Fine-graded sand from the source used to produce the asphalt pavement or other agency approved materials.

4. Radiation Safety

This method does not purport to address all of the safety problems associated with its use. This test method involves potentially hazardous materials. The gauge utilizes radioactive materials that may be hazardous to the health of the user unless proper precautions are taken. Users of this gauge must become familiar with the applicable safety procedures and governmental regulations. All operators will be trained in radiation safety prior to operating nuclear density gauges. Some agencies require the use of personal monitoring devices such as a thermo luminescent dosimeter or film badge. Effective instructions, together with routine safety procedures such as source leak tests, recording and evaluation of personal monitoring device data, etc., are a recommended part of the operation and storage of this gauge.

5. Calibration

Calibrate the nuclear gauge as required by the agency. This calibration may be performed by the agency using the manufacturer’s recommended procedures or by other facilities approved by the agency. Verify or re-establish calibration curves, tables, or equivalent coefficients every 12 months.
6. Standardization

1. Turn the gauge on and allow it to stabilize (approximately 10 to 20 minutes) prior to standardization. Leave the power on during the day’s testing.

2. Standardize the nuclear gauge at the construction site at the start of each day’s work and as often as deemed necessary by the operator or agency. Daily variations in standard count shall not exceed the daily variations established by the manufacturer of the gauge. If the daily variations are exceeded after repeating the standardization procedure, the gauge should be repaired or recalibrated or both.

3. Record the standard count for both density and moisture in the daily standard count log. The exact procedure for standard count is listed in the manufacturer’s Operator’s Manual.

 Note 1: New standard counts may be necessary more than once a day. See agency requirements.

7. Test Site Location

Select a test location(s) randomly and in accordance with agency requirements. Test sites should be relatively smooth and flat and meet the following conditions:

1. At least 10 m (30 ft) away from other sources of radioactivity.

2. At least 3 m (10 ft) away from large objects.

3. If the gauge will be closer than 600 mm (24 in.) to any vertical mass, or less than 300 mm (12 in.) from a vertical pavement edge, use the gauge manufacturer’s correction procedure.

8. Overview

There are two methods for determining the in-place density of HMA. See agency requirements for method selection.

 • Direct Transmission

 • Backscatter

9. Procedure

Direct Transmission

1. Maximum contact between the base of the gauge and the surface of the material under test is critical.

2. Use the guide and scraper plate as a template and drill a hole to a depth of at least 7 mm (1/4 in.) deeper than the measurement depth required for the gauge.

3. Place the gauge on the prepared surface so the source rod can enter the hole. Insert the probe in the hole and lower the source rod to the desired test depth using the handle and trigger mechanism. Position the gauge with the long axis of the gauge parallel to the direction of paving. Pull the gauge so that the probe is firmly against the side of the hole.

4. Take one four-minute test and record the wet density (WD) reading.

Backscatter

1. Maintain maximum contact between the base of the gauge and the surface of the material under test. Use filler material to fill surface voids. Spread a small amount of filler material over the test site surface and distribute it evenly. Strike off the surface with a straightedge (such as a lathe or flat-bar steel) to remove excess material.
2. Place the gauge on the test site. Using a crayon (not spray paint), mark the outline or footprint of the gauge. Extend the probe to the backscatter position.

3. Take a one-minute test and record the wet density reading.

4. Rotate the gauge 90° centered over the original footprint. Mark the outline or footprint of the gauge.

5. Take another one-minute test and record the wet density reading.

6. If the difference between the two one-minute tests is equal or less than 40 kg/m³ (2.5 lb/ft³), average the two readings and report that average as the wet density reading.

7. If the difference between the two one-minute tests is greater than 40 kg/m³ (2.5 lb/ft³), retest in both directions. If the difference of the retests is still greater than 40 kg/m³ (2.5 lb/ft³) test at 180 and 270 degrees. Average all four readings made in step 7 and report that average as the wet density reading.

11. Calculation of Results

Percent compaction is determined by comparing the in-place wet density as determined by this method to the appropriate agency density standard. See appropriate agency policy for use of density standards.

Backscatter Example:

<table>
<thead>
<tr>
<th>Reading #1:</th>
<th>141.5 lb/ft³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading #2:</td>
<td>140.1 lb/ft³</td>
</tr>
<tr>
<td>Reading average:</td>
<td>140.8 lb/ft³</td>
</tr>
<tr>
<td>Core correction:</td>
<td>+2.1 lb/ft³</td>
</tr>
<tr>
<td>Corrected reading:</td>
<td>142.9 lb/ft³</td>
</tr>
</tbody>
</table>

Are the two readings within the tolerance? (YES)

\[
\frac{\text{Corrected Reading}}{\text{Maximum Density}} \times 100 = \text{% compaction}
\]

\[G_{mm}\text{ and maximum density from the FOP for AASHTO T 209: } G_{mm} = 2.466 = 153.5 \text{ lb/ft}^3\]
Footprint of the gauge test site

Report

- Results on forms approved by the Department
- Location of test and thickness of layer tested
- Mixture type
- Make, model and serial number of the nuclear moisture-density gauge
- Mode of measurement, depth, calculated wet density of each measurement and any adjustment data
- Standard density
- Percent compaction or percent air voids or both
- Name and signature of operator
The Bulk Specific Gravity (G_{mb}) of the core is a physical measurement of the in-place HMA and can be compared with the nuclear density gauge readings. Comparing the core value to the corresponding gauge values, a correlation can be established.

The correlation can then be used to adjust the gauge readings to the in-place density of the cores. The core correlation is gauge specific and must be determined without traffic allowed on the pavement between nuclear density gauge readings and obtaining the core. When using multiple nuclear density gauges each gauge should be correlated to the core locations prior to removal of the core.

When density correlation with the FOP for AASHTO T 166 is required, correlation of the nuclear gauge with pavement cores shall be made on the first day’s paving (within 24 hours) or from a test strip constructed prior to the start of paving. Cores must be taken before traffic is allowed on the pavement.

Correlation with Cores

1. Drill and extract ten cores covering the range of densities determined with the nuclear gauge. Cores shall be located on the first day’s paving or on the test strip. Follow the “Procedure” section above to establish test sites and obtain densities using the nuclear gauge.

2. Obtain a pavement core from each of the test sites in accordance with WAQTC TM 11. The core should be taken from the center of the nuclear gauge footprint. If direct transmission was used, locate the core at least 25 mm (1 in.) away from the edge of the drive pin hole.

3. Determine the density of the cores by the FOP for AASHTO T 166, Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface Dry Specimens.

4. Calculate a correlation factor for the nuclear gauge reading as follows:
a. Calculate the difference between the core density and the average nuclear gauge density at each test site to the nearest 1 kg/m³ (0.1 lb/ft³). Calculate the average difference and standard deviation of the differences for the entire data set to the nearest 1 kg/m³ (0.1 lb/ft³).

b. If the standard deviation of the differences is equal to or less than 40 kg/m³ (2.5 lb/ft³), the correlation factor applied to the average nuclear gauge density shall be the average difference calculated above in 4.a.

c. If the standard deviation of the differences is greater than 40 kg/m³ (2.5 lb/ft³), the test site with the greatest variation from the average difference shall be eliminated from the data set and the data set properties and correlation factor recalculated following 4.a and 4.b.

d. If the standard deviation of the modified data set still exceeds the maximum specified in 4.b, additional test sites will be eliminated from the data set and the data set properties and correlation factor recalculated following 4.a and 4.b. If the data set consists of less than five test sites, additional test sites shall be established.

Note A1: The exact method used in calculating the nuclear gauge correlation factor shall be defined by agency policy.

Note A2: The above correlation procedure must be repeated if there is a new job mix formula. Adjustments to the job mix formula beyond tolerances established in the contract documents will constitute a new job mix formula. A correlation factor established using this procedure is only valid for the particular gauge and in the mode and at the probe depth used in the correlation procedure. If another gauge is brought onto the project, it shall be correlated using the same procedure. Multiple gauges may be correlated from the same series of cores if done at the same time.

Note A3: For the purpose of this procedure, a job mix formula is defined as the percent and grade of paving asphalt used with a specified gradation of aggregate from a designated aggregate source. A new job mix formula may be required whenever compaction of the wearing surface exceeds the agency’s specified maximum density or minimum air voids.
ATM 412 Relative Standard Density of Treated Mixtures by the Control Strip Method

1. Scope
This method describes a procedure for determining the relative standard wet density of a material by the control strip testing method. This is applicable to granular materials that are bound together with asphalt binders and/or portland cement.

2. Significance and Use
In testing some HMA’s, determining the standard density may be difficult with conventional test methods used in the laboratory. When these problems occur a method that allows the determination of a relative standard density in the field can facilitate the verification of compaction efforts. This method describes a procedure to determine the relative standard density to be used in these circumstances.

3. Apparatus
- Nuclear Moisture/Density Gauge—Calibrate and standardize in accordance with ATM 411.
- Compaction equipment that meets the requirements of the contract and of sufficient size and compaction energy to compact the material.

4. Site Preparation
1. The engineer will designate the location and the size of the control strip, as well as minimum compaction equipment to be used.
2. The subgrade will be compacted to a minimum density equal to that required for the material being tested. When the compaction is complete, the Engineer will approve the surface.
3. A representative lift of the material being evaluated will be placed and prepared for compaction.

5. Procedure
1. Attention should be paid to the requirements of the product being placed so that any binder content, temperature and/or moisture requirements are maintained in an acceptable range.
2. A minimum of 3 test locations will be selected within the control strip. The locations will be in the middle 1/2 of the control strip and at least 12 in from the edge of the control strip. The Engineer will select test locations.
3. The locations will be marked in such a way as not to be lost during the compaction of the control strip. This can be accomplished by marking the side of the strip with stakes or surveyors tape, or by marking with paint beside the location on the control strip.
4. Care should be taken when choosing and preparing the test location so that it is flat and the surface voids filled. If necessary, use a small quantity of dry sand to fill the voids. This layer will in no case be more than 1/8 in in depth.
5. Tests shall be taken in backscatter mode. A test will consist of one 1 minute reading or the average of two 15 second readings (fast mode). Record all readings of wet density and moisture content. In the case of the 15 second readings calculate the average wet density determination at each location.
6. After the first pass with the compaction equipment, an initial density test is taken and recorded.

Note 1: One pass of the roller will be defined as one roll over the location.
7. After each subsequent pass and for each piece of compaction equipment used, a test is taken at each location and recorded.

8. Continue the compaction and testing cycle until there is a pass with less than 16 kg/m³ (1 lb/ft³) increase in the average dry density of the test locations; and a second consecutive pass with less than 16 kg/m³ (1 lb/ft³) increase in the average density of the test locations.

 Note 2: If additional passes are performed there is risk that the treated mix will check or crack.

9. Select ten random locations on the completed control strip and test by averaging two one minute counts at each location in accordance with ATM 411. Average the results from the ten locations and this value will be the relative standard density for this material.

 Note 3: It may be necessary to repeat the procedure for additional roller types depending on the material to be tested and the requirements of sequencing for the finished surface.

10. Additional control strips may be required if there are changes in the material, lift thickness or compaction equipment.

6. Calculations

The Relative Standard Density value will be calculated as follows:

\[
D_s = \frac{A_1 + A_2 + A_3 + A_4 + A_5 + A_6 + A_7 + A_8 + A_9 + A_{10}}{10}
\]

Where:

- \(D_s\) = Relative Standard Density for the material.
- \(A_n\) = Average Density for random test location \(n\).

7. Report

- Report the average wet density for each pass
- Report the relative standard wet density to the nearest 0.1 lb/ft³
Following are guidelines for the use of WAQTC TM 11 by the State of Alaska DOT&PF.

1. While saw cutting is the preferred method, the different layers in a core may be separated by freezing and use of a chisel and hammer or by use of a hammer and chisel alone if a saw is not available. Care must be taken to protect the core from deformation or damage during the separation. If the core is deformed or damaged, it must be discarded and a new core taken.

2. Core locations – Joint cores shall be centered on the longitudinal joint. Mat cores shall be located at least 12” from all joints and outside pavement edge.

3. Core Locations – core locations shall be independent of other sampling.

4. When determining mat depth (thickness), determine and record the length (height) of the core to 5 mm (¼”) in three places and record the average.

5. Damaged cores shall be replaced by cores located within 12” of the original test.

6. When material is sampled by other than DOT&PF personnel or their agent(s), the sampling must be witnessed and possession taken immediately by DOT&PF personnel or their agent(s).
1. Scope

- This method describes the process for removal of a core sample of hot mix asphalt (HMA) from a pavement for laboratory testing. Cores may range in diameter from 2 in. to 12 in.
- The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.
- Safety—This method does not purport to address all of the safety problems associated with its use. This test method involves potentially hazardous conditions.

2. Significance and Use

- Samples obtained in accordance with the procedure may be used for measuring pavement thickness and density. Additional testing may be performed as required by the agency.
- When cores are used to determine gauge correlation use:
 - WAQTC TM 8 for nuclear gauges
 - AASHTO T 343 for electronic gauges
- When cores are used to determine pavement density, the Bulk Specific Gravity (G_{mb}) is determined according to WAQTC FOP for AASHTO T 166.

3. Apparatus

- Coring Machine – A motor driven core machine shall be used to obtain the sample. The device shall be capable of obtaining a core to the full depth of the HMA and mounted on a platform such that the core barrel is perpendicular to the pavement during the cutting process. A Core Drill Machine of sufficient horsepower and depth to minimize distortion of the compacted cores of HMA.
- Core Bit – The cutting edge of the core drill bit shall be of hardened steel or other suitable material with diamond chips embedded in the metal cutting edge. The core barrel inside diameter shall be as specified.
- Separation Equipment – A saw or other method(s) that provides a clean smooth plane representing the layer to be tested without damaging the specimen.
- Retrieval Device – A device for removing core samples that will preserve the integrity of the core. The device may be a steel rod of suitable length and with a diameter that will fit into the space between the core and the pavement material. There may be a 90 degree bend at the top to form a handle and a 90 degree bend at the bottom, approximately 2 in. (50 mm) long, forming a hook to assist in the retrieval of the core or other suitable device.

4. Material

Cooling agent such as: water, ice, dry ice, or liquid nitrogen.

5. Test Site Location

- The number of cores obtained shall be determined by the test procedure or agency requirements.
- Core location(s) shall be determined by the Department.
6. Procedure

1. For freshly compacted HMA, the core shall be taken when the material has had sufficient amount of time to cool to prevent damage to the core.

2. To accelerate the coring process, a cooling agent may be used.

3. Place the coring machine such that the core bit is over the selected location.

4. Position the coring machine above the selected location. Engage power and water or air source to coring machine. Slowly advance bit until contact with the HMA surface.

5. Keep the core bit perpendicular to the HMA surface applying constant pressure during the process.

 Note 1: If any portion of the coring machine shifts during the operation, the core may break or distort. Failure to apply constant pressure, or too much pressure, may cause the bit to bind or distort the core.

6. Apply constant downward pressure on the core bit. Failure to apply constant pressure, or too much pressure, may cause the bit to bind or distort the core.

7. Continue the coring operation until the desired depth is achieved.

8. Use a retrieval device to obtain the core.

 Note 2: If the core is damaged to a point that it cannot be used for its intended purpose, a new core shall be obtained within 6 in. of the original location.

9. Clearly label the core.

7. Filling Core Holes

Fill the hole made from the coring operation with HMA, non-shrink grout, or other suitable material. Consolidate or compact the material in the hole, multiple lifts may be required. Ensure that the final surface is level with the surrounding surface.

8. Transporting

- Transport cores in a manner that prevents damage from jarring, rolling or impact with any object.
- Prevent cores from freezing or from excessive heat, 54° C (130° F), during transport.

 Note 3: In extreme ambient temperature conditions, an insulated container should be used during transport.
- If the core is damaged in transport to a point it cannot be utilized for its intended purpose the core will not be used.

9. Layer Separation

Separate two or more pavement courses, lifts, or layers; on the designated lift line using appropriate separation equipment.

Note 4: Lift lines are often more visible by rolling the core on a flat surface.

10. Thickness Determination

Measure the thickness of the designated lift to 0.10 in. (3 mm). Three or more measurements shall be taken around the lift and averaged.
11. Report

- On forms approved by the Department
- Date the cores were obtained
- Paving date
- Coring location
- The lift / layer being evaluated
- Material type
- Average thickness
ATM 414 Anti-Strip Requirements of Hot Mix Asphalt

1. Scope
This method describes a procedure for determining the retention of a bituminous film by aggregate in the presence of water. It is applicable to asphalt cements, cutback asphalts and emulsified asphalts.

2. Apparatus
- Balance or scale: Capacity sufficient for the principle sample mass, readable to 0.1 percent of the total sample mass and meeting the requirements of AASHTO M 231.
- Thermostatically controlled oven capable of maintaining any required constant temperature between 49-150 ±1°C (120-300 ±2°F).
- A 9.5 mm (⅜”) and a 4.75 mm (No. 4) mm sieve conforming to AASHTO M 92.
- 600 mL beakers, low form glass or plastic type.
- Thermostatically controlled water bath capable of maintaining a temperature of 49 ±1°C (120 ±2°F).
- Miscellaneous equipment including a steel spatula with stiff blade (approximately ½” wide x 4” long (12.5 mm x 100 mm), glass or plastic containers for mixing samples, and air-tight containers of suitable size for storing bitumen and anti-strip mixtures.

3. Sample Preparation
1. Aggregate:
 a. The test aggregate shall be processed in the same manner as that which would be used during the construction process.
 b. Dry the aggregate to a constant weight in accordance with WAQTC FOP for AASHTO T 255.
 c. Separate the aggregate by sieving to obtain the minus 9.5 mm (⅜”) plus (No. 4) material. Reduce this material, in accordance with WAQTC FOP for AASHTO T 248, Method A, to obtain approximately 1200 g.
2. Anti-stripping additive used in testing will be the same brand and type proposed for use on the project.
3. Bitumen and/or emulsified asphalts will be the same type and grade proposed for use in mix design.

4. Procedure
1. For asphalt cement and/or cutback asphalt samples:
 a. Thoroughly mix the bitumen samples with the anti-strip additive in the proportions of 0.25 percent, 0.50 percent, and 0.75 percent or as required. If necessary to store this mixture, use airtight containers.

 Note 1: After the additive is added to the bitumen standards they shall not be reheated in excess of preheat temperatures as outlined in (1) and (2) below.
 b. Make up 1 or more aggregate specimens per additive content by placing 100 ± 1 g of the aggregate to be tested into individual mixing containers.
c. Preheat aggregate specimens to the temperature of the respective bitumen below:

 (1) Asphalt cements: Preheat in oven at a temperature within the binders mixing temperature range for no longer than 30 minutes.

 (2) Cut-back asphalts:

 Grades 30 to 250. No preheat required.

 Grades 800 to 3000: Preheat at 60-90º C (140-195° F) for no longer than 30 minutes.

d. Preheat the bitumen at the respective temperatures above until it can be poured.

e. Add 5.5 ±0.5 g of bitumen-additive mixture to the aggregate specimen(s).

f. Mix the bitumen and aggregate thoroughly until uniformly coated.

g. The bitumen-aggregate specimen(s) shall be oven-cured at a temperature 60 ± 1º C (140 ±2° F) for a minimum of 18 hours but no more than 24 hours.

h. Remove the sample(s) from the oven and re-mix to obtain a uniform coating. Allow the specimen(s) to cool to a temperature of 49ºC (120°F) or less.

i. Place 50 ±1 g of each of the coated aggregates into individual 600 ml. beakers.

j. Add 400 mL distilled water, cover and place in an oven or water bath maintained at 49 ±1ºC (120 ±2°F) for 24 hours. If a water bath is used, the container(s) shall not be submerged so as to allow bath water into the beakers.

2. For emulsified asphalts (anionic/cationic):

 Important: Anti-stripping additive will not be used with emulsified asphalts.

 a. Preheat the emulsified asphalt to 38 ± 1°C (100 ± 2°F). Mix the asphalt thoroughly.

 b. Make up 3 aggregate samples by placing 100 ± 1 g of the aggregate into individual containers.

 c. Preheat aggregate specimens to the emulsified asphalt preheat temperature listed in Step 1.c (2).

 d. Add 8.0 ± 0.5 g of each emulsion to the 100 g samples of aggregate and mix until the stones are uniformly coated.

 e. The emulsion-coated aggregate shall be cured at 132 ± 3ºC (270 ± 5°F) for a minimum of 18 hours but no more than 24 hours.

 f. Follow Steps 1.h thru 1.j.

5. Observations

 1. Without disturbing or agitating the coated aggregate, remove any film floating on the water surface.

 2. By observation through the water from above, estimate to the nearest 10 percent of the total visible surface area the aggregate coated with bitumen. Any thin brownish translucent areas are to be considered fully coated.

 3. Average the results if more than one specimen was prepared for each additive content.
6. **Report**

- Report the results on Department forms. The results will include the following:
 - The visible bitumen/emulsion-covered area estimated to the nearest 10 percent for each additive content tested.
 - The lowest percentage of additive required to obtain a 70 percent bitumen coating on the aggregate.
 - Type and grade of bitumen/emulsion used.
 - Brand of anti-stripping agent use.
HOT MIX ASPHALT (HMA) SPECIMENS BY MEANS OF THE SUPERPAVE GYRATORY COMPACTOR FOP FOR AASHTO T 312

1. Scope
This procedure covers preparing specimens, using samples of plant produced HMA, for determining the mechanical and volumetric properties of HMA in accordance with AASHTO T 312.

2. Apparatus
- Superpave Gyratory Compactor (SGC) meeting the requirements of AASHTO T 312
- Molds meeting the requirements of AASHTO T 312
- Chute, mold funnel or both (Optional)
- Scale meeting the requirements of AASHTO M 231 Class G 5
- Oven, thermostatically controlled, capable of maintaining set temperature within ±3°C (±5°F)
- Thermometers accurate to ±1°C (±2°F) between 10 and 232°C (50 - 450°F)

 Note 1: Non-Contact thermometers are not acceptable.
- Miscellaneous pans, spoons, spatulas, hot pads, gloves, paper discs, markers, etc.

3. Equipment Requirements
The calibration shall be performed on the SGC per the Manufacturer’s instructions. See agency requirements for the calibration frequency.

The mold and base plate dimensions shall be checked every twelve months or 80 hours of operation to determine that they are within the tolerances listed in AASHTO T 312.

4. Equipment Preparation
Prepare the equipment in accordance with manufacturer’s recommendations. At a minimum preparation includes:
- Warm-up gyratory compactor
- Verify machine settings
 - Internal Angle: 1.16 ±0.02°
 - Ram Pressure: 600 kPa ±18 kPa
 - Number of gyrations

 Note 2: The number of gyrations (Ndes) is obtained from the Job Mix Formula (JMF).
- Lubricate bearing surfaces
- Prepare recording device as required
5. Sample Preparation

Laboratory Prepared HMA

This is a sample produced during the Mix Design process using aggregate and binder that is combined in the laboratory. When designing HMA mixes using the gyratory compactor refer to AASHTO T 312.

Plant Produced HMA

- Determine initial sample size, number of gyrations (N_{des}), and compaction temperature range from the Job Mix Formula (JMF).
- Obtain the sample in accordance with the FOP for AASHTO T 168.
- Reduce the sample in accordance with the FOP for AASHTO R 47.
- The sample size should be such that it results in a compacted specimen that is 115 ±5 mm at the desired number of gyrations.

 Note 4: Replicate specimens are generally prepared. Refer to agency requirements.

If the material is not in the compaction temperature range:

1. Place the appropriate sample mass into a container.
2. Spread to a depth of 1 to 2 in. for even heating of mixture.
3. Place in the oven until compaction temperature is reached.

 Note 5: The material properties may be altered when the times of delivery of the test sample and the placement of the material on the roadway are different.

6. Compaction Procedure

Follow the manufacturer’s recommended loading procedure. This may require the steps below to be performed in a different order. Steps 1 through 8 must be performed before the sample and mold cools below compaction temperature.

1. Remove pre-heated mold and plate(s) from the oven (verify mold and plate(s) has been cleaned if previously used).
2. Place the base plate and paper disc in bottom of mold.
3. Place the mix into the mold in a single lift (care should be taken to avoid segregation or loss of material).
4. Level the mix in the mold.
5. Place a paper disc and the heated upper plate (if required) on top of the leveled sample.
6. Load the mold into the compactor; check settings.
7. Start the compaction process.
 a. Check the pressure (600 ±18 kPa).
b. Check the angle (1.16 ±0.02°).

8. Upon completion of the compaction process and record the number of gyrations and specimen height.

 Note 6: If the specimen is not 115 ±5mm follow agency requirements.

9. Extrude the specimen from the mold; a brief cooling period may be necessary before fully extruding some specimens to ensure the specimens are not damaged.

 Note 7: Clean molds after each use.

10. Carefully remove the paper discs.

11. Cool the compacted specimen to room temperature.

12. Identify the specimen with chalk or other marker.

7. Report

- On forms approved by the Department
- Number of gyrations
- Specimen height
This page intentionally left blank.
1. Scope
This procedure covers the determination of volumetric properties of plant produced Hot Mix Asphalt, i.e., air voids (Va), voids in mineral aggregate (VMA), voids filled with asphalt binder (VFA), effective asphalt binder content (Pbe) and Dust to Binder Ratio (P_{0.075}/P_{be}). The in-production volumetric properties are then compared to agency specifications.

2. Definition of Terms
- G_{mm} = theoretical maximum specific gravity (Gravity mix max)
- G_{mb} = measured bulk specific gravity (Gravity mix bulk)
- G_{sb} = oven-dry bulk specific gravity of aggregate (Gravity stone bulk)
- G_{sa} = apparent specific gravity of aggregate (Gravity stone apparent)
- G_{se} = effective specific gravity of aggregate (Gravity stone effective)
- G_{b} = specific gravity of the binder (Gravity binder)
- V_{a} = air Voids (Voids air)
- VMA = Voids in Mineral Aggregate
- VFA = Voids Filled with Asphalt (binder)
- V_{ba} = absorbed binder volume (Voids binder absorbed)
- V_{be} = effective binder volume (Voids binder effective)
- P_{b} = percent binder content (Percent binder)
- P_{ba} = percent absorbed binder (Percent binder absorbed)
- P_{be} = percent effective binder content (Percent binder effective)
- P_{s} = percent of aggregate (Percent stone)
- DP = Dust proportion to effective binder ratio (P_{0.075}/P_{be})

3. Background
Whether a mix design is developed through a Marshall, Hveem, or Superpave mix design process there are basic volumetric requirements of all. Volumetric properties are the properties of a defined material contained in a known volume. HMA Volumetric properties can include bulk specific gravity, theoretical maximum specific gravity, air voids, and voids in mineral aggregate.

Many agencies specify values of the volumetric properties to ensure optimum performance of the pavement. The HMA must be designed to meet these criteria. In production the HMA is evaluated to determine if the mix still meet the specifications and is consistent with the original mix design (JMF). The production HMA may vary from the mix design and may need to be modified to meet the specified volumetric criteria.
To compare the in-production volumetric properties to agency specifications and the JMF a sample of loose HMA mix is obtained in accordance with FOP for AASHTO T 168. The sample is then compacted in a gyratory compactor to simulate the in-place HMA pavement after it has been placed, compacted, and the volumetric properties of the compacted sample are determined.

HMA Phase Diagram

Each of the properties in the HMA phase diagram can be measured or calculated. For example: The mass of the aggregate is measured; the voids in mineral aggregate (VMA) is calculated; total asphalt binder can be measured but the amount available to act as a binder in the mix must be calculated because it is the quantity left after the aggregate has absorbed some of the asphalt binder.

The volumetric proportions of the asphalt binder and aggregate components of an asphalt mixture and their relationship to the other components are considered. The mass of the components and their specific gravities are used to determine the volumes of each of the components in the mix. The volumetric properties of a compacted HMA paving mixture: air voids (V_a), voids in mineral aggregate (VMA), voids filled with asphalt binder (VFA), and effective asphalt binder content (P_{be}) provide some indication of the mixtures probable performance.
Volumetric Properties
Volumetric Relationship of HMA Constituents

4. Required Values

The specific gravities listed in Table 1 and the percent by mass of each of the components in the HMA are needed to determine the volumetric properties. Other values required are also listed. Some of these values are obtained from the JMF and some are measured from a plant produced HMA sample.

<table>
<thead>
<tr>
<th>Data</th>
<th>Test Method</th>
<th>Obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_{sb} - combined aggregate bulk specific gravity</td>
<td>AASHTO T 84 / T 85 or agency approved test method</td>
<td>JMF or performed at the beginning of placement</td>
</tr>
<tr>
<td>G_b – measured specific gravity of the asphalt binder</td>
<td>AASHTO T 228</td>
<td>JMF or from the supplier</td>
</tr>
<tr>
<td>G_{mm} – measured maximum specific gravity of the loose mix</td>
<td>FOP for AASHTO T 209</td>
<td>Performed on the field test sample</td>
</tr>
<tr>
<td>G_{mb} – measured bulk specific gravity of the compacted paving mix</td>
<td>FOP for AASHTO T 166</td>
<td>Performed on the field compacted specimen</td>
</tr>
<tr>
<td>P_b – percent asphalt binder</td>
<td>FOP for AASHTO T 308</td>
<td>Performed on the field test sample</td>
</tr>
<tr>
<td>$P_{<200}$ – aggregate passing the #200 (0.075 mm) sieve</td>
<td>FOP for AASHTO T 30</td>
<td>Performed on the field test sample</td>
</tr>
</tbody>
</table>
5. **Air Voids** (V_a)

Air voids are the total volume of the small pockets of air between the coated aggregate particles throughout a compacted paving mixture. Appropriate air voids contribute to the stability of the HMA and help the pavement withstand the combined action of environment and traffic loads. The designated percent air voids allows for thermal expansion of the asphalt binder and contributes a cushion for future compaction. Air voids are expressed as a percent of the bulk volume of the compacted mixture (G_{mb}) when compared to the maximum specific gravity (G_{mm}).

$$V_a = 100 \left(\frac{(G_{mm} - G_{mb})}{G_{mm}} \right)$$

Where:
- V_a = air voids in compacted mixture, percent of total volume (report to 0.1)
- G_{mm} = maximum specific gravity of paving mixture (AASHTO T 209)
- G_{mb} = bulk specific gravity of compacted mixture (AASHTO T 166)

6. **Percent Aggregate (Stone) (P_s)**

P_s is the percent aggregate (stone) content, expressed as a percentage of the total mass of the sample.

$$P_s = 100 - P_b$$

Where:
- P_s = percent aggregate (stone) (report to 0.1) percent by total weight
- P_b = asphalt binder content (AASHTO T 308)

7. **Voids in the Mineral Aggregate** (VMA)

VMA is the volume of intergranular void space between the aggregate particles of the compacted paving mixture that includes the air voids and the effective binder content, expressed as a percent of the total volume of the sample.

$$VMA = 100 - \left(\frac{(G_{mb} \times P_s)}{G_{sb}} \right)$$

Where:
- VMA = voids in mineral aggregate, percent of bulk volume (report to 0.1)
- G_{sb} = bulk specific gravity of combined aggregate (AASHTO T 85 / T 84 or agency approved method from Job Mix Formula)
- G_{mb} = bulk specific gravity of compacted mixture (AASHTO T 166)
- P_s = aggregate content, percent by total weight = 100 – P_b
- P_b = asphalt binder content (AASHTO T 308) percent by total weight

8. **Voids Filled with Asphalt (binder)** (VFA)

VFA is the volume of space between the aggregate particles of the compacted paving mixture filled with asphalt binder, expressed as a percent of the total volume of the sample. The VFA increases as the asphalt binder content increases as it is the percent of voids that are filled with asphalt which doesn’t include the absorbed asphalt.

$$VFA = 100 \left(\frac{(VMA - V_a)}{VMA} \right)$$

Where:
- VFA = voids filled with asphalt, percent of VMA (report to 1)
- VMA = voids in mineral aggregate, percent of bulk volume
- V_a = air voids in compacted mixture, percent of total volume.
9. Effective Specific Gravity of the Aggregate (Stone) (G_{se})

The G_{se} is used to quantify the asphalt binder absorbed into the aggregate particle. This is a calculated value based on the specific gravity of the mixture, G_{mm}, and the specific gravity of the asphalt binder, G_b. This measurement includes the volume of the aggregate particle plus the void volume that becomes filled with water during the test soak period minus the volume of the voids that absorb asphalt binder. Effective specific gravity lies between apparent and bulk specific gravity.

G_{se} is formally defined as the ratio of the mass in air of a unit volume of a permeable material (excluding voids permeable to asphalt binder) at a stated temperature to the mass in air (of equal density) of an equal volume of gas-free distilled water at a stated temperature.

\[
G_{se} = \frac{P_s}{\left(\frac{100}{G_{mm}} - \frac{P_b}{G_b}\right)}
\]

Where:
- G_{se} = effective specific gravity of combined aggregate (report to 0.001)
- P_s = aggregate content, percent by total weight = 100 – P_b
- G_{mm} = maximum specific gravity of mix (AASHTO T 209)
- P_b = asphalt binder content (AASHTO T 308) percent by total weight
- G_b = specific gravity of asphalt binder (JMF or asphalt binder supplier)

10. Percent of Absorbed (asphalt) Binder (P_{ba})

P_{ba} is the total percent of the asphalt binder that is absorbed into the aggregate, expressed as a percentage of the mass of aggregate rather than as a percentage of the total mass of the mixture. This portion of the asphalt binder content does not contribute to the performance of the mix.

\[
P_{ba} = 100 \left[\frac{G_{se} - G_{sb}}{(G_{sb} \times G_{se})}\right] G_b
\]

Where:
- P_{ba} = absorbed asphalt binder (report to 0.1) percent of aggregate
- G_{se} = effective specific gravity of combined aggregate
- G_{sb} = bulk specific gravity of combined aggregate (AASHTO T 85 / T 84 or agency approved method from Job Mix Formula)
- G_b = specific gravity of asphalt binder (JMF or asphalt binder supplier)

11. Percent of Effective (asphalt) Binder (P_{be})

P_{be} is the total asphalt binder content of a paving mixture minus the portion of asphalt binder that is lost by absorption into the aggregate particles, expressed as a percentage of the mass of aggregate. It is the portion of the asphalt binder content that remains as a coating on the outside of the aggregate particles. This is the asphalt content that controls the performance of the mix.

\[
P_{be} = P_b - \left[\frac{P_{ba} \times P_s}{100\times P_s}\right]
\]

Where:
- P_{be} = effective asphalt binder content (report to 0.01), percent by total weight
- P_s = aggregate content, percent by total weight = 100 – P_b
- P_b = asphalt binder content (AASHTO T 308) percent by total weight
- P_{ba} = absorbed asphalt binder
12. Dust Proportion – DP (Dust to Effective (asphalt) Binder Ratio)

The DP is the percent passing the No. 200 sieve of the gradation divided by the percent of effective asphalt binder. Excessive dust reduces asphalt binder film thickness on the aggregate which reduces the durability. Insufficient dust may allow excessive asphalt binder film thickness, which may result in a tender, unstable mix.

\[
DP = \frac{P_{-200}}{P_{be}}
\]

Where:
\[
DP = \text{Dust Proportion, (dust-to-binder ratio) (report to 0.01)}
\]
\[
P_{-200} = \text{aggregate passing the -#200 (0.075 mm) sieve, percent by mass of aggregate (AASHTO T 30)}
\]
\[
P_{be} = \text{effective asphalt binder content, percent by total weight}
\]

13. Mix Design and Production Values

Job Mix Formula

Table 2 includes example data required from the JMF. Some of these values are used in the example calculations.

Note: Some of the targets may change after the HMA is in production based on field test data.

Table 2

<table>
<thead>
<tr>
<th>JMF Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt binder grade</td>
<td>PG 64-28</td>
</tr>
<tr>
<td>N\text{_values}</td>
<td></td>
</tr>
<tr>
<td>$N_{\text\text{ini}}$</td>
<td>7</td>
</tr>
<tr>
<td>$N_{\text\text{des}}$</td>
<td>75</td>
</tr>
<tr>
<td>$N_{\text\text{max}}$</td>
<td>115</td>
</tr>
<tr>
<td>G_{sb} (combined specific gravity of the aggregate)</td>
<td>2.678</td>
</tr>
<tr>
<td>Target P$_b$</td>
<td>4.75%</td>
</tr>
<tr>
<td>Initial sample mass for gyratory specimens</td>
<td>4840 grams</td>
</tr>
<tr>
<td>Mixing temperature range</td>
<td>306 – 312 °F</td>
</tr>
<tr>
<td>Laboratory compaction temperature range</td>
<td>286 – 294 °F</td>
</tr>
<tr>
<td>G_{b} (specific gravity of the asphalt binder)</td>
<td>1.020</td>
</tr>
<tr>
<td>Target gradation</td>
<td></td>
</tr>
<tr>
<td>Sieve Size mm (in.)</td>
<td>Percent Passing</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>85</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>80</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>50</td>
</tr>
<tr>
<td>2.36 (No. 8)</td>
<td>30</td>
</tr>
<tr>
<td>01.18 (No. 16)</td>
<td>25</td>
</tr>
<tr>
<td>0.600 (No. 30)</td>
<td>15</td>
</tr>
<tr>
<td>0.300 (No. 50)</td>
<td>10</td>
</tr>
<tr>
<td>0.150 (No. 100)</td>
<td>7</td>
</tr>
<tr>
<td>75 µm (No. 200)</td>
<td>5.0</td>
</tr>
</tbody>
</table>
14. Sample Test Result

Tables 3 and 4 include data from test results performed on a field sample of HMA used in the example calculations.

Table 3

<table>
<thead>
<tr>
<th>Field Data</th>
<th>Test method</th>
<th>Example values</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_b</td>
<td>FOP for AASHTO T 308</td>
<td>4.60%</td>
</tr>
<tr>
<td>$G_m m$</td>
<td>FOP for AASHTO T 166</td>
<td>2.467</td>
</tr>
<tr>
<td>$G_m m$</td>
<td>FOP for AASHTO T 209</td>
<td>2.516</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Sieve Analysis</th>
<th>FOP for AASHTO T 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieve Size mm (in.)</td>
<td>Percent Passing</td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>86</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>77</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>51</td>
</tr>
<tr>
<td>2.36 (No. 8)</td>
<td>34</td>
</tr>
<tr>
<td>0.18 (No. 16)</td>
<td>23</td>
</tr>
<tr>
<td>0.600 (No. 30)</td>
<td>16</td>
</tr>
<tr>
<td>0.300 (No. 50)</td>
<td>12</td>
</tr>
<tr>
<td>0.150 (No. 100)</td>
<td>8</td>
</tr>
<tr>
<td>75 µm (No. 200)</td>
<td>4.9</td>
</tr>
</tbody>
</table>

15. Sample Calculations

Air Voids (V_a)

\[
V_a = 100 \left[\frac{(G_{m m} - G_{m b})}{G_{m m}} \right]
\]

\[
V_a = 100 \left[\frac{(2.516 - 2.415)}{2.516} \right] = 4.0\%
\]

Given:

$G_{m m} = 2.516$

$G_{m b} = 2.415$

Percent Aggregate (Stone) (P_s)

\[
P_s = 100 - P_b
\]

\[
P_s = 100 - 4.60\% = 95.40\%
\]

Given:

$P_b = 4.60\%$
Voids in the Mineral Aggregate (VMA)

\[VMA = 100 - \left(\frac{G_{mb} \times P_s}{G_{sb}} \right) \]

\[VMA = 100 - \left(\frac{2.415 \times 95.40\%}{2.678} \right) = 13.96\% \]

Given:
\[G_{sb} = 2.678 \]

Voids Filled with Asphalt (binder) (VFA)

\[VFA = 100 \left(\frac{VMA - V_a}{VMA} \right) \]

\[VFA = 100 \left(\frac{13.96\% - 4.0\%}{13.96\%} \right) = 71\% \]

Effective Specific Gravity of the Aggregate (Stone) \((G_{se})\)

\[G_{se} = \frac{P_s}{\left[\frac{100}{G_{mm}} - \frac{P_b}{G_b} \right]} \]

\[G_{se} = \frac{100 - 4.60\%}{2.516} = \frac{95.40}{39.7456 - 4.5098\%} = 2.707 \]

Given:
\[G_b = 1.020 \]

Percent of Absorbed (asphalt) Binder \((P_{ba})\)

\[P_{ba} = 100 \left(\frac{G_{se} - G_{sb}}{G_{sb} \times G_{se}} \right) G_b \]

\[P_{ba} = 100 \left(\frac{2.707 - 2.678}{2.678 \times 2.707} \right) 1.020 = \]

\[P_{ba} = 100 \left(\frac{0.0290}{7.2493} \right) 1.020 = 0.41\% \]
Percent of Effective (asphalt) Binder

\[\frac{P_{ba}}{100} \times P_s \]

\[P_{be} = P_b - \left[\frac{P_{ba}}{100} \times P_s \right] \]

\[P_{be} = 4.6 - \left[\frac{0.41\%}{100} \times (100 - 4.60\%) \right] = 4.21\% \]

Dust Proportion – DP (Dust to Effective (asphalt) Binder Ratio)

\[DP = \frac{P_{-#200}}{P_{be}} \]

\[DP = \frac{4.9\%}{4.21\%} = 1.16 \]

Given:

P-#200 = 4.9\%

16. Report
- Results on forms approved by the Department
- Air Voids, Vₐ to 0.1 percent
- Voids in the Mineral Aggregate, VMA to 0.1 percent
- Voids Filled with Asphalt, VFA to nearest whole value
- Effective Specific Gravity of Aggregate (stone), Gₑ to 0.001
- Percent of Absorbed Asphalt (binder), Pₐ to 0.01
- Percent Effective (asphalt) Binder, Pₑ to 0.01
- Dust Proportion, DP to 0.01
APPENDIX - FORMULAS

Air Voids \((V_a)\)

\[
V_a = 100 \left(\frac{G_{mm} - G_{mb}}{G_{mm}} \right)
\]

Where:
- \(V_a\) = air voids in compacted mixture, percent of total volume (report to 0.1)
- \(G_{mm}\) = maximum specific gravity of paving mixture (AASHTO T 209)
- \(G_{mb}\) = bulk specific gravity of compacted mixture (AASHTO T 166)

Percent Aggregate (Stone) \((P_s)\)

\[
P_s = 100 - P_b
\]

Where:
- \(P_s\) = percent aggregate (stone) (report to 0.1) percent by total weight
- \(P_b\) = asphalt binder content (AASHTO T 308)

Voids in the Mineral Aggregate \((VMA)\)

\[
VMA = 100 - \left(\frac{G_{mb} \times P_s}{G_{sb}} \right)
\]

Where:
- \(VMA\) = voids in mineral aggregate, percent of bulk volume (report to 0.1)
- \(G_{sb}\) = bulk specific gravity of combined aggregate (AASHTO T 85 / T 84 or agency approved method from Job Mix Formula)
- \(G_{mb}\) = bulk specific gravity of compacted mixture (AASHTO T 166)
- \(P_s\) = aggregate content, percent by total weight = 100 – \(P_b\)
- \(P_b\) = asphalt binder content (AASHTO T 308) percent by total weight

Voids Filled with Asphalt (binder) \((VFA)\)

\[
VFA = 100 \left[\frac{(VMA - V_a)}{VMA} \right]
\]

Where:
- \(VFA\) = voids filled with asphalt, percent of VMA (report to 1)
- \(VMA\) = voids in mineral aggregate, percent of bulk volume
- \(V_a\) = air voids in compacted mixture, percent of total volume.

Effective Specific Gravity of the Aggregate (Stone) \((G_{se})\)

\[
G_{se} = \frac{P_s}{\left(\frac{100}{G_{mm}} - \frac{P_b}{G_b} \right)}
\]

Where:
- \(G_{se}\) = effective specific gravity of combined aggregate (report to 0.001)
- \(P_s\) = aggregate content, percent by total weight = 100 – \(P_b\)
- \(G_{mm}\) = maximum specific gravity of mix (AASHTO T 209)
- \(P_b\) = asphalt binder content (AASHTO T 308) percent by total weight
- \(G_b\) = specific gravity of asphalt binder (JMF or asphalt binder supplier)
Percent of Absorbed (asphalt) Binder (P_{ba})

$$P_{ba} = 100 \left[\frac{(G_{se} - G_{sb})}{(G_{sb} \times G_{se})} \right] G_b$$

Where:
- P_{ba} = absorbed asphalt binder (report to 0.1) percent of aggregate
- G_{se} = effective specific gravity of combined aggregate
- G_{sb} = bulk specific gravity of combined aggregate (AASHTO T 85 from Job Mix Formula)
- G_b = specific gravity of asphalt binder (JMF or asphalt binder supplier)

Percent of Effective (asphalt) Binder (P_{be})

$$P_{be} = P_b - \left(\frac{P_{ba}}{100} \times P_s \right)$$

Where:
- P_{be} = effective asphalt binder content (report to 0.01), percent by total weight
- P_s = aggregate content, percent by total weight = 100 – P_b
- P_b = asphalt binder content (AASHTO T 308) percent by total weight
- P_{ba} = absorbed asphalt binder

Dust Proportion – DP (Dust to Effective (asphalt) Binder Ratio)

$$D_p = \frac{P_{-#200}}{P_{be}}$$

Where:
- D_p = Dust Proportion, (dust-to-binder ratio)
- $P_{-#200}$ = aggregate passing the -#200 (0.075 mm) sieve, percent by mass of aggregate (AASHTO T 30)
- P_{be} = effective asphalt binder content, percent by total weight
1. **Scope**

This method describes the Marshall Mix Design procedure for determining the optimum asphalt content, stability, flow and void properties of hot bituminous mixtures containing; aggregates with maximum sizes of (1") or less, Recycled Asphalt Pavements (RAP), mixes utilizing rubber, and Warm Mix Asphalt (WMA). This method is adapted from the Asphalt Institute "Mix Design Methods for Asphalt Concrete and Other Hot Mix Types", Manual Series No. 2 (MS-2). It also includes information and procedures from AASHTO T 245 and AASHTO R 30 Apparatus.

2. **Significance**

Aggregate properties important to bituminous mixes shall be determined as required. For Hot Mix Asphalt (HMA) mixes this will include: gradation of each submitted aggregate and, after combining according to the proposed Job Mix Formula (JMF), the plasticity index, fracture, flat & elongated, and bulk specific gravity of the coarse & fine aggregate. For Stone Mastic Asphalt (SMA) mixes, in addition to the tests listed for HMA mixes, the unit mass of the combined coarse aggregate and the apparent specific gravity of the mineral filler will be required.

A minimum of four (4) sets of three (3) specimens each, shall be prepared, mixed and compacted at different asphalt contents. These asphalt contents shall be by mass of total mix and will be at 0.5 percent increments. These specimens will be tested for Unit Mass, Marshall Stability & Flow, Percent Air Voids in Total Mix (VTM), Percent Voids in Mineral Aggregate (VMA), Percent Voids Filled with Asphalt (VF), and (for SMA mixes) Voids in Coarse Aggregate (VCA). The final results will define the VTM over that parameters specification range and should define the maximum values of the Stability and Unit Mass of the mix and the minimum value for VMA.

Three (3) specimens shall be prepared, mixed and tested to determine the maximum specific gravity in accordance with WAQTC FOP for AASHTO T 209.

Calibration specimens will be prepared as required by the Acceptance testing program for the project. The calibrations may include any of the following:

- JMF Calibration Points for the Nuclear Asphalt Content Gauge for ATM 405.
- Ignition Furnace Calibration Points for each Ignition Furnace System for WAQTC FOP for AASHTO T 308.

When RAP is incorporated in the mix design, an extraction device as described in AASHTO T 164 is required to determine the asphalt content and the aggregate properties of the RAP proposed for use in the mix. The contractor will submit asphalt content and gradations from 10 representative samples collected from the proposed RAP source. The contractor will submit 3 representative samples to be tested for verification of the contractors asphalt content and gradation properties for the stockpile.

3. **Apparatus**

- Ovens and hot plates thermostatically controlled to maintain the various required temperatures within ± 3°C (5°F).
- Temperature measuring devices:
 - For asphalt cement and mixes: having a range of 10-200°C (50-400°F) and sensitive to 3°C (5°F).
 - For the water bath: readable and sensitive to ± 0.2°C (0.5°F) at 60°C (140°F).
• Balance or scale: Capacity sufficient for the principal sample mass, readable to 0.1 percent or 0.1 g of the total sample mass and meeting the requirements of AASHTO M 231.

• Sieve shaker meeting the requirements of WAQTC FOP for AASHTO T 27/T 11.

• Mechanical mixer with a wire whip mixing blade capable of producing a well coated, homogeneous mixture and mixing bowls. Means of maintaining the mixture at mixing temperature, such as a heat lamp mounted below the mixer.

 Note 1: The Hobart Kitchen Aid Model K-5A with wire whip Model K5A-WW has been found satisfactory.

• The mold assemblies, compaction pedestal, mold holder, extruder, breaking head and flow meter or stress-strain recorder shall conform to AASHTO T 245.

• If rubber is being used in the mix, weights of at least 5 lbs. in mass and slightly smaller than 4-inches in diameter will be required. The weights should be of such diameter to loosely fit inside the 4-inch Marshall molds.

• Mechanical compaction device conforming to AASHTO T 245. The device shall be equipped with a counter that will automatically shut off the machine at the required number of blows. The device will be calibrated annually in accordance with ASTM D 2168.

• Paper discs of heavy weight non-absorbent paper stock, 100 mm (4") diameter.

 Note 2: The Humboldt H-1341P paper disc has been found satisfactory.

• If rubber is being used in the mix, substitute acetate discs for the paper discs. Hewlett Packard overhead transparency film (HP 92296T) has been found to work well.

• The water bath shall be at least 150 mm (6") deep and shall be thermostatically controlled so as to maintain a temperature of 60 ± 1°C (140 ± 1.8°F). The bath shall be equipped with an agitator to keep the water in constant circulation. It shall have a perforated false bottom or shelf for supporting the specimens a minimum of 2" (50 mm) above the bottom of the bath. The bath shall have a flat surface area large enough to allow the specimens to set singly with water flowing freely around each specimen. Stacking specimens is prohibited.

• Loading jack consisting of either a motor-driven screw jack, a hydraulic jack or other mechanical loading device which shall produce a uniform loading head movement rate of 50 mm (2") per minute, independent of the load being applied. The loading frame shall have a minimum load capacity of 25 KN (5000 lb.).

• Load measuring device of 25 KN (5000 lb.) minimum capacity, sensitive to 50 N (10 lb.) or less, and capable of measuring displacement to 0.0025 mm (0.0001"). This device may be a load-cell or a ring dynamometer assembly.

• Flowmeter—the flowmeter shall consist of a guide sleeve and a gage. The activation pin of the gage shall slide inside the guide sleeve with a slight amount of frictional resistance. The guide sleeve shall slide freely over the guide rod of the breaking head. The flowmeter gage shall be adjusted to zero when placed in position on the breaking head when each individual test specimen is inserted between the breaking head segments. Graduations of the flowmeter gauge shall be in 0.25 mm (0.01") divisions.

• Data measuring/recording/display devices capable of the capacity and sensitivity of the load-measuring device and or flowmeter.

• Miscellaneous equipment including scale or caliper readable to 0.25 mm (0.01"), sample containers (metal pans, bowls or beakers), spatulas, spoons, marking crayons, heat resistant gloves, straight-edge, etc.
• Bituminous Mix Design Worksheet, Bituminous Mix Design Report, and 0.45 Gradation Chart paper.

4. Determination of Asphalt Cement Properties

1. If not provided by the supplier, determine the following: Verify compliance of the asphalt cement plus additives to specifications; in addition, determine the specific gravity at 25°C (77°F) of the asphalt cement in accordance with AASHTO T 228/ASTM D 70.

2. Establish the temperature-viscosity properties of the cement in accordance with ASTM D 2493 with the viscosities determined in accordance with the following as required by the project specifications:

 AASHTO T 201 & T 202
 ASTM D 2170 & D 2171
 Or
 AASHTO T 315 & T 316

3. Select the mixing and compaction temperatures using the temperature-viscosity data. Determine, unless otherwise specified, the mixing temperature at 170 ± 20 centistokes and the compaction temperature at 280 ± 30 centistokes.

 Note 3: Modified asphalts may not adhere to the equiviscosity requirements noted; the manufacturer's recommendations should be requested and used to determine mixing and compaction temperatures. Practically the mixing temperature should not exceed 165°C (330°F) and the compaction temperature should not be lower than 115°C (240°F).

5. Determination of Rubber Properties

1. Perform a gradation of the rubber product in accordance with WAQTC FOP for AASHTO T 27/T 11. Washing is not required.

2. Obtain the specific gravity of the rubber from the manufacturer.

6. Preparation of Aggregate

The aggregates used for the mix design will represent the aggregates in the contractor's stockpiles. The laboratory will use the aggregate as presented by the contractor and prepare the aggregate in the same manner as it will be handled during production. In no event will the aggregate be washed in the preparation of any test specimens other than the dust correction procedure.

RAP shall be considered an aggregate for the purposes of batching material. The oil content of RAP will be considered asphalt cement. Virgin aggregate and cement will be adjusted accordingly. Dry RAP at temperatures less then 60°C prior to use. RAP will be added to the aggregate at time of batching.

1. Mix the aggregates from the individual stockpiles at the blend ratio specified by the contractor.

 Separate the combined aggregates by dry sieving into individual specification sieve sizes including the minus 75 µm (No. 200) material. As the material is being dry sieved, separation will not be as efficient as when using washed samples. Therefore sieving time must be increased to separate as efficiently as possible. Sieving times should be increased to 15 minutes for coarse aggregate separation and 15-20 minutes for fine aggregate. The increased sieving time may be determined in accordance with WAQTC FOP for AASHTO T 27/T 11 (See Note 5).

 Separate sufficient aggregate to perform all required tests (i.e. Marshall Stability, Calibration Points for Nuclear Content Gauge, Ignition Furnace, and aggregate properties as required).

2. Using the contractor proposed gradation calculate the initial cumulative masses for each specification sieve size by the following:
\[X = \frac{(100 - P_N)}{100} \times E_i \]

where:
- \(X \) = Cumulative aggregate batch masses for sieve size N, record to the nearest 1 g,
- \(P_N \) = Percent passing from proposed gradation for sieve size N, and
- \(E_i \) = Initial total aggregate mass for a Marshall specimen.

Note 4: The initial aggregate mass may be chosen based on experience or a mass such as 1200 g may be assumed at this point. If a mass is assumed, a trial specimen to determine if height adjustment in accordance with the methodology of Preparation of Test Specimens, Step 1 a thru c will be required.

3. **Aggregate Batching Correction:**

As the JMF gradation was determined in accordance with WAQTC FOP for AASHTO T 27/T 11, which washed the sample in some manner, and the material for the mix design has been separated by dry sieving which will not completely separate the aggregate, a correction must be made to the material separated for the mix design to ensure that the proper amount of aggregate but especially the minus 75 µm (No. 200) material is included in the test specimens. If this is not done, batching material in accordance with the methodology outlined in this method will result in the mix design having a higher percentage of aggregate, fine sand and/or silt than the contractor's JMF proposes.

 a. Prepare a wash gradation sample.

 Calculate the initial batch masses for the wash gradation.

 b. Perform a wash gradation in accordance with WAQTC FOP for AASHTO T 27/T 11.

 c. Compute the adjusted cumulative batch masses for each of the sieve sizes by the following formula:

\[Z_{Ni} = \frac{X^2}{Y} \]

 where:
 - \(Z_{Ni} \) = corrected cumulative batch mass for sieve size N,
 - \(X \) = pre-wash cumulative batch mass for sieve size N,
 - \(Y \) = post-wash cumulative batch mass for sieve size N.

Note 5: In some cases, the adjusted cumulative batch masses will result in decreasing batch masses instead of increasing batch masses. This indicates that the dry sieving operation did not efficiently separate the fine aggregate, leaving too much 75 µm (No. 200) and minus 75 µm (No. 200) material in the larger aggregate sizes. If this occurs, resieve the sizes showing the decreasing batch masses, combining the separated material with the material already separated and perform Step 6.3 a thru c again.

 d. Tabulate the overall adjusted cumulative batch.

4. **Prepare samples from the separated aggregate for the determination of the:**

 a. Plastic Index in accordance with WAQTC FOP for AASHTO T 90,

 b. Percentage of Fracture in Coarse Aggregate in accordance with WAQTC FOP for AASHTO T 335,

 c. Unit weight of fine and course aggregate in accordance with T 84 and WAQTC FOP for AASHTO T 85 respectively,

 d. Flat and elongated Particles in accordance with ATM 306, if required, and

 e. Sand Equivalent in accordance with WAQTC FOP for AASHTO T 176, if required.
7. Estimate Projected Optimum Asphalt and Rubber Content

1. Estimate the projected optimum asphalt content. This value can be based on any or all of these sources:

2. Experience. This is the most important method of estimating projected optimum asphalt content. The projected optimum asphalt content will be estimated to the nearest 0.5 percent with four (4) sets of three (3) specimens prepared to bracket the projected optimum at 0.5 percent intervals.

3. The following methods may be used where no experience exists for the proposed material and/or JMF target values.

4. Computational formula:
 \[P = 0.035a + 0.045b + Kc + F \]
 where:
 - \(P \) = projected optimum asphalt content of mix, percent by mass of mix,
 - \(a \) = percent retained on the 2.36 mm (No. 8) sieve, expressed as a whole number
 - \(b \) = percent passing the 2.36 mm (No. 8) sieve minus the percent passing on the 75 µm (No. 200) sieve, expressed as a whole number
 - \(c \) = percent passing the 75 µm (No. 200) sieve, expressed to the 0.1 percent
 - \(K \) = 0.15 for 11 to 15 percent passing the 75 µm (No. 200) sieve, or
 = 0.18 for 6 to 10 percent passing the 75 µm (No. 200) sieve, or
 = 0.20 for 5 percent or less passing the 75 µm (No. 200) sieve, and
 - \(F \) = asphalt absorption. In the absence of other data, use 0.7 percent.

 The projected optimum asphalt content will be rounded to the nearest 0.5 percent with specimens prepared as indicated under step 1.a.

5. Dust-Asphalt Ratio: Since the Dust-Asphalt Ratio specification is typically 0.6 to 1.2, using the larger of the D/A limits will give the projected minimum effective asphalt content for the JMF p200 target. Solving the Dust-Asphalt ratio formula for the projected minimum asphalt content percent (effective asphalt content plus absorbed asphalt):

 \[\text{Max.} \quad D/A = \left(\frac{p200}{P} \right) \]

 for \(P \) results in

 \[P = \left(\frac{p200}{\text{Max.}D/A} \right) \]

 where:
 - \(P \) = projected minimum effective asphalt content of mix, percent by mass of mix,
 - \(p200 \) = percent passing the 75 µm (No. 200) sieve, and
 - \(\text{Max.} \ D/A \) = dust-to-asphalt ratio.

 The total projected asphalt content may be estimated by:

 \[P_m = P + F \]

 where:
 - \(P_m \) = projected minimum asphalt content, percent
 - \(P \) = projected minimum effective asphalt content of mix, percent
 - \(F \) = asphalt absorption, percent. In the absence of other data use 0.7 percent.

6. Percent rubber will be determined by the Regional Materials Engineer. Rubber will be calculated as a percent of aggregate.
This projected minimum asphalt content will be rounded to the nearest 0.5 percent with specimens prepared for at this projected minimum value and at least three (3) more above this value at 0.5 percent intervals.

8. Preparation of Test Specimens

1. Marshall Stability and Flow: Batch a minimum of four (4) sets of three (3) aggregate specimens each. However, if the initial total aggregate mass for the Marshall specimen was estimated without prior experience, a single Marshall specimen will be batched, mixed at the projected optimum asphalt content, compacted and the thickness of the compacted specimen measured to determine if the aggregate mass must be adjusted. If rubber is used in the mix it will be added at this time.

 a. Thickness Adjustment

 (1) The height of the compacted specimen must be within the specimen thickness limitations of 62-65 mm (2.45-2.55"). If it is not, adjust the total mass of the aggregate as shown below and recalculate the individual sieve masses to bring the specimens within this range.

 (2) Prepare an aggregate batch to the masses calculated above and calculate the mass of asphalt required for the estimated optimum asphalt content as shown below. Mix and compact the trial specimen in accordance with the requirements of sections 9 and 11.

 (3) If thickness adjustment is necessary, adjust \(E_a \), the initial total aggregate mass, by the following:

 \[
 E_a = \frac{2.5 \times E_i}{H} \quad \text{(USC)} \quad \text{or} \quad \frac{63.5 \times E_i}{H} \quad \text{(SI)}
 \]

 where:

 \(E_a \) = adjusted total aggregate mass,

 \(E_i \) = initial total aggregate mass,

 \(H \) = specimen thickness 0.1 mm (0.01") actually obtained.

 (4) If necessary, adjust each \(Z_{Ni} \) from Step 6.3c by:

 \[
 Z_{Na} = \frac{E_a}{E_i} \times Z_{Ni}
 \]

 where:

 \(Z_{Na} \) = adjusted cumulative batch mass for sieve size \(N \),

 \(E_a \) = adjusted total aggregate mass,

 \(E_i \) = initial total aggregate mass,

 \(Z_{Ni} \) = corrected cumulative batch mass for sieve size \(N \).

 (5) Using either the corrected cumulative sieve masses \(Z_{Ni} \) determined in Preparation of Aggregate, Step 6.4c or the adjusted cumulative sieve masses \(Z_{Na} \) determined in Step 1a, above, prepare three (3) aggregate specimens for each asphalt content. The aggregate for each specimen will be batched and placed in a container and dry-mixed thoroughly.

 b. Calculate the mass of the asphalt cement for each set of specimens by:

 \[
 AW = \frac{E_i \times P_{bN}}{100 - P_{bN}}
 \]

 where:
AW = mass of asphalt cement, to the nearest 0.1 g,
Ei (or Ep) = initial (or adjusted, see below) aggregate mass, and
PbN = asphalt content for set N, to the nearest 0.1 percent.

2. Maximum Specific Gravity of Mixture.
 a. For each sieve size, calculate the cumulative masses for a maximum specific gravity (Rice) test specimen by the following formula:

 \[R_N = \frac{Q}{E_i} \times Z_{Ni} \]

 where:
 \(R_N \) = cumulative batch mass for the maximum specific gravity specimen for sieve size \(N \),
 \(E_i \) = initial total aggregate mass,
 \(Z_{Ni} \) = corrected cumulative batch mass for sieve size \(N \), and
 \(Q \) = minimum sample mass required by WAQTC FOP for AASHTO T 209.

 b. Prepare three (3) test specimens to these masses for performance of WAQTC FOP for AASHTO T 209.

 a. For each coarse aggregate sieve size, calculate the cumulative masses for the required test specimens of coarse aggregate for the required test procedures by the following formula:

 \[C_N = \frac{Q}{No. 4 Z_N} \times Z_{Ni} \]

 where:
 \(C_N \) = cumulative batch mass for the maximum specific gravity specimen for sieve size \(N \), for the 4.75 mm (No. 4) and larger sieves only,
 \(Q \) = minimum sample mass required for the required tests.
 \(No. 4 Z_N \) = initial total aggregate mass of 4.75 mm (No. 4), and
 \(Z_{Ni} \) = adjusted cumulative batch mass for sieve size \(N \).

 b. Prepare the required number of test specimens to the minimum sample size required by the test procedure for the performance of the following or other specified tests as required:

<table>
<thead>
<tr>
<th>Test Procedure</th>
<th>Title</th>
<th>Number of Specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAQTC FOP for AASHTO T 85</td>
<td>Specific Gravity</td>
<td>1</td>
</tr>
<tr>
<td>WAQTC FOP for AASHTO T 335</td>
<td>Fracture</td>
<td>1</td>
</tr>
<tr>
<td>ATM 306</td>
<td>Flat-Elongated</td>
<td>1</td>
</tr>
<tr>
<td>AASHTO T 19 (SMA only)</td>
<td>Bulk Density</td>
<td>3</td>
</tr>
</tbody>
</table>

 a. For each fine aggregate sieve size, calculate the cumulative masses for the specific fine aggregate property test by the following formula:
\[F_N = \left(\frac{Q}{E_i - Z_{4i}} \right) \times (Z_{Ni} - Z_{4i}) \]

where:
- \(F_N \) = cumulative batch mass for the fine aggregate specific gravity specimen for sieve size \(N \), for the minus 4.75 mm (No. 4) sieves only,
- \(Q \) = sample mass required for the specified test,
- \(E_i \) = initial total aggregate mass,
- \(Z_{Ni} \) = initial cumulative batch mass for sieve size \(N \), and
- \(Z_{4i} \) = initial cumulative batch mass for the 4.75 mm (No. 4) sieve.

b. Prepare the required number of test specimens to the minimum sample size required by the test procedure for the performance of the following or other specified tests as required:

<table>
<thead>
<tr>
<th>Designation</th>
<th>Test Procedure</th>
<th>Number of Specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAQTC FOP for AASHTO T 90</td>
<td>Plastic Index</td>
<td>1</td>
</tr>
<tr>
<td>AASHTO T 84</td>
<td>Specific Gravity</td>
<td>3</td>
</tr>
<tr>
<td>WAQTC FOP for AASHTO T 176</td>
<td>Sand Equivalent</td>
<td>1</td>
</tr>
</tbody>
</table>

If the JMF p200 is greater than 6 percent, the minus 75 µm (No. 200) material will be treated as mineral filler and the apparent specific gravity of this material will be determined in accordance with AASHTO T 100.

9. Preparation of Asphalt Cement

Heat a minimum of 1 L (1 qt.) of asphalt cement to the mid-point of the mixing temperature range.

It is best to use the asphalt cement as soon as it reaches mixing temperature. If this is not possible, maintain the asphalt cement at this temperature in a covered container rather than reheat it.

10. Preparation of Mixtures and Mixture Conditioning

 1. Place the aggregate specimens for Marshall Stability & Flow and Maximum Specific Gravity in the oven and heat to the mid-point of the asphalt cement mixing temperature range.
 2. "Butter" the mixing bowl with asphalt cement and fine aggregate mixture that will coat the mixing area of the bowl. Remove any excess material.
 3. Place the heated specimen into the mixing bowl.
 4. Form a crater in the dry blended aggregate large enough to hold the asphalt cement, place the mixing bowl on the scale and weigh into the aggregate crater, to the nearest 0.1 g, the required amount of pre-heated asphalt cement.
 5. Mechanically mix the aggregate and asphalt cement rapidly until thoroughly coating the aggregate and return to the oven.
 6. After mixing, spread the mixture in a pan to an even thickness of 25-50 mm (1-2 inches). Place the mixture and pan in a forced-draft oven at the midpoint of the compaction temperature range for 120 ± 5 minutes. Stir the mixture after 60 ± 5 minutes to maintain uniform conditioning. Highly absorptive aggregates may require a longer conditioning time.

11. Equipment Preparation

1. Thoroughly clean the mold assemblies (molds, bases and collars) and heat in an oven to the mid-point of the asphalt cements compaction temperature range.

2. Thoroughly clean the face of the compaction hammer and heat on a hot plate to a temperature within the asphalt cements compaction temperature range.

12. Compaction of Specimens

1. Place the pre-heated mold assembly into the mold holder on the compaction pedestal. Place a paper disc, or acetate disc if rubber is used in mix, in the bottom of the mold.

2. Stir the specimen thoroughly and place in the mold. Spade the mixture vigorously with a heated spatula 15 times around the perimeter and 10 times over the interior, remove the collar and smooth the surface of the mix to a slightly rounded shape.

3. Place a paper disc, or acetate disc if rubber is used in mix, on top of the specimen, position the compaction hammer, and apply the required number of blows with the compaction hammer.

4. Remove the base plate and collar, invert and re-assemble the mold, and apply the same number of blows to the face of the inverted specimen.

5. Remove the collar, base plate and paper discs, mark each biscuit for individual identification, and allow them to cool until the specimen can be extruded without damage or distortion.

6. If rubber is used in the mix, do not remove the base plate or acetate discs. Place a minimum 5 lb. mass on top of specimen and let stand 24 hours. After 24 hours remove weight.

7. Extrude the specimen from the mold; transfer to a smooth, flat surface; allow it to stand and cool to room temperature. Acetate discs can be removed at this point. Specimens can be placed on a hot plate for a few seconds to facilitate removal.

13. Mix Sample Test Procedures

1. Measure and record the thickness of each compacted specimen and record to the nearest 0.25 mm (0.01”). Use either a device that will measure the average height or measure the height with a caliper at three (3) locations spaced evenly around the circumference of the specimen and average these results.

2. Determine the bulk specific gravity of each compacted specimen in accordance with WAQTC FOP for AASHTO T 166/T 275.

 a. Bring the specimens to the specified temperature of 60 ± 1°C (140 ± 1.8°F) by immersing in the water bath for 30 to 40 minutes. Stacking specimens on top of each other is prohibited.
 b. Thoroughly clean and lubricate the guide rods, and clean the inside surfaces of the breaking heads before performing the stability and flow tests. Maintain the breaking head at a temperature of 21 to 38°C (70 to 100 °F).
 c. Remove the specimens one at a time from the water bath and place in the lower segment of the breaking head.
 d. Place the upper segment of the breaking head on the specimen, firmly seat the head on the specimen, and place the complete assembly in position on the loading jack.

 The elapsed time for the test from the removal of the test specimen from the water bath to the maximum load determination shall not exceed 30 seconds.

 e. For machines using proving ring & flow meter:
(1) Place the flow meter over one of the guide rods and adjust the flow meter to zero; hold the sleeve firmly against the upper segment of the breaking head while the test load is applied.

(2) Load the specimen at a constant rate of 50.8 mm (2") per minute until the maximum load is reached. The maximum load is indicated when the proving ring dial value decreases.

(3) Simultaneously read the proving ring dial to the nearest 0.0025 mm (0.0001") and the flow meter to the nearest 0.25 mm (0.01"). Record the readings as whole numbers (no decimal points) from the proving ring dial flow meter.

f. For machines using load cell and chart recorder/display:

(1) Turn on the recorder, adjust the pen to the zero position according to the manufacturer’s instructions, turn the range selector to the appropriate range (use the smallest range possible) and set the chart speed at 10" per minute (250 mm per minute).

(2) Apply the load to the specimen by means of the constant rate movement of the loading jack at 50 mm per minute (2" per minute) until the maximum is reached and the load, as indicated by the chart recorder, decreases.

4. Maximum Specific Gravity.

Determine the maximum specific gravity of the prepared specimens at or near the optimum asphalt content in accordance with WAQTC FOP for AASHTO T 209 as follows:

a. Choose a projected optimum asphalt content as described in Estimate Projected Optimum Asphalt Content.

b. Mix and condition the specimens in accordance with the provisions of Preparation of Mixtures and Mixture Conditioning.

c. Determine the maximum specific gravity in accordance with WAQTC FOP for AASHTO T 209 on the prepared specimens at the projected optimum asphalt content.

d. If the projected optimum asphalt content differs from the final optimum asphalt content, determined below in Determination of Optimum Asphalt Content, Selection of Final Optimum Asphalt Content, by 1 percent or more, prepare and determine a new maximum specific gravity at the final optimum asphalt content and recalculate the maximum specific gravities at the other asphalt contents, the voids total mix and the optimum asphalt content.

14. Calculations

1. Calculate the bulk specific gravity of each compacted specimen in accordance with WAQTC FOP for AASHTO T 166/T 275. Average the bulk specific gravities (Gmb) of all compacted specimens for each asphalt cement content.

 • Record the result to the nearest 0.001.

2. Calculate the unit weight for each asphalt content by:

 \[W_N = G_{mbN} \times 997.1 \text{ kg/m}^3 (62.245 \text{ lb/ft}^3) \]

 where:
 \[W_N = \text{unit weight of set N}, \]
 \[G_{mbN} = \text{average bulk specific gravity of set N, and 997.1 kg/m}^3 (62.245 \text{ lb/ft}^3=\text{density of water at } 25^\circ C (77^\circ F).} \]

 • Record the result to the nearest 1 kg/m\(^3\) (0.1 lb/ft\(^3\)).
3. Calculate the maximum specific gravity of the mix at the selected asphalt content in accordance with WAQTC FOP for AASHTO T 209. Average the results and record the average to the nearest 0.001.

4. Calculate the maximum specific gravity for each asphalt content as follows:
 a. Calculate the effective specific gravity of the aggregate by:
 \[G_{se} = \frac{100 - P_b}{100} \frac{P_b}{G_{mm} - G_b} \]
 where:
 - \(G_{se} \) = effective specific gravity of the aggregate,
 - \(P_b \) = asphalt content at which \(G_{mm} \) was determined,
 - \(G_{mm} \) = maximum specific gravity at \(P_b \),
 - \(G_b \) = specific gravity of the asphalt at 25 °C (77°F).
 • Record the result to the nearest 0.001.
 b. Calculate the maximum specific gravity for each asphalt content by:
 \[G_{mm} = \frac{100}{100 - P_b N} + \frac{P_b N}{G_{se} + G_b} \]
 where:
 - \(G_{mm} \) = maximum specific gravity for asphalt content \(P_b N \),
 - \(G_{se} \) = effective specific gravity of the aggregate,
 - \(P_b N \) = percent asphalt for set \(N \), and
 - \(G_b \) = specific gravity of the asphalt at 25 °C (77°F).
 • Record the result to the nearest 0.001.

5. Calculate the percent air voids in total mix (VTM) for each asphalt content by:
 \[VTM = \frac{G_{mm} - G_{mb}}{G_{mm}} \times 100 \]
 where:
 - \(VTM \) = percent voids total mix,
 - \(G_{mb} \) = average specific gravity of each content, and
 - \(G_{mm} \) = maximum specific gravity of each content.
 • Record the result to the nearest 0.1 percent.

6. Calculate the percent voids in mineral aggregate (VMA) for each asphalt content by:
 a. Calculate the blended aggregate bulk specific gravity by:
 \[G_{sb} = \frac{100}{P_1 G_1 + P_2 G_2 + \ldots + P_N G_N} \]
 where:
 - \(G_{sb} \) = blended aggregate bulk specific gravity,
 - \(P_1, P_2, \ldots, P_N \) = percent of individual aggregate,
G₁, G₂,…&Gₙ = bulk specific gravity individual aggregate.

- Record the result to the nearest 0.001.

b. Calculate the percent voids in mineral aggregate for each asphalt content by:

\[
VMA = 100 - \frac{G_{nb} (100 - P_b)}{G_{sb}}
\]

where:
- \(VMA \) = percent voids in mineral aggregate for each content,
- \(G_{sb} \) = blended aggregate bulk specific gravity,
- \(G_{mb} \) = average bulk specific gravity for each content, and
- \(P_b \) = percent asphalt of each content.

- Record the result to the nearest 0.1 percent.

7. Calculate the percent voids filled with asphalt (VFA) for each asphalt content by:

\[
VFA = 100 \times \frac{VMA - VTM}{VMA}
\]

where:
- \(VFA \) = percent voids filled with asphalt for each content,
- \(VMA \) = percent Voids in mineral aggregate for each content, and
- \(VTM \) = percent voids total mix for each content.

- Record the result to the nearest whole percent.

8. Calculate the dust/asphalt ration for each asphalt content by:

a. Calculate the asphalt absorption by:

\[
P_{ba} = 100 \left(\frac{G_{se} - G_{sb}}{G_{sb} \times G_{se}} \right) G_b
\]

where:
- \(P_{ba} \) = absorbed asphalt, percent by mass of aggregate,
- \(G_{se} \) = effective specific gravity of aggregate,
- \(G_{sb} \) = bulk specific gravity of aggregate, and
- \(G_b \) = specific gravity of asphalt.

b. Calculate the effective asphalt content for each asphalt content by:

\[
P_{be} = P_b - \left(\frac{P_{ba}}{100} \times (100 - P_b) \right)
\]

where:
- \(P_{be} \) = effective asphalt content, percent by total mass of mix,
- \(P_b \) = asphalt content, percent by total mass of mix, and
- \(P_{ba} \) = absorbed asphalt, percent by mass of aggregate.
c. Calculate the dust/asphalt ratio by:

$$\frac{D}{A} = \frac{p_{200}}{P_{be}}$$

where:
- D/A = dust/asphalt ratio,
- p_{200} = percent passing the 75 µm (No. 200) sieve, and
- P_{be} = effective asphalt content, percent by total mass of mix.

9. Stability:

a. For machines using proving ring and flow meter, calculate the uncorrected stability from the dial readings by the following:

$$S = (D \times m) + C$$

where:
- S = uncorrected stability load, in pounds,
- D = dial reading as a whole number,
- m = slope from proving ring calibration, and
- C = constant from proving ring calibration.

- Record the result to the nearest whole pound.

b. For machines using load cell and chart recorder/display, read and record the uncorrected stability to the accuracy allowed by the chart scale.

c. Stability values for each specimen that differ from the standard 63.5 mm (2.5") thickness will be corrected to the equivalent 63.5 mm (2.5") value by the following:

$$CS = S \times t$$

where:
- CS = corrected stability,
- S = uncorrected stability, and
- t = thickness correction factor = -0.64x +2.6 for x in inches or -0.025x + 2.5875 for x in mm. (Equations derived from data presented in Table 2 of AASHTO T 245 for thicknesses from 2.4375" to 2.5625" (61.9 mm to 65.1 mm).

d. Corrected stability values for each asphalt content averaged and recorded to the nearest 50 N (10 lb).
Table 1

Thickness Correction Factors

<table>
<thead>
<tr>
<th>Inches</th>
<th>mm</th>
<th>t-Correction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.45</td>
<td>62.2</td>
<td>1.03</td>
</tr>
<tr>
<td>2.46</td>
<td>62.5</td>
<td>1.03</td>
</tr>
<tr>
<td>2.47</td>
<td>62.7</td>
<td>1.02</td>
</tr>
<tr>
<td>2.48</td>
<td>63.0</td>
<td>1.01</td>
</tr>
<tr>
<td>2.49</td>
<td>63.2</td>
<td>1.01</td>
</tr>
<tr>
<td>2.50</td>
<td>63.5</td>
<td>1.00</td>
</tr>
<tr>
<td>2.51</td>
<td>63.8</td>
<td>0.99</td>
</tr>
<tr>
<td>2.52</td>
<td>64.0</td>
<td>0.99</td>
</tr>
<tr>
<td>2.53</td>
<td>64.3</td>
<td>0.98</td>
</tr>
<tr>
<td>2.54</td>
<td>64.5</td>
<td>0.97</td>
</tr>
<tr>
<td>2.55</td>
<td>64.8</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Table based on data from AASHTO T 245 Table 2

10. Flow:

a. For machines using the proving ring and flow meter, average the flow values for each asphalt content and record as a whole number (e.g. flow reading of 0.12 will be recorded as 12).

b. For machines using load cell and chart recorder:

 1. Extend the constant rate slope line to intersect the horizontal axis.
 2. Determine the maximum load point and draw a line perpendicular to the horizontal axis through this point to intersect the horizontal axis.
 3. From the point determined in (1) to the point determined in (2), read and record the flow as a whole number in 0.01" increments.
 4. Average the flow values for each asphalt content set and record to the nearest whole number.

15. Determination of Optimum Asphalt Content

For a mix to satisfy a specific project specifications graphical presentation of the results should be prepared prior to the selection of the optimum asphalt content.

Graphical Presentation:

Prepare a graphical plot of Asphalt Content vs. Unit Weight, Stability, Flow, Percent Voids Total Mix, Percent Voids in Mineral Aggregate, and Percent Voids Filled with a smooth curve that represents a best-fit for all values.

Determination of Optimum Asphalt Content:

1. **Determination of Preliminary Optimum Asphalt Content:** Choose the preliminary optimum asphalt content at the median of the Voids in Total Mix specification. All of the calculated and measured mix properties should then be evaluated by comparing them to the project mix design specifications. If all of the specifications are met, then this is the preliminary optimum asphalt content. If all of the specifications are not met, then some adjustment or compromise is necessary or the mix may need to be redesigned. Even if all of the specifications are met, a number of considerations should be evaluated before choosing the final optimum asphalt content.
2. **Selection of Final Mix Optimum Asphalt Content**: The final optimum asphalt content should be a compromise selected to balance all of the mix properties. Normally, the mix design specifications will produce a narrow range of acceptable asphalt contents that will pass all specifications. The asphalt content selection can be adjusted within this narrow range to achieve establishing the final optimum asphalt content. Establishing a final optimum asphalt content is covered in detail in Asphalt Institute Manual MS-2, 6th Edition, Mix Design Methods, Chapter 5, Marshall Mix Design Method, Section D-5.15, Selection of Final Mix Design, pages 69 thru 77.

If this evaluation reveals no asphalt content which meets all project specifications or such a narrow range of asphalt contents meeting all project specifications as to be unfeasible and/or uneconomical to produce, the Materials Engineer may reject the proposed job mix design and require a new proposed job mix formula from the contractor.

16. Report

The report shall include the following:

- Project identification, Source/Supplier of mix and name of the general contractor.
- Aggregate quality identification(s), target gradation, blend ratio of individual stockpiles, blended bulk specific and effective specific gravities. Other properties that may be specified in the Contract such as: fineness modulus of the blended fine aggregate; percent fracture; percent flat and elongated; and the plasticity index of the blended fine aggregate.
- Asphalt cement quality identification, specific gravity at 77°F, and the maximum mixing temperature.
- Anti-strip additive brand/type and the minimum percent required.
- Asphalt content at the median of the percent voids in total mix specification and the approved optimum asphalt content.
- The following properties at the optimum asphalt content: maximum specific gravity, percent voids in total mix, percent voids in mineral aggregate, percent voids filled, stability, flow, unit mass and the dust-asphalt ratio.
- Graphical representation on a 0.45 power graph of the target gradation with the Lower Specification Limit (LSL)-Upper Specification Limit (USL).
- Graphical representation of asphalt content versus the following properties: unit weight, stability, flow, percent voids in total mix, percent voids in mineral aggregate and voids filled.
- Identification and address of the laboratory that performed the mix design, that laboratories mix design identification number and the signature/title of the professional engineer who reviewed and approved/disapproved the mix design.
17. Example Calculations

(See Example Worksheets.)

See Section 8 of the standard for definitions of the variables.

Contractor Proposed JMF for a Type IIA HMA Mix Design

Table 1

<table>
<thead>
<tr>
<th>Sieve</th>
<th>Percent Pass.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4"</td>
<td>100</td>
</tr>
<tr>
<td>1/2"</td>
<td>89</td>
</tr>
<tr>
<td>3/8"</td>
<td>76</td>
</tr>
<tr>
<td>#4</td>
<td>52</td>
</tr>
<tr>
<td>#8</td>
<td>36</td>
</tr>
<tr>
<td>#16</td>
<td>24</td>
</tr>
<tr>
<td>#30</td>
<td>15</td>
</tr>
<tr>
<td>#50</td>
<td>9</td>
</tr>
<tr>
<td>#100</td>
<td>7</td>
</tr>
<tr>
<td>#200</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Job Mix Formula</th>
<th>PreWash Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4"</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>1/2"</td>
<td>89</td>
<td>129</td>
</tr>
<tr>
<td>3/8"</td>
<td>76</td>
<td>282</td>
</tr>
<tr>
<td>#4</td>
<td>52</td>
<td>564</td>
</tr>
<tr>
<td>#8</td>
<td>36</td>
<td>752</td>
</tr>
<tr>
<td>#16</td>
<td>24</td>
<td>893</td>
</tr>
<tr>
<td>#30</td>
<td>15</td>
<td>999</td>
</tr>
<tr>
<td>#50</td>
<td>9</td>
<td>1069</td>
</tr>
<tr>
<td>#100</td>
<td>7</td>
<td>1093</td>
</tr>
<tr>
<td>#200</td>
<td>5.1</td>
<td>1115</td>
</tr>
<tr>
<td>-#200</td>
<td>0</td>
<td>1175</td>
</tr>
</tbody>
</table>

18. Preparation of Aggregate

Initial total aggregate mass: \(E_i = 1175.0 \) g

Calculate cumulative aggregate batch mass by:

\[
x = \frac{100 - \text{Percent Passing}}{100} \times E_i
\]

for No. 4 = \(\frac{100 - 52}{100} \times 1175.0 = 564 \) g

for No. 8 = \(\frac{100 - 36}{100} \times 1175.0 = 752 \) g

for No. 200 = \(\frac{100 - 5.1}{100} \times 1175.0 = 1115 \) g

Repeat for the other required sieve sizes.

Table 3

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Job Mix Formula</th>
<th>PreWash Mass</th>
<th>Post Wash Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4"</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1/2"</td>
<td>89</td>
<td>129</td>
<td>128.3</td>
</tr>
<tr>
<td>3/8"</td>
<td>76</td>
<td>282</td>
<td>270.0</td>
</tr>
<tr>
<td>#4</td>
<td>52</td>
<td>564</td>
<td>542.4</td>
</tr>
<tr>
<td>#8</td>
<td>36</td>
<td>752</td>
<td>734.7</td>
</tr>
<tr>
<td>#16</td>
<td>24</td>
<td>893</td>
<td>874.7</td>
</tr>
<tr>
<td>#30</td>
<td>15</td>
<td>999</td>
<td>969.2</td>
</tr>
<tr>
<td>#50</td>
<td>9</td>
<td>1069</td>
<td>1048.7</td>
</tr>
<tr>
<td>#100</td>
<td>7</td>
<td>1093</td>
<td>1073.8</td>
</tr>
<tr>
<td>#200</td>
<td>5.1</td>
<td>1115</td>
<td>1091.7</td>
</tr>
<tr>
<td>-#200</td>
<td>0</td>
<td>1175</td>
<td>1094.0</td>
</tr>
</tbody>
</table>
1. Aggregate Batching Correction
 a. Prepare a sample by batching a specimen with cumulative masses corresponding to cumulative aggregate batch masses calculated above, see the Pre Wash Mass column of Table 2.
 b. Wash and sieve this prepared sample in accordance with WAQTC FOP for AASHTO T 27/T 11. Record the cumulative mass on the sieves in a Post Wash Column, see Table 3.
 c. Calculate the adjusted cumulative batch mass for each sieve as follows, See Table 4 for other sieves:

 $Z_{Ni} = \frac{X^2}{Y}$

 For No. 4: $\frac{564^2}{542.4} = 586$ g
 For No. 8: $\frac{752^2}{734.7} = 770$ g

19. Estimate Projected Optimum Asphalt Content

1. Assuming that no experience with the current sources or contractor is available, the projected optimum and minimum asphalt content will be estimated by both the computational formula and dust/asphalt methods. Refer to Section 7 of the standard for additional information.

 a. Computational Formula

 $P = 0.035a + 0.045b + Kc + F$

 $= 0.035 (100 - 36) + 0.045 (36 - 5) + (0.20 \times 5.1) + 0.7$

 $= 5.4$, round to 5.5%

 Test specimens will be prepared and tested at 4.5 to 6.5 percent cement contents.

 b. Dust/Asphalt Ratio

 $P = \left(\frac{p_{200}}{\text{max. } D / A} \right) = \frac{4.7}{1.2} = 3.9$, round to 4.0 percent

 Test specimens will be prepared and tested at 4.0 to 6.0 percent cement contents.

 Since the two methods give slightly different ranges, specimens should be prepared and tested at 4.0 to 6.5 percent cement contents.

20. Preparation of Test Specimens

1. Thickness Adjustment

 The thickness of the trial specimen is 2.48 inches, thus requiring adjustment of the initial aggregate mass by:

 $E_a = \frac{2.5 \times E_i}{H} = \frac{2.5 \times 1175}{2.48} = 1184.5$ g

2. Adjust the final batch mass for each sieve by:
Repeat for the other required sieve sizes; see Table 4 for other sieves.

3. Calculate the mass of the asphalt cement for each set of specimens by:

\[\text{for } 4.0 \text{ percent} = \frac{1184.5 \times 4.0}{100 - 4.0} = 49.4 \text{ g} \]

\[\text{AW} = \left(\frac{E_i \lor E_s}{100 - P_{SN}} \right) \]

\[\text{for } 6.5 \text{ percent} = \frac{1184.5 \times 6.5}{100 - 6.5} = 82.3 \text{ g} \]

Repeat for the other asphalt contents.

4. Calculate the cumulative masses for a maximum specific gravity (Rice) test specimen by:

\[\text{For No. } 4 = \frac{2000}{1175} \times 586.5 = 998 \text{ g} \]

\[R_N = \frac{Q}{E_i \times Z_{Ni}} \]

\[\text{For No. } 8 = \frac{2000}{1175} \times 770 = 1310 \]

Repeat for the other required sieve sizes; see Table 4 for other sieves.

5. Coarse Aggregate Properties (i.e. Specific Gravity, Fracture, Flat-Elongated, Unit Weight, et al)

For each coarse aggregate sieve size, calculate the cumulative mass for the required test specimen(s) of coarse aggregate for the required test procedures by the following formula:

\[C_N = \frac{Q}{\text{No.4 } R_N} \times R_N \]

For CA Specific Gravity for No. 4 = 3000 g

\[\text{for } 1/2" = \frac{3000}{998} \times 221 = 664 \text{ g} \]

Repeat for the other required sieve sizes, see Table 4 for other sieves.

For Other CA Property Tests substitute the appropriate Q.

6. Fine Aggregate Properties (such as Specific Gravity, Sand Equivalent, et al)

For each fine aggregate sieve size, calculate the cumulative masses for the required specimens of fine aggregate specific gravity by the following formula:
Repeat for the other required sieve sizes, See Table 4 for other sieves.

21. Calculations

1. Calculate the maximum specific gravity for each asphalt content as follows:
 a. Calculate the effective specific gravity of the aggregate by:
 \[G_{sc} = \frac{100 - P_b}{100} \frac{100}{P_b} = \frac{100 - 5.0}{100} - 5.0 = 2.745 \]
 \[G_{mn} = 2.528 - 1.009 \]
 b. Calculate the maximum specific gravity for each asphalt content by:
 \[G_{mm} = \frac{100}{100 - P_{BN}} \frac{P_{BN}}{G_{se}} + \frac{P_{BN}}{G_{b}} \]
 For 4.0% = \[\frac{100}{100 - 4.0} + 4.0 = 2.568 \]
 \[100 - 4.0 \]
 \[2.745 + 1.009 \]
 Repeat for other asphalt contents.

2. Calculate the percent air voids in total mix (VTM) for each asphalt content by:
 \[VTM = \frac{G_{mn} - G_{mb}}{G_{mn}} \times 100 \]
 For 4.0% = \[\frac{2.568 - 2.403}{2.568} \times 100 = 6.4 \]

3. Calculate the percent voids in mineral aggregate (VMA) for each asphalt content by:
 a. Calculate the blended aggregate bulk specific gravity by:
 \[G_{sb} = \frac{100}{P_1 + P_2 + \ldots + P_N} \]
 \[G_1 + G_2 + \ldots + G_N \]
 \[\frac{50}{2.727} + \frac{50}{2.653} \]
 \[= 2.689 \]
 b. Calculate the percent voids in mineral aggregate for each asphalt content by:
 \[VMA = 100 - \frac{G_{mb}}{G_{sb}} (100 - P_b) \]
 For 4.0% = \[100 - \frac{2.430}{2.689} (100 - 4.0) = 14.2 \]
 c. Calculate the percent voids filled (VFA) with asphalt for each asphalt content by:
 \[VFA = 100 \times \frac{VMA - VTM}{VMA} \]
 For 4.0% = \[100 \times \frac{14.2 - 6.4}{14.2} = 55 \]

4. Calculate the dust/asphalt ration for each asphalt content by:
a. Calculate the asphalt absorption by:

\[P_{ba} = 100 \left(\frac{G_{se} - G_{sb}}{G_{sb} \times G_{se}} \right) G_b \]

For 4.0% = 100 \left(\frac{2.745 - 2.689}{2.689 \times 2.745} \right) 1.009 = 0.77

b. Calculate the effective asphalt content for each asphalt content by:

\[P_{be} = P_b - \left(\frac{P_{ba}}{100} \times (100 - P_b) \right) \]

For 4.0% = 4.0 - \left(\frac{0.77}{100} \times (100 - 4.0) \right) = 3.3

c. Calculate the dust/asphalt ratio by:

\[D/A = \frac{p200}{P_{be}} \]

For 4.0% = \frac{4.7}{3.3} = 1.4

5. Stability:

Correct Stability values for each specimen that differs from the standard 63.5 mm (2.5") thickness by the following:

\[CS = S \times t \]

for Set 1, Specimen 1 = 3145 x 0.976 = 3070

Table 4

Cumulative Batch Masses for Example

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Job Mix</th>
<th>Cumulative Mass g</th>
<th>Correction</th>
<th>Marshall</th>
<th>Rice</th>
<th>SG's</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Z\text{Ni}</td>
<td>Z\text{Na}</td>
<td>R_N</td>
<td>C_N</td>
</tr>
<tr>
<td>25 1</td>
<td>100</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>19 3\frac{3}{4}</td>
<td>100</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>12.5 1\frac{1}{2}</td>
<td>89</td>
<td>129 128.3</td>
<td>129.7 130.8</td>
<td>220.8 663.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.5 3\frac{3}{8}</td>
<td>75 282 270.0</td>
<td>294.5 272.2</td>
<td>501.3 1506.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.75 #4</td>
<td>52 564 542.4</td>
<td>586.5 591.2</td>
<td>998.2 3000.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.36 #8</td>
<td>36 752 734.7</td>
<td>769.7 775.9</td>
<td>1310.1 311.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.18 #16</td>
<td>24 893 874.7</td>
<td>911.7 919.1</td>
<td>1551.8 552.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6 #30</td>
<td>15 999 969.2</td>
<td>1029.7 1038.0</td>
<td>1752.7 753.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.3 #50</td>
<td>9 1069 1048.7</td>
<td>1089.7 1098.5</td>
<td>1854.8 855.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15 #100</td>
<td>7 1093 1073.8</td>
<td>1112.5 1121.5</td>
<td>1893.7 893.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.075 #200</td>
<td>5.1 1115 1091.7</td>
<td>1138.8 1148.0</td>
<td>1938.4 938.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.075 -200</td>
<td>0 1175</td>
<td>1175 1184.5</td>
<td>2000 1000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ATM 419 Rutting Susceptibility using an Asphalt Pavement Analyzer

1. Scope

This method describes a procedure for determining the rut susceptibility of hot mix asphalt using an Asphalt Pavement Analyzer (APA).

2. Apparatus

- Asphalt Pavement Analyzer (APA) – A thermostatically controlled device designed to test the rutting susceptibility of hot mix asphalt by applying repetitive linear loads to compacted test specimens through pressurized hoses.
 - The APA shall be thermostatically controlled to maintain the test temperature and conditioning chamber at any set point between 30-60 ±1°C (85-140 ±1°F).
 - The APA shall be capable of independently applying loads up to 450 N (100 lbf) to the three wheels. The loads shall be calibrated to the desired test load by a suitable device such as an external force transducer or proving ring.
 - The pressure in the test hoses shall be adjustable and capable of maintaining pressure up to 830 kPa (120 psi).
 - The APA shall be capable of testing six cylindrical specimens simultaneously.
 - The APA shall have a programmable master cycle counter that can be preset to the desired number of cycles for a test. The APA shall be capable to automatically stopping the test at the completion of the programmed number of cycles.

- Balance or scale: Capacity sufficient for the principle sample mass, readable to 0.1 percent or 0.1 g of the total sample mass and meeting the requirements of AASHTO M 231.

- Mixing utensils (bowls, spoon, spatula)

- Ovens and hot plates thermostatically controlled to maintain the various required temperatures within ±3°C (5°F).

- Compaction device and molds

3. Test Specimens

Number of test specimens – A sample will consist of six 150 mm diameter × 75 mm (6 in diameter x 3 in) cylindrical specimens.

Production Mix

Samples of plant-produced mixtures shall be obtained in accordance with WAQTC FOP for AASHTO T 168. Samples shall be reduced to the appropriate test size in accordance with WAQTC FOP for AASHTO R 47 and compacted while the mixture is still hot. Reheating of loose plant mixture should be avoided.

Laboratory Prepared Mixtures

Mixture proportions will be batched in accordance to the desired Job Mix Formula. The required batch sizes are determined in accordance to ATM 417, Preparation of Aggregate and Preparation of Asphalt. The voids in total mix (VTM) target for the compacted specimens shall be 6.0 ± 1.0 percent unless otherwise directed.

The temperature to which the asphalt binder must be heated to achieve a viscosity of 170 ± 20 cSt (0.170 ± 0.020 Pa·s) or the mix design mixing temperature shall be the mixing temperature.
Prepare the mixture in accordance with ATM 417, Preparation of Mixtures and Mixture conditioning. The temperature to which the asphalt binder must be heated to achieve a viscosity of 290 ± 30 cSt (0.290 ± 0.030 Pa·s) or the mix design compaction temperature shall be the compaction temperature.

Roadway Core Specimens

Roadway core specimens shall be 150 mm (6 in) outside diameter with all surfaces of the perimeter perpendicular to the surface of the core within 5 mm (3/16 in). Cores shall be trimmed with a wet masonry saw to a height of 75 ± 3 mm (3 ± 1/8 in). Final adjustment of the core to the top of the testing molds shall be done with Plaster of Paris.

4. Compaction of Specimens

Superpave Gyratory Compaction

Apparatus (see AASHTO T 312).

1. Compaction of the cylindrical specimens with the Superpave Gyratory Compactor will be performed in such a manner so that the target air void content of 6.0 ± 1.0 percent is obtained at the specified height of 75 ± 3 mm.

2. Remove the mold and base plate from the oven set at the compaction temperature. Place a paper disc in the bottom of the mold assembly.

3. Transfer the mixture to the mold with care to avoid segregation of the mixture.

4. Place the mold and mixture in the Superpave Gyratory Compactor and begin compaction as described in the compactor’s operation manual.

5. When the compaction procedure is completed, remove the mold and compacted specimen from the compactor. Extrude the specimen from the mold with care to avoid distorting the specimen until it is cooled.

6. Compacted specimens should be left at room temperature (about 25°C or 77°F) and allowed to cool overnight.

5. Determining the Voids Total Mix

1. Determine the bulk specific gravity of the test specimens in accordance with WAQTC FOP for AASHTO T 166, Method A.

2. Determine the maximum specific gravity of the test mixture in accordance with WAQTC FOP for AASHTO T 209.

3. Determine the air void contents of the test specimens in accordance with AASHTO T 269.

6. Test Temperature

The test temperature shall be 105°F unless otherwise directed.

7. Initial Measurements

Place the rut depth measurement template over the specimen. Take initial measurements on three locations of each specimen. Record the measurement for each location to the nearest 0.01 mm.

8. Specimen Conditioning

1. Stabilize the testing chamber temperature at 105°F or as directed.

2. Place the test specimens into the testing molds and secure in the APA.
3. Push the sample holding tray in and secure. Close chamber doors.
4. Allow specimens to condition at the test temperature for 90 minutes.
5. Set PRESET COUNTER to 8000 cycles.
6. Start the testing. A complete test will take approximately 3.5 hours. At the end of the test cycle, the APA will stop.
7. Open the chamber doors, unlock and pull out the sample holding tray.
8. Remove specimens from the testing molds and take rut-depth measurements in the same manner as the Initial Measurements.

9. Calculations
The rut depth at each location is determined by subtracting the final measurement from the initial measurement. Determine the average rut depth for each specimen; use the average of all measurements to calculate the average rut depth.
The APA rut depth for the mixture is the average of six cylindrical specimens unless otherwise directed.

10. Report
The test report shall include the following information:
 - The laboratory name and date of test.
 - The mixture type and description.
 - The average rut depth to the nearest 0.1 mm.
ATM 420 Abrasion of HMA Mix by the Prall Method

1. Scope

These test methods (Method A and Method B) cover procedures for preparing and testing abrasion caused by studs on cylindrical bituminous specimens.

2. References

Method A originate from the Prall-method, but it is improved by comprehensive research work to meet an adequate design. According to Swedish research work the method correlates with abrasion in the field.

3. Definitions

- Method A measures the abrasion in cm³ on the top surface of a cylindrical specimen.
- Method B measures the abrasion in cm³ on the curved side of a cylindrical specimen.

4. Method A

A cylindrical specimen having a diameter of 100±1 mm and a length of 30±1 mm is brought to a temperature of 5±1°C. Then, the specimen is worn during 15 minutes by 40 steel spheres. The loss of volume in cm³ is recorded and named abrasion value.

5. Apparatus

1. Abrasion apparatus according to fig. 1. -Stroke, 43 ± 1 mm. -Connection rod, 200 ± 5 mm.
2. Lid to abrasion apparatus, see fig 2. Quality: stainless steel, SS 2333, Bs 304S31, NF Z7CN18-09, DIN 1.4301, or better.
3. Steel clamp to fasten the lid on top of the machine adjustable by means of the screw at the top.
4. Spheres made of stainless steel according to ISO 3290-1975 with a diameter between 11.50 mm and 12.01 mm. The hardness expressed in HRC should be between 62 and 65

 Note 1: The diameter of the balls can be checked quickly by passing them over parallel bars 11.50 mm apart.
5. O-ring made of rubber to protect the edges of the specimen, see fig. 1. Dimension: internal diameter 89.4 mm, diameter of cross section 6.3 mm. Rubber quality: NBR.
6. Rubber plate to be glued at the underside of the lid, see fig.2. Dimensions: diameter 90.0±1.0 mm, thickness 2.0±0.2 mm. Rubber quality: Neoprene.
7. O-ring made of rubber for the groove outside of the cylindrical part of the lid, see fig 2. Dimensions of rubber O-ring: internal diameter 90.0 mm, diameter of cross section 3.0 mm. Rubber quality: NBR
8. Water reservoir for cooling water and for adjustment of specimens temperature to 5±1 °C.
9. Balance: inaccuracy less than 0.1 g.
10. Water pump capacity more than 2.0 liter/minute.
Fig. 1. Abrasion apparatus, in principal

Rubber plate $t=2.0 \pm 0.2 \text{ mm}$

Connection rod 200 mm

Stroke $43 \pm 1 \text{ mm}$

Cooling Water

Specimen

Test Chamber

O-ring

Screw

Lid

Fig 2. Lid

Steel-spheres movement vertical: $37.5 \pm 0.5 \text{ mm}$

(6,1)

O-Ring

6.0 \pm 0.1

90.0 \pm 1.0

(3.0 x 2.0)
6. **Bituminous Mixtures for Testing**

1. Laboratory made specimens and cores from the field.
2. Make at least 4 specimens of diameter 100±1 mm. Cut the specimens to a length of 30±1 mm. When cutting, the end surfaces should be even and parallel, as possible by standard cutting machines. When cutting one should avoid damaging the edges of the specimen.
3. Determine the Bulk density according to ATM 410.

7. **Conditioning**

1. Temper the specimens for 20±6 hours in water of temperature 5±1 °C.
2. Remove the specimen from the water, surface dry by blotting with a damp towel, and determine the weight.

8. **Determination of Abrasion**

1. Place the specimen in the test chamber with the cut end upwards. Make sure that the specimen is tight to the chamber-wall otherwise use tape around the specimen for a snug fit.
2. Place the O-ring on the specimen, and the steel spheres in the O-ring.
3. Fasten the lid onto the test chamber.
4. Adjust the amount of cooling water to 2±0.2 liter/minute.
5. Start the abrasion apparatus and let it work for 15 minutes ±10 seconds at 950±10 revolutions/minute.
6. Dismantle the apparatus. Remove the specimen from the apparatus and flush it in cold water. Surface dry by blotting with a damp towel, and determine the weight.

9. **Calculation**

Calculate the abrasion value according to the formula below.

\[
\text{Abrasion value, } \text{Abr} = \frac{W_1 - W_2}{Bd}
\]

Where:
- \(\text{Abr} = \) abrasion value in cm³ (1 decimal)
- \(W_1 = \) weight of water stored specimen surface dry in air before abrasion (0.1g)
- \(W_2 = \) weight of water stored specimen surface dry in air after abrasion (0.1g)
- \(Bd = \) Bulk density of specimen according to 6.2 (3 decimals)

10. **Report**

- Report that the test has been carried out according to this method.
- Report individual as well as average values of Bulk density, with 3 decimals accuracy.
- Report individual values of Abrasion, with 1 decimal accuracy.
- Report average abrasion value, with no decimal.
- Determine the Bulk density according to ATM 410.
11. Precision

The values should be accepted if the coefficient of variation of 4 specimens is less than 15%. Otherwise two extra specimens should be tested, and extremes should be expelled according to common statistical practice.

Coefficient of variation in percent:

\[CV \% = \frac{\sigma}{\mu} \times 100 \]

Where:
CV = Coefficient of Variation
\(\sigma \) = Standard Deviation
\(\mu \) = Mean
SAMPLING FRESHLY MIXED CONCRETE
WAQTC TM 2

1. Scope

This method covers procedures for obtaining representative samples of fresh concrete delivered to the project site. The method includes sampling from stationary, paving and truck mixers, and from agitating and non-agitating equipment used to transport central mixed concrete.

This method also covers the removal of large aggregate particles is accomplished by wet sieving.

Sampling concrete may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices.

Warning—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

2. Apparatus

- Wheelbarrow
- Cover for wheelbarrow (plastic, canvas, or burlap)
- Buckets
- Shovel
- Cleaning equipment, including scrub brush, rubber gloves, water
- Mixes with aggregates larger than 1.5 inch require apparatus for wet sieving, including: a sieve(s), conforming to AASHTO M 92 (ASTM E11), minimum of 2 ft² (0.19 m²) of sieving area, 1.5 inch screen openings, and conveniently arranged and supported so that the sieve can be shaken rapidly by hand.

3. Procedure

Use every precaution in order to obtain samples representative of the true nature and condition of the concrete being placed being careful not to obtain samples from the very first or very last portions of the batch. The size of the sample will be 1.5 times the volume of concrete required for the specified testing, but not less than 0.03 m³ (1 ft³).

Dampen the surface of the receptacle just before sampling, empty any excess water.

Note 1: Sampling should normally be performed as the concrete is delivered from the mixer to the conveying vehicle used to transport the concrete to the forms; however, specifications may require other points of sampling, such as at the discharge of a concrete pump.

- Sampling from stationary mixers, except paving mixers

 Sample the concrete after a minimum of 1/2 m³ (1/2 yd³) of concrete has been discharged. Perform sampling by passing a receptacle completely through the discharge stream, or by completely diverting the discharge into a sample container.

 Take care not to restrict the flow of concrete from the mixer, container, or transportation unit so as to cause segregation. These requirements apply to both tilting and nontilting mixers.
• **Sampling from paving mixers**

Sample after the contents of the paving mixer have been discharged. Obtain material from at least five different locations in the pile and combine into one test sample. Avoid contamination with subgrade material or prolonged contact with absorptive subgrade. To preclude contamination or absorption by the subgrade, the concrete may be sampled by placing a shallow container on the subgrade and discharging the concrete across the container.

• **Sampling from revolving drum truck mixers or agitators**

Sample the concrete after a minimum of 1/2 m³ (1/2 yd³) of concrete has been discharged. Obtain samples after all of the water has been added to the mixer. Do not obtain samples from the very first or last portions of the batch discharge. Sample by repeatedly passing a receptacle through the entire discharge stream or by completely diverting the discharge into a sample container. Regulate the rate of discharge of the batch by the rate of revolution of the drum and not by the size of the gate opening.

• **Sampling from open-top truck mixers, agitators, non-agitating equipment or other types of open-top containers**

Sample by whichever of the procedures described above is most applicable under the given conditions.

• **Sampling from pump or conveyor placement systems**

Sample after a minimum of 1/2 m³ (1/2 yd³) of concrete has been discharged. Obtain samples after all of the pump slurry has been eliminated. Sample by repeatedly passing a receptacle through the entire discharge system or by completely diverting the discharge into a sample container. Do not lower the pump arm from the placement position to ground level for ease of sampling, as it may modify the air content of the concrete being sampled. Do not obtain samples from the very first or last portions of the batch discharge.

Transport samples to the place where fresh concrete tests are to be performed and specimens are to be molded. They shall then be combined and remixed with a shovel the minimum amount necessary to ensure uniformity. Protect the sample from direct sunlight, wind, rain, and sources of contamination.

Complete test for temperature and start tests for slump and air content within 5 minutes of obtaining the sample. Start molding specimens for strength tests within 15 minutes of obtaining the sample. Complete the test methods as expeditiously as possible.

4. Wet Sieving

1. When required due to oversize aggregate, the concrete sample shall be wet sieved, after transporting but prior to remixing, for slump testing, air content testing or molding test specimens, by the following:

2. Place the sieve designated by the test procedure over the dampened sample container.

3. Pass the concrete over the designated sieve. Do not overload the sieve (one particle thick).

4. Shake or vibrate the sieve until no more material passes the sieve. A horizontal back and forth motion is preferred.

5. Discard oversize material including all adherent mortar.

6. Repeat until sample of sufficient size is obtained. Mortar adhering to the wet-sieving equipment shall be included with the sample.

7. Using a shovel, remix the sample the minimum amount necessary to ensure uniformity.

Note 2: Wet sieving is not allowed for samples being used for density determinations according to the FOP for AASHTO T 121.
5. **Report**

- On forms approved by the Department
- Date
- Time
- Location
- Quantity represented
This page intentionally left blank.
TEMPERATURE OF FRESHLY MIXED PORTLAND CEMENT CONCRETE
WAQTC FOP FOR AASHTO T 309

1. Scope

This procedure covers the determination of the temperature of freshly mixed portland cement concrete in accordance with AASHTO T 309.

Warning—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

2. Apparatus

- Container — The container shall be made of non-absorptive material and large enough to provide at least 75 mm (3 in.) of concrete in all directions around the sensor; concrete cover must also be at least three times the nominal maximum size of the coarse aggregate.

- Temperature Measuring Device — The temperature measuring device shall be calibrated and capable of measuring the temperature of the freshly mixed concrete to ±0.5°C (±1°F) throughout the temperature range likely to be encountered. Partial immersion liquid-in-glass thermometers (and possibly other types) shall have a permanent mark to which the device must be immersed without applying a correction factor.

- Reference Temperature Measuring Device — The reference temperature measuring device shall be a liquid-in-glass thermometer readable to 0.2°C (0.5°F) that has been verified and calibrated. The calibration certificate or report indicating conformance to the requirements of ASTM E 77 shall be available for inspection.

3. Calibration of Temperature Measuring Device

Each temperature measuring device shall be verified for accuracy annually and whenever there is a question of accuracy. Calibration shall be performed by comparing readings on the temperature measuring device with another calibrated instrument at two temperatures at least 15°C (27°F) apart.

4. Sample Locations and Times

The temperature of freshly mixed concrete may be measured in the transporting equipment, in forms, or in sample containers, provided the sensor of the temperature measuring device has at least 75 mm (3 in.) of concrete cover in all direction around it.

Complete the temperature measurement of the freshly mixed concrete within 5 minutes of obtaining the sample. Concrete containing aggregate of a nominal maximum size greater than 75 mm (3 in.) may require up to 20 minutes for the transfer of heat from the aggregate to the mortar after batching.

5. Procedure

1. Dampen the sample container.

2. Obtain the sample in accordance with the FOP for WAQTC TM 2.

3. Place sensor of the temperature measuring device in the freshly mixed concrete so that it has at least 75 mm (3 in.) of concrete cover in all directions around it.

4. Gently press the concrete in around the sensor of the temperature measuring device at the surface of the concrete so that air cannot reach the sensor.
5. Leave the sensor of the temperature measuring device in the freshly mixed concrete for a minimum of two minutes, or until the temperature reading stabilizes.

6. Complete the temperature measurement of the freshly mixed concrete within 5 minutes of obtaining the sample.

7. Read and record the temperature to the nearest 0.5°C (1°F).

6. **Report**

 - Results on forms approved by the Department
 - Measured temperature of the freshly mixed concrete to the nearest 0.5°C (1°F)
ATM 503 Slump of Hydraulic Cement Concrete

SLUMP OF HYDRAULIC CEMENT CONCRETE
WAQTC FOP FOR AASHTO T 119

1. Scope
This procedure provides instructions for determining the slump of hydraulic cement concrete in accordance with AASHTO T 119. It is not applicable to non-plastic and non-cohesive concrete. With concrete using 37.5mm (1½ in.) or larger aggregate, the +37.5mm (1½ in.) aggregate must be removed in accordance with the FOP for WAQTC TM 2.

Warning—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

2. Apparatus
- Mold: The metal mold shall be provided with foot pieces and handles. The mold must be constructed without a seam. The interior of the mold shall be relatively smooth and free from projections such as protruding rivets. The mold shall be free from dents. A mold that clamps to a rigid nonabsorbent base plate is acceptable provided the clamping arrangement is such that it can be fully released without movement of the mold.
- Mold: If other than metal, it must conform to AASHTO T 119, Sections 5.1.2.1 & 5.1.2.2.
- Tamping rod: 16 mm (5/8 in.) diameter and approximately 600 mm (24 in.) long, having a hemispherical tip the same diameter as the rod. (Hemispherical means “half a sphere”; the tip is rounded like half of a ball.)
- Scoop: a receptacle of appropriate size so that each representative increment of the concrete sample can be placed in the container without spillage.
- Tape measure or ruler with at least 5 mm or 1/8 in. graduations
- Base: Flat, rigid, non-absorbent moistened surface on which to set the slump cone

3. Procedure
1. Obtain the sample in accordance with the WAQTC FOP for T 2 (ASTM D75). If any aggregate 37.5mm (1½ in.) or larger aggregate is present, aggregate must be removed in accordance with the Wet Sieving portion of the FOP for WAQTC TM 2.

 Note 1: Testing shall begin within five minutes of obtaining the sample.

2. Dampen the inside of the cone and place it on a dampened, rigid, nonabsorbent surface that is level and firm.

3. Stand on both foot pieces in order to hold the mold firmly in place.

4. Use the scoop to fill the cone 1/3 full by volume, to a depth of approximately 67 mm (2 5/8 in.) by depth.

5. Consolidate the layer with 25 strokes of the tamping rod, using the rounded end. Distribute the strokes evenly over the entire cross section of the concrete.

 For this bottom layer, incline the rod slightly and make approximately half the strokes near the perimeter, and then progress with vertical strokes, spiraling toward the center.
6. Use the scoop to fill the cone 2/3 full by volume, to a depth of approximately 155 mm (6 1/8 in.) by
 depth.

7. Consolidate this layer with 25 strokes of the tamping rod, penetrate approximately 25 mm (1 in.) into the
 bottom layer. Distribute the strokes evenly.

8. Use the scoop to fill the cone to overflowing.

9. Consolidate this layer with 25 strokes of the tamping rod, penetrate approximately 25 mm (1 in.) into the
 second layer. Distribute the strokes evenly. If the concrete falls below the top of the cone, stop, add more
 concrete, and continue rodding for a total of 25 strokes. Keep an excess of concrete above the top of the
 mold at all times. Distribute strokes evenly as before.

10. Strike off the top surface of concrete with a screeding and rolling motion of the tamping rod.

11. Clean overflow concrete away from the base of the mold.

12. Remove the mold from the concrete by raising it carefully in a vertical direction. Raise the mold 300 mm
 (12 in.) in 5 ±2 seconds by a steady upward lift with no lateral or torsional (twisting) motion being
 imparted to the concrete.

 The entire operation from the start of the filling through removal of the mold shall be carried out without
 interruption and shall be completed within an elapsed time of 2 1/2 minutes. Immediately measure the
 slump by:

13. Invert the slump cone and set it next to the specimen.

14. Lay the tamping rod across the mold so that it is over the test specimen.

15. Measure the distance between the bottom of the rod and the displaced original center of the top of the
 specimen to the nearest 5 mm (1/4 in.).

 Note 2: If a decided falling away or shearing off of concrete from one side or portion of the mass occurs, disregard
 the test and make a new test on another portion of the sample. If two consecutive tests on a sample of concrete show
 a falling away or shearing off of a portion of the concrete from the mass of the specimen, the concrete probably
 lacks the plasticity and cohesiveness necessary for the slump test to be applicable.

16. Discard the tested sample.

4. Report

 • Results on forms approved by the Department

 • Slump to the nearest 5 mm (1/4 in.).
ATM 504 Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete

Following are guidelines for the use of WAQTC FOP for AASHTO T 121 by the State of Alaska DOT&PF.

1. Under the Heading of Procedure – Rodding, delete “dry” from step 2 then reverse steps 2 and 3.
2. Report the volume of the measure to 0.000001 m³ (0.0001 ft³).
3. Calculate aggregate free water mass as follows (use decimal form):

 \[
 \text{Free Water Mass} = \text{Total Aggregate Mass} - \text{Aggregate SSD Mass}
 \]

 \[
 \text{Aggregate SSD Mass} = \frac{\text{Total Aggregate Mass}}{1 + (\text{Aggregate Moisture Content})} \times (1 + \text{Percent Absorption})
 \]
DENSITY (UNIT WEIGHT), YIELD, AND AIR CONTENT (GRAVIMETRIC) OF CONCRETE
WAQTC FOP FOR AASHTO T 121

1. Scope

This procedure covers the determination of density, or unit weight, of freshly mixed concrete in accordance with AASHTO T 121. It also provides formulas for calculating the volume of concrete produced from a mixture of known quantities of component materials, and provides a method for calculating cement content and cementitious material content – the mass of cement or cementitious material per unit volume of concrete. A procedure for calculating water/cement ratio is also covered.

Warning—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

2. Apparatus

- **Measure:** May be the bowl portion of the air meter used for determining air content under the FOP for AASHTO T 152. Otherwise, it shall be a metal cylindrical container meeting the requirements of AASHTO T 121. The capacity and dimensions of the measure shall conform to those specified in Table 1.

- **Balance or scale:** Accurate to within 45 g (0.1 lb.) or 0.3 percent of the test load, whichever is greater, at any point within the range of use.

- **Tamping rod:** 16 mm (5/8 in.) diameter and approximately 600 mm (24 in.) long, having a hemispherical tip the same diameter as the rod. (Hemispherical means “half a sphere”; the tip is rounded like half of a ball.)

- **Internal Vibrator:** 7000 vibrations per minute, 19 to 38 mm (3/4 to 1 1/2 in.) in diameter, and the length of the shaft shall be at least 610 mm (24 in).

- **Scoop:** A receptacle of appropriate size so that each representative increment of the concrete sample can be placed in the container without spillage.

- **Strike-off plate:** A flat rectangular metal plate at least 6 mm (1/4 in.) thick or a glass or acrylic plate at least 13 mm (1/2 in.) thick, with a length and width at least 50 mm (2 in.) greater than the diameter of the measure with which it is to be used. The edges of the plate shall be straight and smooth within tolerance of 1.6 mm (1/16 in.).

- **Mallet:** With a rubber or rawhide head having a mass of 600 ± 200 g (1.25 ±0.50 lb) for use with measures of 14 liters (0.5 ft³) or smaller; or having a mass of 1000 ±200 g (2.25 ±0.50 lb) for use with measures larger than 14 liters (0.5 ft³).
Table 1
Capacity of Measures

<table>
<thead>
<tr>
<th>Nominal Maximum Size of Coarse Aggregate**</th>
<th>Capacity of Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>Inch</td>
</tr>
<tr>
<td>25.0</td>
<td>1.0</td>
</tr>
<tr>
<td>37.5</td>
<td>1.5</td>
</tr>
<tr>
<td>50</td>
<td>2.0</td>
</tr>
<tr>
<td>75</td>
<td>3.0</td>
</tr>
<tr>
<td>112</td>
<td>4.5</td>
</tr>
<tr>
<td>150</td>
<td>6.0</td>
</tr>
</tbody>
</table>

* Measure may be the base of the air meter used in the FOP for AASHTO T 152.

** Nominal maximum size: One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

3. Standardization of Measure

Standardization is a critical step to ensure accurate test results when using this apparatus. Failure to perform the standardization procedures as described herein will produce inaccurate or unreliable test results.

1. Determine the mass of the dry measure and strike-off plate.
2. Fill the measure with water at a temperature between 16°C and 29°C (60°F and 85°F) and cover with the strike-off plate in such a way as to eliminate bubbles and excess water.
3. Wipe the outside of the measure and cover plate dry, being careful not to lose any water from the measure.
4. Determine the mass of the measure, strike-off plate, and water in the measure.
5. Determine the mass of the water in the measure by subtracting the mass in Step 1 from the mass in Step 4.
6. Measure the temperature of the water and determine its density from Table 2, interpolating as necessary.
7. Calculate the volume of the measure, \(V_m \), by dividing the mass of the water in the measure by the density of the water at the measured temperature, from Table 2.

\[
V_m = \frac{\text{Mass of Water}}{\text{Density of Water}}
\]
Table 2
Unit Mass of Water 15°C to 30°C

<table>
<thead>
<tr>
<th>°C</th>
<th>(°F)</th>
<th>kg/m³</th>
<th>(lb/ft³)</th>
<th>°C</th>
<th>(°F)</th>
<th>kg/m³</th>
<th>(lb/ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(59.0)</td>
<td>999.10</td>
<td>(62.372)</td>
<td>23</td>
<td>(73.4)</td>
<td>997.54</td>
<td>(62.274)</td>
</tr>
<tr>
<td>15.6</td>
<td>(60.0)</td>
<td>999.01</td>
<td>(62.366)</td>
<td>23.9</td>
<td>(75.0)</td>
<td>997.32</td>
<td>(62.261)</td>
</tr>
<tr>
<td>16</td>
<td>(60.8)</td>
<td>998.94</td>
<td>(62.361)</td>
<td>24</td>
<td>(75.2)</td>
<td>997.29</td>
<td>(62.259)</td>
</tr>
<tr>
<td>17</td>
<td>(62.6)</td>
<td>998.77</td>
<td>(62.350)</td>
<td>25</td>
<td>(77.0)</td>
<td>997.03</td>
<td>(62.243)</td>
</tr>
<tr>
<td>18</td>
<td>(64.4)</td>
<td>998.60</td>
<td>(62.340)</td>
<td>26</td>
<td>(78.8)</td>
<td>996.77</td>
<td>(62.227)</td>
</tr>
<tr>
<td>18.3</td>
<td>(65.0)</td>
<td>998.54</td>
<td>(62.336)</td>
<td>26.7</td>
<td>(80.0)</td>
<td>996.59</td>
<td>(62.216)</td>
</tr>
<tr>
<td>19</td>
<td>(66.2)</td>
<td>998.40</td>
<td>(62.328)</td>
<td>27</td>
<td>(80.6)</td>
<td>996.50</td>
<td>(62.209)</td>
</tr>
<tr>
<td>20</td>
<td>(68.0)</td>
<td>998.20</td>
<td>(62.315)</td>
<td>28</td>
<td>(82.4)</td>
<td>996.23</td>
<td>(62.192)</td>
</tr>
<tr>
<td>21</td>
<td>(69.8)</td>
<td>997.99</td>
<td>(62.302)</td>
<td>29</td>
<td>(84.2)</td>
<td>995.95</td>
<td>(62.175)</td>
</tr>
<tr>
<td>21.1</td>
<td>(70.0)</td>
<td>997.97</td>
<td>(62.301)</td>
<td>29.4</td>
<td>(85.0)</td>
<td>995.83</td>
<td>(62.166)</td>
</tr>
<tr>
<td>22</td>
<td>(71.6)</td>
<td>997.77</td>
<td>(62.288)</td>
<td>30</td>
<td>(86.0)</td>
<td>995.65</td>
<td>(62.156)</td>
</tr>
</tbody>
</table>

4. **Procedure Selection**

There are two methods of consolidating the concrete – rodding and vibration. If the slump is greater than 75 mm (3 in.), consolidation is by rodding. When the slump is 25 to 75 mm (1 to 3 in.), internal vibration or rodding can be used to consolidate the sample, but the method used must be that required by the agency in order to obtain consistent, comparable results. For slumps less than 25 mm (1 in.), consolidate the sample by internal vibration. When using measures greater than 0.0142 m³ (1/2 ft³) see AASHTO T 121.

5. **Procedure – Rodding**

1. Obtain the sample in accordance with the FOP for WAQTC TM 2. Testing may be performed in conjunction with the FOP for AASHTO T 152. When doing so, this FOP should be performed prior to the FOP for AASHTO T 152.

 Note 1: If the two tests are being performed using the same sample, this test shall begin within five minutes of obtaining the sample.

2. Dampen the inside of the measure.

3. Determine the mass of the empty measure.

4. Use the scoop to fill the measure approximately 1/3 full with concrete. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.

5. Consolidate the layer with 25 strokes of the tamping rod, using the rounded end. Distribute the strokes evenly over the entire cross section of the concrete. Rod throughout its depth without hitting the bottom too hard.

6. Tap the sides of the measure smartly 10 to 15 times with the mallet to close voids and release trapped air.

7. Add the second layer, filling the measure about 2/3 full. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.

8. Consolidate this layer with 25 strokes of the tamping rod, penetrating about 25 mm (1 in.) into the bottom layer.

9. Tap the sides of the measure smartly 10 to 15 times with the mallet.

10. Add the final layer, slightly overfilling the measure. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
11. Consolidate this layer with 25 strokes of the tamping rod, penetrating about 25 mm (1 in.) into the second layer.

12. Tap the sides of the measure smartly 10 to 15 times with the mallet.

 Note 2: The measure should be slightly over full, about 3 mm (1/8 in.) above the rim. If there is a great excess of concrete, remove a portion with the scoop. If the measure is under full, add a small quantity. This adjustment may be done only after consolidating the final layer and before striking off the surface of the concrete.

13. Strike off by pressing the strike-off plate flat against the top surface, covering approximately 2/3 of the measure. Withdraw the strike-off plate with a sawing motion to finish the 2/3 originally covered. Cover the original 2/3 again with the plate; finishing the remaining 1/3 with a sawing motion (do not lift the plate; continue the sawing motion until the plate has cleared the surface of the measure). Final finishing may be accomplished with several strokes with the inclined edge of the strike-off plate. The surface should be smooth and free of voids.

14. Clean off all excess concrete from the exterior of the measure including the rim.

15. Determine and record the mass of the measure and the concrete.

16. If the air content of the concrete is to be determined, proceed to Rodding Procedure Step 13 of the FOP for AASHTO T 152.

6. **Procedure - Internal Vibration**

 1. Perform Steps 1 through 3 of the rodding procedure.

 2. Use the scoop to fill the measure approximately 1/2 full with concrete. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.

 3. Insert the vibrator at four different points in each layer when a 0.0283 m³ (1 ft³) measure is used, and three different points in each layer when a 0.0142 m³ (1/2 ft³), or smaller, measure is used. Do not let the vibrator touch the bottom or sides of the measure.

 Note 3: Remove the vibrator slowly, so that no air pockets are left in the material.

 Note 4: Continue vibration only long enough to achieve proper consolidation of the concrete. Over vibration may cause segregation and loss of appreciable quantities of intentionally entrained air.

 4. Fill the measure a bit over full. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.

 5. Insert the vibrator as in Step 3. Do not let the vibrator touch the sides of the measure, but do penetrate the first layer approximately 25 mm (1 in.).

 6. Return to Step 13 of the rodding procedure and continue.

7. **Calculations**

 - **Density** – Calculate the net mass, \(M_m \), of the concrete in the measure by subtracting the mass of the measure from the gross mass of the measure plus the concrete. Calculate the density, \(W \), by dividing the net mass, \(M_m \), by the volume, \(V_m \), of the measure as shown below.

 \[
 W = \frac{M_m}{V_m}
 \]
• **Yield** – Calculate the yield, Y, or volume of concrete produced per batch, by dividing the total mass of the batch, \(W_1 \), by the density, \(W \), of the concrete as shown below.

\[
Y = \frac{W_1}{W}
\]

Note 5: The total mass, \(W_1 \), includes the masses of the cement, water, and aggregates in the concrete.

• **Cement Content** – Calculate the actual cement content, \(N \), by dividing the mass of the cement, \(N_t \), by the yield, \(Y \), as shown below.

\[
N = \frac{N_t}{Y}
\]

Note 6: Specifications may require Portland cement content and cementitious materials content.

• **Water Content** – Calculate the mass of water in a batch of concrete by summing the:
 - water added at batch plant
 - water added in transit
 - water added at jobsite
 - free water on coarse aggregate
 - free water on fine aggregate
 - liquid admixtures (if the agency requires this).

This information is obtained from concrete batch tickets collected from the driver. Use the following conversion factors.

<table>
<thead>
<tr>
<th>To Convert From</th>
<th>To</th>
<th>Multiply By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liters, L</td>
<td>Kilograms, kg</td>
<td>1.0</td>
</tr>
<tr>
<td>Gallons, gal</td>
<td>Kilograms, kg</td>
<td>3.785</td>
</tr>
<tr>
<td>Gallons, gal</td>
<td>Pounds, lb</td>
<td>8.34</td>
</tr>
<tr>
<td>Milliliters, mL</td>
<td>Kilograms, kg</td>
<td>0.001</td>
</tr>
<tr>
<td>Ounces, oz</td>
<td>Milliliters, mL</td>
<td>28.4</td>
</tr>
<tr>
<td>Ounces, oz</td>
<td>Kilograms, kg</td>
<td>0.0284</td>
</tr>
<tr>
<td>Ounces, oz</td>
<td>Pounds, lb</td>
<td>0.0625</td>
</tr>
<tr>
<td>Pounds, lb</td>
<td>Kilograms, kg</td>
<td>0.4536</td>
</tr>
</tbody>
</table>

Calculate the mass of free water on aggregate as follows.

\[
\text{Free Water Mass} = \frac{\text{Total Aggregate Mass}}{1 + \left(\frac{\text{Total Aggregate Mass}}{100}\right) \times \text{Free Water Percentage}}
\]

Free Water Percentage = Total moisture content of the aggregate – absorbed moisture

• **Water/Cement Ratio** – Calculate the water/cement ratio by dividing the mass of water in a batch of concrete by the mass of cementitious material in the batch. The masses of the cementitious materials are obtained from concrete batch tickets collected from the driver.
8. Report

- Results on forms approved by the Department
- Density (unit weight) to 1 kg/m³ (0.1 lb/ft³)
- Yield to 0.01 m³ (0.01 yd³)
- Cement content to 1 kg/m³ (1 lb/yd³)
- Cementitious material content to 1 kg/m³ (1 lb/yd³)
- Water/Cement ratio to 0.01
ATM 505 Air Content of Freshly Mixed Concrete by the Pressure Method

Following are guidelines for the use of WAQTC FOP for AASHTO T 152 by the State of Alaska DOT&PF.

1. An alternate calibration procedure may be used as found in Standard Practice 8.

2. Correction Factors should be checked for each new aggregate source and for sources that have a history of a correction factor in excess of 0.4 percent.

3. If the slump is 1 in or less, consolidate by vibrator. If the slump is above 1 in, consolidate by rodding. Concrete for curb and gutter shall be rodded regardless of slump.
AIR CONTENT OF FRESHLY MIXED CONCRETE BY THE PRESSURE METHOD
WAQTC FOP FOR AASHTO T 152

1. Scope

This procedure covers determination of the air content in freshly mixed Portland Cement Concrete containing dense aggregates in accordance with AASHTO T 152, Type B meter. It is not for use with lightweight or highly porous aggregates. This procedure includes standardization of the Type B air meter gauge, and two methods for standardizing the gauge are presented.

Concrete containing aggregate that is 37.5 mm (1 ½”) or larger must be wet sieved. Sieve a sufficient amount of the sample over the 37.5 mm (1 ½”) sieve in accordance with the wet sieving portion of FOP for WAQTC TM 2.

Warning—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

2. Apparatus

- Air meter: Type B, as described in AASHTO T 152
- Balance or scale: Accurate to 0.3 percent of the test load at any point within the range of use (for Method 1 standardization only)
- Tamping rod: 16 mm (5/8 in.) diameter and approximately 600 mm (24 in.) long, having a hemispherical tip the same diameter as the rod. (Hemispherical means “half a sphere”; the tip is rounded like half of a ball.)
- Vibrator: at least 7000 vibrations per minute, 19 to 38 mm (0.75 to 1.50 in.) in diameter, at least 75 mm (3 in.) longer than the section being vibrated for use with low slump concrete
- Scoop: a receptacle of appropriate size so that each representative increment of the concrete sample can be placed in the container without spillage.
- Container for water: rubber syringe (may also be a squeeze bottle)
- Strike-off bar: Approximately 300 mm x 22 mm x 3 mm (12 in. x 3/4 in. x 1/8 in.)
- Strike-off plate: A flat rectangular metal plate at least 6 mm (1/4 in.) thick or a glass or acrylic plate at least 12 mm (1/2 in.) thick, with a length and width at least 50 mm (2 in.) greater than the diameter of the measure with which it is to be used. The edges of the plate shall be straight and smooth within tolerance of 1.5 mm (1/16 in.).

 Note 1: Use either the strike-off bar or strike-off plate; both are not required.
- Mallet: With a rubber or rawhide head having a mass of 0.57 ±0.23 kg (1.25 ±0.5 lb)

3. Standardization of Air Meter Gauge

Standardization is a critical step to ensure accurate test results when using this apparatus. Failure to perform the standardization procedures as described below will produce inaccurate or unreliable test results.

There are two methods for standardizing the air meter, mass or volume, both are covered below.

1. Screw the short piece of straight tubing into the threaded petcock hole on the underside of the cover. Determine the mass of the dry, empty air meter bowl and cover assembly (mass method only).

2. Fill the bowl nearly full with water.
3. Clamp the cover on the bowl with the tube extending down into the water. Mark the petcock with the tube attached for future reference.

4. Add water through the petcock having the pipe extension below until all air is forced out the other petcock. Rock the meter slightly until all air is expelled through the petcock.

5. Wipe off the air meter bowl and cover assembly, and determine the mass of the filled unit (mass method only).

6. Pump up the air pressure to a little beyond the predetermined initial pressure indicated on the gauge. Wait a few seconds for the compressed air to cool, and then stabilize the gauge hand at the proper initial pressure by pumping up or relieving pressure, as needed.

7. Close both petcocks and immediately open the main air valve exhausting air into the bowl. Wait a few seconds until the meter needle stabilizes. The gauge should now read 0 percent. If two or more tests show a consistent variation from 0 percent in the result, change the initial pressure line to compensate for the variation, and use the newly established initial pressure line for subsequent tests.

8. Determine which petcock has the straight tube attached to it. Attach the curved tube to external portion of the same petcock.

9. Pump air into the air chamber. Open the petcock with the curved tube attached to it. Open the main air valve for short periods of time until 5 percent of water by mass or volume has been removed from the air meter. Remember to open both petcocks to release the pressure in the bowl and drain the water in the curved tube back into the bowl. To determine the mass of the water to be removed, subtract the mass found in Step 1 from the mass found in Step 5. Multiply this value by 0.05. This is the mass of the water that must be removed. To remove 5 percent by volume, remove water until the external standardization vessel is level full.

Note 3: Many air meters are supplied with a standardization vessel(s) of known volume that are used for this purpose. Standardization vessel(s) should be brass or aluminum, not plastic, and must be protected from crushing or denting. If an external standardization vessel is used, confirm what percentage volume it represents for the air meter being used. Vessels commonly represent 5 percent volume, but they are for specific size meters. This should be confirmed by mass.

10. Remove the curved tube. Pump up the air pressure to a little beyond the predetermined initial pressure indicated on the gauge. Wait a few seconds for the compressed air to cool, and then stabilize the gauge hand at the proper initial pressure by pumping up or relieving pressure, as needed.

11. Close both petcocks and immediately open the main air valve exhausting air into the bowl. Wait a few seconds until the meter needle is stabilized. The gauge should now read 5.0 ±0.1 percent. If the gauge is outside that range, the meter needs adjustment. The adjustment could involve adjusting the starting point so that the gauge reads 5.0 ±0.1 percent when this standardization is run, or could involve moving the gauge needle to read 5.0 percent. Any adjustment should comply with the manufacturer’s recommendations.

Note 4: Standardization shall be performed at least every three months. Record the date of the standardization, the standardization results, and the name of the technician performing the standardization in the log book kept with each air meter.

12. Release pressure from the bowl and remove cover. Place the internal calibration vessel into the bowl. This will displace 5 percent of the water in the bowl. (See AASHTO T 152 for more information on internal standardization vessels.)

13. Place the cover back on the bowl and add water through the petcock until all the air has been expelled.
14. Pump up the air pressure chamber to the initial pressure. Wait a few seconds for the compressed air to cool, and then stabilize the gauge hand at the proper initial pressure by pumping up or relieving pressure, as needed.

15. Close both petcocks and immediately open the main air valve exhausting air into the bowl. Wait a few seconds until the meter needle stabilizes. The gauge should now read 5 percent.

 Note 5: Remove the extension tubing from threaded petcock hole in the underside of the cover before starting the test procedure.

4. Procedure Selection

There are two methods of consolidating the concrete – rodding and vibration. If the slump is greater than 75 mm (3 in.), consolidation is by rodding. When the slump is 25 to 75 mm (1 to 3 in.), internal vibration or rodding can be used to consolidate the sample, but the method used must be that required by the agency in order to obtain consistent, comparable results. For slumps less than 25 mm (1 in.), consolidate the sample by internal vibration.

5. Procedure – Rodding

1. Obtain the sample in accordance with the FOP for WAQTC TM 2. If any aggregate 37.5mm (1 1/2 in.) or larger is present, aggregate must be removed in accordance with the Wet Sieving portion of the FOP for WAQTC TM 2.

 Note 6: Testing shall begin within five minutes of obtaining the sample.

2. Dampen the inside of the air meter bowl and place on a firm level surface.

3. Use the scoop to fill the bowl approximately 1/3 full with concrete. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.

4. Consolidate the layer with 25 strokes of the tamping rod, using the rounded end. Distribute the strokes evenly over the entire cross section of the concrete. Rod throughout its depth without hitting the bottom too hard.

5. Tap the sides of the bowl smartly 10 to 15 times with the mallet to close voids and release trapped air.

6. Add the second layer, filling the bowl about 2/3 full. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.

7. Consolidate this layer with 25 strokes of the tamping rod, penetrating about 25 mm (1 in.) into the bottom layer.

8. Tap the sides of the bowl 10 to 15 times with the mallet.

9. Add the final layer, slightly overfilling the bowl. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.

10. Consolidate this layer with 25 strokes of the tamping rod, penetrating about 25 mm (1 in.) into the second layer.

11. Tap the sides of the bowl smartly 10 to 15 times with the mallet.

 Note 7: The bowl should be slightly over full, about 3 mm (1/8 in.) above the rim. If there is a great excess of concrete, remove a portion with the trowel or scoop. If the bowl is under full, add a small quantity. This adjustment may be done only after consolidating the final layer and before striking off the surface of the concrete.

12. Strike off the surface of the concrete and finish it smoothly with a sawing action of the strike-off bar or plate, using great care to leave the bowl just full. The surface should be smooth and free of voids.

13. Clean the top flange of the bowl to ensure a proper seal.
14. Moisten the inside of the cover and check to see that both petcocks are open and the main air valve is closed.

15. Clamp the cover on the bowl.

16. Inject water through a petcock on the cover until water emerges from the petcock on the other side.

17. Incline slightly and gently rock the air meter until no air bubbles appear to be coming out of the second petcock. The petcock expelling water should be higher than the petcock where water is being injected. Return the air meter to a level position and verify that water is present in both petcocks.

18. Close the air bleeder valve and pump air into the air chamber until the needle goes past the initial pressure determined for the gauge. Allow a few seconds for the compressed air to cool.

19. Tap the gauge gently with one hand while slowly opening the air bleeder valve until the needle rests on the initial pressure. Close the air bleeder valve.

20. Close both petcocks.

21. Open the main air valve.

22. Tap the sides of the bowl smartly with the mallet.

23. With the main air valve open, lightly tap the gauge to settle the needle, and then read the air content to the nearest 0.1 percent.

24. Release or close the main air valve.

25. Open both petcocks to release pressure, remove the concrete, and thoroughly clean the cover and bowl with clean water.

26. Open the main air valve to relieve the pressure in the air chamber.

6. **Procedure - Internal Vibration**

1. Obtain the sample in accordance with the FOP for WAQTC TM 2. If any aggregate 37.5mm (1½ in.) or larger is present, aggregate must be removed in accordance with the Wet Sieving portion of the FOP for WAQTC TM 2.

2. Dampen the inside of the air meter bowl and place on a firm level surface.

3. Use the scoop to fill the measure approximately 1/2 full with concrete. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.

4. Insert the vibrator at three different points. Do not let the vibrator touch the bottom or sides of the bowl.

 Note 8: Remove the vibrator slowly, so that no air pockets are left in the material.

 Note 9: Continue vibration only long enough to achieve proper consolidation of the concrete. Over vibration may cause segregation and loss of appreciable quantities of intentionally entrained air.

5. Use the scoop to fill the bowl a bit over full. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.

6. Insert the vibrator as in Step 4. Do not let the vibrator touch the sides of the bowl, and penetrate the first layer approximately 25 mm (1 in.).

7. Return to Step 12 of the rodding procedure and continue.
7. Report

- Results on forms approved by the Department.
- Percent of air to the nearest 0.1 percent.
- Some agencies require an aggregate correction factor in order to determine total % entrained air.
 - Total percent entrained air = Gauge reading – aggregate correction factor from mix design
 - (See AASHTO T 152 for more information.)
ATM 506 Making and Curing Concrete Test Specimens in the Field

Following are guidelines for the use of WAQTC FOP for AASHTO T 23 by the State of Alaska DOT&PF.

1. If the slump is 1 in or less, consolidate by vibrator. If the slump is above 1 in, consolidate by rodding. Concrete for curb and gutter shall be rodded regardless of slump.

2. When Concrete test specimens are made in conjunction with other testing, (WAQTC FOP for AASHTO T 121 and WAQTC FOP for AASHTO T 152), the same method of consolidation must be used for all tests.

3. When cylinders must be transported, transportation time shall not exceed 8 hours. If this transportation time requirement cannot be met, the transportation time must be approved by the Engineer in writing prior to transporting.

4. Acceptance testing may be done with either 150 mm by 300 mm (6 in by 12 in) cylinders or 100 mm by 200 mm (4 in by 8 in) cylinders.

5. A vibrator must have a loaded rate of at least 7000 vibrations per minute.
MAKING AND CURING CONCRETE TEST SPECIMENS IN THE FIELD
WAQTC FOP FOR AASHTO T 23

1. Scope

This procedure covers the method for making, initially curing, and transporting concrete test specimens in the field in accordance with AASHTO T 23.

Warning—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

2. Apparatus and Test Specimens

- Concrete cylinder molds: Conforming to AASHTO M 205 with a length equal to twice the diameter. Standard specimens shall be 150 mm (6 in.) by 300 mm (12 in.) cylinders. Mold diameter must be at least three times the maximum aggregate size unless wet sieving is conducted according to the FOP for WAQTC TM 2. Agency specifications may allow cylinder molds of 100 mm (4 in.) by 200 mm (8 in.) when the nominal maximum aggregate size does not exceed 25 mm (1 in.).

- Beam molds: Rectangular in shape with ends and sides at right angles to each other. Must be sufficiently rigid to resist warpage. Surfaces must be smooth. Molds shall produce length no more than 1.6 mm (1/16") shorter than that required (greater length is allowed). Maximum variation from nominal cross section shall not exceed 3.2 mm (1/8 in.). Ratio of width to depth may not exceed 1:5; the smaller dimension must be at least 3 times the maximum aggregate size. Unless otherwise noted in specifications, beam molds for casting specimens in the field shall result in specimens having width and depth of not less than 150 mm (6 inches). Specimens shall be cast and hardened with the long axes horizontal.

- Standard tamping rod: 16 mm (5/8 in.) in diameter and approximately 600 mm (24 in.) long, having a hemispherical tip of the same diameter as the rod for preparing 150mm (6 in.) x 300 mm (12 in.) cylinders.

- Small tamping rod: 10 mm (3/8 in.) diameter and approximately 305 mm (12 in.) long, having a hemispherical tip of the same diameter as the rod for preparing 100 mm (4 in.) x 200 mm (8 in.) cylinders.

- Vibrator: At least 7000 vibrations per minute, with a diameter no more than ¼ the diameter or width of the mold and at least 75 mm (3 in.) longer than the section being vibrated for use with low slump concrete.

- Scoop: a receptacle of appropriate size so that each representative increment of the concrete sample can be placed in the container without spillage.

- Trowel or float

- Mallet: With a rubber or rawhide head having a mass of 0.57 ±0.23 kg (1.25 ±0.5 lb.).

- Rigid base plates and cover plates: may be metal, glass, or plywood.

- Initial curing facilities: Temperature-controlled curing box or enclosure capable of maintaining the required range of 16 to 27°C (60 to 80°F) during the entire initial curing period (for concrete with compressive strength of 40 Mpa (6000 psi) or more, the temperature shall be 20 to 26°C (68 to 78°F). As an alternative, sand or earth for initial cylinder protection may be used provided that the required temperature range is maintained and the specimens are not damaged.

- Thermometer: Capable of registering both maximum and minimum temperatures during the initial cure.
• Bubble level
• Shims for leveling

3. **Procedure – Making Specimens – General**

1. Obtain the sample according to the FOP for WAQTC TM 2.
2. Wet Sieving per the FOP for WAQTC TM 2 is required for 150 mm (6 in.) diameter specimens containing aggregate with a nominal maximum size greater than 50 mm (2 in.); screen the sample over the 50 mm (2 in.) sieve.
3. Remix the sample after transporting to testing location.
4. Begin making specimens within 15 minutes of obtaining the sample.
5. Set molds upright on a level, rigid base in a location free from vibration and relatively close to where they will be stored.
6. Fill molds in the required number of layers, attempting to slightly overfill the mold on the final layer. Add or remove concrete prior to completion of consolidation to avoid a deficiency or excess of concrete.
7. There are two methods of consolidating the concrete – rodding and internal vibration. If the slump is greater than 25 mm (1 in.), consolidation may be by rodding or vibration. When the slump is 25 mm (1 in.) or less, consolidate the sample by internal vibration. Agency specifications may dictate when rodding or vibration will be used.

4. **Procedure – Making Cylinders – Rodding**

1. For the standard 150 mm (6 in.) by 300 mm (12 in.) specimen, fill each mold in three approximately equal layers, moving the scoop or trowel around the perimeter of the mold to evenly distribute the concrete. For the 100 mm (4 in.) by 200 mm (8 in.) specimen, fill the mold in two layers. When filling the final layer, slightly overfill the mold.
2. Consolidate each layer with 25 strokes of the appropriate tamping rod, using the rounded end. Distribute strokes evenly over the cross section of the concrete. Rod the first layer throughout its depth without forcibly hitting the bottom. For subsequent layers, rod the layer throughout its depth penetrating approximately 25 mm (1 in.) into the underlying layer.
3. After rodding each layer, tap the sides of each mold 10 to 15 times with the mallet (reusable steel molds) or lightly with the open hand (single-use light-gauge molds).
4. Strike off the surface of the molds with tamping rod or straightedge and begin initial curing.

 Note 1: Floating or troweling is permitted instead of striking off with rod or straightedge.

5. **Procedure – Making Cylinders – Internal Vibration**

1. Fill the mold in two layers.
2. Insert the vibrator at the required number of different points for each layer (two points for 150 mm (6 in.) diameter cylinders; one point for 100 mm (4 in.) diameter cylinders). When vibrating the bottom layer, do not let the vibrator touch the bottom or sides of the mold. When vibrating the top layer, the vibrator shall penetrate into the underlying layer approximately 25 mm (1 in.)
3. Remove the vibrator slowly, so that no large air pockets are left in the material.

 Note 2: Continue vibration only long enough to achieve proper consolidation of the concrete. Over vibration may cause segregation and loss of appreciable quantities of intentionally entrained air.
4. After vibrating each layer, tap the sides of each mold 10 to 15 times with the mallet (reusable steel molds) or lightly with the open hand (single-use light-gauge molds).

5. Strike off the surface of the molds with tamping rod or straightedge and begin initial curing.

6. **Procedure – Making Flexural Beams – Rodding**
 1. Fill the mold in two approximately equal layers with the second layer slightly overfilling the mold.
 2. Consolidate each layer with the tamping rod once for every 1300 mm² (2 in²) using the rounded end. Rod each layer throughout its depth, taking care to not forcibly strike the bottom of the mold when compacting the first layer. Rod the second layer throughout its depth, penetrating approximately 25 mm (1") into the lower layer.
 3. After rodding each layer, strike the mold 10 to 15 times with the mallet and spade along the sides and end using a trowel.
 4. Strike off to a flat surface using a float or trowel and begin initial curing.

7. **Procedure – Making Flexural Beams – Vibration**
 1. Fill the mold to overflowing in one layer.
 2. Consolidate the concrete by inserting the vibrator vertically along the centerline at intervals not exceeding 150 mm (6 in.). Take care to not over-vibrate, and withdraw the vibrator slowly to avoid large voids. Do not contact the bottom or sides of the mold with the vibrator.
 3. After vibrating, strike the mold 10 to 15 times with the mallet.
 4. Strike off to a flat surface using a float or trowel and begin initial curing.

8. **Procedure – Initial Curing**
 - When moving cylinder specimens made with single use molds support the bottom of the mold with trowel, hand, or other device.
 - For initial curing of cylinders, there are two methods, use of which depends on the agency. In both methods, the curing place must be firm, within ¼ in. of a level surface, and free from vibrations or other disturbances.
 - Maintain initial curing temperature of 16 to 27°C (60 to 80°F) or 20 to 26°C (68 to 78°F) for concrete with strength of 40 Mpa (6000 psi) or more.
 - Prevent loss of moisture.

Method 1 – Initial cure in a temperature controlled chest-type curing box
 1. Finish the cylinder using the tamping rod, straightedge, float, or trowel. The finished surface shall be flat with no projections or depressions greater than 3.2 mm (1/8 in.).
 2. Place the curing box in an area that will not be disturbed by construction activities. Ensure curing box is level, use shims if needed.
 3. Place the mold in the curing box. When lifting light-gauge molds be careful to avoid distortion (support the bottom, avoid squeezing the sides).
 4. Place the lid on the mold to prevent moisture loss.
 5. Mark the necessary identification data on the cylinder mold and lid.
Method 2 – Initial cure by burying in earth or by using a curing box over the cylinder

Note 3: This procedure may not be the preferred method of initial curing due to problems in maintaining the required range of temperature.

1. Choose a curing location that will not be disturbed by construction activities.
2. Move the cylinder with excess concrete to the initial curing location.
3. Mark the necessary identification data on the cylinder mold and lid.
4. Place the cylinder on level sand or earth, or on a board, and pile sand or earth around the cylinder to within 50 mm (2 in.) of the top.
5. Finish the cylinder using the tamping rod, straightedge, float, or trowel. Use a sawing motion across the top of the mold. The finished surface shall be flat with no projections or depressions greater than 3.2 mm (1/8 in.).
6. If required by the agency, place a cover plate on top of the cylinder and leave it in place for the duration of the curing period, or place the lid on the mold to prevent moisture loss.

9. Procedure – Transporting Specimens

- After 24 to 48 hours of initial curing, the specimens will be transported to the laboratory for a final cure. Specimen identity will be noted along with the date and time the specimen was made and the maximum and minimum temperatures registered during the initial cure.

- While in transport, specimens shall be protected from jarring, extreme changes in temperature, freezing, or moisture loss.

- Cylinders shall be secured so that the axis is vertical.

- Transportation time shall not exceed 4 hours.

10. Final Curing

- Upon receiving cylinders at the laboratory, remove the cylinder from the mold and apply the appropriate identification.

- For all specimens (cylinders or beams), final curing must be started within 30 minutes of mold removal. Temperature shall be maintained at 23° ±2°C (73 ±3°F). Free moisture must be present on the surfaces of the specimens during the entire curing period. Curing may be accomplished in a moist room or water tank conforming to AASHTO M 201.

- For cylinders, during the final 3 hours prior to testing the temperature requirement may be waived, but free moisture must be maintained on specimen surfaces at all times until tested.

- Final curing of beams must include immersion in lime-saturated water for at least 20 hours prior to testing.

11. Report

- On standard Department forms.

- Pertinent placement information for identification of project, element(s) represented, etc.

- Date and time molded.

- Test ages.
- Slump, air content, & density.
- Temperature (concrete, initial cure max. & min., and ambient).
- Method of initial curing.
- Other information as required by agency, such as: concrete supplier, truck number, invoice number, water added, etc.
Following are guidelines for the use of WAQTC FOP for AASHTO R 64 by the State of Alaska DOT&PF.

1. Three specimens shall be cast for each test age required.

2. Applicable sections of AASHTO T 106 shall be followed for final curing, testing compressive strength and reporting test results.
FIELD SAMPLING AND FABRICATION OF 50 MM (2 IN.) CUBE SPECIMENS USING GROUT (NON-SHRINK) AND OR MORTOR WAQTC FOP FOR AASHTO TP 83

1. Scope

This method covers field sampling and fabrication and initial curing of 50 mm (2 in.) cube specimens of non-shrink grout and/or mortar materials.

The values stated in either SI or inch-pound units shall be regarded separately as standard. The inch-pound units are shown in brackets. The values stated might not be exact equivalents; therefore, each system must be used independently of the other.

Note 1: Unit weight was the previous terminology used to describe the property determined by this test method, which is mass per unit volume.

The text of this test method references notes and footnotes that provide explanatory information. These notes and footnotes (excluding those in tables) shall not be considered as requirements of this test method.

Warning—This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Warning—Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

2. Referenced Documents

AASHTO / ASTM

- C 1107 Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink)
- T 106 / C 109 Test method for Compressive Strength of Hydraulic Cement Mortars (Using 50 mm or 2 in. Cube Specimens.)

3. Definitions

Fluid mix: Material fluid enough that little or no indentation will be left in the surface after puddling.

Plastic mix: Material viscous enough that an indentation will be left in the surface of the grout after tamping.

4. Apparatus

- Specimen Molds including cover plate (s): The 2 in. (50 mm) cube specimen molds shall be tight fitting and made of brass or other suitable material. This material shall not be susceptible to attack by the cement mortar. The molds shall have not more than three (3) cube compartments and shall be separable into not more than two (2) parts. The parts of the molds, when assembled, shall be positively held together. The cover plate(s) working surface shall be plane and shall be positively attached to the side walls of the mold. The interior faces of the molds shall conform to the tolerances of Table 1.
Table 1

Permissible Variations of Specimen Molds

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2 in. Cube Molds</th>
<th>50 mm Cube Molds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>New in Use</td>
<td>New in Use</td>
</tr>
<tr>
<td>Planeness of Sides</td>
<td><0.001 in.</td>
<td><0.002 in.</td>
</tr>
<tr>
<td>Distance Between Opposite Sides</td>
<td>2 in. + 0.005 in.</td>
<td>2 in. + 0.02 in.</td>
</tr>
<tr>
<td></td>
<td>50 mm + 0.13 mm</td>
<td>50 mm + 0.50 mm</td>
</tr>
<tr>
<td>Height of Each Compartment</td>
<td>2 in. + 0.01 in. to -0.005 in.</td>
<td>2 in + 0.01 in. to -0.015 in.</td>
</tr>
<tr>
<td></td>
<td>50 mm + 0.25 mm to -0.13 mm</td>
<td>50 mm + 0.25 mm to -0.38 mm</td>
</tr>
<tr>
<td>Angle Between Adjacent Faces A</td>
<td>90 + 0.5°</td>
<td>90 + 0.5°</td>
</tr>
<tr>
<td></td>
<td>90 + 0.5°</td>
<td>90 + 0.5°</td>
</tr>
</tbody>
</table>

- A Measured at points slightly removed from the intersection. Measured separately for each compartment between all the interior faces and the adjacent face and between interior faces and top and bottom planes of the mold.
- Tamper: A non-absorptive, nonabrasive, non-brittle material such as a hard rubber compound having a Shore A durometer hardness of 80 ± 10. The tamper shall have a cross section of about 1/2 in. × 1 in. (13 mm × 25 mm) and a length of 5 in. to 6 in. (125 mm to 150 mm). The tamping face shall be flat and at right angles to the length of the tamper.
- Trowel: Steel bladed 100 to 150 mm (4 in to 6 in) in length, with straight edges.
- Water tight container: a 150 mm × 300 mm (6 in × 12 in) concrete cylinder mold with lid
- Other Equipment: Rubber gloves, scoop, clamps to secure the cover plate, light release oil for oiling the molds, small brush or lint-free cloth for applying and removing excess release oil, burlap or wrapping cloth capable of retaining moisture.

5. Sampling

1. Samples shall be obtained in accordance with WAQTC TM 2 when the batch equals or exceeds 1 m³ (1 yd³). When the batch is less than 1 m³ (1 yd³) sample from the batch after discharge. If remixing is required sample after remixing. Begin molding the specimens within an elapsed time of not more than 2 1/2 minutes from completion of the mixing.

 Note 2: Use this test for grouts with 100% passing the 9.5 mm (3/8 inch) sieve.

2. Obtain a representative sample of the mix. Samples shall be a minimum size of 2000 g (4 lb) for each set of three (3) cubes to be fabricated.

6. Procedure

1. Assemble both portions of the mold and the bottom cover plate. All joints shall be water tight. If not water tight, seal the surfaces where the halves of the mold join by applying a coating of light cup grease (non water soluble). The amount should be sufficient to extrude slightly when the halves are tightened together. Repeat this process for attaching the mold to the bottom cover plate. Remove any excess grease. Apply a thin coating of release agent to the interior faces of the mold and the bottom cover plate. Wipe the mold faces and base plate as necessary to remove any excess release agent and to achieve a thin, even coating on the interior surfaces. Adequate coating is that which is just sufficient to allow a distinct fingerprint to remain following light finger pressure.
2. Place a layer of grout about 25 mm (1 in) (approximately one-half of the depth of the mold) in all of the cube compartments. Consolidate according to the consistency (plastic or fluid) of the mix.
 a. For plastic mixes, tamp the lift in four rounds of 8 tamps for a total of 32 tamps with the rubber tamper in 10 seconds. See Figure 1 for tamping sequence of each round. Rounds 1 and 3; and rounds 2 and 4 shall be the same.
 b. For fluid mixes, puddle the lift 5 times with a gloved finger. See Figure 2 for puddling sequence.
3. Place the second lift in each of the cube compartments, slightly over-filling each compartment. Consolidate the material in the same fashion as the first lift with the additional requirement that during consolidation of the second lift any grout forced out onto the top of the mold after each round will be pushed back onto the compartment by means of the tamper and/or gloved fingers before the next consolidation round. When consolidation of the grout is completed, material should extend slightly above the top of the mold. Push any grout forced out onto the top of the mold after the last round back onto the compartment with the trowel.
4. Smooth off the cubes by drawing the flat side of the trowel (with the leading edge slightly raised) once across the top of each cube at right angles to the length of the mold. Then, for the purpose of leveling the mortar and making the mortar that protrudes above the top of the mold of more uniform thickness, draw the flat trailing edge of the trowel (with leading edge slightly raised) once lightly along the length of the mold. Cut off the mortar to a plane surface flush with the top of the mold by drawing the straight edge of the trowel (held nearly perpendicular to the mold) with a sawing motion over the length of the mold. The material shall be flush with the top of the mold.
5. Immediately secure the top cover plate to the cube mold.
6. Place the molds in a secure location away from vibration and as close as possible to the structure for initial curing. Cover with wet burlap, towels, or rags, seal it in a plastic sack in a level location out of direct sunlight, and record the time. These samples shall remain undisturbed and protected from freezing or overheating for a period of 24 ± 4 hours.
7. At the end of the initial curing period as required by the agency either;
 a. Place the sealed plastic sack into a water tight container. Transport the cube samples immediately to the location of final curing. During transport, the cube samples shall be protected from jarring, freezing, and moisture loss.
 b. Disassemble the mold and carefully remove the cube samples. Using a permanent marker, identify the cube samples. Handling the cube samples very carefully, wrap them in wet burlap or wet towels and place them into a water tight container. Transport the cube samples immediately to the location of final curing. During transport, the cube samples shall be protected from jarring, freezing, and moisture loss.
8. Final curing shall consist of immersing the cube samples in a lime-saturated water storage tank. They are to remain in the storage tank until time of test. (Curing cube samples of material other than hydraulic cement shall be in conformance with the manufacturer’s recommendations.) The storage tank shall be made of non-corroding materials.

7. Report
 • On forms approved by the Department
 • Date
- Time
- Location, source and sampling method
- Quantity represented

Figure 1 – Plastic Mixes

Rounds 1 and 3

Rounds 2 and 4

Figure 2 – Fluid Mixes

Puddling sequence
ATM 508 Slump Flow of Self-Consolidating Concrete

1. **Scope**

This procedure provides instructions for determining the slump flow of self-consolidating concrete (SCC) in accordance with ASTM C1611/C1611M.

Warning—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue under prolonged exposure.

2. **Apparatus**

- Cone: The SCC shall be placed in a slump cone mold conforming to the applicable requirements of ATM 503.
- Sample receptacle: Pan or wheel barrow that is water tight, has a non-absorbent surface, and large enough to retain a volume of concrete sufficient to perform all necessary testing and to fill all necessary sample specimen containers.
- Base plate: Flat, rigid, non-absorbent moistened surface having a minimum diameter of 915 mm (36 in.).
- Scoop or Pouring Vessel: A water tight container having a volume such that concrete is not spilled during placement in the mold.
- Strike-off bar: A flat straight steel bar, at least 3mm x 20 mm x 300 mm (1/8 x3/4 x 12 inches), or plastic bar twice as thick as the steel bar.
- Tape measure or ruler with at least 5 mm or 1/4 in. graduations.

3. **Procedure**

1. Obtain the sample in accordance with ATM 501.

 Note 1: Testing shall begin within five minutes of obtaining the sample.

2. Remix sample using shovel or scoop.

3. Dampen the inside of the cone and the base plate.

4. Place cone in center of leveled base plate, in the inverted position, as shown in Figure 1.
5. Fill the cone in one lift with a representative sample of concrete. Allow the concrete to flow into the cone without dropping the concrete from more than 5 inches above the inverted cone. Fill the cone slightly over full.

 Note 2: Do not rod concrete. Do not tap or vibrate the cone. If concrete has been rodded, tapped, or vibrated discard sample, the test is invalid.

6. Strike off the top surface of concrete level with the top of the cone with a screeding motion of the strike-off bar.

7. Remove any spilled or struck off concrete from around the base of the cone so it does not inhibit the flow of the SCC mix.

8. Raise the cone vertically with a smooth fluid motion, without twisting or jerking, in 3 ± 1 seconds.

 Note 3: Complete the entire test from the start of filling through removal of the cone without interruption within an elapsed time of 2 ½ minutes.

9. Wait for the concrete to stop flowing and then measure the largest diameter (d₁) of the resulting spread of concrete. When a halo is observed in the resulting circular spread of concrete, it shall be included as part of the diameter of the concrete. Measure a second diameter (d₂) of the circular spread of concrete at an angle approximately perpendicular to the first measured diameter (d₁). Measure the diameters to the nearest 5mm [1/4 in].

4. Calculation

Calculate the Slump Flow as follows:

\[
\text{Slump flow} = \frac{d_1 + d_2}{2}
\]

Where:
- \(d_1\) = the largest diameter of the circular spread of the concrete, and
- \(d_2\) = the circular spread of the concrete at an angle perpendicular to \(d_1\).
1. If the measurement of the two diameters differs by more than 50 mm [2 in.], the test is invalid and shall be repeated.

2. Record the average of the two diameters to the nearest 10 mm [1/2 in.].

5. **Report**
 - On forms approved by the Department
 - Date
 - Time
 - Location, source and sampling method
 - Quantity represented
 - Report the slump flow to the nearest 10 mm [1/2 in.].
 - Report visual segregation index (VSI) based on photos below; matching nearest photo.

![Figure 2: Examples for visual inspection of slump flow.](image)

Figure 2: Examples for visual inspection of slump flow.

vsI 0: Stable mix, no evidence of segregation or bleeding.
VSI 1: Stable mix, only slight bleeding.

VSI 2: Unstable mix, visible separation around edges (halo) and bleeding.
VSI 3: Unstable mix, visible halo around edges, segregation in middle, excessive bleeding.
ATM 509 Fabricating Test Specimens with Self-Consolidating Concrete

1. Scope

This procedure provides instructions for fabricating test specimens in the laboratory or field using a sample of freshly mixed self-consolidating concrete (SCC). This practice is applicable to SCC with a nominal maximum aggregate size of 25 mm [1 in.] and a slump flow of 500 mm [20 in.] or greater. If the slump flow is less than 500 mm [20 in.] follow the fabrication procedures described in the standard for which the test specimen is required.

Warning—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue under prolonged exposure.

2. Apparatus

- Cylinder Molds: Molds for casting SCC specimens shall conform to the requirements of ATM 506.
- Beam Molds: Molds for casting SCC specimens shall conform to requirements of ATM 506.
- Scoop or Pouring Vessel: A water tight container having a volume such that concrete is not spilled during placement in the mold.
- Strike-off bar, trowel or float.

3. Procedure

1. Obtain the sample in accordance with ATM 501.
2. After transporting sample to testing location remix sample using shovel or scoop.
3. Begin making specimens within 15 minutes of obtaining the sample.
4. Fill the mold with a representative sample of concrete. Slightly overfill by tilting the scoop and pouring the sample around the perimeter of the mold to allow the SCC to flow into the mold and to ensure an even distribution of concrete.

 Note 1: Do not rod the concrete or tap the sides of the specimen mold.

 Note 2: If slump flow is below 500 mm [20 in.] follow standard procedures for fabricating test specimens found in ATM 506.
5. After filling, strike off the mold with either the strike off bar, trowel or float. Cover specimens and immediately place on a flat, level surface for initial curing in accordance with ATM 506.
6. After initial curing, follow transporting and final curing procedures listed in ATM 506.

4. Report

- On forms approved by the Department
- Date and Time
- Location, source and sampling method
- Quantity represented
1. Scope
This method describes Volumetric Mix Design procedures for determining the optimum proportions for Portland Cement Concrete both with and without supplemental cementitious materials. Both ACI 211 and Packing Density proportioning procedures are included in this method.

2. Significance
Concrete proportions, properties and performance depend on the aggregate that forms most of the matrix of this composite material. Many proportioning methods have been used historically to produce concrete. This method includes both ACI 211 and Packing Density proportioning procedures. Combined Aggregate gradations that plot near the maximum density line on a gradation curve typically require less cementitious material and produce concretes with lower shrinkage than concretes that use open-graded aggregates such as those specified in AASHTO M 43 and AASHTO M 6.

3. Apparatus
- Ovens and hot plates thermostatically controlled to maintain the various required temperatures within ±3°C (5°F).
- Fresh Concrete Testing equipment for Slump, Air, Unit Weight, and Temperature, AASHTO T 119, T 152, T 121, and ASTM C1064/C respectively.
- Water bath with temperature control sensitive to ±0.2°C (0.5°F) at 23°C (73.4°F) per AASHTO T 85.
- Balance or scale: Capacity sufficient for the principal sample mass, readable to 0.1 g or 0.1 percent of the total sample mass and meeting the requirements of AASHTO M 231.
- Sieve shaker meeting the requirements of WAQTC FOP for AASHTO T 27/T 11.
- Specimen molds, either 4x8” or 6x12” with lid that conform to ASTM C470.
- Compression testing machine meeting the requirements of ASTM C39 and referenced documents.
- Surface Resistivity testing apparatus meeting the requirements of AASHTO TP 95.
- Shrinkage testing apparatus meeting the requirements of ASTM C157.

4. Aggregates
Aggregate proportions may be selected by either ACI 211 or Packing Density procedures. Aggregate properties important to concrete mixes shall be determined as follows:

4.1. Gradations shall be performed in accordance with AASHTO T 11 and T 27

4.1.1. AASHTO M 6 and M 43 gradations are appropriate for the ACI 211 proportioning method. Fineness modulus will also need to be calculated for the fine aggregate when using the ACI proportioning method.

4.1.2. When three or more aggregates are available then combined gradations, conforming to Table 1, may be advantageous and shall be calculated from proportion and gradation of each component aggregate. Various Packing Density proportioning procedures may be used with combined gradations that are within Table 1 limits.
4.2. Duplicate apparent, bulk SSD, and bulk specific gravities and absorption values of each fine & coarse aggregate shall be determined in accordance with AASHTO T 84 and T 85 respectively. The average of the duplicate test values shall be used in the mix design.

4.3. Sodium Sulfate Soundness testing shall be done on both the coarse (retained on #4 sieve) and fine (passing #4 sieve) aggregates or on the coarse and fine fractions of the combined aggregate in accordance with AASHTO T 104.

5. Cementitious Materials

Cementitious materials acceptable for concrete shall include; Portland Cement, Class C and F Fly Ash, Natural Pozzolans, Ground, Granulated Blast Furnace Slag (GGBF), Silica Fume, and Meta-Kaolin.

6. Admixtures

Admixture materials acceptable for concrete shall include: water-reducers, surfactants, viscosity modifiers, air-entrainment agents, crack reducers, shrinkage reducers, accelerators, retarders, surface sealers, hardeners and finishing aides.

7. Fibers

Fiber materials are acceptable for reinforcement, shrinkage and crack control in concrete and shall include; steel, stainless steel, synthetic, and alkali-resistant cellulose fibers.
8. Internal Curing

Internal curing may be used to increase tensile and compressive strength, reduce internal stresses and reduce shrinkage in concrete. Internal curing materials include; expanded shale, clay or slate fine aggregates, alkali-resistant cellulose, super-absorbent polymers, and naturally occurring aggregates of volcanic origin meeting ASTM C1761.

9. Determination of Concrete Proportions by ACI 211.1

1. Select slump appropriate for the type of construction
2. Select maximum size of aggregate so concrete can be placed without excessive segregation or voids.
3. Estimate mixing water and entrained-air content for exposure class, selected slump and maximum aggregate size.
4. Select water-cementitious materials ratio needed to provide required durability and compressive strength.
5. Calculate the cementitious materials content based on steps 3-4 above.
6. Estimate coarse aggregate content using ACI 211.1 Table 6.3.6 - Volume of coarse aggregate per volume of concrete.
7. Calculate fine aggregate content. At the end of step 6 all ingredients of the concrete have been estimated except the fine aggregate. The fine aggregate content is calculated by difference.

10. Determination of Concrete Proportions by Packing Density

1. Select maximum size of aggregate so concrete can be placed without excessive segregation or voids.
2. Blend available aggregates to produce the highest packing density as evaluated by 0.45 power chart.
3. Determine the volume of voids in the combined aggregate.
4. Estimate the amount of excess paste required to provide desired workability.
5. Calculate volume of paste required to fill the aggregate voids.
6. Calculate volume of aggregates.
7. Calculate weights of each aggregate.
8. Select w/c ratio based on compressive strength requirements
9. Calculate cement content.
10. Calculate water content.
11. Determine required entrained air content for exposure conditions and maximum aggregate size.

11. Trial Batches

1. A minimum of three trial batches for no-air concrete and six trial batches for air-entrained will be required to establish w/c vs. strength and air vs. strength relationships. For establishing strength vs. w/c ratio three batches are to be made at three different cement contents and three different w/c ratios. The constant paste method works well for these batches. (For example use 6.0 sack mix at 0.50 w/c, 6.5 sack at 0.45 w/c and 7.0 sack at 0.40 w/c)
2. When designing air-entrained concrete begin with no-air trial batches to establish w/c vs. strength relationship.
3. Make 3 air-entrained batches at the highest strength limits (low w/c ratio) of the data. Try to produce batches with air contents at optimum and at more than 1.5% above and below optimum to produce data covering the typically specified range of acceptable air contents. This will provide sufficient data to produce a valid Strength vs. Entrained-Air relationship. Provide graphs of w/c vs. compressive strength and (for air-entrained concrete) % entrained-air vs. compressive strength with each mix design.

(Note: The graphs of w/c vs. compressive strength and entrained-air vs. compressive strength provide design and construction personnel with valuable strength information for acceptance/rejection decisions should concrete arrive at the job site that is outside w/c or entrained-air limits. The graphs also provide a basis for reductions of cement content when more than 15 consecutive strength tests provide data justifying a lower over-design value)

4. Prepare first trial batch and check for workability, under-sanded or over-sanded proportions

5. If first trial batch mix parameters are satisfactory then proceed with two additional trial batches with same volume of paste but higher and lower cement contents and lower and higher w/c ratios respectively such that high w/c mix falls below minimum compressive strength and lower w/c ratio falls just below the workability range with the maximum recommended dose of water-reducing and/or workability enhancing admixtures. If the initial trial batch is not near the middle of the w/c range, then prepare a fourth batch near the optimum w/c ratio. For air-entrained concrete you will need at least three additional trial batches, as noted above, to produce the % entrained-air vs. compressive strength curve.

12. Determination of Fresh Concrete Properties

1. Test for temperature, slump or slump flow (if SCC mix), wet unit weight, and entrained-air content

13. Preparing Concrete Test Specimens for High Performance Concrete

1. Cast 15 each 4x8” or 10 each 6x12” test cylinders for compressive strength testing of each trial batch. For Type I/II cement break 3 each 4x8” or 2 each 6x12” specimens at 3, 7, 14, 28 days and hold three specimens for possible break at a later age. (Note: High fly ash content concretes may continue to gain significant strength for several years. Additional test specimens should be cast for these mixes as compressive strength at 56 days, 90 days, 1 year and 2 years may be significant.) For Concrete made with Type III cement break 3 each 4x8” or 2 each 6x12” specimens at 1, 2, 3, 7 days and hold three specimens for possible break at a later age.

2. When flexural strength criteria applies cast one set of three beams for each trial batch per AASHTO T 97 (ASTM C78). Measure and record all data for each set of specimens and include it in mix design report.

3. When maximum shrinkage criteria applies cast one set of shrinkage specimens for each trial batch per ASTM C157. Measure and record all data for each set of specimens and include it in mix design report.

14. Curing of Specimens

1. Cure compressive and flexural specimens in fog room or water bath as specified in ASTM C511

15. Determination of Hardened Concrete Properties

1. Remove test specimens from molds 24 ± 4 hours after casting. Determine hardened unit weight of all specimens by soaking test specimens in 23°C water for 15 minutes then weighing in water followed by weighing in air at SSD.

2. When concrete is subject to exterior environmental conditions, determine the Resistivity of each specimen by AASHTO TP 95 no more than 24 hours prior to compression testing. Record specimen age at testing and resistivity for each specimen. Average each set of readings and include data in mix design reports.

3. When flexural strength is required cast three beams in accordance with ASTM C78, test at the required age and include data in mix design report.
4. When maximum shrinkage criteria applies test one set of restrained shrinkage specimens for each trial batch per ASTM C1581, measure and record required shrinkage data and include data in mix design report.

16. Graphing, Determination of Optimum w/c Ratio and Analysis of Test Results

1. Graph the 28 day (7 day for Type III cement) compressive strength vs. w/c ratio for the no-air trial batches. Graph the no-air compressive strength on the y-axis vs. w/c ratio on the x-axis and include a linear best-fit line through the data points.

2. For concrete that is not air-entrained determine the required overdesign and calculate f'cr. Follow the required f'cr value horizontally to the intercept with the strength vs. w/c ratio line and from this point drop a vertical line down to the w/c ratio line and record the value. This is the maximum w/c ratio that will provide the required f'cr.

3. Graph the 28 day (7 day for Type III cement) compressive strength vs. air content for the three batches made at the lowest w/c ratio of the no-air batches. Provide the best-fit, linear equation for the data such that strength may be calculated as a function of air content. Draw a vertical line from the optimum air content on the x-axis up to where it intersects the air vs. strength line. From that point draw a horizontal line across to the strength (y) axis. Record this compressive strength value and plot this point on the no-air strength vs. w/c ratio graph.

4. On the no-air strength vs. w/c ratio graph containing the optimum air point compressive strength draw a line through this point parallel to the no-air strength line.

5. Draw a horizontal line through the required over-design strength (f'cr) for the air-entrained concrete that intersects its strength vs. w/c ratio line. At this intersection drop a vertical line down to the w/c (x) axis. Record this w/c ratio as the maximum allowed for the air-entrained mix design. This point (w/c, f'cr) will provide the critical proportions for the submitted mix design and for a proof batch by the owner agency. (DOT&PF typically requires materials for a proof batch to verify concrete mixes made from material without a previous history.)

6. The graphical data will also provide the basis for reductions or increases in cement content as strength data is accumulated on a new mix design. (When 15-30 consecutive strength tests justify reduction in the initial over-design strength (f'cr) according to ACI 301 Sections 4.2.3.2 through 4.2.3.6c then the concrete producer or supplier may submit a request to lower the cement content along with the consecutive strength test data to the engineer for consideration of the requested reduction. Conversely, if strengths below f'cr or if there is high variability in strength tests, then the engineer may request an increase in the cement content).

17. Report

The report shall include the following:

- Project identification, Source/Supplier of mix and name of the general contractor when mix design is specific for a single project.

- Aggregate source(s), quality identification(s), target gradation, blend ratio of individual stockpiles, individual and blended aggregate absorption values, apparent, bulk SSD, and bulk specific gravities for Coarse and Fine Aggregate Fractions. Other properties that may be specified include; Unit Weight of dry-rodded coarse aggregate, fineness modulus of the blended fine aggregate, percent flat and elongated; sodium sulfate soundness of coarse and fine aggregate fractions, or aggregate-silica reactivity (ASR).

- Gradation(s), with graphical representation on 0.45 power graph of combined aggregate gradation for Packing Density mixes or AASHTO M 6 and M 43 gradations for ACI 211.1 mixes. Include Lower
Specification Limit (LSL) and Upper Specification Limit (USL) data with both combined and ACI gradations.

- An orderly presentation of all trial batch data including; type(s) and source certificate with chemical oxide analysis for all cementitious materials, trial batch proportions, complete test cylinder data with unit weight of all cylinders determined immediately after initial curing period and removal from molds, surface resistivity (when required) of test cylinders, with nominal cylinder size indicated, just before compressive testing, compressive strength and average compressive strength at each age. Include graphs of Compressive strength vs. w/c Ratio and Compressive strength vs. Air content (for air-entrained mixes). Plot trial batch data points on graph(s) along with best-fit linear trend line. For trial batch nearest to selected mix design proportions plot Strength vs. Age points and the best-fit smoothed curve through the data points. Plot theoretical unit weight vs. Air Content for selected mix design proportions from 1% Air to 10% Air and include the linear equation corresponding to plotted line in the form $y = mx + b$.

- Identification and address of the laboratory that performed the mix design, mix design identification number and the signed seal of the professional engineer who reviewed and approved the mix design.
Appendix A

Definitions

1. **Absolute Volume** – Solid volume of a material exclusive of all particle void spaces. This is calculated by the following formula:

 \[
 \text{Absolute Volume (Cubic Feet)} = \frac{\text{Weight of Material}}{(\text{Specific Gravity} \times 62.4)}
 \]

 For example: A sack of Portland cement occupies a bulk volume of approximately 1 cubic foot. The absolute volume is about 0.478 cubic foot.

 \[
 94 \text{ lbs} / (3.15 \times 62.4 \text{ lbs/ft}^3) = 0.478 \text{ cubic foot}
 \]

2. **Specific Gravity** – A ratio expression of the weight in air of an absolute volume of material to the weight of an equal volume of water.

3. **Fineness Modulus (FM)** – An empirical factor obtained by adding the total percentages of a sample of fine aggregate retained on each of the following sieves, that sum divided by 100.

 Sieve numbers 4, 8, 16, 30, 50, 100

 For example:

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>% Passing</th>
<th>% Retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>#4</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>#8</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>#16</td>
<td>68</td>
<td>32</td>
</tr>
<tr>
<td>#30</td>
<td>42</td>
<td>58</td>
</tr>
<tr>
<td>#50</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>#100</td>
<td>6</td>
<td>94</td>
</tr>
</tbody>
</table>

 Sum = 276

 Fineness Modulus calculation: \(\frac{276}{100} = 2.76 \)
Appendix B

Example Calculations for ACI 211.1 Method

1. Select an appropriate value of slump from ACI Table 6.3.1
 (Use 3 inch slump for this example)

2. Choose a nominal maximum size of coarse aggregate based on guidelines in ACI section 6.3.2
 (Use ¾ inch for this example. Include gradation conforming to AASHTO M 43 size 67 for ¾ to #4)

3. Estimate mixing water and air content per cubic yard of concrete based on ACI section 6.3.3 and Table 6.3.3
 (Use 305 pounds of water for exterior concrete with air-entrainment, and select 6% air for severe exposure)

4. Select w/c ratio to give desired strength per ACI 6.3.4 and Table 6.3.4a
 (Assume 4000 psi required compressive strength and select 0.48 for the w/c ratio)

5. Calculate the cement content in pounds per cubic yard of concrete, ACI 6.3.5, as follows:
 (305 pounds / 0.48 = 635 pounds cement)

6. Estimate coarse aggregate content, ACI 6.3.6 and Table 6.3.6
 a. In this example use FM = 2.76 for fine aggregate with ¾ inch coarse aggregate to get a coarse aggregate bulk volume fraction of 0.62
 b. Use ASTM C29 to determine Bulk Unit Weight of coarse aggregate. Assume 102 pounds/ft^3 for this example.
 c. For one cubic yard batch proportions coarse aggregate = 0.62 (27 ft^3/yd^3) (102 lbs/ft^3)
 Weight of coarse aggregate = 1707 pounds/yd^3

7. At the completion of step 6 all ingredient amounts are known except for the fine aggregate which is determined by difference, ACI 6.3.7, using the volumetric method. Use specific gravity of 2.68 for coarse aggregate (CA) and 2.71 for fine aggregate (FA). Include FA gradation meeting AASHTO M 6.
 a. Volume of water = 305 lbs / 62.4 lbs/ft^3 = 4.89 ft^3
 b. Solid Volume of cement = 635 lbs / (3.15 x 62.4 lbs/ft^3) = 3.23 ft^3
 c. Solid Volume of CA = 1707 lbs / (2.68 x 62.4 lbs/ft^3) = 10.21 ft^3
 d. Volume of air = 0.06 x 27.0 ft^3 = 1.62 ft^3
 e. Subtotal of all ingredients except fine aggregate = 19.95 ft^3
 f. Solid Volume of FA = 27 – 19.95 = 7.05 ft^3
 g. Required weight of dry FA =7.05 ft^3 x 2.71 x 62.4 lbs/ft^3 = 1192 lbs.

8. Follow ACI 211.1 Sections 7.2.8 to 7.3.10 for adjustments for aggregate moisture, slump, workability and mix harshness.
Appendix C

Example Calculations for Packing Density Method

1. Create maximum density aggregate blend from available sources.

2. Use ASTM C29 to determine Bulk Unit Weight of combined aggregate and then calculate the volume of voids in one cubic yard.

 Packing density = 0.7223

 Voids content = $1 - 0.7223 = 0.2777$

3. Estimate the amount of excess paste required to provide desired workability.

 Excess paste for 3” slump = 10%

4. Calculate the total amount of paste required.

 Paste content = $0.2777 + 0.10 \times 0.2777 = 0.3054$

5. Calculate Volume of aggregates.

 Volume of aggregates = $1 - 0.3054 = 0.6945$

6. Calculate weights of each aggregate assuming a three aggregate blend of 42% CA, 18% IA, and 40% FA with specific gravities of 2.712, 2.736, and 2.593 respectively.

 Solid Volumes of Aggregates = $0.42 / 2.712 + 0.18 / 2.736 + 0.40 / 2.593 = 0.3749$

 CA = $(0.6945 / 0.3749) \times 0.42 \times 62.4 \text{ lbs/ft}^3 \times 27 \text{ ft}^3/\text{yd}^3 = 1311 \text{ lbs/yd}^3$

 IA = $(0.6945 / 0.3749) \times 0.18 \times 62.4 \text{ lbs/ft}^3 \times 27 \text{ ft}^3/\text{yd}^3 = 562 \text{ lbs/yd}^3$

 FA = $(0.6945 / 0.3749) \times 0.40 \times 62.4 \text{ lbs/ft}^3 \times 27 \text{ ft}^3/\text{yd}^3 = 1248 \text{ lbs/yd}^3$

7. Select w/c ratio to give desired strength and calculate cement content.

 (Assume 4000 psi required compressive strength and select 0.48 for the w/c ratio)

 $w/c = 0.48; \quad w = 0.48c$

 Total paste = $c + w = c/3.15 + 0.48c/1 = 0.7975c$

 Cement content = $0.3054/0.7975 \times 62.4 \text{ lbs/ft}^3 \times 27 \text{ ft}^3/\text{yd}^3 = 645 \text{ lbs/yd}^3$

8. Calculate water content.

 Water content = $0.48 \times 645 \text{ lbs/yd}^3 = 310 \text{ lbs/yd}^3$

9. Make adjustments for aggregate moisture, slump, workability and mix harshness and entrained air.
Table 1. Combined Concrete Aggregate Grading Specification

<table>
<thead>
<tr>
<th>Nominal Maximum Aggregate Size (in.)</th>
<th>3</th>
<th>2½</th>
<th>2</th>
<th>1-½</th>
<th>1</th>
<th>¾</th>
<th>½</th>
<th>%</th>
<th>No. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sieves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3½"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3"</td>
<td>93-100</td>
<td>99-100</td>
<td>99-100</td>
<td>99-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2½"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2"</td>
<td>76-90</td>
<td>90-100*</td>
<td>99-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1½"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1"</td>
<td>64-66</td>
<td>68-73</td>
<td>64-66</td>
<td>62-68</td>
<td>82-100*</td>
<td>99-100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>¾"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>½"</td>
<td>47-58</td>
<td>51-64</td>
<td>55-73</td>
<td>52-68</td>
<td>82-100*</td>
<td>99-100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⅛"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>30-40</td>
<td>41-54</td>
<td>45-61</td>
<td>57-83</td>
<td>81-100*</td>
<td>99-100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>33-43</td>
<td>35-47</td>
<td>39-54</td>
<td>43-64</td>
<td>52-88</td>
<td>86-100*</td>
<td>99-100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 4</td>
<td>22-31</td>
<td>24-34</td>
<td>26-38</td>
<td>29-47</td>
<td>34-54</td>
<td>41-64</td>
<td>88-73</td>
<td>88-100*</td>
<td></td>
</tr>
<tr>
<td>No. 8</td>
<td>15-23</td>
<td>16-25</td>
<td>17-28</td>
<td>19-34</td>
<td>22-39</td>
<td>27-47</td>
<td>31-64</td>
<td>38-73</td>
<td></td>
</tr>
<tr>
<td>No. 16</td>
<td>9-17</td>
<td>10-19</td>
<td>11-21</td>
<td>12-25</td>
<td>14-29</td>
<td>17-34</td>
<td>20-39</td>
<td>24-64</td>
<td>26-73</td>
</tr>
<tr>
<td>No. 30</td>
<td>5-12</td>
<td>6-14</td>
<td>6-15</td>
<td>7-18</td>
<td>8-21</td>
<td>9-25</td>
<td>11-29</td>
<td>13-39</td>
<td>15-54</td>
</tr>
<tr>
<td>No. 60</td>
<td>2-9</td>
<td>2-10</td>
<td>3-11</td>
<td>3-14</td>
<td>3-15</td>
<td>4-18</td>
<td>5-21</td>
<td>6-29</td>
<td>7-39</td>
</tr>
<tr>
<td>No. 100</td>
<td>0-7</td>
<td>0-7</td>
<td>0-8</td>
<td>0-10</td>
<td>0-11</td>
<td>0-14</td>
<td>0-15</td>
<td>0-21</td>
<td>0-29</td>
</tr>
<tr>
<td>No. 200</td>
<td>0-20</td>
<td>0-20</td>
<td>0-20</td>
<td>0-20</td>
<td>0-20</td>
<td>0-20</td>
<td>0-20</td>
<td>0-20</td>
<td>0-20</td>
</tr>
</tbody>
</table>

*Nominal Maximum Size
All percentages are by weight.

Nominal maximum size for concrete aggregate is defined as the smallest standard sieve opening through which the entire amount of the aggregate is permitted to pass. Standard sieve sizes shall be those listed in ASTM C 33.

The Contracting Agency may sample each component aggregate prior to introduction to the weigh batcher or as otherwise determined by the Engineer. Each separate component will be sieve analyzed alone per AASHTO Test Method T-11/27. All material components will be mathematically recombined by proportions (Weighted Average) supplied by the Contractor.
Blended Aggregate Gradation Worksheet

Example 1: Blended Aggregate for a Combined Maximum Density Gradation

<table>
<thead>
<tr>
<th>Sieve Size (mm)</th>
<th>Percentage by Weight</th>
<th>Example 4</th>
<th>Example 3</th>
<th>Example 2</th>
<th>Example 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.75</td>
<td>0</td>
<td>0.15%</td>
<td>0.15%</td>
<td>0.15%</td>
<td>0.15%</td>
</tr>
<tr>
<td>2.36</td>
<td>0</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
</tr>
<tr>
<td>1.18</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>0.60</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>0.30</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
<tr>
<td>0.15</td>
<td>0</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Notes:
- Use these data to adjust the blending of aggregates.
- Ensure the total weight adds up to 100%.
- Adjust blend percentages as necessary to meet specifications.
Example 1: Blend of 4 Aggregates for a Combined Maximum Density Gradation

<table>
<thead>
<tr>
<th>Sieve Size (in)</th>
<th>Sieve Size (mm)</th>
<th>% Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>1 1/2</td>
<td>37.5</td>
<td>100</td>
</tr>
<tr>
<td>1.0</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>3/4</td>
<td>19</td>
<td>98.19</td>
</tr>
<tr>
<td>1/2</td>
<td>12.5</td>
<td>78.71</td>
</tr>
<tr>
<td>3/8</td>
<td>9.5</td>
<td>68.39</td>
</tr>
<tr>
<td>#4</td>
<td>4.75</td>
<td>49.9</td>
</tr>
<tr>
<td>#8</td>
<td>2.36</td>
<td>30.13</td>
</tr>
<tr>
<td>#16</td>
<td>1.18</td>
<td>31.35</td>
</tr>
<tr>
<td>#30</td>
<td>0.6</td>
<td>22.46</td>
</tr>
<tr>
<td>#50</td>
<td>0.3</td>
<td>12.12</td>
</tr>
<tr>
<td>#100</td>
<td>0.15</td>
<td>4.1</td>
</tr>
<tr>
<td>#200</td>
<td>0.075</td>
<td>1.867</td>
</tr>
</tbody>
</table>

Select Max. Sieve Size in mm.

0.45 POWER CHART

Combined Aggregate Blended Gradation

DO NOT ALTER NUMBERS IN LOWER BOX

<table>
<thead>
<tr>
<th>0.5814023</th>
<th>0.5814023</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5814023</td>
<td>0.5814023</td>
<td>100</td>
</tr>
</tbody>
</table>

A Technical Service of Master Builders, Inc.

Effective May 1, 2016

Alaska Test Methods Manual
Duplicate Coarse Aggregate Specific Gravities & Absorption

AASHTO T85 (ASTM C127) Duplicate Relative Density (SpG) and Absorption of Coarse Aggregate

Client:
Project:
Client Address:
Submitted by:
Material/Use:
Source:
Sampled by:
Tested for:
Sampled by:
Field Number:
Date Sampled:
Test Location:
Received by:
Date Received:
Depth:
Testing Tech.:
Project No.:
Quantity Rep.:
Date Completed:
Lab Number:

Sample Preparation:

Use table below to determine sample size. If more than 15% retained on 1-1/2" sieve, test these portions separately from the smaller material. Multiple fractions may be used. Grind the reduced sample over a #4 sieve and wash all dust from the sample.

Note: AASHTO allows initial drying to be eliminated if aggregate will be used in concrete mixtures in its naturally wet condition. The 15-hour soaking period may be eliminated if surfaces of the sample have been kept continuously wet until the test was begun.

Procedure:

1. Dry to constant mass at 110 ± 5°C. Cool at room temperature for 1-3 hrs or until sample can be handled comfortingly.
2. Completely submerge sample in water at room temperature and soak for 15-19 hrs (ASTM 24 ± 4 hrs).
3. Note: AASHTO allows initial drying to be eliminated if aggregate will be used in concrete mixtures in its naturally wet condition. The 15-hour soaking period may be eliminated if surfaces of the sample have been kept continuously wet until the test was begun.
4. Remove sample from water and roll in absorbent towel until no visible water excess. Place in handling scoop.
5. Immediately record mass of sample in air, at SSD condition, to minimize loss from evaporation.
6. Place sample in stove bucket attached to scale in water bath. Shake the bucket to release trapped air bubbles.
7. Record mass of sample while submerged. (Be sure to return handling scoop to top of scale or loss will be off).
8. Dry to constant mass at 110 ± 5°C. Cool at room temperature 1-3 hrs until sample can be handled comfortably.
9. Record oven dry mass. (A)

Note: Report SpG results to 0.001 (AASHTO 0.01 ASTM)

<table>
<thead>
<tr>
<th>Formulate</th>
<th>Description</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Oven dry mass</td>
<td>2545.0</td>
<td>2572.6</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>SSD mass</td>
<td>2473.3</td>
<td>2473.3</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Mass in water</td>
<td>2545.0</td>
<td>2572.6</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Temperature</td>
<td></td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>E</td>
<td>Absorption</td>
<td>2.639</td>
<td>2.639</td>
<td>2.639</td>
</tr>
<tr>
<td>F</td>
<td>SSD (SpG)</td>
<td>2.635</td>
<td>2.635</td>
<td>2.635</td>
</tr>
<tr>
<td>G</td>
<td>Oren (SpG)</td>
<td>2.635</td>
<td>2.635</td>
<td>2.635</td>
</tr>
<tr>
<td>H</td>
<td>Apparent (SpG)</td>
<td>2.737</td>
<td>2.737</td>
<td>2.737</td>
</tr>
<tr>
<td>I</td>
<td>0.725</td>
<td>2.436</td>
<td>1.415</td>
<td>1.386</td>
</tr>
</tbody>
</table>

Sample Size Table

<table>
<thead>
<tr>
<th>Nominal Max.</th>
<th>Min. Test Sample</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size, mm (in.)</td>
<td>Max. kg (lb.)</td>
<td></td>
</tr>
<tr>
<td>12.5 (1/2) or less</td>
<td>2 (0.4)</td>
<td></td>
</tr>
<tr>
<td>19.0 (3/4)</td>
<td>3 (0.6)</td>
<td></td>
</tr>
<tr>
<td>25.0 (1)</td>
<td>4 (0.8)</td>
<td></td>
</tr>
<tr>
<td>37.5 (1 1/2)</td>
<td>5 (1.1)</td>
<td></td>
</tr>
<tr>
<td>50.0 (2)</td>
<td>8 (1.8)</td>
<td></td>
</tr>
<tr>
<td>63.0 (2 1/2)</td>
<td>12 (2.6)</td>
<td></td>
</tr>
<tr>
<td>80.0 (3)</td>
<td>18 (4.0)</td>
<td></td>
</tr>
<tr>
<td>100.0 (4)</td>
<td>23 (5.5)</td>
<td></td>
</tr>
</tbody>
</table>

Page 1 of 1
Duplicate Fine Aggregate Specific Gravities & Absorption

AASHTO T 84 (ASTM C128) Duplicate Relative Density, (Sp G) and Absorption of Fine Aggregate

Client: .. Project: ..
Client Address: .. Material Use: .. Submitted by: ..
Sampled from: .. Field Number: ..
Sampled by: .. Date Sampled: ..
Test Location: .. Received by: .. Date Received: ..
Depth: .. Testing Tech: .. Project No: ..
Quantity Rep: .. Date Completed: .. Lab Number: ..

Sample Preparation:
1. Obtain 2 each, 1 lb samples in accordance with T 2 (D 75) and T 248 (C 702) for duplicate tests.
2. Dry to constant mass then add a minimum of 6% moisture after cooling. Allow sample to stand 15-19 hrs
 (24 ± 4 hrs for ASTM)
 a) Initial drying is optional if aggregates will be used for concrete mixtures, and are still in their moist state.
3. Decant excess water with care to avoid loss of fines. Spread sample on nonabsorbent surface, and position
 sample in gently moving warm air. On short table use fan, heat lamp, and spin to speed up evaporation
 during the drying process.
4. Press cone mold to a non absorbent surface and fill to overflowing, making additional added
 above top of mold by holding it with cupped fingers of hand holding the mold.
 a) Keep constant pressure on mold, using temper to deliver 25 blows to aggregate, letting temper fall under its
 own weight from approximately 1.2 in. (3 cm) above the top surface of the aggregate.
5. Carefully around the mold and remove the cone, being careful not to agitate the material.
 a) Slight dampness of the material indicates SSD, retention of the molded shape indicates surface moisture.
 b) Shaking after striking the table indicates the cone test should be run again immediately.
 c) Repeat steps 4-5 until material reaches SSD. Start filling pyrometer immediately after reaching SSD.
 d) Note: Angular aggregate samples containing large proportions of fines may require provisional procedures.

 To test, drop a handful of material 106-150 mm - airborne fines indicate this situation.

Procedure:
(Bold letters indicate data entry points)
1. Partially fill (1/3), the calibrated pyrometer with water, insert funnel with tube, and liter.
2. Introduce 500 ± 10 grams of prepared SSD material into flask. Record the mass of material to 0.1 g (g)
 a) Introduce water to 98% capacity with additional water manually agitate 15-20 min to remove visible air
 b) Manually agitate by rolling on rubber pad or between your hands.
 c) Note: A small amount of propyl alcohol may be used to disperse the foam.
3. Adjust the temperature of the pyrometer and contents to 23.0 ± 1.7°C (23.0 ± 2.0°C for ASTM) (D)
4. Bring the inner level to the calibrated mark. The bottom of meniscus should rest on the calibrated line.
5. Record mass of pyrometer, sample, and water to 0.1 g (g)
6. Record mass of pyrometer, sample, and water from the current calibration sheet (B)
7. Subtract the outer sample level and density conversion factor (0.01 g) using 110°C oven (A)
8. a) Use a probe to fill the entire flask with all the fines from the pyrometer.
 b) Determine the mass of the sample only after it has cooled 1/2 ± 0.5 hrs
 c) Note: Report Sp G: Results to 0.001 (AASHTO) 0.02 (ASTM)

Formulas:

<table>
<thead>
<tr>
<th>Description of data or calculation:</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>960.7</td>
<td>960.7</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>998.1</td>
<td>998.1</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>974.9</td>
<td>974.5</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>26.6</td>
<td>26.7</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>493.4</td>
<td>493.4</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2.645</td>
<td>2.645</td>
<td>2.645</td>
</tr>
<tr>
<td>B/S (S-C)</td>
<td>1.11%</td>
<td>1.23%</td>
<td></td>
</tr>
</tbody>
</table>

Page 1 of 1
Bulk Density

Bulk Density ("Unit Weight") and Voids in Aggregate

AASHTO T19 / T19 M and ASTM C29 / C 29M

<table>
<thead>
<tr>
<th>Client:</th>
<th>Project:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean:</td>
<td>Clean:</td>
</tr>
<tr>
<td>Clean Address:</td>
<td>Clean Address:</td>
</tr>
<tr>
<td>Material Used:</td>
<td>Material Used:</td>
</tr>
<tr>
<td>Source:</td>
<td>Source:</td>
</tr>
<tr>
<td>Sampled from:</td>
<td>Sampled by:</td>
</tr>
<tr>
<td>Field Number:</td>
<td>Date Sampled:</td>
</tr>
<tr>
<td>Test Location:</td>
<td>Testing Tech:</td>
</tr>
<tr>
<td>Received by:</td>
<td>R&M Project No:</td>
</tr>
<tr>
<td>Depth:</td>
<td>Date Completed:</td>
</tr>
<tr>
<td>Quantity Rep:</td>
<td>Lab Number:</td>
</tr>
</tbody>
</table>

Sample Preparation:
Obtain sample 125-200% of quantity required to fill measure. Dry to constant mass at 110 ± 5°C.

Method A: Reaching:
(For nominal maximum size 1 1/2” or less)
1. Record weight of measure to 0.1 lb.
2. Fill measure 1/3 full and level surface with fingers. Press level 20 times with a 3/8” hemispherical tipped rod.

Avoid hitting bottom of measure.
3. Fill measure 2/3 full, level, and tap 24 times. Avoid pulverizing the first layer.
4. Fill measure to overflowing and rod again. Avoid compacting the previous layer.
5. Level aggregate using fingers or straight edge so projections above measure balance surface voids.
6. Record weight of full measure to 0.1 lb.

Method B: Shaking:
(For nominal maximum size 1 1/2” to 5”)
1. Record weight of measure to 0.1 lb.
2. Fill measure 1/3 full and level surface with fingers. Place measure on a solid base, compact by tapping opposite sides alternately about 2” and dropping down each side 25 times for a total of 50 blows per layer.
3. Fill measure 2/3 full, level, and compact as above.
4. Fill measure to overflowing and compact as above.
5. Level aggregate using fingers or straight edge so projections above measure balance surface voids.
6. Record weight of full measure to 0.1 lb.

Method C: Shoveling:
(Loose Bulk Density - use only if specified)
1. Record weight of measure to 0.1 lb.
2. Fill measure to overflowing with shovel or scoop, discharging from no more than 2” above measure.

Avoid segregation of material.
3. Level aggregate using fingers or straight edge so projections above measure balance surface voids.
4. Record weight of full measure to 0.1 lb.

Bulk Density SSD
For bulk density SSD, use this same procedure but calculate using Mixed Formula below.

Note: Absorption and Sp5 data must be determined using C127 or C128 (time or coarse Sp5 tests)

Method Used:

<table>
<thead>
<tr>
<th>Method Used</th>
<th>A1</th>
<th>Trial Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formula</td>
<td>Description</td>
<td>1</td>
</tr>
<tr>
<td>G</td>
<td>Weight of Agg + T (lb)</td>
<td>39.49</td>
</tr>
<tr>
<td>T</td>
<td>Weight (lb)</td>
<td>7.518</td>
</tr>
<tr>
<td>V</td>
<td>Volume (ft³)</td>
<td>0.245</td>
</tr>
<tr>
<td>M</td>
<td>Bulk Density (lb/ft³) (M)</td>
<td>129</td>
</tr>
<tr>
<td>A</td>
<td>% Absorption</td>
<td>5.50</td>
</tr>
<tr>
<td>M[(1 - A/100)]</td>
<td>Bulk Density at SSD (lb/ft³) (MSSD)</td>
<td>129</td>
</tr>
<tr>
<td>S</td>
<td>Bulk Sp5 (dry basis)</td>
<td>2.544</td>
</tr>
<tr>
<td>W</td>
<td>Water density 62.4 lb/ft³</td>
<td>62.4</td>
</tr>
<tr>
<td>100(S/M)/(S+M)</td>
<td>% Void Content</td>
<td>25.5%</td>
</tr>
</tbody>
</table>

Notes:
Constant paste volume calculations:

Blue font shows data entry points. Red font indicates a calculation. No data entry in these cells.

1. Start with three w/c ratios 0.03 apart and three cement contents about 1/2 sack of cement apart.
2. For example, w/c = 0.30, 0.35, 0.40 and cement = 6.0, 6.5, 7.0 sack respectively (see below).
3. Go to Data tab in Excel, select What-If Analysis and then Goal Seek while on Total Paste volume cell for 6 sack mix.
4. Set the Goal Seek value to the 6.5 Sack Total Paste Volume of 7.515 ft³ by changing cement value for 6 sack mix.
5. Repeat steps 3 and 4 for the 7 sack batch.
6. Use these three equal paste volumes for preparing strength vs. w/c ratio trial batches to give equivalent workability.

Note. To maintain consistent slump gradually increase dosage of water-reducing admixture while moving to higher cement contents, as the paste gets thicker. Constant slump is desirable for establishing air-entraining agent dosage. Air-entrainment agents are more effective at higher slumps.

<table>
<thead>
<tr>
<th>W/C Ratio</th>
<th>V. (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>287.1</td>
</tr>
<tr>
<td>Total free water</td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>574.2</td>
</tr>
<tr>
<td>0.40</td>
<td>287.1</td>
</tr>
<tr>
<td>Cement</td>
<td>574.2</td>
</tr>
<tr>
<td>Silica Fume</td>
<td></td>
</tr>
<tr>
<td>Mixing water</td>
<td>287.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W/C Ratio</th>
<th>V. (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>275.1</td>
</tr>
<tr>
<td>0.35</td>
<td>611.1</td>
</tr>
<tr>
<td>0.40</td>
<td>275.1</td>
</tr>
<tr>
<td>Total free water</td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>611.1</td>
</tr>
<tr>
<td>0.40</td>
<td>275.1</td>
</tr>
<tr>
<td>Cement</td>
<td>611.1</td>
</tr>
<tr>
<td>Silica Fume</td>
<td></td>
</tr>
<tr>
<td>Mixing water</td>
<td>275.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W/C Ratio</th>
<th>V. (ft³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30</td>
<td>261.3</td>
</tr>
<tr>
<td>0.35</td>
<td>638.6</td>
</tr>
<tr>
<td>0.40</td>
<td>261.3</td>
</tr>
<tr>
<td>Total free water</td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>638.6</td>
</tr>
<tr>
<td>0.40</td>
<td>261.3</td>
</tr>
<tr>
<td>Cement</td>
<td>638.6</td>
</tr>
<tr>
<td>Silica Fume</td>
<td></td>
</tr>
<tr>
<td>Mixing water</td>
<td>261.3</td>
</tr>
</tbody>
</table>

Reference Data:

- Type I cement, Sp C: 3.15
- Silica Fume, Sp C: 3.2
- Water, unit weight at 20°C (pcf): 62.4
Mix Design Volumetrics - 6.0 ft³ Trial (1) - Page 1

Type of Concrete: 5000 psi
Project Name: State - Not exposed to Freeze/Thaw

Mix Design Criteria:
- Maximum Nominal Aggregate Size (inches): 3/4
- Cement (Minimum weight per cubic yard): 550 lbs
- Cement Mix Type: Type III
- Max Water/Cementitious Materials Ratio (lbs/lb): 0.46
- 28 day Design Strength, (°F): 10,000 psi
- 28 day Required Strength, (°F): 6200 psi
- Slump Range (inches): 4 ± 1.5
- Entrained Air Content (% by Volume): 1.5 ± 1%
- Mix Ratio by weight (Coarse Gravel/Sand-Gravel): 1:2.47:3.07
- Sand Content (% by weight of SSD Apg): 44.6%

Aggregate Characteristics:

<table>
<thead>
<tr>
<th>Material</th>
<th>Size</th>
<th>AASHTO</th>
<th>Bulk Sp G</th>
<th>SSD Sp G</th>
<th>App Sp G</th>
<th>Absorption</th>
<th>Free water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse Agg</td>
<td>M-43</td>
<td>2.638</td>
<td>2.674</td>
<td>2.738</td>
<td>1.38%</td>
<td>0.57%</td>
<td></td>
</tr>
<tr>
<td>Fine Agg</td>
<td>M-0</td>
<td>2.643</td>
<td>2.675</td>
<td>2.732</td>
<td>1.23%</td>
<td>2.86%</td>
<td></td>
</tr>
</tbody>
</table>

Under 1 gallon – 128 fl oz = 378.53 milliliter, 1 pound = 453.59 grams

<table>
<thead>
<tr>
<th>Admixtures</th>
<th>Enter Dose</th>
<th>Trial Batch Amounts</th>
<th>Cubic Yard Amounts</th>
<th>Admixtures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyheed 997</td>
<td>5.00</td>
<td>1.594</td>
<td>47.1</td>
<td>0.132</td>
</tr>
<tr>
<td>Micro Air</td>
<td>0.00</td>
<td>0.000</td>
<td>0.0</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Dry Batch weights for 1.0 yd³

<table>
<thead>
<tr>
<th>W/C Ratio</th>
<th>Weight (lbs)</th>
<th>Volume (cubic yd)</th>
<th>SSD Batch (lbs)</th>
<th>Field Moist Batch (lbs)</th>
<th>Aggregate Free Water (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.500</td>
<td>267</td>
<td>2.82</td>
<td>574</td>
<td>574</td>
<td>574</td>
</tr>
</tbody>
</table>

- Total Free water: 267 lbs
- Mixing water: 267 lbs
- Coarse Aggregate (Dry): 178 lbs
- Polyheed 997 Admixture: 2.376 lbs
- Micro Air: 0.000 lbs
- Air: 0.500 lbs

Volume Subtotal = 18.51

<table>
<thead>
<tr>
<th>Fine Aggregate (Dry)</th>
<th>Total</th>
<th>Field Moist Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1400</td>
<td>4116</td>
<td>4116</td>
</tr>
</tbody>
</table>

Unit Weight (pcf): 148.7

Calculation:

- Calculated by:
- Checked by:

Aggregate Moisture (As Recovered):
- CA | FA
| T + Wet | 1012.1 | 1228.8 |
| T + Dry | 2470.0 | 2471.3 |
| Water | 62.4 | 62.7 |
| Dry | 1437.9 | 1232.5 |

Reference Data:
Type I cement, Sp G: 3.15
Water, unit weight at 20° C (pcf): 62.4

Alaska Test Methods Manual 530-17 Effective May 1, 2016
Mix Design Volumetrics - 6.0 sc: Trial (1) - Page 2

<table>
<thead>
<tr>
<th>Trial Batch</th>
<th>Weight (lb)</th>
<th>Volume (ft³)</th>
<th>Added water (lb)</th>
<th>Total Mixing Water</th>
<th>Trial batch</th>
<th>Final WC Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (ft³)</td>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td>15.244</td>
<td>0.500</td>
</tr>
<tr>
<td>Cement</td>
<td>31.689</td>
<td>0.162</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixing water</td>
<td>12.592</td>
<td>0.190</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Coarse Aggregate</td>
<td>26.356</td>
<td>0.387</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA Absorption</td>
<td>1.232</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA Free Water</td>
<td>0.059</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Weight Wet CA =</td>
<td>98.438</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foamed 997 Admixture</td>
<td>0.122</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micro-Air Admixture</td>
<td>0.000</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td>1.5%</td>
<td>0.000</td>
<td>0.023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Fine Aggregate</td>
<td>77.763</td>
<td>0.472</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA Absorption</td>
<td>0.056</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA Free Water</td>
<td>3.002</td>
<td>0.048</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Weight Wet FA =</td>
<td>81.721</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculated Unit Wt w/Admixtures</td>
<td>147.2 pcf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Check air meter vs. unit weight by trial
% air contents below:

<table>
<thead>
<tr>
<th>Volume (ft³)</th>
<th>Cement</th>
<th>2.920</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water</td>
<td>4.599</td>
</tr>
<tr>
<td></td>
<td>Coarse Agg</td>
<td>10.558</td>
</tr>
<tr>
<td></td>
<td>Poly 997</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>Micro-Air</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Pozzalite20</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Fine Agg</td>
<td>8.487</td>
</tr>
<tr>
<td>Total</td>
<td>27.459</td>
<td></td>
</tr>
<tr>
<td>pcf</td>
<td>147.2</td>
<td></td>
</tr>
</tbody>
</table>

Theoretical Maximum Unit Wt = 152.0 pcf

Trial Batch Data

<table>
<thead>
<tr>
<th>Temperature</th>
<th>42°F</th>
<th>Weight of Tire</th>
<th>7.920</th>
<th>lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stump</td>
<td>5.5 inches</td>
<td>Weight of Tire & Concrete</td>
<td>44.725</td>
<td>lbs</td>
</tr>
<tr>
<td>Air</td>
<td>2.0%</td>
<td>Weight of Concrete</td>
<td>56.805</td>
<td>lbs</td>
</tr>
<tr>
<td>Unit Weight</td>
<td>147.2 pcf</td>
<td>Volume of Tire</td>
<td>0.230</td>
<td>ft³</td>
</tr>
<tr>
<td>Yield (by ft³)</td>
<td>4.497</td>
<td>Weight of all ingredients as batched</td>
<td>224.573</td>
<td>lbs</td>
</tr>
</tbody>
</table>
Cylinder Data

<table>
<thead>
<tr>
<th>Date</th>
<th>Age (Days)</th>
<th>Cyl ID</th>
<th>Diameter 1 (Inches)</th>
<th>Diameter 2 (Inches)</th>
<th>XCS Area (Sq. Inch)</th>
<th>Peak Load (Pounds)</th>
<th>P'c (psi)</th>
<th>P'c (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/3/2013</td>
<td>5</td>
<td>181</td>
<td>4.00</td>
<td>4.00</td>
<td>2.37</td>
<td>34,000</td>
<td>270</td>
<td>1.87</td>
</tr>
<tr>
<td>5/3/2013</td>
<td>3</td>
<td>182</td>
<td>4.00</td>
<td>4.00</td>
<td>2.60</td>
<td>34,000</td>
<td>270</td>
<td>1.87</td>
</tr>
<tr>
<td>5/3/2013</td>
<td>3</td>
<td>183</td>
<td>3.99</td>
<td>4.00</td>
<td>2.53</td>
<td>34,000</td>
<td>270</td>
<td>1.87</td>
</tr>
<tr>
<td>5/3/2013</td>
<td>3</td>
<td>184</td>
<td>4.00</td>
<td>3.99</td>
<td>2.53</td>
<td>33,765</td>
<td>250</td>
<td>1.75</td>
</tr>
<tr>
<td>5/3/2013</td>
<td>4</td>
<td>185</td>
<td>4.00</td>
<td>4.00</td>
<td>2.87</td>
<td>58,013</td>
<td>450</td>
<td>3.19</td>
</tr>
<tr>
<td>5/3/2013</td>
<td>7</td>
<td>186</td>
<td>4.020</td>
<td>3.990</td>
<td>2.60</td>
<td>38,165</td>
<td>280</td>
<td>1.93</td>
</tr>
<tr>
<td>5/3/2013</td>
<td>7</td>
<td>187</td>
<td>4.020</td>
<td>4.010</td>
<td>2.66</td>
<td>37,115</td>
<td>280</td>
<td>1.93</td>
</tr>
<tr>
<td>5/3/2013</td>
<td>7</td>
<td>188</td>
<td>4.020</td>
<td>4.010</td>
<td>2.66</td>
<td>58,175</td>
<td>450</td>
<td>3.19</td>
</tr>
<tr>
<td>5/3/2013</td>
<td>7</td>
<td>189</td>
<td>4.000</td>
<td>4.010</td>
<td>2.60</td>
<td>71,855</td>
<td>5700</td>
<td>39.20</td>
</tr>
<tr>
<td>5/3/2013</td>
<td>14</td>
<td>190</td>
<td>3.990</td>
<td>4.010</td>
<td>2.53</td>
<td>69,875</td>
<td>5700</td>
<td>39.20</td>
</tr>
<tr>
<td>5/3/2013</td>
<td>14</td>
<td>191</td>
<td>3.990</td>
<td>4.000</td>
<td>2.53</td>
<td>69,875</td>
<td>5700</td>
<td>39.20</td>
</tr>
<tr>
<td>5/3/2013</td>
<td>14</td>
<td>192</td>
<td>4.000</td>
<td>4.000</td>
<td>2.60</td>
<td>70,725</td>
<td>5200</td>
<td>36.00</td>
</tr>
<tr>
<td>5/3/2013</td>
<td>14</td>
<td>193</td>
<td>4.000</td>
<td>3.980</td>
<td>2.53</td>
<td>78,255</td>
<td>5200</td>
<td>36.00</td>
</tr>
<tr>
<td>5/3/2013</td>
<td>28</td>
<td>194</td>
<td>3.980</td>
<td>3.980</td>
<td>2.44</td>
<td>76,835</td>
<td>5180</td>
<td>36.00</td>
</tr>
<tr>
<td>5/3/2013</td>
<td>28</td>
<td>195</td>
<td>3.980</td>
<td>3.980</td>
<td>2.44</td>
<td>76,835</td>
<td>5180</td>
<td>36.00</td>
</tr>
<tr>
<td>5/3/2013</td>
<td>28</td>
<td>196</td>
<td>3.980</td>
<td>3.980</td>
<td>2.44</td>
<td>75,110</td>
<td>5040</td>
<td>34.70</td>
</tr>
</tbody>
</table>

Average 3 day P'c: 2700
Average 7 day P'c: 4500
Average 14 day P'c: 5640
Average 28 day P'c: 6130

Cylinder Data

<table>
<thead>
<tr>
<th>Cyl ID Number</th>
<th>W in Air (grams)</th>
<th>W in H₂O (grams)</th>
<th>H₂O Temp (°C)</th>
<th>H₂O Density (g/cm³)</th>
<th>Cylinder Volume (cm³)</th>
<th>Cylinder Density (g/cm³)</th>
<th>Unit Weight (lbs/ft³)</th>
<th>(kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>181</td>
<td>298.5</td>
<td>298.5</td>
<td>23.3</td>
<td>0.99759</td>
<td>1640.3</td>
<td>2.4256</td>
<td>24.04</td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>299.0</td>
<td>299.0</td>
<td>23.3</td>
<td>0.99759</td>
<td>1640.3</td>
<td>2.4256</td>
<td>24.04</td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>299.2</td>
<td>299.2</td>
<td>23.3</td>
<td>0.99759</td>
<td>1640.3</td>
<td>2.4256</td>
<td>24.04</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>298.1</td>
<td>298.1</td>
<td>23.3</td>
<td>0.99759</td>
<td>1638.6</td>
<td>2.4336</td>
<td>24.31</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>301.8</td>
<td>301.8</td>
<td>23.3</td>
<td>0.99732</td>
<td>1638.9</td>
<td>2.4336</td>
<td>24.31</td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>301.5</td>
<td>301.5</td>
<td>23.3</td>
<td>0.99732</td>
<td>1638.9</td>
<td>2.4336</td>
<td>24.31</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>300.5</td>
<td>300.5</td>
<td>23.3</td>
<td>0.99732</td>
<td>1638.9</td>
<td>2.4336</td>
<td>24.31</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>301.5</td>
<td>301.5</td>
<td>23.3</td>
<td>0.99732</td>
<td>1638.9</td>
<td>2.4336</td>
<td>24.31</td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>301.5</td>
<td>301.5</td>
<td>23.3</td>
<td>0.99732</td>
<td>1638.9</td>
<td>2.4336</td>
<td>24.31</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>301.5</td>
<td>301.5</td>
<td>23.3</td>
<td>0.99732</td>
<td>1638.9</td>
<td>2.4336</td>
<td>24.31</td>
<td></td>
</tr>
<tr>
<td>191</td>
<td>301.5</td>
<td>301.5</td>
<td>23.3</td>
<td>0.99732</td>
<td>1638.9</td>
<td>2.4336</td>
<td>24.31</td>
<td></td>
</tr>
<tr>
<td>192</td>
<td>301.5</td>
<td>301.5</td>
<td>23.3</td>
<td>0.99732</td>
<td>1638.9</td>
<td>2.4336</td>
<td>24.31</td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>301.5</td>
<td>301.5</td>
<td>23.3</td>
<td>0.99732</td>
<td>1638.9</td>
<td>2.4336</td>
<td>24.31</td>
<td></td>
</tr>
<tr>
<td>194</td>
<td>301.5</td>
<td>301.5</td>
<td>23.3</td>
<td>0.99732</td>
<td>1638.9</td>
<td>2.4336</td>
<td>24.31</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td>301.5</td>
<td>301.5</td>
<td>23.3</td>
<td>0.99732</td>
<td>1638.9</td>
<td>2.4336</td>
<td>24.31</td>
<td></td>
</tr>
<tr>
<td>196</td>
<td>301.5</td>
<td>301.5</td>
<td>23.3</td>
<td>0.99732</td>
<td>1638.9</td>
<td>2.4336</td>
<td>24.31</td>
<td></td>
</tr>
</tbody>
</table>

Average Unit Weight: 130.9
28 Day Strength vs %Air - 3 batches at W/C = 0.400

$y = -827x + 9893$

Compressive Strength (psi) vs % Air by Volume
4000 psi Air-entrained Concrete
This page intentionally left blank.
1. Scope

This standard practice provides terminology as interpreted and defined by the State of Alaska. The definitions of the American Association of State Highway and Transportation Officials (AASHTO) are the ones most commonly followed by DOT&PF.

2. Definitions

Absorption: The increase in the mass of aggregate due to water being absorbed into the pores of the material, but not including water adhering to the outside surface of the particles, expressed as a percentage of the dry mass.

Acceptance sampling and testing: Sampling and testing performed by the State of Alaska, or its designated agent, to evaluate acceptability of the final product. This is also called verification sampling and testing when specifically used to validate the contractor’s data.

Admixture: Material other than water, cement, and aggregates in Portland cement concrete (PCC).

Aggregate: Hard granular material of mineral composition, including sand, gravel, slag or crushed stone, used in roadway base and in Portland Cement Concrete (PCC) and Asphalt concrete pavement.

- Coarse aggregate: Aggregate retained on or above the 4.75 mm (No. 4) sieve.
- Coarse-graded aggregate: Aggregate having a predominance of coarse sizes.
- Dense-graded aggregate: Aggregate having a particle size distribution such that voids occupy a relatively small percentage of the total volume.
- Fine aggregate: Aggregate passing the 4.75 mm (No. 4) sieve.
- Fine-graded aggregate: Aggregate having a predominance of fine sizes.
- Mineral filler: A fine mineral product at least 70 percent of which passes a 75 µm (No. 200) sieve.
- Open-graded gap-graded aggregate: Aggregate having a particle size distribution such that voids occupy a relatively large percentage of the total volume.
- Well-Graded Aggregate: Aggregate having an even distribution of particle sizes.

Aggregate storage bins: Bins that store aggregate for feeding material to the dryer in an asphalt concrete pavement plant in substantially the same proportion as required in the finished mix.

Agitation: Provision of gentle motion in Portland Cement Concrete (PCC) sufficient to prevent segregation and loss of plasticity.

Air voids: Total volume of the small air pockets between coated aggregate particles in asphalt concrete pavement; expressed as a percentage of the bulk volume of the compacted paving mixture.

Ambient temperature: Temperature of the surrounding air.

Angular aggregate: Aggregate possessing well-defined edges at the intersection of roughly planar faces.

Apparent specific gravity: The ratio of the mass, in air, of a volume of the impermeable portion of aggregate to the mass of an equal volume of water.

Asphalt: A dark brown to black cementitious material in which the predominate constituents are bitumens occurring in nature or obtained through petroleum processing. Asphalt is a constituent of most crude petroleum.
Asphalt cement: Asphalt specially prepared in quality and consistency for use in the manufacture of Hot Mix Asphalt (HMA) pavement.

Asphalt concrete batch plant: A manufacturing facility for producing asphalt concrete that proportions aggregate by weight and asphalt by weight or volume.

Asphalt concrete continuous mix plant: A manufacturing facility for producing asphalt concrete that proportions aggregate and asphalt by a continuous volumetric proportioning system without specific batch intervals.

Automatic cycling control: A control system in which the opening and closing of the weigh hopper discharge gate, the bituminous discharge valve, and the pug mill discharge gate are actuated by means of automatic mechanical or electronic devices without manual control. The system includes preset timing of dry and wet mixing cycles.

Automatic dryer control: A control system that automatically maintains the temperature of aggregates discharged from the dryer.

Automatic proportioning control: A control system in which proportions of the aggregate and asphalt fractions are controlled by means of gates or valves that are opened and closed by means of automatic mechanical or electronic devices without manual control.

Bag (of cement): 94 lb of Portland cement. (Approximately 1 ft3 of bulk cement.)

Base: A layer of selected material constructed on top of subgrade or subbase and below the paving on a roadway.

Bias: The offset or skewing of data or information away from its true or accurate position as the result of systematic error.

Binder: Asphalt cement or modified asphalt cement that binds the aggregate particles into a dense mass.

Boulders: Rock fragment, often rounded, with an average dimension larger than 300 mm (12 in.).

Bulk Density: The mass per volume of a material, including any voids that may occur within the volume.

Bulk specific gravity: The ratio of the mass, in air, of a volume of aggregate or compacted asphalt concrete mix (including the permeable and impermeable voids in the particles, but not including the voids between particles) to the mass of an equal volume of water.

Bulk specific gravity (SSD): The ratio of the mass, in air, of a volume of aggregate or compacted asphalt concrete mix, including the mass of water within the voids (but not including the voids between particles), to the mass of an equal volume of water. (See Saturated Surface Dry.)

Calibration: A process that establishes the relationship (traceability) between the results of a measurement instrument, measurement system, or a material measure and the corresponding values assigned to a reference standard.

Check: A specific type of inspection and/or measurement performed on equipment and materials to indicate compliance or otherwise with stated criteria.

Clay: Fine-grained soil that exhibits plasticity over a range of water contents, and that exhibits considerable strength when dry. Also, that portion of the soil finer than 2 µm.

Cobble: Rock fragment, often rounded, with an average dimension between 75 and 300 mm (3 and 12 in.).

Cohesionless soil: Soil with little or no strength when dry and unconfined or when submerged, such as sand.
Cohesive soil: Soil with considerable strength when dry and that has significant cohesion when unconfined or submerged.

Compaction: Densification of a soil or asphalt concrete pavement by mechanical means.

Compaction curve (Proctor curve or moisture-density curve): The curve showing the relationship between the dry unit weight or density and the water content of a soil for a given compactive effort.

Compaction test (moisture-density test): Laboratory compaction procedure in which a soil of known water content is placed in a specified manner into a mold of given dimensions, subjected to a compactive effort of controlled magnitude, and the resulting density determined.

Compressibility: Property of a soil or rock relating to susceptibility to decrease in volume when subject to load.

Consolidation: In the placement of Portland cement concrete (PCC) it is the removal of entrapped air by either tamping or vibrating the material.

Constructor: The builder of a project. The individual or entity responsible for performing and completing the construction of a project required by the contract documents. Often called a contractor, since this individual or entity contracts with the owner.

Crusher-run: The total unscreened product of a stone crusher.

Delivery tolerances: Permissible variations from the desired proportions of aggregate and asphalt cement delivered to the pug mill.

Density: The ratio of mass to volume of a substance. Usually expressed in kg/m³ (lb/ft³).

Design professional: The designer of a project. This individual or entity may provide services relating to the planning, design, and construction of a project, possibly including materials testing and construction inspection. Sometimes called a “contractor”, since this individual or entity contracts with the owner.

Dryer: An apparatus that dries aggregate and heats it to specified temperatures.

Dry mix time: The time interval between introduction of aggregate into the pug mill and the addition of asphalt cement.

Durability: The property of concrete that describes its ability to resist disintegration by weathering and traffic. Included under weathering are changes in the pavement and aggregate due to the action of water, including freezing and thawing.

Effective diameter (effective size): \(D_{10}\), particle diameter corresponding to 10 percent finer or passing.

Embarkment: Controlled, compacted material between the subgrade and subbase or base in a roadway.

Field Operating Procedure (FOP): Procedure used in field testing on a construction site or in a field laboratory. (Based on AASHTO, ASTM or WAQTC test methods.)

Finess modulus: A factor equal to the sum of the cumulative percentages of aggregate retained on certain sieves divided by 100; the sieves are 150 mm (6”), 75 mm (3”), 37.5 mm (1 ½”), 19.0 mm (3/4”), 9.5 mm (3/8”), 4.75 mm (No. 4), 2.36 mm (No. 8), 1.18 mm (No. 16), 0.60 mm (No. 30), 0.30 mm (No. 50), and 0.15 mm mm (No. 100). Used in the design of concrete mixes. The lower the fineness modulus, the more water/cement paste that is needed to coat the aggregate.

Fines: Portion of a soil or aggregate finer than a 75 \(\mu\text{m}\) (No. 200) sieve. Also silts and clays.
Free water: Water on aggregate available for reaction with hydraulic cement. Mathematically, the difference between total moisture content and absorbed moisture content.

Glacial till: Material deposited by glaciation, usually composed of a wide range of particle sizes, which has not been subjected to the sorting action of water.

Gradation (grain-size or particle-size distribution): The proportions by mass of a soil or fragmented rock distributed by particle size.

Gradation analysis (grain size analysis, particle-size or sieve analysis): The process of determining grain-size distribution by separation of sieves with different size openings.

Hot aggregate storage bins: Bins that store heated and separated aggregate prior to final proportioning into the mixer.

Hot mix asphalt (HMA): High quality, thoroughly controlled hot mixture of asphalt cement and well-graded, high quality aggregate. The term Warm Mix Asphalt (WMA) is interchangeable with Hot Mix Asphalt (HMA) in this Manual. See WMA for more information.

Hydraulic cement: Cement that sets and hardens by chemical reaction with water.

Independent assurance (IA): Activities that are an unbiased and independent evaluation of all the sampling and testing (or inspection) procedures used in the quality assurance program. [IA provides an independent verification of the reliability of the acceptance (or verification) data obtained by the process control and acceptance testing. The results of IA testing or inspection are not to be used as a basis of acceptance. IA provides information for quality system management.]

In situ: Rock or soil in its natural formation or deposit.

Liquid limit: Water content corresponding to the boundary between the liquid and plastic states.

Loam: A mixture of sand, silt and/or clay with organic matter.

Lot: A quantity of material to be controlled. It may represent a specified mass, a specified number of truckloads, a linear quantity, or a specified time period during production.

Manual proportioning control: A control system in which proportions of the aggregate and asphalt fractions are controlled by means of gates or valves that are opened and closed by manual means. The system may or may not include power assisted devices in the actuation of gate and valve opening and closing.

Materials and methods specifications: Also called prescriptive specifications. Specifications that direct the Constructor (Contractor) to use specified materials in definite proportions and specific types of equipment and methods to place the material.

Maximum size: One sieve larger than nominal maximum size.

Maximum particle size: First sieve to retain any material.

Mesh: The square opening of a sieve.

Moisture content (Soils and Aggregate): The ratio, expressed as a percentage, of the mass of water in a material to the dry mass of the material.

Moisture content (Asphalt): The ratio, expressed as a percentage, of the mass of water in a material to the wet mass of the material.
Nominal maximum size: One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps between specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

Nuclear gauge: Instruments used to measure in-place density, moisture content, or asphalt content through the measurement of nuclear emissions.

Optimum moisture content (optimum water content): The water content at which a soil can be compacted to a maximum dry density by a given compactive effort.

Organic soil: Soil with a high organic content.

Paste: Mix of water and hydraulic cement that binds aggregate in Portland cement concrete (PCC).

Penetration: The consistency of a bituminous material, expressed as the distance in tenths of a millimeter (0.1 mm) that a standard needle vertically penetrates a sample of the material under specified conditions of loading, time, and temperature.

Percent compaction: The ratio of density of a soil, aggregate, or asphalt concrete mix in the field to maximum density determined by a standard compaction test, expressed as a percentage.

Plant screens: Screens located between the dryer and hot aggregate storage bins that separate the heated aggregates by size.

Plastic limit: Water content corresponding to the boundary between the plastic and the semisolid states.

Plasticity: Property of a material to continue to deform indefinitely while sustaining a constant stress.

Plasticity index: Numerical difference between the liquid limit and the plastic limit and, thus, the range of water content over which the soil is plastic.

Process control: See Quality control.

Proficiency samples: Homogeneous samples that are distributed and tested by two or more laboratories. The test results are compared to assure that the laboratories are obtaining the same results.

Pugmill: A shaft mixer designed to mix aggregate and cement.

Quality assurance (QA): (1) All those planned and systematic actions necessary to provide confidence that a product or facility will perform satisfactorily in service; or (2) making sure the quality of a product is what it should be. [QA addresses the overall process of obtaining the quality of a service, product, or facility in the most efficient, economical, and satisfactory manner possible. Within this broad context, QA includes the elements of quality control, independent assurance, acceptance, dispute resolution etc. The use of the term QA/QC or QC/QA is discouraged and the term QA should be used. QA involves continued evaluation of the activities of planning, design, development of plans and specifications, advertising and awarding of contracts, construction, and maintenance, and the interactions of these activities.]

Quality assurance specifications: Specifications that require contractor quality control and agency acceptance activities throughout production and placement of a product. Final acceptance of the product is usually based on a statistical sampling of the measured quality level for key quality characteristics. [QA specifications typically are
statistically based specifications that use methods such as random sampling and lot-by-lot testing, which let the contractor know if the operations are producing an acceptable product.]

Quality control (QC): Also called *process control.* The system used by a contractor to monitor, assess and adjust their production or placement processes to ensure that the final product will meet the specified level of quality. Quality control includes sampling, testing, inspection and corrective action (where required) to maintain continuous control of a production or placement process.

Reclaimed Asphalt Pavement (RAP): The term given to removed and/or reprocessed pavement materials containing asphalt and aggregates. These materials are typically generated when asphalt pavements are removed either by milling or full-depth removal. When properly crushed and screened, RAP consists of high-quality, well-graded aggregates coated by asphalt cement that may be recycled as a portion of new asphalt pavement.

Random sampling: Procedure for obtaining non-biased, representative samples.

Sand: Particles of rock passing the 4.75 mm (No. 4) sieve and retained on the 75 µm (No. 200) sieve.

Saturated surface dry (SSD): Condition of an aggregate particle, asphalt concrete pavement or Portland cement concrete (PCC) core, or other porous solid when the permeable voids are filled with water, but no water is present on exposed surfaces. (See bulk specific gravity.)

Segregation: The separation of aggregate by size resulting in a non-uniform material.

SHRP: The Strategic Highway Research Program (SHRP) established in 1987 as a five-year research program to improve the performance and durability of roads and to make those roads safe for both motorists and highway workers. SHRP research funds were partly used for the development of performance-based specifications to directly relate laboratory analysis with field performance.

Sieve: Laboratory apparatus consisting of wire mesh with square openings, usually in circular or rectangular frames.

Silt: Material passing the 75 µm (No. 200) sieve that is non-plastic or very slightly plastic, and that exhibits little or no strength when dry and unconfined. Also, that portion of the soil finer than 75 µm and coarser than 2 µm.

Slump: Measurement related to the workability of concrete.

Soil: Natural occurring sediments or unconsolidated accumulations of solid particles produced by the physical and chemical disintegration or rocks, and which may or may not contain organic matter.

Specific gravity: The ratio of the mass, in air, of a volume of a material to the mass of an equal volume of water.

Stability: The ability of an asphalt concrete to resist deformation from imposed loads. Stability is dependent upon internal friction, cohesion, temperature, and rate of loading.

Standard Density: A lab or field derived density value used to determine relative compaction in the field.

Standardization: A process that determines (1) the correction or correction factor to be applied to the result of a measuring instrument, measuring system, material measure or reference material when its values are compared to the values realized by standards, (2) the adjustment to be applied to a piece of equipment when its performance is compared with that of an accepted standard or process.

Stratified random sampling: Procedure for obtaining non-biased, representative samples in which the established lot size is divided into equally-sized sublots.

Subbase: A layer of selected material constructed between the subgrade and the base coarse in a flexible asphalt concrete pavement roadway, or between the subgrade and Portland Cement Concrete (PCC) pavement in a rigid PCC roadway.
Subgrade: Natural soil prepared and compacted to support a structure or roadway pavement.

Sublot: A segment of a lot chosen to represent the total lot.

Superpave™: Superpave™ (Superior Performing Asphalt Pavement) is a trademark of the Strategic Highway Research Program (SHRP). Superpave™ is a product of the SHRP asphalt research. The Superpave™ system incorporates performance-based asphalt materials characterization with design environmental conditions to improve performance by controlling rutting, low temperature cracking and fatigue cracking. The three major components of Superpave™ are the asphalt binder specification, the mix design and analysis system, and a computer software system.

Theoretical maximum specific gravity: The ratio of the mass of a given volume of asphalt concrete with no air voids to the mass of an equal volume of water, both at a stated temperature commonly referred to as the “Rice” value.

Topsoil: Surface soil, usually containing organic matter.

Traceability: The property of a result of a measurement whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties.

Uncertainty: A parameter associated with the result of a measurement that defines the range of the values that could be attributed to the measured quantity.

Uniformity coefficient: \(C_u = \frac{D_{60}}{D_{10}} \), a value employed to quantify how uniform or well-graded an aggregate is: 60 percent of the aggregate, by mass, has a diameter smaller than \(D_{60} \) and 10 percent of the aggregate, by mass, has a diameter smaller than \(D_{10} \).

Unit weight: The ratio of weight to volume of a substance. The term “density” is more commonly used.

\(\mu m \): Micro millimeter (micron) used as measurement for sieve size.

Verification of calibration: A process that establishes whether the results of a previously calibrated measurement instrument, measurement system, or material measure are stable.

Verification sampling and testing: See acceptance sampling and testing.

Viscosity: A measure of the resistance to flow; one method of measuring the consistency of asphalt.

- Absolute viscosity: A method of measuring viscosity using the “poise” as the basic measurement unit. This method is used at a temperature of 60°C, typical of hot pavement.
- Kinematic viscosity: A method of measuring viscosity using the stoke as the basic measurement unit. This method is used at a temperature of 135°C, typical of hot asphalt at a plant.

Void in the mineral aggregate (VMA): The volume of inter-granular void space between aggregate particles of compacted asphalt concrete pavement that includes air and asphalt; expressed as a percentage of the bulk volume of the compacted paving mixture.

Voids filled with asphalt: The portion of the void in the mineral aggregate (VMA) that contains asphalt; expressed as a percentage of the bulk volume of mix or the VMA.

Warm Mix Asphalt (WMA): The generic term for a variety of technologies that allow the producers of HMA pavement material to lower the temperatures at which the material is mixed and placed on the road. Reductions from HMA temperatures of 50 to 100 degrees Fahrenheit are documented. Three general technologies are used at this time to decrease the mix and compaction temperatures including: chemical additives, organic additives (waxes) and foaming with water. Sampling and testing of WMA is done the same as with HMA so these terms are interchangeable in this Manual.
Wet mixing period: The time interval between the beginning of application of asphalt material and the opening of the mixer gate.

Zero air voids curve (saturation curve): Curve showing the zero air voids density as a function of water content. Points that define the curve are calculated in accordance with the addendum of WAQTC POP for AASHTO T 99/ T 180.
Calibration of Mechanical Compaction Hammer/Rammer SP 2

1. Scope

This practice sets forth the apparatus, procedures, and materials necessary to calibrate a mechanical compaction hammer used in ATM 417, WAQTC FOP for AASHTO T 99/T 180, AASHTO T 245; and ASTM D 698/D 1557 in accordance with ASTM D 2168 Test Method A.

There are two parallel procedures providing instruction for verification of physical characteristics and calibration of dynamic characteristics for manual and mechanical Soils and Marshall compaction hammers and compaction pedestals. Physical Characteristics are examined first, verifying mass and critical dimensions of the manual and mechanical compaction hammers and compaction pedestals.

Warning – This test method involves potentially hazardous materials, operations and equipment. This method does not purport to address all of the safety problems associated with it use.

2. Apparatus

- Hand-operated compaction hammers and compaction pedestals conforming to the requirements of WAQTC FOP for AASHTO T 99/T 180, AASHTO T 245; and ASTM D 698 & D 1557.
- Mechanical compaction hammers and pedestals conforming to the requirements of ATM 417, WAQTC FOP for AASHTO T 99/T 180, AASHTO T 245, and ASTM D 698/D 1557.
- Proctor and Marshall compaction molds, bases, collars and rubber plugs (roughly 50 mm (2") thick and cut to fit bottom of mold).
- Caliper capable of measuring to an accuracy of 0.005 inch.
- Calibrated ruler readable to 1/32 inch.
- Balance readable to 0.1 gram equipped with suspension apparatus and holder to permit weighing materials while suspended from the center of the scale in a water bath.
- Asphalt thermometer capable of measuring the hot-mix-asphalt temperature to within 5°F
- Oven: For asphalt set to 135°C (275°F), or specified compaction temperature, molds, tools and accessories required to prepare and extract six (6) Marshall Specimens.

3. Procedure for Verification of Physical Characteristics

1. Inspect and adjust the mechanical and hand-operated compaction hammers to conform to the requirements of ATM T 417, WAQTC FOP for AASHTO T 99/ T 180, AASHTO T 245; and ASTM D698 & D1557.

 a. Using the caliper, measure and record the diameter of the rammer face by taking two readings 90° apart. The diameter of the face should average a minimum of 3.875 inches measured to the nearest 0.005 inch.
 b. Lift the sliding weight up to the top of the guide rod and measure the drop height of the sliding weight to the nearest 1/16 inch from the bottom of the sliding weight face to the top of the foot sleeve, record measurement. The sliding weight should have a free fall of 18 ± 0.0625 (1/16) inch. Record measurement in decimal form.
c. Remove the handle and sliding hammer weight from the guide rod. Weigh and record the slide weight mass to the nearest 1 gram. The hand-operated hammer should have a 4,536 ± 9 gram (10 ± 0.02 lbs.) sliding weight (including safety finger guard if equipped).

d. Measure and record the dimensions of the wooden post and the steel plate portions of the pedestal. Pedestals should consist of a 8 x 8 x 18 inch wooden post capped with a 12 x 12 x 1 inch steel plate. Verify sturdy construction of the pedestal: The wooden post should be free of cracks or splits and be secured by four angle brackets to a solid concrete slab with the steel cap firmly fastened to the post. The assembly shall be installed so the post is plumb and the cap is level.

2. Soils: Inspect and adjust manual Proctor hammer and compaction pedestal for conformance to AASHTO T 99 or T 180, or for ASTM D698 or D1557.

5. Physical Characteristics of Mechanically Operated Hammer and Pedestal

1. Asphalt: Inspect and adjust the mechanical Marshall Hammer as done in Part 4. Steps 1a, 1b, and 1c. When measuring the slide weight free fall dimension, raise the slide weight up the guide rod until the pick-up pins recede by contact with the disengagement bar, measure and record height from bottom of slide weight face to the top of the foot sleeve. When weighing slide weight, remove disengagement assembly from the top of the guide rod and slide weight off rod.

 a. Measure and record the dimensions of the wooden post and the steel plate portions of the pedestal. Pedestals should consist of an 8 x 8 x 18 inch wooden post capped with a 12 x 12 x 1 inch steel plate.

 b. Verify sturdy construction of the pedestal: The wooden post should be free of cracks or splits and be secured by four angle brackets to a solid concrete slab with the steel cap firmly fastened to the post. The assembly shall be installed so the post is plumb and the cap is level.

2. Soils: Inspect and adjust mechanical Proctor hammer and compaction pedestal for conformance to AASHTO T 99 or T 180, or for ASTM D698 or D1557. Note ASTM D1557 allows use of a sector face hammer.

1. Asphalt preparation:

 a. If asphalt sample is workable, split into at least six equal portions of 1250 ± 5 grams using the WAQTC Loaf Method. Place the six equal portions and the remaining asphalt into the oven and heat to compaction temperature, typically 135 ± 5°C (275 ± 9°F). If not workable, place asphalt into oven and allow time for asphalt to return to a plastic state so splitting can be accomplished, split as indicated above, then return the six equal portions and the remaining asphalt to the oven to obtain compaction temperature.

 b. Place Marshall mold assemblies and other asphalt handling tools in oven to preheat to compaction temperature. Use hot plate or oven to heat compaction face of mechanical and manual compaction hammers to 93 - 149°C (200 - 300°F).

2. Once asphalt and other materials have reached compaction temperature, use the extra asphalt to butter the mixing bowl and specimen preparation tools. Loosen up the mechanical compactor mechanism by compacting a portion of the extra asphalt with a minimum of 25 blows. Discard the partially compacted asphalt used to “warm up” the mechanical compactor. Next, alternately compact a Marshall Specimen using the manual compaction hammer and a Marshall Specimen using the
mechanical compaction hammer, until three specimens have been produced by each method. Follow the steps below in preparing the specimens.

a. Remove one Marshall base, mold, and collar assembly from oven when ready to use. Place filter paper in the bottom of the mold.

b. Remove one asphalt portion from oven, place in a mixing bowl, vigorously and briefly mix asphalt and scoop into mold assembly. Using the spatula, vigorously spade the asphalt in the mold 15 times around the perimeter and then 10 times over the interior. Smooth surface of the asphalt in the mold to a rounded, convex shape.

c. Place a piece of filter paper on top of asphalt in mold, place mold assembly on compaction pedestal and secure with mold holder.

d. Apply 50 blows, unless otherwise specified, of compaction effort. (Manual Hammer notes: Hold the hammer axis perpendicular to the mold assembly. AASHTO allows use of a guide bar fixed to the compaction pedestal to maintain perpendicular alignment of the hammer. ASTM prohibits use of guide bar as the natural wandering from true perpendicular produces a kneading action that enhances compaction. Care shall be taken to avoid adding body weight to the hammer by leaning or pressing down on the hammer. Compaction shall be done at a minimum rate of 40 blows per minute. The compaction hammer shall apply only one blow with each fall - that means there shall not be a rebound impact.)

e. Remove mold holder and collar, remove mold from base plate and flip over (180° turn), return mold to base plate, replace collar and mold holder, and apply an additional 50 blows of compaction effort.

f. Remove mold assembly from compaction pedestal; remove collar and base plate from mold specimen, set mold with specimen aside to cool until cohesion of the sample will allow specimen extraction from the mold. (When specimens in the steel mold have cooled to the point where they can be handled without gloves, generally below 60°C (140°F), they can be extracted from the molds without damage if handled carefully.) Marshall Specimens should be allowed to cool over night at room temperature; however cooling may be accelerated by the use of fans.

g. Clean surfaces of compaction equipment used.

3. Perform specific gravity measurements for each Marshall specimen according to AASHTO T 166, Method A.

a. Measure and record dry weight of cooled specimen.

b. Immerse specimen in water bath at 25 ± 1°C (77 ± 1.8°F) for 4 ± 1 minute and record the immersed mass.

c. Remove the specimen from the water and quickly damp dry the specimen with a damp towel to produce a saturated surface dry condition, record the surface dry mass of the specimen.
7. **Calibration Comparison and Adjustment for Asphalt Mixes**

1. Calculate the bulk specific gravity of the specimens as follows, round and report to the nearest three decimal places, or thousandth:

 \[
 \text{Bulk Specific Gravity} = \frac{A}{B - C}
 \]

 Where:

 \[A = \text{mass in grams of sample in air};\]
 \[B = \text{mass in grams of surface-dry specimen in air};\] and
 \[C = \text{mass in grams of sample in water}.
 \]

 (Within each set prepared by a given hammer the densities shall not differ by more than 2.5 pcf for ½" and 3/4" mix and 3.0 pcf for 1" mix. If density consistency is not met then specimens shall be discarded and a new set of specimens prepared.)

2. Calculate the percent water absorbed by specimens (on volume basis) as follows:

 \[
 \text{Percent Water Absorbed by Volume} = \frac{(B-A)}{(B-C)} \times 100
 \]

 If percent water absorbed by the specimen is greater than 2% then paraffin coated specimens must be used to verify the mechanical compactor with the manual compactor. See AASHTO T275 or ASTM D1188.

3. Calculate the average specific gravity values for the mechanically compacted and the manually compacted specimens independently.

4. Calculate \(W \), the percentage difference between the average specific gravity values for the two compaction methods. Calculation:

 \[
 W = \% \text{ Difference} = \frac{|(\text{manual method avg. sp. G.} - \text{mechanical method avg. Sp. G.})|}{(\text{manual method avg. Sp. G.})} \times 100
 \]

 If the absolute value of the difference between the results of the mechanical vs. the manual compaction method is 2.0% or less, the mechanical compaction hammer is ready for use.

5. If the difference is greater than 2.0%, adjust the weight or of the mechanical hammer and repeat the procedure until the mean value of the mechanical compaction hammer data varies from the mean value of the manual hammer data by 2.0% or less.

8. **Procedure for Calibration of Dynamic Characteristics of Soils**

1. Obtain at least 30 kg (66 lb) of soil classified as CL in accordance with Unified Soil Classification (ASTM D 2487) with liquid limit less than 50 and PI greater than 7. (ARML soil compaction samples typically meet this classification.)

2. Assure all the soil passes a #4 sieve and is at less than 3% moisture. Dry at 60\(^\circ\) C or less, if needed. Pass material through splitter to assure uniform mixing.

3. Split out 5 portions of approximately 6500g each. Batch 5 moisture points, cover with plastic wrap and allow points to sit overnight to assure complete hydration of material. Using approximately 3, 5, 7, 9, 11% moisture typically works well for AMRL compaction sample material (Review the AMRL
summary report and adjust moisture range as required for the reported proctor result. Use the reported optimum moisture and maximum density to double check the calibration specimen values.)

4. Using soil, as prepared above, determine the optimal moisture and maximum dry unit weight by the method appropriate for the mechanical compactor being calibrated. Pound each moisture point with both the mechanical and manual hammer, passing the sample through the #4 sieve before re-compacting. Be careful to minimize drying of sample while re-sieving material.

5. Plot data points and determine the moisture/density curve for the manual and mechanical hammers.

9. **Calibration Comparison and Adjustment for Soils**

1. If W, the absolute value of the difference between the two maximum dry unit weights is less than 2.0%, the mechanical hammer is satisfactory for immediate use. If the difference W is greater than 2.0%, then obtain TWO additional sets of data, reusing the previously used soil. Determine W for the average of the three data sets for mechanical and manual hammer. If W is less than 2.0%, the mechanical hammer is satisfactory for use.

2. If W exceeds 2.0%, then add weight to or reduce the drop height of the mechanical hammer until 3 data sets are obtained with W less than 2.0%. If addition of greater than 10% of the mechanical hammer weight is needed, the mechanical compactor needs to be adjusted or rebuilt. If weight needs to be removed from the mechanical hammer, recheck and verify all hammer weight and drop height calibrations. If weight removal is STILL indicated, then reduce drop height to obtain W less than 2.0%.

10. **Report**

1. Calibrate all compaction hammers every 12 months or prior to use if the existing calibration is more than one (1) year old.

2. File original calibration certificate and test data with the calibrating laboratory.

3. Keep a copy of the calibration certificate with the Compaction Hammer.
This page intentionally left blank.
1. **Significance**

Sampling and testing are two of the most important functions in quality assurance (QA). Data from the tests are the tools with which the quality of product is controlled. For this reason, great care must be used in following standardized sampling and testing procedures. This practice is useful for determining the location or time, or both, to take a sample in order to minimize any unintentional bias on the part of the person taking the sample.

The selection procedures and examples in this standard provide a practical approach for ensuring that construction material samples are obtained in a random manner. Additional details concerning the number of sample increments, the number of samples, the quantities of material in each, and the procedures for extracting sample increments or samples from the construction lot or process are contained in the Materials Samples and Testing Frequency tables and the individual test procedures. This standard contains examples using road and paving materials. The concepts outlined here are applicable to the random sampling of any construction material.

2. **Scope**

The procedure presented here eliminates bias in sampling materials when followed carefully. Randomly selecting a set of numbers from a table or calculator will eliminate the possibility for bias. Random numbers are used to identify sampling times and/or locations within a lot or sublot. This method does not cover how to sample, but rather how to determine sampling times and/or locations.

3. **Sampling Concepts**

A lot is the quantity of material evaluated by QA procedures. A lot is a preselected quantity that may represent hours of production, a quantity or number of loads of material, or an interval of time. A lot may be comprised of several portions that are called sublots or units. The number of sublots comprising a lot will be determined by DOT&PF’s specifications.

Stratified Random Sampling: Stratified random sampling divides the lot into a specified number of sublots or units and then determines each sample location within a distinct sublot.

All random sampling shall be stratified random sampling unless otherwise directed.

4. **Instructions for Using the Three-Digit Table of Random Numbers**

Table 1 consists of 1,000 numbers from 0.000 to 0.999. Each number appears only once in the Table of 100 rows by 10 columns. The Table is most effectively used when a row and column are randomly selected and the
entered value from the Table is then used for sample selection. Several methods of selection of row and column
are available including:

Use of the RANDOM function in pocket calculators (if available) to select row and column. For example, for
selection of row: the RANDOM function generates 0.620. Then the row to be used is 0.620 × the number of rows
= 0.620(100) = 62.0 or 62. Likewise for the column, the RANDOM function generates 0.958 and the column is
0.958(10) = 9.58 or 10. The random number to be used for the sample is in row 62, column 10 = 0.460.

Similarly, if Microsoft Excel is available, the RAND function can be used to generate random numbers for
selection of row and column. This can be accomplished by selecting an open cell in Excel entering: =RAND()
or: =rand(). Do this once for a row and a second for column, multiplying as explained above.

Start a digital stop watch and stop it several seconds later, using the decimal part of the seconds as multipliers to
determine your Row/Column number(s).

Table 1

<table>
<thead>
<tr>
<th>Row\Column</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.910</td>
<td>0.921</td>
<td>0.889</td>
<td>0.985</td>
<td>0.697</td>
<td>0.562</td>
<td>0.701</td>
<td>0.284</td>
<td>0.534</td>
<td>0.519</td>
</tr>
<tr>
<td>2</td>
<td>0.769</td>
<td>0.814</td>
<td>0.210</td>
<td>0.758</td>
<td>0.846</td>
<td>0.113</td>
<td>0.312</td>
<td>0.716</td>
<td>0.975</td>
<td>0.729</td>
</tr>
<tr>
<td>3</td>
<td>0.722</td>
<td>0.220</td>
<td>0.726</td>
<td>0.942</td>
<td>0.825</td>
<td>0.177</td>
<td>0.120</td>
<td>0.558</td>
<td>0.979</td>
<td>0.451</td>
</tr>
<tr>
<td>4</td>
<td>0.872</td>
<td>0.772</td>
<td>0.338</td>
<td>0.374</td>
<td>0.000</td>
<td>0.387</td>
<td>0.491</td>
<td>0.647</td>
<td>0.445</td>
<td>0.053</td>
</tr>
<tr>
<td>5</td>
<td>0.850</td>
<td>0.836</td>
<td>0.145</td>
<td>0.216</td>
<td>0.270</td>
<td>0.109</td>
<td>0.590</td>
<td>0.882</td>
<td>0.740</td>
<td>0.434</td>
</tr>
<tr>
<td>6</td>
<td>0.291</td>
<td>0.780</td>
<td>0.782</td>
<td>0.306</td>
<td>0.470</td>
<td>0.712</td>
<td>0.252</td>
<td>0.630</td>
<td>0.231</td>
<td>0.694</td>
</tr>
<tr>
<td>7</td>
<td>0.295</td>
<td>0.502</td>
<td>0.615</td>
<td>0.541</td>
<td>0.765</td>
<td>0.092</td>
<td>0.376</td>
<td>0.523</td>
<td>0.551</td>
<td>0.733</td>
</tr>
<tr>
<td>8</td>
<td>0.761</td>
<td>0.370</td>
<td>0.278</td>
<td>0.288</td>
<td>0.256</td>
<td>0.352</td>
<td>0.064</td>
<td>0.195</td>
<td>0.334</td>
<td>0.652</td>
</tr>
<tr>
<td>9</td>
<td>0.790</td>
<td>0.750</td>
<td>0.402</td>
<td>0.182</td>
<td>0.577</td>
<td>0.391</td>
<td>0.214</td>
<td>0.481</td>
<td>0.680</td>
<td>0.348</td>
</tr>
<tr>
<td>10</td>
<td>0.547</td>
<td>0.011</td>
<td>0.355</td>
<td>0.587</td>
<td>0.359</td>
<td>0.310</td>
<td>0.192</td>
<td>0.545</td>
<td>0.487</td>
<td>0.925</td>
</tr>
<tr>
<td>11</td>
<td>0.868</td>
<td>0.049</td>
<td>0.505</td>
<td>0.139</td>
<td>0.705</td>
<td>0.007</td>
<td>0.633</td>
<td>0.754</td>
<td>0.124</td>
<td>0.280</td>
</tr>
<tr>
<td>12</td>
<td>0.384</td>
<td>0.968</td>
<td>0.483</td>
<td>0.203</td>
<td>0.513</td>
<td>0.583</td>
<td>0.637</td>
<td>0.477</td>
<td>0.957</td>
<td>0.515</td>
</tr>
<tr>
<td>13</td>
<td>0.996</td>
<td>0.665</td>
<td>0.658</td>
<td>0.412</td>
<td>0.149</td>
<td>0.673</td>
<td>0.103</td>
<td>0.344</td>
<td>0.619</td>
<td>0.263</td>
</tr>
<tr>
<td>14</td>
<td>0.804</td>
<td>0.242</td>
<td>0.662</td>
<td>0.135</td>
<td>0.248</td>
<td>0.173</td>
<td>0.398</td>
<td>0.459</td>
<td>0.744</td>
<td>0.156</td>
</tr>
<tr>
<td>15</td>
<td>0.440</td>
<td>0.331</td>
<td>0.128</td>
<td>0.737</td>
<td>0.529</td>
<td>0.313</td>
<td>0.683</td>
<td>0.839</td>
<td>0.636</td>
<td>0.245</td>
</tr>
<tr>
<td>16</td>
<td>0.042</td>
<td>0.027</td>
<td>0.337</td>
<td>0.142</td>
<td>0.196</td>
<td>0.036</td>
<td>0.516</td>
<td>0.074</td>
<td>0.666</td>
<td>0.277</td>
</tr>
<tr>
<td>17</td>
<td>0.497</td>
<td>0.903</td>
<td>0.444</td>
<td>0.822</td>
<td>0.886</td>
<td>0.230</td>
<td>0.463</td>
<td>0.234</td>
<td>0.185</td>
<td>0.068</td>
</tr>
<tr>
<td>18</td>
<td>0.508</td>
<td>0.999</td>
<td>0.469</td>
<td>0.480</td>
<td>0.448</td>
<td>0.544</td>
<td>0.121</td>
<td>0.260</td>
<td>0.843</td>
<td>0.078</td>
</tr>
<tr>
<td>19</td>
<td>0.672</td>
<td>0.871</td>
<td>0.540</td>
<td>0.025</td>
<td>0.548</td>
<td>0.978</td>
<td>0.495</td>
<td>0.138</td>
<td>0.202</td>
<td>0.281</td>
</tr>
<tr>
<td>20</td>
<td>0.031</td>
<td>0.059</td>
<td>0.241</td>
<td>0.431</td>
<td>0.897</td>
<td>0.198</td>
<td>0.559</td>
<td>0.946</td>
<td>0.206</td>
<td>0.003</td>
</tr>
<tr>
<td>21</td>
<td>0.775</td>
<td>0.668</td>
<td>0.441</td>
<td>0.993</td>
<td>0.644</td>
<td>0.634</td>
<td>0.591</td>
<td>0.604</td>
<td>0.341</td>
<td>0.865</td>
</tr>
<tr>
<td>22</td>
<td>0.174</td>
<td>0.100</td>
<td>0.324</td>
<td>0.651</td>
<td>0.935</td>
<td>0.110</td>
<td>0.292</td>
<td>0.747</td>
<td>0.213</td>
<td>0.249</td>
</tr>
<tr>
<td>23</td>
<td>0.465</td>
<td>0.309</td>
<td>0.961</td>
<td>0.006</td>
<td>0.401</td>
<td>0.950</td>
<td>0.038</td>
<td>0.305</td>
<td>0.907</td>
<td>0.166</td>
</tr>
<tr>
<td>24</td>
<td>0.369</td>
<td>0.046</td>
<td>0.484</td>
<td>0.170</td>
<td>0.377</td>
<td>0.416</td>
<td>0.640</td>
<td>0.967</td>
<td>0.399</td>
<td>0.608</td>
</tr>
<tr>
<td>25</td>
<td>0.597</td>
<td>0.864</td>
<td>0.063</td>
<td>0.725</td>
<td>0.146</td>
<td>0.687</td>
<td>0.330</td>
<td>0.394</td>
<td>0.693</td>
<td>0.928</td>
</tr>
<tr>
<td>26</td>
<td>0.052</td>
<td>0.629</td>
<td>0.351</td>
<td>0.586</td>
<td>0.896</td>
<td>0.020</td>
<td>0.860</td>
<td>0.490</td>
<td>0.881</td>
<td>0.913</td>
</tr>
<tr>
<td>27</td>
<td>0.892</td>
<td>0.922</td>
<td>0.360</td>
<td>0.253</td>
<td>0.127</td>
<td>0.067</td>
<td>0.189</td>
<td>0.815</td>
<td>0.084</td>
<td>0.018</td>
</tr>
<tr>
<td>28</td>
<td>0.832</td>
<td>0.159</td>
<td>0.178</td>
<td>0.618</td>
<td>0.800</td>
<td>0.255</td>
<td>0.890</td>
<td>0.456</td>
<td>0.757</td>
<td>0.383</td>
</tr>
<tr>
<td>29</td>
<td>0.095</td>
<td>0.349</td>
<td>0.157</td>
<td>0.426</td>
<td>0.554</td>
<td>0.992</td>
<td>0.413</td>
<td>0.885</td>
<td>0.924</td>
<td>0.148</td>
</tr>
<tr>
<td>10</td>
<td>0.057</td>
<td>0.452</td>
<td>0.266</td>
<td>0.089</td>
<td>0.356</td>
<td>0.217</td>
<td>0.971</td>
<td>0.974</td>
<td>0.051</td>
<td>0.574</td>
</tr>
<tr>
<td>9</td>
<td>0.153</td>
<td>0.164</td>
<td>0.132</td>
<td>0.228</td>
<td>0.939</td>
<td>0.070</td>
<td>0.209</td>
<td>0.527</td>
<td>0.887</td>
<td>0.919</td>
</tr>
<tr>
<td>8</td>
<td>0.203</td>
<td>0.201</td>
<td>0.227</td>
<td>0.389</td>
<td>0.497</td>
<td>0.083</td>
<td>0.060</td>
<td>0.238</td>
<td>0.227</td>
<td>0.161</td>
</tr>
<tr>
<td>7</td>
<td>0.267</td>
<td>0.266</td>
<td>0.347</td>
<td>0.100</td>
<td>0.504</td>
<td>0.315</td>
<td>0.962</td>
<td>0.708</td>
<td>0.979</td>
<td>0.082</td>
</tr>
<tr>
<td>6</td>
<td>0.565</td>
<td>0.557</td>
<td>0.312</td>
<td>0.067</td>
<td>0.721</td>
<td>0.711</td>
<td>0.751</td>
<td>0.103</td>
<td>0.963</td>
<td>0.831</td>
</tr>
<tr>
<td>5</td>
<td>0.963</td>
<td>0.923</td>
<td>0.055</td>
<td>0.029</td>
<td>0.737</td>
<td>0.147</td>
<td>0.548</td>
<td>0.386</td>
<td>0.397</td>
<td>0.298</td>
</tr>
<tr>
<td>4</td>
<td>0.685</td>
<td>0.674</td>
<td>0.193</td>
<td>0.443</td>
<td>0.718</td>
<td>0.902</td>
<td>0.835</td>
<td>0.100</td>
<td>0.037</td>
<td>0.807</td>
</tr>
<tr>
<td>3</td>
<td>0.398</td>
<td>0.400</td>
<td>0.079</td>
<td>0.500</td>
<td>0.850</td>
<td>0.473</td>
<td>0.901</td>
<td>0.454</td>
<td>0.274</td>
<td>0.501</td>
</tr>
<tr>
<td>2</td>
<td>0.067</td>
<td>0.069</td>
<td>0.072</td>
<td>0.074</td>
<td>0.164</td>
<td>0.086</td>
<td>0.267</td>
<td>0.339</td>
<td>0.417</td>
<td>0.118</td>
</tr>
<tr>
<td>1</td>
<td>0.067</td>
</tr>
</tbody>
</table>
5. **Alternate Procedures for Random Number Selection**

Random numbers may be generated using the RANDOM function in pocket calculators and spreadsheets. For example, the RANDOM function generates 0.620. The number 0.620 should be entered as the random number and multiplied by the quantity under consideration to determine the sample location.

Similarly, if Microsoft Excel is available, the RAND function can be used to generate random numbers for selection of the sample location.

6. **Random Number Sampling Procedures**

Determine the number of random numbers necessary for each sample location from Table 2.
Table 2

<table>
<thead>
<tr>
<th>Sample Type or WAQTC Method</th>
<th># of Random Numbers Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil from plant or truck</td>
<td>1</td>
</tr>
<tr>
<td>T 2/T 168 from Belt</td>
<td>1</td>
</tr>
<tr>
<td>T 2/T 168 from Truck</td>
<td>1</td>
</tr>
<tr>
<td>T 2/T 168 from Roadway</td>
<td>2</td>
</tr>
<tr>
<td>T 2/T 168 from Windrow</td>
<td>1</td>
</tr>
<tr>
<td>TM 11 Core</td>
<td>2</td>
</tr>
<tr>
<td>TM 2 Plastic Concrete</td>
<td>1</td>
</tr>
<tr>
<td>TP 83 Grout</td>
<td>1</td>
</tr>
</tbody>
</table>

Multiply the random number by the unit quantity in each subplot to determine sample location. When a sample is taken from a discrete location such as a truck load, and the sample method treats the load as a unit, sample per the procedure from the truck that contains the determined location.

Sample locations are for that sample only and are not reused for other samples. This would apply for samples of in place soil, aggregate, hot mix asphalt or cores. Each would require a separate set of random numbers. When two random numbers are used, such as in hot mix asphalt, the first random number would be multiplied by the length to determine where the sample would be taken along the project. The second would be multiplied by the width to determine where, widthwise, the sample would be taken.

When a test procedure does not allow tests from a portion of the lot being considered, those areas may be deleted from consideration. As an example, paving is 14 feet wide but testing does not allow tests within one foot of the edge. Testing must be done only in the 12 foot section in the middle of the width.

Two random numbers Example:

Given:
- Sublot length = 3,342 feet (when the 1 foot edge removed, we consider just 3340 feet)
- Sublot width = 14 feet (when the 1 foot edge removed, we consider just 12 feet)
- Random numbers for Row = 0.0262 and 0.3687
- Random numbers for Column = 0.1696 and 0.3410

Find:
- length and width locations of sample

Solution:
- First Row number is: $100(0.0262) = 2.62$ or Row 3
- First Column number is: $10(0.1696) = 1.696$ or Column 2
- From Table 1, Row 3, Column 2, the random number for Length is: 0.220
- So the sample location for length is: 0.220(3,340’) = 734.8 or 735’ from beginning
- If sampling material requiring only 1 random number this sample is located.

- Second Row number is: $100(0.3687) = 36.87$ or Row 37
- Second Column number is: $10(0.3410) = 3.41$ or Column 3
- From Table 1, Row 37, Column 3, the random number for width is: 0.411
- So the sample location for width is: 12(0.411) = 5’ from the left edge of the sublot

When developing a sampling plan, determine a new set of random numbers for each sample required. For example, if the testing frequency specified indicates there will be twenty samples from a material, determine twenty different random number identified locations for the plan.

Additional examples are available in the Random Number section of all WAQTC modules and in ASTM D3665.
1. Scope

This standard practice provides a table of equivalents when using ACI Concrete design methods. Since ACI uses ASTM exclusively, this table provides a reference to determine appropriate methods that are standard with DOT&PF.

<table>
<thead>
<tr>
<th>ASTM</th>
<th>Title</th>
<th>WAQTC/AASHTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>A184</td>
<td>Standard Specification for Welded Deformed Steel Bar Mats for Concrete Reinforcement</td>
<td>M 54</td>
</tr>
<tr>
<td>A 185</td>
<td>Standard Specification for Steel Welded Wire Reinforcement, Plain, for Concrete</td>
<td>M 55</td>
</tr>
<tr>
<td>A 416</td>
<td>Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed Concrete</td>
<td>M 203</td>
</tr>
<tr>
<td>A 421</td>
<td>Standard Specification for Uncoated Stress-Relieved Steel Wire for Prestressed Concrete</td>
<td>M 204</td>
</tr>
<tr>
<td>A 496</td>
<td>Standard Specification for Steel Wire, Deformed, for Concrete Reinforcement</td>
<td>M 225</td>
</tr>
<tr>
<td>A 497</td>
<td>Standard Specification for Steel Welded Wire Reinforcement, Deformed, for Concrete</td>
<td>M 221</td>
</tr>
<tr>
<td>A 615</td>
<td>Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement</td>
<td>M 31</td>
</tr>
<tr>
<td>A 722</td>
<td>Standard Specification for Uncoated High-Strength Steel Bars for Prestressing Concrete</td>
<td>M 275</td>
</tr>
<tr>
<td>A 775</td>
<td>Standard Specification for Epoxy-Coated Steel Reinforcing Bars</td>
<td>M 284</td>
</tr>
<tr>
<td>A 82</td>
<td>Standard Specification for Steel Wire, Plain, for Concrete Reinforcement</td>
<td>M 32</td>
</tr>
<tr>
<td>A 996</td>
<td>Standard Specification for Rail-Steel and Axle-Steel Deformed Bars for Concrete Reinforcement</td>
<td>M 322</td>
</tr>
<tr>
<td>C 1064</td>
<td>Standard Test Method for Temperature of Freshly Mixed Hydraulic-Cement Concrete</td>
<td>WAQTC FOP for T 309</td>
</tr>
<tr>
<td>C 1107</td>
<td>Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Nonshrink)</td>
<td>TP 83</td>
</tr>
<tr>
<td>C 1240</td>
<td>Standard Specification for Silica Fume Used in Cementitious Mixtures</td>
<td>M 307</td>
</tr>
<tr>
<td>C 138</td>
<td>Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete</td>
<td>WAQTC FOP for T 121</td>
</tr>
<tr>
<td>C 143</td>
<td>Standard Test Method for Slump of Hydraulic-Cement Concrete</td>
<td>WAQTC FOP for T 119</td>
</tr>
<tr>
<td>C 150</td>
<td>Standard Specification for Portland Cement</td>
<td>M 85</td>
</tr>
<tr>
<td>C 171</td>
<td>Standard Specification for Sheet Materials for Curing Concrete</td>
<td>M 171</td>
</tr>
<tr>
<td>C 172</td>
<td>Standard Practice for Sampling Freshly Mixed Concrete</td>
<td>WAQTC TM 2</td>
</tr>
<tr>
<td>C 192</td>
<td>Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory</td>
<td>R 39</td>
</tr>
<tr>
<td>ASTM</td>
<td>Title</td>
<td>WAQTC/AASHTO</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>C 231</td>
<td>Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method</td>
<td>WAQTC FOP for T 152</td>
</tr>
<tr>
<td>C 260</td>
<td>Standard Specification for Air-Entraining Admixtures for Concrete</td>
<td>M 154</td>
</tr>
<tr>
<td>C 309</td>
<td>Standard Specification for Liquid Membrane-Forming Compounds for Curing Concrete</td>
<td>M 148</td>
</tr>
<tr>
<td>C 31</td>
<td>Standard Practice for Making and Curing Concrete Test Specimens in the Field</td>
<td>WAQTC FOP for T 23</td>
</tr>
<tr>
<td>C 33</td>
<td>Standard Specification for Concrete Aggregates</td>
<td>M 6/M 80</td>
</tr>
<tr>
<td>C 330</td>
<td>Standard Specification for Lightweight Aggregates for Structural Concrete</td>
<td>M 195</td>
</tr>
<tr>
<td>C 39</td>
<td>Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens</td>
<td>T 22</td>
</tr>
<tr>
<td>C 494</td>
<td>Standard Specification for Chemical Admixtures for Concrete</td>
<td>M 194</td>
</tr>
<tr>
<td>C 595</td>
<td>Standard Specification for Blended Hydraulic Cements</td>
<td>M 240</td>
</tr>
<tr>
<td>C 618 REV A</td>
<td>Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete</td>
<td>M 295</td>
</tr>
<tr>
<td>C 685</td>
<td>Standard Specification for Concrete Made by Volumetric Batching and Continuous Mixing</td>
<td>M 241</td>
</tr>
<tr>
<td>C 881</td>
<td>Standard Specification for Epoxy-Resin-Base Bonding Systems for Concrete</td>
<td>M 235</td>
</tr>
<tr>
<td>C 989</td>
<td>Standard Specification for Slag Cement for Use in Concrete and Mortars</td>
<td>M 302</td>
</tr>
<tr>
<td>D1557</td>
<td>Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2,700 kN-m/m³))</td>
<td>WAQTC FOP for T 99/ T 180</td>
</tr>
<tr>
<td>D 1751</td>
<td>Standard Specification for Preformed Expansion Joint Filler for Concrete Paving and Structural Construction (Nonextruding and Resilient Bituminous Types)</td>
<td>M 212</td>
</tr>
<tr>
<td>D 1752</td>
<td>Standard Specification for Preformed Sponge Rubber Cork and Recycled PVC Expansion Joint Fillers for Concrete Paving and Structural Construction</td>
<td>M 153</td>
</tr>
<tr>
<td>D 698</td>
<td>Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft³ (600 kN-m/m³))</td>
<td>WAQTC FOP for T 99/ T 180</td>
</tr>
<tr>
<td>D 98</td>
<td>Standard Specification for Calcium Chloride</td>
<td>M 144</td>
</tr>
<tr>
<td>M 994</td>
<td>Standard Specification for Preformed Expansion Joint Filler for Concrete (Bituminous Type)</td>
<td>M 33</td>
</tr>
</tbody>
</table>
1. **Scope**

This standard practice provides a procedure for rounding off numbers generated during the process of calculating materials testing results when a specific test method does not specify rounding procedures.

2. **Calculation Procedures**

All test results should be reported to a significant, practical, and accurate value. This can be achieved using the following procedures:

1. If the first digit to the right of the place to which the calculation is to be reported ends in 0, 1, 2, 3, or 4, the value of that place is not changed. If the rounded number ends in 0, the 0 should be written down. For example, if the result of a calculation is to be rounded to the tenth then 5.6489 rounds to 5.6.

2. If the first digit to the right of the place to which the calculation is to be reported ends in 5, 6, 7, 8, or 9, the value of that place is increased by one. For example, if the result of a calculation is to be rounded to the tenth, then 5.6543 rounds to 5.7; 7.9722 rounds to 8.0; 0.054 rounds to 0.1.

3. As far as practicable using the calculating device or forms supplied, carry out calculations with the observed values exactly and round only the final result.
Determination of Outlier Test Results SP 7

1. **Scope**

This standard practice provides a mechanism for rejecting individual test values that may misrepresent the physical properties of a material lot. The method statistically identifies a non-representative "outlier" and justifies its removal from the remaining test data for the lot.

2. **General**

1. When a test result is clearly a result of a gross deviation from prescribed sampling or testing procedure, the test result should be discarded, without further analysis. When no direct evidence of sampling and/or testing errors exists, the lot data will be statistically evaluated for the presence of an outlier.

2. An outlying test result will be assumed to be non-characteristic of the overall quality of the material tested. Outlying test results will be excluded from the price adjustment calculation, by either documental evidence or through statistical analysis.

3. **Basis of Statistical Criteria For Outliers**

All test results in a lot are included in the calculation of the numerical value of a sample criterion (or statistic), which is then compared with a critical value based on the theory of random sampling from a normal distribution to determine whether the doubtful test result is to be retained or rejected. The critical value is that value of the sample criterion that would be exceeded by chance with 5% total probability. This 5% probability is the risk of erroneously rejecting a good observation and is the Department's defined outlier threshold limit.

4. **Procedure**

1. Calculate the arithmetic mean \(\bar{x} \) of all test results for the lot using the following formula:

\[
\bar{x} = \frac{\sum X}{n}
\]

Where:
- \(\sum = \) summation of
- \(X = \) individual test value to \(x_n \)
- \(n = \) total number of test values

And where: \(\bar{x} \) is rounded to the nearest 0.1 percent for density and all sieve sizes except the 0.075 mm (No. 200) sieve.

\(\bar{x} \) is rounded to the nearest 0.01 percent for asphalt content and the 0.075 mm (No. 200) sieve.

2. Calculate sample standard deviation (s) of all test results for the lot using the following formula:

\[
s = \sqrt{\frac{n\sum(x^2)-(\sum x)^2}{n(n-1)}}
\]

Where:
- \(s = \) standard deviation of the lot
- \(\sum(x^2) = \) summation of the squares of individual test values.
\[(\sum_x)^2 = \text{square of the summation of the individual test values.}\]
\[n = \text{total number of test values}\]

3. The lot standard deviation \((s)\) is rounded to the nearest 0.01 for density and all sieve sizes except the 0.075 mm (No. 200) sieve. The lot standard deviation(s) is rounded to the nearest 0.001 for asphalt content and the 0.075 mm (No. 200) sieve.

Note 1: This is the sample standard deviation and not the population (sigma) standard deviation. Many computer spreadsheet programs have formulas for population standard deviation and not sample standard deviation.

4. Calculate the difference between the arithmetic mean \(\bar{x}\) and the lowest test result \((X_L)\); and between the highest test result \((X_H)\) and the arithmetic mean \(\bar{x}\).

5. Calculate test criterion, \(T_L\) or \(T_H\), of the test result with the greatest difference from the arithmetic mean \(\bar{x}\).

6. If the lowest test result \((X_L)\) has the greatest difference from the arithmetic mean \(\bar{x}\), then \(T_L\) is calculated as follows:

\[
T_L = \frac{(X_L - \bar{x})}{s}
\]

7. If the highest test result \((X_H)\) has the greatest difference from the arithmetic mean \(\bar{x}\), then \(T_H\) is calculated as follows:

\[
T_H = \frac{(X_H - \bar{x})}{s}
\]

Determine critical T value from Table 1.

8. If \(T_L\) or \(T_H\), whichever is larger, exceeds the critical T value from Table 1, then that test result is an outlier and will be excluded from the price adjustment calculations. If one or more additional test result(s) has the same value as the outlier, then none of the test results will be outliers and all test results will be included in the price adjustment calculations. If \(T_L\) and \(T_H\) are equal, then neither test result will be an outlier and all test results will be included in the price adjustment calculations.

Note 2: This test method will not be reapplied to identify additional "outliers" based on the new arithmetic mean and sample standard deviations calculated after the "outliers" have been excluded.
Table 1
Critical T Values for a Sample Standard Deviation

<table>
<thead>
<tr>
<th>Number Of Samples, n</th>
<th>Critical T</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.155</td>
</tr>
<tr>
<td>4</td>
<td>1.481</td>
</tr>
<tr>
<td>5</td>
<td>1.715</td>
</tr>
<tr>
<td>6</td>
<td>1.887</td>
</tr>
<tr>
<td>7</td>
<td>2.020</td>
</tr>
<tr>
<td>8</td>
<td>2.126</td>
</tr>
<tr>
<td>9</td>
<td>2.215</td>
</tr>
<tr>
<td>10</td>
<td>2.290</td>
</tr>
<tr>
<td>11</td>
<td>2.355</td>
</tr>
<tr>
<td>12</td>
<td>2.412</td>
</tr>
<tr>
<td>13</td>
<td>2.462</td>
</tr>
<tr>
<td>14</td>
<td>2.507</td>
</tr>
<tr>
<td>15</td>
<td>2.549</td>
</tr>
<tr>
<td>16</td>
<td>2.585</td>
</tr>
<tr>
<td>17</td>
<td>2.620</td>
</tr>
</tbody>
</table>

5. Example 1

1. Consider the following test results on percent asphalt content:
 5.3, 5.6, 5.8, 5.8, 5.9, 5.9, 5.9, 6.0, 6.0 and 6.0

2. Calculate the arithmetic mean \bar{x}:

$$\bar{x} = \frac{5.3 + 5.6 + 5.8 + 5.8 + 5.9 + 5.9 + 5.9 + 6.0 + 6.0 + 6.0}{10}$$

$$\bar{x} = 5.82\%$$

3. Calculate the sample standard deviation:

$$s = \sqrt{\frac{n \sum (x^2) - (\sum x)^2}{n(n-1)}}$$

Where:

- $\sum(x)2 = 339.16$
- $(\sum x)^2 = 3,387.24$
- $n = 10$
- $s = 0.220$

4. The difference between the arithmetic mean \bar{x} and the lowest test result is:

$$(5.82\% - 5.3\%) = 0.52\%$$
5. The difference between the highest test result and the arithmetic mean \(\bar{x} \) is:
\[
(6.0\% - 5.82\%) = .18\%
\]

6. Calculate \(T_L \) or \(T_H \). Since the lowest test result (5.3\%) had the greatest difference from the arithmetic mean \(\bar{x} \), it is evaluated to determine if it is an outlier. \(T_L \) is calculated as follows:
\[
T_L = (5.82\% - 5.3\%) ÷ 0.220 = 2.364
\]

7. Determine Critical \(T \). From Table 1, the critical \(T \) for 10 samples is 2.290. Since \(T_L = 2.364 \) is greater than 2.290, the test result of 5.3\% is an outlier and is excluded from the price adjustment calculations.

6. Example 2

1. Consider the following test result on percent asphalt content:

 5.3, 5.8, 5.8, 5.8, 5.9, 5.9, 6.0, 6.0, 6.0 and 6.5

2. Calculate arithmetic mean \(\bar{x} \):
\[
\bar{x} = \frac{5.3 + 5.8 + 5.8 + 5.8 + 5.9 + 5.9 + 6.0 + 6.0 + 6.0 + 6.5}{10} = 5.90\%
\]

3. Calculate sample standard deviation:
\[
s = \sqrt{\frac{n \sum (x^2) - (\sum x)^2}{n(n-1)}}
\]

Where:
\[
\sum (x)^2 = 348.88
\]
\[
(\sum x)^2 = 3,481.00
\]
\[
n = 10
\]
\[
s = 0.294
\]

4. The difference between the arithmetic mean \(\bar{x} \) and the lowest test result is:
\[
(5.90\% - 5.3\%) = 0.6\%
\]

5. The difference between the highest test result and the arithmetic mean \(\bar{x} \) is:
\[
(6.5\% - 5.90\%) = 0.6\%
\]

6. Calculate \(T_L \) or \(T_H \). Since the lowest test result (5.3\%) and the highest test result (6.5\%) have the same difference from the arithmetic mean \(\bar{x} \), both \(T_L \) and \(T_H \) are calculated.
\[
T_L = (5.90\% - 5.3\%) ÷ 0.294 = 2.364
\]
\[
T_H = (6.5\% - 5.90\%) ÷ 0.294 = 2.364
\]
\[T_L = T_H = 2.041 \]

7. Since \(T_L \) and \(T_H \) are equal, neither test result is considered to be an outlier and all test results are included in the price adjustment calculation.
This page intentionally left blank.
1. Scope

This practice covers the standardization of pressure type air meters used to determine the air content of freshly mixed concrete. Standardization procedures are developed to meet AASHTO T 152.

Note: This practice is equipment specific for two models of air meters currently in use by regional/field laboratories.

2. Apparatus

- Press-Ur-Meter (Charles R. Watts Company and Gilson)

- Appropriate standardization vessels for the air meters listed. Standardization vessels will have either be a vessel with an internal volume equal to 5 percent of the volume of the measuring bowl, or a vessel to place into the measuring bowl conforming to Note 1 in AASHTO T 152 and also equal to 5 percent. Regardless of type, the effective volume of the vessel should be checked.

3. Standardization Procedure for the Press-Ur-Meter:

1. Fill the measuring bowl with water.

2. Screw the straight tube into the threaded petcock hole on the underside of the cover. Clamp the cover assembly onto the measuring bowl with the tube extending down into the water.

3. With both petcocks open, add water through the petcock having the tubing extension, until all air is forced out the opposite petcock. Leave both petcocks open.

4. Pump air pressure to 0 percent or to the previous Initial Pressure line. Wait a few seconds for the compressed air to cool to ambient temperature, then stabilize the gauge needle at the assumed initial pressure by pumping up or bleeding off air, as necessary.

5. Close both petcocks and immediately press down on the air release lever exhausting the air into the measuring bowl. Wait a few seconds until the gauge needle is stabilized, tapping lightly on the gauge to keep gauge needle from sticking. If all the air was eliminated and the assumed Initial Pressure line was correct, the gauge should read 0 percent. If two or more tests show a consistent variation from 0 percent in the result, then change the Initial Pressure line to compensate for the variation, or remove the gauge glass and reset the gauge needle to 0 percent by turning the gauge's standardization screw. Use the newly established "Initial Pressure" line for subsequent tests.

6. Screw the curved tube into the outer end of the petcock with the straight tube below and, by pressing on the air release lever and controlling the flow with the petcock lever, fill the 5 percent calibrating vessel (345 ml) level full of water from the measuring bowl.

7. Release the air pressure at the free petcock. Open the other petcock and let the water in the curved pipe run back into the measuring bowl. There is now 5 percent air in the measuring bowl.

8. Pump air pressure to the Initial Pressure as determined in Step 5. Wait a few seconds for the compressed air to cool to ambient temperature and then stabilize the gauge needle at the assumed zero point by pumping up or bleeding off air, as necessary.

9. Close both petcocks and immediately press down on the air release lever exhausting the air into the measuring bowl. Wait a few seconds until the gauge needle is stabilized, tapping lightly on the gauge to keep gauge needle from sticking. If all the air was eliminated and the assumed Initial Pressure line was correct, the gauge should read 5 percent.
10. If two or more consistent tests show that the gauge at 5 percent air reads incorrectly in excess of 0.2 percent, then remove the gauge glass and reset the gauge needle to 5 percent by adjusting the gauge's standardization screw.

11. When the gauge reads correctly at 5 percent, additional water may be withdrawn in the same manner to check results at 10 percent.

4. Standardization Using Internal Standardization Vessel

1. Fill the measuring bowl with water.

2. Clamp the cover assembly onto the measuring bowl.

3. With both petcocks open, add water through one petcock, until all air is forced out the opposite petcock. Leave both petcocks open.

4. Pump air pressure to 0 percent or to the previous Initial Pressure Line. Wait a few seconds for the compressed air to cool to ambient temperature, then stabilize the gauge needle at the assumed zero point by pumping up or bleeding off air, as necessary.

5. Close both petcocks and immediately press down on the air release lever exhausting the air into the measuring bowl. Wait a few seconds until the gauge needle is stabilized, tapping lightly on the gauge to keep gauge needle from sticking. If all the air was eliminated and the assumed Initial Pressure line was correct, the gauge should read 0 percent. If two or more tests show a consistent variation from 0 percent in the result, then change the Initial Pressure line to compensate for the variation, or remove the gauge glass and reset the gauge needle to 0 percent by turning the gauge's standardization screw. Use the newly established "Initial Pressure" line for subsequent tests.

6. Release the pressure and remove the cover assembly.

7. Place the Internal Standardization Vessel into the measuring bowl, replace the cover assembly and refill as in step 3.

8. Pump the air pressure to the Initial Pressure Line allowing a few seconds for the gauge needle to stabilize.

9. Verify there is water standing in both petcocks and then close them.

10. Release to air into the measuring bowl by pressing down on the air release lever. Tap the gauge lightly and when stable, the meter should read 5 percent. If two or more consistent tests show that the gauge at 5 percent air reads incorrectly in excess of 0.2 percent, then remove the gauge glass and reset the gauge needle to 5 percent by adjusting the gauge's standardization screw and re-check.

5. Report

1. Report the results of the standardization as well as noting any adjustments or repairs made.

2. Label the meter with a sticker noting the month and year of the standardization.
Worksheets with Examples SP 10

1. **Scope**

This standard practice includes copies of all the standard forms developed for use on DOT&PF projects. Examples have been included to help clarify their use.
Example Calculations ATM 202

Calculation

Constant Mass for Aggregates:

Calculate constant mass using the following formula:

\[
\frac{M_p - M_n}{M_p} \times 100 = \% \text{ Change}
\]

Where:
\(M_p\) = previous mass measurement
\(M_n\) = new mass measurement

Example:

Mass of container: 1232.1 g
Mass of container& sample after first drying cycle: 2637.2 g
Mass, \(M_p\), of possibly dry sample: 2637.2 g - 1232.1 g = 1405.1 g
Mass of container and dry sample after second drying cycle: 2634.1 g
Mass, \(M_n\), of dry sample: 2634.1 g - 1232.1 g = 1402.0 g

\[
\frac{1405.1 \text{ g} - 1402.0 \text{ g}}{1405.1 \text{ g}} \times 100 = 0.22\%
\]

0.22 percent is not less than 0.10 percent, so continue drying

Mass of container and dry sample after third drying cycle: 2633.0 g
Mass, \(M_n\), of dry sample: 2633.0 g - 1232.1 g = 1400.9 g

\[
\frac{1402.0 \text{ g} - 1400.9 \text{ g}}{1402.0 \text{ g}} \times 100 = 0.08\%
\]

0.08 percent is less than 0.10 percent, so constant mass has been reached for an aggregate, but continue drying for soil.

Moisture Content Aggregate and Soils:

Calculate the moisture content, as a percent, using the following formula:

\[
w = \frac{M_W - M_D}{M_D} \times 100
\]

Where:
w = moisture content, percent
\(M_W\) = wet mass
\(M_D\) = dry mass
Example:

Mass of container: 1232.1 g
Mass of container and wet sample: 2764.7 g
Mass, \(M_w \), of wet sample: 2764.7 g - 1232.1 g = 1532.6 g
Mass of container and dry sample (COOLED): 2633.0 g
Mass, \(M_D \), of dry sample: 2633.0 g - 1232.1 g = 1400.9 g

\[
\frac{1532.6g - 1400.9g}{1400.9g} \times 100 = \frac{131.7g}{1400.9g} \times 100 = 9.39\% \quad \text{report } 9.4\%
\]

Example Calculations ATM 204

Calculate the liquid limit according to Method B as follows:

\[
LL = (W_N)(N/25)^{0.121}
\]

<table>
<thead>
<tr>
<th>N</th>
<th>((N/25)^{0.121})</th>
<th>N</th>
<th>((N/25)^{0.121})</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>0.985</td>
<td>26</td>
<td>1.005</td>
</tr>
<tr>
<td>23</td>
<td>0.990</td>
<td>27</td>
<td>1.009</td>
</tr>
<tr>
<td>24</td>
<td>0.995</td>
<td>28</td>
<td>1.014</td>
</tr>
<tr>
<td>25</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
LL = (W_N)(N/25)^{0.121}
\]

where

\(LL \) = liquid limit
\(W_N \) = moisture content of sample at \(N \) blows
\(N \) = number of blows

Example:

\(W_N = 16.0 \% \) and \(N = 23 \)

\[
LL = (16.0)(23/25)^{0.121} = 15.8, \text{ say } 16\%
\]
The moisture content is the Plastic Limit (PL). It is advisable to run several trials on the same material to ensure a proper determination of the Plastic Limit of the soil.

The Plasticity Index (PI) of the soil is equal to the difference between the Liquid Limit (LL) and the Plastic Limit (PL).

Example Calculation

<table>
<thead>
<tr>
<th>Container</th>
<th>Container Mass, g</th>
<th>Container and Wet Soil Mass, g</th>
<th>Wet Soil Mass, g</th>
<th>Container and Dry Soil Mass, g</th>
<th>Dry Soil Mass, g</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14.44</td>
<td>22.65</td>
<td>8.21</td>
<td>21.45</td>
<td>7.01</td>
</tr>
<tr>
<td>2</td>
<td>14.18</td>
<td>23.69</td>
<td>9.51</td>
<td>22.81</td>
<td>8.63</td>
</tr>
</tbody>
</table>

\[\text{PI} = \text{LL} - \text{PL} \]

Examples:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>LL = 34 and PL = 17</td>
<td>PL = 34 - 17 = 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LL = 16 and PL = 10</td>
<td>PI = 16 - 10 = 6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example Calculations ATM 205

When the mold meets the criteria of Table 1 or Table 2 calculating unit mass can be accomplished by multiplication using a Mold Factor, by division using a Mold volume; or by division using a measured volume (determined by performing AASHTO T 19).

For molds not meeting the criteria of Table 1 or Table 2 but within 50%, a measured volume must be used.

Mold Factor

1a. Calculate the wet density, in kg/m\(^3\) (lb/ft\(^3\)), by multiplying the wet mass from Step 7 by the appropriate factor chosen from the two below.

- Methods A and C molds: 1060 (30)
- Methods B and D molds: 471 (13.33)
Note 6: The moist mass is in kg (lb). The factors are the inverses of the mold volumes in m3 (ft3) shown in Table 1 or Table 2. If the moist mass is in grams, use 1.060 or 0.471 for factors when computing kg/m3.

Example – Methods A or C mold:

Wet mass = 1.916 kg (4.22 lb)

\[
\frac{1.916 \times 1060}{0.000943} = 2031 \text{ kg/m}^3 \text{ Wet Density*} \quad \frac{4.22 \times 30}{0.0333} = 126.6 \text{ lb/ft}^3 \text{ Wet Density*}
\]

Volume

lb. Calculate the wet density, in kg/m3 (lb/ft3), by dividing the wet mass from Step 7 by the appropriate volume from Table 1 or Table 2.

Example – Methods A or C mold:

Wet mass = 1.916 kg (4.22 lb)

\[
\frac{1.1916 \text{ kg}}{0.000946 \text{ m}^3} = 2023 \text{ kg/m}^3 \text{ Wet Density*} \quad \frac{4.22 \text{ lb}}{0.0334 \text{ ft}^3} = 126.7 \text{ lb/ft}^3 \text{ Wet Density*}
\]

* Differences in wet density are due to rounding in the respective calculations.

Measured Volume

lc. Calculate the wet density, in kg/m3 (lb/ft3), by dividing the wet mass by the measured volume of the mold (T 19).

Example – Methods A or C mold:

Wet mass = 1.916 kg (4.22 lb)

\[
\frac{1.1916 \text{ kg}}{0.000946 \text{ m}^3} = 2025 \text{ kg/m}^3 \text{ Wet Density*} \quad \frac{4.22 \text{ lb}}{0.0334 \text{ ft}^3} = 126.3 \text{ lb/ft}^3 \text{ Wet Density*}
\]

2. Calculate the dry density as follows.

\[
\rho_d = \left(\frac{\rho_w}{w + 100}\right) \times 100 \quad \text{or} \quad \rho_d = \frac{\rho_w}{\left(\frac{w}{100}\right) + 1}
\]

Where:

- $\rho_d =$ Dry density, kg/m3 (lb/ft3)
- $\rho_w =$ Wet density, kg/m3 (lb/ft3)
- $w =$ Moisture content, as a percentage
Example:

$$\rho_w = 2030 \text{ kg/m}^3 (126.6 \text{ lb/ft}^3) \text{ and } w = 14.7\%$$

$$\rho_d = \left(\frac{2030 \text{ kg/m}^3}{14.7 + 100}\right) \times 100 = 1770 \text{ kg/m}^3 \quad \rho_d = \left(\frac{126.6 \text{ lb/ft}^3}{14.7 + 100}\right) \times 100 = 110.4 \text{ lb/ft}^3$$

or

$$\rho_d = \left(\frac{2030 \text{ kg/m}^3}{\frac{14.7}{100} + 1}\right) = 1770 \text{ kg/m}^3 \quad \rho_d = \left(\frac{126.6 \text{ lb/ft}^3}{\frac{14.7}{100} + 1}\right) = 110.4 \text{ lb/ft}^3$$

Example Calculations ATM 214

Sample Calculations English:

- Maximum laboratory dry density (D_d): 140.4 lb/ft3
- Percent coarse particles (P_c): 27%
- Percent fine particles (P_f): 73%
- Mass per volume of coarse particles (k): (2.697) (62.4) = 168.3 lb/ft3

$$D_d = \frac{100 \times D_f \times k}{(D_f \times P_c) + (k \times P_f)} \quad \text{or} \quad D_d = \frac{100}{\frac{P_f}{D_f} + \frac{P_c}{k}}$$

$$D_d = \frac{100 \times 140.4 \text{ lb/ft}^3 \times 168.3 \text{ lb/ft}^3}{(140.4 \text{ lb/ft}^3 \times 27\%) + (168.3 \text{ lb/ft}^3 \times 73\%)}$$

or

$$D_d = \frac{100}{\frac{73\%}{140.4 \text{ lb/ft}^3} + \frac{27\%}{168.3 \text{ lb/ft}^3}}$$

$$D_d = \frac{2,362,932 \text{ lb/ft}^3}{(3790.8 \text{ lb/ft}^3 + 12285.9 \text{ lb/ft}^3)} \quad \text{or} \quad D_d = \frac{100}{0.51994 \text{ lb/ft}^3 + 0.16043 \text{ lb/ft}^3}$$

$$D_d = \frac{2,362,932 \text{ lb/ft}^3}{16,076.7 \text{ lb/ft}^3} \quad \text{or} \quad D_d = \frac{100}{0.68037 \text{ lb/ft}^3}$$
\[D_d = 146.98 \text{ lb/ft}^3 \quad \text{report 147.0 lb/ft}^3 \]

Example Calculations ATM 304

Method A Sample Calculation

Calculate percent retained on and passing each sieve on the basis of the total mass of the initial dry sample. This will include any material finer than 75 µm (No. 200) that was washed out.

Example:

Dry mass of total sample, before washing: 5168.7 g
Dry mass of sample, after washing out the 75 µm (No. 200) minus: 4911.3 g
Amount of 75 µm (No. 200) minus washed out: 5168.7 g – 4911.3 g = 257.4 g

Gradation on All Sieves

<table>
<thead>
<tr>
<th>Sieve Size (mm)</th>
<th>Individual Mass Retained, g (IMR)</th>
<th>Individual Percent Retained (IPR)</th>
<th>Cumulative Mass Retained, g (CMR)</th>
<th>Cumulative Percent Retained (CPR)</th>
<th>Calc’d Percent Passing (CPF)</th>
<th>Reported Percent Passing* (RPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.0 (3/4)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>724.7</td>
<td>14.0</td>
<td>724.7</td>
<td>14.0</td>
<td>86.0</td>
<td>86</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>619.2</td>
<td>12.0</td>
<td>1343.9</td>
<td>26.0</td>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>1189.8</td>
<td>23.0</td>
<td>2533.7</td>
<td>49.0</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>2.36 (No. 8)</td>
<td>877.6</td>
<td>17.0</td>
<td>3411.3</td>
<td>66.0</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>1.18 (No. 16)</td>
<td>574.8</td>
<td>11.1</td>
<td>3986.1</td>
<td>77.1</td>
<td>22.9</td>
<td>23</td>
</tr>
<tr>
<td>0.600 (No. 30)</td>
<td>329.8</td>
<td>6.4</td>
<td>4315.9</td>
<td>83.5</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>0.300 (No. 50)</td>
<td>228.5</td>
<td>4.4</td>
<td>4544.4</td>
<td>87.9</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>0.150 (No. 100)</td>
<td>205.7</td>
<td>4.0</td>
<td>4750.1</td>
<td>91.9</td>
<td>8.1</td>
<td>8</td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>135.4</td>
<td>2.6</td>
<td>4885.5</td>
<td>94.5</td>
<td>5.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Pan</td>
<td>20.4</td>
<td></td>
<td>4905.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Report 75 µm (No. 200) sieve to 0.1 percent. Report all others to 1 percent.

Check sum:

\[
\frac{4911.3 g - 4905.9 g}{4911.3 g} \times 100 = 0.1\%
\]

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

Percent Retained:

9.5 mm (3/8) sieve:

\[
\frac{619.2 g}{5168.7 g} \times 100 = 12.0\% \quad \text{or} \quad \frac{1343.9 g}{5168.7 g} \times 100 = 26.0\%
\]
Percent Passing (Calculated):

9.5 mm (3/8) sieve: 86.0% − 12.0% = 74.0% or 100% − 26.0% = 74.0%

Method B Sample Calculation

Sample calculation for percent retained and percent passing each sieve in accordance with Method B when the previously washed 4.75mm (No. 4) minus material is split:

Example:

Dry mass of total sample, before washing: 3214.0 g
Dry mass of sample, after washing out the 75 µm (No. 200) minus: 3085.1 g
Amount of 75 µm (No. 200) minus washed out: 3214.0 g − 3085.1 g = 128.9 g

Gradation on Coarse Sieves

<table>
<thead>
<tr>
<th>Sieve Size</th>
<th>Individual Mass Retained, g (IMR)</th>
<th>Individual Percent Retained (IPR)</th>
<th>Cumulative Mass Retained, g (CMR)</th>
<th>Cumulative Percent Retained (CPR)</th>
<th>Calculated Percent Passing (CPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0 (5/8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>161.1</td>
<td>5.0</td>
<td>161.1</td>
<td>5.0</td>
<td>95.0</td>
</tr>
<tr>
<td>9.50 (3/8)</td>
<td>481.4</td>
<td>15.0</td>
<td>642.5</td>
<td>20.0</td>
<td>80.0</td>
</tr>
<tr>
<td>'4.75 (No. 4)</td>
<td>475.8</td>
<td>14.8</td>
<td>1118.3</td>
<td>34.8</td>
<td>65.2</td>
</tr>
<tr>
<td>Pan</td>
<td>1966.7 (M₁)</td>
<td>3085.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coarse check sum:

\[
\frac{3085.1 \text{ g} - 3085.0 \text{ g}}{3085.1 \text{ g}} \times 100 = 0.0\%
\]

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

Note 5: The pan mass determined in the laboratory (M₁) and the calculated mass (3085.1 − 1118.3 = 1966.7) should be the same if no material was lost.

The pan (1966.7 g) was reduced in accordance with the FOP for AASHTO T 248, so that at least 500 g are available. In this case, the mass determined was 512.8 g. This is M₂.

In order to account for the fact that only a portion of the minus 4.75mm (No. 4) material was sieved, the mass of material retained on the smaller sieves is adjusted by a factor equal to M₁/M₂. The factor determined from M₁/M₂ must be carried to three decimal places. Both the individual mass retained and cumulative mass retained formulas are shown.

Individual Mass Retained:

\[
\frac{M₁}{M₂} = \frac{1,966 \text{ g}}{512.8 \text{ g}} = 3.835
\]
Each “individual mass retained” on the fine sieves must be multiplied by this adjustment factor.

For example, the overall mass retained on the 2.00mm (No. 10) sieve is:

\[3.835 \times 207.1 \text{ g} = 794.2 \text{ g},\] as shown in the following table:

Final Gradation on All Sieves

Calculation by Individual Mass

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Individual Mass Retained, g (IMR)</th>
<th>Adjusted Individual Mass Retained (AIMR)</th>
<th>Individual Percent Retained (IPR)</th>
<th>Calc’d Percent Passing (CPP)</th>
<th>Reported Percent Passing* (RPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0 (5/8)</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>161.1</td>
<td>161.1</td>
<td>5.0</td>
<td>95.0</td>
<td>95</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>481.4</td>
<td>481.4</td>
<td>15.0</td>
<td>80.0</td>
<td>80</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>475.8</td>
<td>475.8</td>
<td>14.8</td>
<td>65.2</td>
<td>65</td>
</tr>
<tr>
<td>2.0 (No. 10)</td>
<td>(207.1 \times 3.835)</td>
<td>794.2</td>
<td>24.7</td>
<td>40.5</td>
<td>40</td>
</tr>
<tr>
<td>0.425 (No. 40)</td>
<td>(187.9 \times 3.835)</td>
<td>720.6</td>
<td>22.4</td>
<td>18.1</td>
<td>18</td>
</tr>
<tr>
<td>0.210 (No. 80)</td>
<td>(59.9 \times 3.835)</td>
<td>229.7</td>
<td>7.1</td>
<td>11.0</td>
<td>11</td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>(49.1 \times 3.835)</td>
<td>188.3</td>
<td>5.9</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Pan</td>
<td>(7.8 \times 3.835)</td>
<td>29.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dry mass of total sample, before washing: 3214.0 g

*Report 75 µm (No. 200) sieve to 0.1 percent. Report all others to 1 percent.

Fine check sum:

\[
\frac{512.8 \text{ g} - 511.8 \text{ g}}{512.8 \text{ g}} \times 100 = 0.2\%
\]

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

For Percent Passing (Calculated) see “Calculation” under Method A.

Cumulative Mass Retained:

\[M_1 = \text{mass of the minus 4.75 mm (No. 4) before split}\]
\[M_2 = \text{mass before sieving of the split of the minus 4.75 mm (No. 4)}\]

\[
\frac{M_1}{M_2} = \frac{1,966 \text{ g}}{512.8 \text{ g}} = 3.835
\]

Each “cumulative mass retained” on the fine sieves must be multiplied by this adjustment factor then the cumulative mass of plus 4.75 mm (No. 4) portion of sample is added to equal the adjusted cumulative mass retained.

For example, the adjusted cumulative mass retained on the 0.425 mm (No. 40) sieve is:

\[3.835 \times 395.0 \text{ g} = 1514.8 \text{ g}\]

1514.8 + 1118.3 g = 2633.1: “Total Cumulative Mass Retained” as shown in the following table:
Final Gradation on All Sieves

Calculation by Cumulative Mass

<table>
<thead>
<tr>
<th>Sieve Size (mm)</th>
<th>Cumulative Mass Retained, g (CMR)</th>
<th>Adjusted Cumulative Mass Retained, g (ACMR)</th>
<th>Total Cumulative Mass Retnd., g (TCMR)</th>
<th>Cumulative Percent Retnd. (CPR)</th>
<th>Calc’d Percent Passing (CPP)</th>
<th>Reported Percent Passing* (RPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0 (5/8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>161.1</td>
<td>161.1</td>
<td>5.0</td>
<td>95.0</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>9.50 (3/8)</td>
<td>642.5</td>
<td>642.5</td>
<td>20.0</td>
<td>80.0</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>1118.3</td>
<td>1118.3</td>
<td>34.8</td>
<td>65.2</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>2.0 (No. 10)</td>
<td>207.1 × 3.835</td>
<td>1912.5</td>
<td>59.5</td>
<td>40.5</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>0.425 (No. 40)</td>
<td>395.0 × 3.835</td>
<td>2633.1</td>
<td>81.9</td>
<td>18.1</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>0.210 (No. 80)</td>
<td>454.9 × 3.835</td>
<td>2862.8</td>
<td>89.1</td>
<td>10.9</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>504.0 × 3.835</td>
<td>3051.1</td>
<td>94.9</td>
<td>5.1</td>
<td>5.1</td>
<td></td>
</tr>
<tr>
<td>Pan</td>
<td>511.8 × 3.835</td>
<td>3081.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Report 75 µm (No. 200) sieve to 0.1 percent. Report all others to 1 percent.

Fine check sum:

\[
\frac{512.8 \, g - 511.8 \, g}{512.8 \, g} \times 100 = 0.2\%
\]

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

For Percent Passing (Calculated) see “Calculation” under Method A.

Method C Sample Calculation

Sample calculation for percent retained and percent passing each sieve in accordance with Method C when the minus 4.75mm (No. 4) material is reduced and then washed:

Dry Mass of total sample: 3304.5 g

Dry Mass of minus 4.75mm (No. 4) reduced portion before wash, M_{<4}: 527.6 g

Dry Mass of minus 4.75mm (No. 4) reduced portion after wash: 495.3 g

Gradation on Coarse Sieves

<table>
<thead>
<tr>
<th>Sieve Size (mm)</th>
<th>Cumulative Mass Retained, g (CMR)</th>
<th>Calc’d Percent Retained (CPR)</th>
<th>Calc’d Percent Passing (CPP)</th>
<th>Reported Percent Passing* (RPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0 (5/8)</td>
<td>0</td>
<td>0.0</td>
<td>100.0</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>125.9</td>
<td>3.8</td>
<td>96.2</td>
<td>96</td>
</tr>
<tr>
<td>9.50 (3/8)</td>
<td>604.1</td>
<td>18.3</td>
<td>81.7</td>
<td>82</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>1295.6</td>
<td>39.2</td>
<td>60.8</td>
<td>61</td>
</tr>
<tr>
<td>Pan</td>
<td>2008.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Dry Sample = 3304.5 g
Coarse check sum:

$$\frac{3304.5 \ g - 3304.5 \ g}{3304.5 \ g} \times 100 = 0.0\%$$

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

The pan (2008.9 g) was reduced in accordance with the FOP for AASHTO T 248, so that at least 500 g are available. In this case, the mass determined was $M_{\#4} = 527.6 \ g$.

Final Gradation on All Sieves

Calculation by Cumulative Mass

<table>
<thead>
<tr>
<th>Sieve Size mm (in.)</th>
<th>Cumulative Mass Retained, g (CMR$_{#4}$)</th>
<th>Cumulative Percent Retained (CPR$_{#4}$)</th>
<th>Calc’d Percent Passing${#4}$ (CPP${#4}$)</th>
<th>Calc’d Percent Passing (CPP)</th>
<th>Reported Percent Passing* (RPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.0 (5/8)</td>
<td>0</td>
<td>0.0</td>
<td>100.0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>125.9</td>
<td>3.8</td>
<td>96.2</td>
<td>96</td>
<td>82</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>604.1</td>
<td>18.3</td>
<td>81.7</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>1295.6</td>
<td>39.2</td>
<td>60.8</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>2.0 (No. 10)</td>
<td>194.3</td>
<td>36.8</td>
<td>63.2</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>0.425 (No. 40)</td>
<td>365.6</td>
<td>69.3</td>
<td>30.7</td>
<td>18.7</td>
<td>19</td>
</tr>
<tr>
<td>0.210 (No. 80)</td>
<td>430.8</td>
<td>81.7</td>
<td>18.3</td>
<td>11.1</td>
<td>11</td>
</tr>
<tr>
<td>0.075 (No. 200)</td>
<td>484.4</td>
<td>91.8</td>
<td>8.2</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Pan</td>
<td>495.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dry mass (M) of minus 4.75 mm (No. 4) sample, before washing: 527.6 g
Dry mass of minus 4.75 mm (No. 4) sample, after washing: 495.3 g

*Report 75 µm (No. 200) sieve to 0.1 percent. Report all others to 1 percent

Fine check sum:

$$\frac{495.3 \ g - 495.1 \ g}{495.3 \ g} \times 100 = 0.04\%$$

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

Also note that for minus No. 4 material using this method that:

$$CPP = \frac{CPP_{\#4} \times (M_{\#4} - CMR_{\#4})}{M_{\#4}}$$
Example Calculations ATM 305

Example:

\[F = 632.6 \text{ g}, \quad Q = 97.6 \text{ g}, \quad N = 352.6 \text{ g} \]

\[
\% Q = \frac{97.6 \text{ g}}{632.6 \text{ g} + 97.6 \text{ g} + 352.6 \text{ g}} \times 100 = 9.0\% \\
%Q = 9\%
\]

Calculate the mass percentage of fractured faces to the nearest 1 percent using the following formula:

\[
P = \frac{Q}{\frac{Q}{2} + F} \times \frac{F + Q + N}{100}
\]

where:
- \(P \) = Percent of fracture
- \(F \) = Mass of fractured particles
- \(Q \) = Mass of questionable or borderline particles
- \(N \) = Mass of unfractured particles

Example:

\[F = 632.6 \text{ g}, \quad Q = 97.6 \text{ g}, \quad N = 352.6 \text{ g} \]

\[
P = \frac{97.6 \text{ g}}{\frac{97.6 \text{ g}}{2} + 632.6 \text{ g}} \times \frac{632.6 \text{ g} + 97.6 \text{ g} + 352.6 \text{ g}}{100} \\
P = 63\%
\]

Example Calculations ATM 306

Calculate the cumulative percent retained of each size group flat and elongated (F&E) in relation to the total plus 4.75 mm (No. 4).

\[\text{F&E Group CPR} = \left(\frac{\text{CPR}}{\#4 \text{ CPR}} \right) \times 100 \]

Example:

CPR=35%, \#4 CPR=58%

\[
\text{Group CPR}=\left(\frac{35\%}{58\%} \right) \times 100 \quad \text{F&E Group CPR} = 60\%
\]

Calculate the individual percent retained of each group:

\[\text{F&E Group Individual Percent Retained (IPR)} = \text{F&E Group CPR} - \text{Next Larger Group CPR} \]

Example:

F&E Group CPR=100%, Next Larger Group CPR=60%

\[
\text{F&E Group Individual Percent Retained (IPR)} = 100\% - 60\% \quad \text{IPR}=40\%
\]
Calculate the percent flat and elongated for each size group.

\[
\% \text{ F&E for Size Group} = \left[\frac{(\text{Mass F&E Size Group})}{(\text{Size Group Mass})} \right] \times 100
\]

Example:

Mass F&E Size Group=3.3g, Size Group Mass=104.9g

\[
\% \text{ F&E for Size Group (B)} = \left[\frac{(104.9)}{(3.3)} \right] \times 100 \quad B=3.1\%
\]

Calculate the weighted percent for each size to 0.1%.

\[
\text{Weighted } \% \text{ F&E Size Group} = \left(\% \text{ F&E for Size Group} \times \text{F&E Group IPR} \right) \div 100
\]

Example:

\[
\% \text{ F&E for Size Group}=3.1\%, \quad \text{F&E Group IPR}=40%
\]

\[
\text{Weighted } \% \text{ F&E Size Group} = 3.1\% \times 40\% \div 100 \quad \text{Weighted } \% \text{ F&E Size Group}=1.2\%
\]

Calculate the total percentage of FnE by determining the sum of all the weighted % F&E for Size Groups.

\[
\text{Total Weighted } \%\text{F&E}=1.1\%+1.2\% \quad \text{Total Weighted } \%\text{F&E}=2\%
\]

Example Calculations ATM 308

Perform calculations and determine values using the appropriate formula below. In these formulas, A = oven dry mass, B = SSD mass, and C = weight in water.

Bulk specific gravity (\(G_{sb}\))

\[
G_{sb} = \frac{A}{B - C}
\]

Bulk specific gravity, SSD (\(G_{sb, SSD}\))

\[
G_{sb, SSD} = \frac{B}{B - C}
\]

Apparent specific gravity (\(G_{sa}\))

\[
G_{sa} = \frac{A}{A - C}
\]

Absorption

\[
\text{Absorption} = \left(\frac{B - A}{A} \right) \times 100
\]

<table>
<thead>
<tr>
<th>Sample</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>B - C</th>
<th>A - C</th>
<th>B - A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2030.9</td>
<td>2044.9</td>
<td>1304.3</td>
<td>740.6</td>
<td>726.6</td>
<td>14.0</td>
</tr>
<tr>
<td>2</td>
<td>1820.0</td>
<td>1832.5</td>
<td>1168.1</td>
<td>664.4</td>
<td>651.9</td>
<td>12.5</td>
</tr>
<tr>
<td>3</td>
<td>2035.2</td>
<td>2049.4</td>
<td>1303.9</td>
<td>745.5</td>
<td>731.3</td>
<td>14.2</td>
</tr>
</tbody>
</table>
These calculations demonstrate the relationship between G_{sb}, $G_{sb\ SSD}$, and G_{sa}. G_{sb} is always lowest, since the volume includes voids permeable to water. $G_{sb\ SSD}$ is always intermediate. G_{sa} is always highest, since the volume does not include voids permeable to water. When running this test, check to make sure the values calculated make sense in relation to one another.

Example Calculations ATM 406

Calculate the asphalt binder content of the sample as follows:

$$P_b = \frac{M_i - M_f}{M_i} \times 100 - C_f - MC$$

where:

- P_b = the corrected asphalt binder content as a percent by mass of the HMA sample
- M_f = the final mass of aggregate remaining after ignition
- M_i = the initial mass of the HMA sample prior to ignition
- C_f = correction factor as a percent by mass of the HMA sample
- MC = moisture content of the companion HMA sample, percent, as determined by the FOP for AASHTO T 329 (if the specimen was oven-dried prior to initiating the procedure, $MC=0$).

Example

Correction Factor = 0.42

Moisture Content = 0.04

Initial Mass of Sample and Basket = 5292.7

Mass of Basket Assembly = 2931.5

M_i = 2361.2

Total Mass after First ignition + basket = 5154.4

Sample Mass after First ignition = 2222.9

Sample Mass after additional 15 min ignition = 2222.7

$$\frac{2222.9 - 2222.7}{2222.9} \times 100 = 0.009$$
Not greater than 0.01 percent, so $M_r = 2222.7$

$$p_b = \frac{2361.2 - 2222.7}{2361.2} \times 100 - 0.42 - 0.04 = 5.41\%$$

$P_b = 5.41\%$

Example Calculations ATM 407

Constant Mass:

Calculate constant mass using the following formula:

$$\% Change = \frac{M_p - M_n}{M_p} \times 100$$

Where:

- M_p = previous mass measurement
- M_n = new mass measurement

Example:

Mass of container: 232.6 g
Mass of container and sample after first drying cycle: 1361.8 g
Mass, M_p, of possibly dry sample: $1361.8 \text{ g} - 232.6 \text{ g} = 1129.2 \text{ g}$
Mass of container and possibly dry sample after second drying cycle: 1360.4 g
Mass, M_n, of possibly dry sample: $1360.4 \text{ g} - 232.6 \text{ g} = 1127.8 \text{ g}$

$$\frac{1129.2 \text{ g} - 1127.8 \text{ g}}{1129.2 \text{ g}} \times 100 = 0.12\%$$

0.12 percent is not less than 0.05 percent, so continue drying the sample.

Mass of container and possibly dry sample after third drying cycle: 1359.9 g
Mass, M_n, of dry sample: $1359.9 \text{ g} - 232.6 \text{ g} = 1127.3 \text{ g}$

$$\frac{1127.8 \text{ g} - 1127.3 \text{ g}}{1127.8 \text{ g}} \times 100 = 0.04\%$$

0.04 percent is less than 0.05 percent, so constant mass has been reached.

Moisture Content:

Calculate the moisture content, as a percent, using the following formula.

$$Moisture\ Content = \frac{M_i - M_f}{M_f} \times 100$$
Where:
\[M_i = \text{initial, moist mass} \]
\[M_f = \text{final, dry mass} \]

Example:
\[M_i = 1134.9 \text{ g} \]
\[M_f = 1127.3 \text{ g} \]

\[
\frac{M_i - M_f}{M_f} \times 100 = \frac{1134.9 \text{ g} - 1127.3 \text{ g}}{1127.3 \text{ g}} \times 100 = 0.674, \text{ say } 0.67\%
\]

Example Calculations ATM 408

Using the aggregate sample obtained from the FOP for AASHTO T 308, determine and record the mass of the sample to 0.1 g (M). This mass shall agree with the mass of the aggregate remaining after ignition (M_f from T 308) within 0.10 percent. If the variation exceeds 0.10 percent the results cannot be used for acceptance.

\[
\frac{M_f (T308) - M(T30)}{M_f (T308)} \times 100
\]

Where:
\[M(T30) = 2422.3 \text{ g} \]
\[M_f(T308) = 2422.5 \text{ g} \]

\[
\frac{2422.5 \text{ g} - 2422.3 \text{ g}}{2422.5 \text{ g}} \times 100 = 0.01\%
\]

CHECK SUM

Total mass of material after sieving must agree with mass before sieving to within 0.2 percent.

\[
\frac{\text{dry mass after washing} - \text{total mass after sieving}}{\text{dry mass after washing}} \times 100
\]

PERCENT RETAINED:

Where:
\[IPR = \text{Individual Percent Retained} \]
\[CPR = \text{Cumulative Percent Retained} \]
\[M = \text{Total Dry Sample mass before washing} \]
\[IMR = \text{Individual Mass Retained} \]
\[CMR = \text{Cumulative Mass Retained} \]

\[
IPR = \frac{IMR}{M} \times 100 \quad \text{OR} \quad CPR = \frac{CMR}{M} \times 100
\]
PERCENT PASSING and REPORTED PERCENT PASSING:

Where:

\[PP = PCP - IPR \quad OR \quad PP = 100 - CPR \]

\[RPP = PP + \text{Aggregate Correction Factor} \]

Example:

Dry mass of total sample, before washing (M): 2422.3 g

Dry mass of sample, after washing out the 75 µm (No. 200) minus: 2296.2 g

Amount of 75 µm (No. 200) minus washed out: 2422.3 g – 2296.2g = 126.1 g

Percent Retained 75 µm / No. 200:

\[\frac{63.5 \text{ g}}{2422.3 \text{ g}} \times 100 = 2.6\% \quad \text{or} \quad \frac{2289.6 \text{ g}}{2422.3 \text{ g}} \times 100 = 94.5\% \]

Percent Passing: \(8.1\% - 2.6\% = 5.5\% \quad \text{or} \quad 100\% - 94.5\% = 5.5\% \)

Reported Percent Passing: \(5.5\% + (-0.6\%) = 4.9\% \)

Gradation on All Screens

<table>
<thead>
<tr>
<th>Sieve Size mm</th>
<th>Mass Retained (g) (MR)</th>
<th>Percent Retained (PR)</th>
<th>Cumulative Mass Retained (g) (CMR)</th>
<th>Cumulative Percent Retained (CPR)</th>
<th>Calc’d Percent Passing (PP)</th>
<th>Agg. Corr. Factor from T 308 (ACF)</th>
<th>Reported Percent Passing (RPP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.0 (3/4)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>12.5 (1/2)</td>
<td>346.9</td>
<td>14.3</td>
<td>346.9</td>
<td>14.3</td>
<td>85.7</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>9.5 (3/8)</td>
<td>207.8</td>
<td>8.6</td>
<td>554.7</td>
<td>22.9</td>
<td>77.1</td>
<td>77</td>
<td>77</td>
</tr>
<tr>
<td>4.75 (No. 4)</td>
<td>625.4</td>
<td>25.8</td>
<td>1180.1</td>
<td>48.7</td>
<td>51.3</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>2.36 (No. 8)</td>
<td>416.2</td>
<td>17.2</td>
<td>1596.3</td>
<td>65.9</td>
<td>34.1</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>01.18 (No. 16)</td>
<td>274.2</td>
<td>11.3</td>
<td>1870.5</td>
<td>77.2</td>
<td>22.8</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>0.600 (No. 30)</td>
<td>152.1</td>
<td>6.3</td>
<td>2022.6</td>
<td>83.5</td>
<td>16.5</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>0.300 (No. 50)</td>
<td>107.1</td>
<td>4.4</td>
<td>2129.7</td>
<td>87.9</td>
<td>12.1</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>0.150 (No. 100)</td>
<td>96.4</td>
<td>4.0</td>
<td>2226.1</td>
<td>91.9</td>
<td>8.1</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>75 µm (No. 200)</td>
<td>63.5</td>
<td>2.6</td>
<td>2289.6</td>
<td>94.5</td>
<td>5.5</td>
<td>-0.6</td>
<td>4.9</td>
</tr>
<tr>
<td>Pan</td>
<td>5.7</td>
<td></td>
<td>2295.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Check sum:
\[
\frac{2296.2 \text{ g} - 2295.3 \text{ g}}{2296.2 \text{ g}} \times 100 = 0.04\%
\]

This is less than 0.2 percent therefore the results can be used for acceptance purposes.

Example Calculations ATM 409

Flask Procedure

\[
G_{mm} = \frac{A}{A + D - E} \times R \quad \text{or} \quad G_{mm} = \frac{A}{A_{SSD} + D - E} \times R
\]

(for mixtures containing uncoated materials)

where:

\[
A = \text{Mass of dry sample in air, g} \\
A_{SSD} = \text{Mass of saturated surface-dry sample in air, g} \\
D = \text{Mass of flask filled with water at 25°C (77°F), g, determined during the Standardization of Flask procedure} \\
E = \text{Mass of flask filled with water and the test sample at test temperature, g} \\
R = \text{Factor from Table 2 to correct the density of water – use when a test temperature is outside 25 ±1°C (77 ±2°F)}
\]

Example (in which two increments of a large sample are averaged):

<table>
<thead>
<tr>
<th>Increment 1</th>
<th>Increment 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A = 2200.3 g</td>
<td>A = 1960.2 g</td>
</tr>
<tr>
<td>D = 7502.5 g</td>
<td>D = 7525.5 g</td>
</tr>
<tr>
<td>E = 8812.3 g</td>
<td>E = 8690.8 g</td>
</tr>
<tr>
<td>Temperature = 26.2°C</td>
<td>Temperature = 25.0°C</td>
</tr>
</tbody>
</table>

\[
G_{mm_1} = \frac{2200.3 \text{ g}}{2200.3 \text{ g} + 7502.5 \text{ g} - 8812.3 \text{ g}} \times 0.99968 = 2.470
\]

\[
G_{mm_2} = \frac{1960.2 \text{ g}}{1960.2 \text{ g} + 7525.5 \text{ g} - 8690.8 \text{ g}} \times 1.00000 = 2.466
\]

Allowable variation is: 0.014

2.470 - 2.466 = 0.004, which is < 0.014, so they can be averaged.

Average

\[
2.470 - 2.466 = 0.004 \quad 0.004 \div 2 = 0.002 \quad 0.002 + 2.466 = 2.468
\]

Or 2.470 + 2.466 = 4.936 4.936 \div 2 = 2.468
Example Calculations ATM 409

Calculations - Method A (Suspension)

\[G_{mb} = \frac{A}{B - C} \]

where:

- \(A \) = Mass of dry specimen in air, g
- \(B \) = Mass of SSD specimen in air, g
- \(C \) = Weight of specimen in water at 25 ±1°C (77 ±1.8°F), g

\[
\text{Percent Water Absorbed (by volume)} = \frac{B - A}{B - C} \times 100
\]

Example:

\[G_{mb} = \frac{4833.6 \text{ g}}{4842.4 \text{ g} - 2881.3 \text{ g}} = 2.465 \%
\]

\[
\text{% Water Absorbed (by volume)} = \frac{4842.4 \text{ g} - 4833.6 \text{ g}}{4842.4 \text{ g} - 2881.3 \text{ g}} \times 100 = 0.4\%
\]

Example Calculations ATM 504

- **Density** – Calculate the net mass, \(M_m \), of the concrete in the measure by subtracting the mass of the measure from the gross mass of the measure plus the concrete. Calculate the density, \(W \), by dividing the net mass, \(M_m \), by the volume, \(V_m \), of the measure as shown below.

\[
W = \frac{M_m}{V_m}
\]

Example: \(W = \frac{36.06 \text{ lb}}{0.2494 \text{ ft}^3} = 144.6 \text{ lb/ft}^3 \)

- **Yield** – Calculate the yield, \(Y \), or volume of concrete produced per batch, by dividing the total mass of the batch, \(W_1 \), by the density, \(W \), of the concrete as shown below.

\[
W = \frac{W_1}{W} \quad \text{Example:} \quad Y = \frac{3978 \text{ lb}}{27 \times 144.6 \text{ lb/ft}^3} = 1.02 \text{ yd}^3
\]

Note 5: The total mass, \(W_1 \), includes the masses of the cement, water, and aggregates in the concrete.

- **Cement Content** – Calculate the actual cement content, \(N \), by dividing the mass of the cement, \(N_t \), by the yield, \(Y \), as shown below.

\[
N = \frac{N_t}{Y} \quad \text{Example:} \quad N = \frac{602 \text{ lb}}{1.02 \text{ yd}^3} = 590 \text{ lb/yd}^3
\]

Note 6: Specifications may require Portland cement content and cementitious materials content.
- **Water Content** – Calculate the mass of water in a batch of concrete by summing the:
 - water added at batch plant
 - water added in transit
 - water added at jobsite
 - free water on coarse aggregate
 - free water on fine aggregate
 - liquid admixtures (if the agency requires this)

This information is obtained from concrete batch tickets collected from the driver. Use the following conversion factors.

<table>
<thead>
<tr>
<th>To Convert From</th>
<th>To</th>
<th>Multiply By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liters, L</td>
<td>Kilograms, kg</td>
<td>1.0</td>
</tr>
<tr>
<td>Gallons, gal</td>
<td>Kilograms, kg</td>
<td>3.785</td>
</tr>
<tr>
<td>Gallons, gal</td>
<td>Pounds, lb</td>
<td>8.34</td>
</tr>
<tr>
<td>Milliliters, mL</td>
<td>Kilograms, kg</td>
<td>0.001</td>
</tr>
<tr>
<td>Ounces, oz</td>
<td>Milliliters, mL</td>
<td>28.4</td>
</tr>
<tr>
<td>Ounces, oz</td>
<td>Kilograms, kg</td>
<td>0.0284</td>
</tr>
<tr>
<td>Ounces, oz</td>
<td>Pounds, lb</td>
<td>0.0625</td>
</tr>
<tr>
<td>Pounds, lb</td>
<td>Kilograms, kg</td>
<td>0.4536</td>
</tr>
</tbody>
</table>

Calculate the mass of free water on aggregate as follows:

\[
Free Water Mass = Total Aggregate Mass - \frac{Total Aggregate Mass}{1 + (Free Water Percentage/100)}
\]

Example:

Total Aggregate Mass = 7804 lb
Free Water Percentage = 1.7%

To determine Free Water percentage:
Total moisture content of the aggregates – absorbed moisture = Free Water

\[
Free Water Mass = 7804 lb - \frac{7804 lb}{1 + (1.7%/100)}
\]

Example for actual water content:

Water added at batch plant = 79 gal
Water added in transit =
Water added at jobsite = 11 gal
90 gal = 751 lb

Coarse aggregate: 7804 lbs @ 1.7% free water
Fine aggregate: 5489 lb @ 5.9% free water

\[
CA Free Water = 7804 lb - \frac{7804 lb}{1 + (1.7%/100)} = 130 lb
\]

\[
Fine Free Water = 5489 lb - \frac{5489 lb}{1 + (5.9%/100)} = 303 lb
\]
Mass of water in batch = 751 lb + 130 lb + 306 lb = 1187 lb

Water/Cement Ratio – Calculate the water/cement ratio by dividing the mass of water in a batch of concrete by the mass of cementitious material in the batch. The masses of the cementitious materials are obtained from concrete batch tickets collected from the driver.

Example:

- Cement: 2094 lb
- Fly Ash: 397 lb
- Water: 1187 lb

\[
W/C = \frac{1187 \text{ lb}}{2094 \text{ lb} + 397 \text{ lb}} = 0.476
\]

Report 0.48
<table>
<thead>
<tr>
<th>Standard Density — Modified Proctor — WAOTC FOP for T 180</th>
<th>METHOD: D</th>
<th>Gradation, % Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPACTION TEST</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>Mass of Mold</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Mass of Mold + Illite Soil</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Mass of Wet Sample D - A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MOISTURE CONTENT — WAOTC FOP for T 255 / T 265</th>
<th>W = [(Mw - MD) / MD] x 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Container</td>
</tr>
<tr>
<td>D</td>
<td>Container + Moist Sample</td>
</tr>
<tr>
<td>Mw</td>
<td>Moist sample D - C</td>
</tr>
<tr>
<td>E</td>
<td>Container + Dry Sample</td>
</tr>
<tr>
<td>MD</td>
<td>Dry Sample E - C</td>
</tr>
<tr>
<td>W</td>
<td>Moisture Content, %</td>
</tr>
<tr>
<td>Pw</td>
<td>Wet Density</td>
</tr>
<tr>
<td>Pd</td>
<td>Dry Density</td>
</tr>
</tbody>
</table>

ZAV Curve Calculations:
\[Ws = \frac{(52.4 \times (Gsa) - (Yd))}{(Yd)(Gsa)} \times 100 \]

\[Ws \] = % Water Content for complete saturation
\[V \] = Mold Volume
\[Pw \] = Wet Density = \(\frac{M}{V} \)
\[Pd \] = Dry Density = \(\frac{Pw}{1 + (W/100)} \)

SPECIFIC GRAVITY — WAOTC FOP for T 85
\[b \] = SSD Aggregate Mass
\[c \] = Aggregate Weight in Water
\[a \] = Dry Aggregate Mass
\[G_{bulk} \] = Specific Gravity = \(\frac{a}{b - c} \)
\[SSD \] = Specific Gravity = \(\frac{b}{b - c} \)
\[G_{app} \] = Apparent Specific Gravity = \(\frac{a}{a - c} \)
Absorption = \(\frac{(b - a)}{a} \times 100 \)

MAXIMUM DENSITY (0.1 lb/ft³ or 1 kgh)
OPTIMUM MOISTURE (0.1 %)
Standard Density — Modified Proctor — WAOTC FOP for T 180

<table>
<thead>
<tr>
<th>COMPACTION TEST</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>B Mass of Mold + Wet Soil</td>
<td>23.26</td>
<td>23.51</td>
<td>23.68</td>
<td>23.65</td>
<td>23.64</td>
<td></td>
</tr>
<tr>
<td>C Moist Sample</td>
<td>10.59</td>
<td>10.34</td>
<td>11.01</td>
<td>10.98</td>
<td>10.97</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MOISTURE CONTENT — WAOTC FOP for T 255 / T 265</th>
<th>W = [(Mw - Md) / Md] x 100</th>
</tr>
</thead>
</table>
| C Container | 1620.5 | 1700.5 | 1670.2 | 1426.0 | 1392.3 | 12
| D Container + Moist Sample | 2636.0 | 2710.5 | 2682.3 | 2438.7 | 2703.5 | 15
| Mw Moist sample | 1015.5 | 1013.0 | 1022.1 | 1012.7 | 1011.2 | 12
| E Container + Dry Sample | 2604.3 | 2674.9 | 2651.5 | 2392.0 | 2649.2 | 23
| Md Dry Sample | 983.0 | 974.4 | 961.3 | 956.0 | 955.9 | 15
| W Moisture Content, % | 3.2 | 3.7 | 4.2 | 4.8 | 5.7 |
| Pw Wet Density | 141.0 | 144.3 | 146.8 | 146.2 | 145.1 |
| Pd Dry Density | 136.6 | 138.2 | 140.7 | 139.5 | 138.2 |

Assumed Gsa:

Assumed Gsa (if ncr T 85) = 0.1705

Specific Gravity — WAOTC FOP for T 85

<table>
<thead>
<tr>
<th>b SSD Aggregate Mass</th>
<th>2784.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>c Aggregate Weight in Water</td>
<td>1810.7</td>
</tr>
<tr>
<td>a Dry Aggregate Mass</td>
<td>2765.0</td>
</tr>
<tr>
<td>Gsa Bulk Specific Gravity = a / (b - c)</td>
<td>2.840</td>
</tr>
<tr>
<td>SSD Specific Gravity = b / (b - c)</td>
<td>2.860</td>
</tr>
<tr>
<td>Gsa Apparent Specific Gravity = a / (a - c)</td>
<td>2.867</td>
</tr>
</tbody>
</table>

Maximum Density (60.1 lbs/ft³ or 1 kg/m³)

Optimum Moisture (3.1%)

Remarks:

 Tested by / Date:
 Checked by / Date:

Note: This document is a sample from the Alaska Test Methods Manual SP 10-23, Effective May 1, 2016.
Effective May 1, 2016 SP 10-24 Alaska Test Methods Manual

Field Density Test Number

<table>
<thead>
<tr>
<th>Station</th>
<th>Grade Reference</th>
<th>Quantity Repd. or Pipe/Struct. No.</th>
<th>Date Tested</th>
</tr>
</thead>
</table>

Standard Density

- **WAQTC FOP for T 180**: [A, B, C, D, ATM 212]
 - Standard Density Lab Number
 - DF: Standard Density T 99/T 180 (Maximum Lab)
 - Optimum Moisture
 - B: Specific Gravity
 - #4 Filt: #4 App

Density Determination

<table>
<thead>
<tr>
<th>Probe Depth</th>
<th>Reading #1</th>
<th>Reading #2</th>
<th>Reading #1</th>
<th>Reading #2</th>
<th>Reading #1</th>
<th>Reading #2</th>
<th>Reading #1</th>
<th>Reading #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet Density, (lb/ft³ or kg/m³)</td>
<td>Gauge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average Wet Density</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Density (gauge)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Density (actual)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Moisture Content

Use WAQTC FOP for T 255/T 29 or use gauge moisture (F) if it is within 1% of actual moisture (W).

<table>
<thead>
<tr>
<th>% Moisture</th>
<th>Gauge</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Average % Moisture</td>
<td></td>
</tr>
<tr>
<td>F Wet Mass + Container</td>
<td></td>
</tr>
<tr>
<td>G Dry Mass + Container</td>
<td></td>
</tr>
<tr>
<td>J Container</td>
<td></td>
</tr>
<tr>
<td>W % Moisture (actual)</td>
<td></td>
</tr>
</tbody>
</table>

Gradation / Oversize Correction

- **T 99 / T 180 Note**: If % Oversize (Pc) is less than or equal to 5%, no correction is required.

<table>
<thead>
<tr>
<th>ATM 212 or *WAQTC FOP for T 224</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P Wet Mass + Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q Container</td>
</tr>
<tr>
<td>Mm Wet Mass</td>
</tr>
<tr>
<td>Md Dry Mass = Mm/[(k/6) or Mm/[(W/100)]</td>
</tr>
<tr>
<td>T +3/4” or #4 Mass + Container</td>
</tr>
<tr>
<td>V Container</td>
</tr>
<tr>
<td>Mdc +3/4” or #4 Mass</td>
</tr>
<tr>
<td>Pe % Coarse Particles</td>
</tr>
<tr>
<td>Pf % Fines</td>
</tr>
<tr>
<td>T 180 – Corrected Std. Density (Oc formula)</td>
</tr>
<tr>
<td>ATM 212 – Vibratory Standard (Lab Chart)</td>
</tr>
</tbody>
</table>

| % Compaction Pc / Max. Std. Density (100) |

\[
Dd = (100 \cdot DF \cdot k) / [(DF \cdot Pc) + (k \cdot Pf)] \rightarrow k = (62.4 \text{ ft}^3 \cdot B) \text{ or } (1000 \text{ kg/m}^3 \cdot B)
\]

Remarks

- **SIGNATURE**: [Signature]
- **QUALIFICATION**: [Qualification No. / Date]
- **CHECKED BY / DATE**: [Checked by / Date]

Notations:
- **TCTT**: Too Coarse To Test
STATE OF ALASKA DOT & PF

WAQTC FOP for T 310 (METHOD A)

FIELD DENSITY WORKSHEET

FIELD DENSITY TEST NUMBER
- SB-D-44

STATION
- 332 + 55

90° REFERENCE
- 6’ LL C/L

GRADE REFERENCE
- Top of Subbase

QUANTITY REP'D OR PIPE/STRUCT. NO.
- 5,000 tons

DATE TESTED
- 09/11/10

STANDARD DENSITY

<table>
<thead>
<tr>
<th>Density & Water</th>
<th>WAQT CIFOP for T 180</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>/</th>
<th>ATM 212</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Density Lab Number</td>
<td>SB-SD-1</td>
<td>140.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Density T 99/1 180 (Maximum Lab)</td>
<td>140.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimum Moisture</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Specific Gravity</td>
<td>2.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DENSITY DETERMINATION

- **Probe Depth**
 - 8’

- **Wet Density (lb/ft³ or kg/m³) & Gauge**
 - Reading #1: 151.8
 - Reading #2: 151.6

- **Average Wet Density**
 - 151.7

- **Dry Density (gauge) & Actual**
 - 144.8

- **MOISTURE CONTENT**

<table>
<thead>
<tr>
<th>% Moisture & Gauge</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>/</th>
<th>ATM 212</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Average % Moisture</td>
<td>4.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F Wet Mass + Container</td>
<td>4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G Dry Mass + Container</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J Container</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W % Moisture (actual)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRADATION / OVERSIZING CORRECTION

<table>
<thead>
<tr>
<th>ATM 212</th>
<th>WAQT CIFOP for T 224</th>
<th>#4</th>
<th>3/4”</th>
<th>#8</th>
</tr>
</thead>
<tbody>
<tr>
<td>P Wet Mass + Container</td>
<td>16.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q Container</td>
<td>2.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mm Wet Mass</td>
<td>P - Q</td>
<td>14.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Md Dry Mass x 100 (W / 100)</td>
<td>13.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T +3/4” + #4 Mass + Container</td>
<td>5.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V Container</td>
<td>2.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mdc +3/4” + #4 Mass</td>
<td>T - V</td>
<td>3.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pc % Coarse Particles</td>
<td>(Mdc / Md) x 100</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pf % Fines</td>
<td>100 - Pc</td>
<td>75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T 180 - Corrected Std. Density (Mdc formula)
- 147.1

ATM 212 - Vibratory Standard (Lab Chart)
- 98

Oversize Correction

\[OD = \frac{(100 \times Df \times k)}{(Df \times Pc) + (k \times Pf)} \]

\[k = \left(\frac{62.4 \text{ lb/ft}^3 \times B}{1000 \text{ kg/m}^3 \times B}\right) \]

TCTT = Too Coarse To Test

Signature / Qualification No. / Date: M. Goldfarb / #538 / 9-11-10

Checked by / Date: W. Nelson / 9-12-10

REMARKS:

Alaska Test Methods Manual

SP 10-25

Effective May 1, 2016
Fracture

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fractured Mass</td>
<td>F</td>
</tr>
<tr>
<td>Questionable Mass</td>
<td>Q</td>
</tr>
<tr>
<td>Unfractured Mass</td>
<td>N</td>
</tr>
</tbody>
</table>

Gradation

<table>
<thead>
<tr>
<th>Diameter (mm/USC)</th>
<th>Increment 1</th>
<th>Increment 2</th>
<th>Cumulative % Retained</th>
<th>Cumulative % Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 75 / 3"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 50 / 2"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 37.5 / 1½"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 / 1"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 19.0 / 34’</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5 / 1/2”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 9.5 / 3/8”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3 / 1/4”</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 4.75 / #4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.36 / #8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00 / #10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 1.18 / #16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.60 / #30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.425 / #40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* 0.300 / #50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.150 / #100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.075 / #200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Moisture Content

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (Container)</td>
<td></td>
</tr>
<tr>
<td>A (Container)</td>
<td></td>
</tr>
<tr>
<td>W (Moisture Content, %)</td>
<td></td>
</tr>
</tbody>
</table>

Hardened Plastic Limit

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (Number of Blows)</td>
<td></td>
</tr>
<tr>
<td>A (Moist Mass + Container)</td>
<td></td>
</tr>
<tr>
<td>B (Dry Mass + Container)</td>
<td></td>
</tr>
</tbody>
</table>

Calculation

\[
\text{Cum. Pan} = \left(\frac{\text{Dry Mass AFTER Wash BEFORE Sieving}}{\text{Original Dry Mass}} \right) \times 100
\]

Remarks

-

Signature/Date

-

Checked by/Date

-
FRACTURE

- Single Face
- Double Face
- All Face

<table>
<thead>
<tr>
<th>Fractured Mass (F)</th>
<th>%Fracture</th>
<th>Questionable Mass (Q)</th>
<th>%Questionable</th>
<th>Unfractured Mass (N)</th>
<th>%Unfractured</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRADATION

- WAQTG FOP for T 325 / T 211
- Method A

<table>
<thead>
<tr>
<th>mm / USG</th>
<th>Increment 1</th>
<th>Increment 2</th>
<th>Cumulative Mass</th>
<th>Cumulative %Retained</th>
<th>%Passing = 100 - %Retained</th>
<th>Specs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Retained C</td>
<td>(G/M) x 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test by date:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MOISTURE CONTENT</th>
<th>WAQTG FOP for T 255 / T 205</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>C</th>
<th>Container</th>
<th>626.3</th>
<th>Constant Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Mass + Container</td>
<td>1776.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time / Grad Mass</td>
<td>1753.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grad Mass / Wet Mass</td>
<td>1109.6</td>
<td></td>
</tr>
<tr>
<td>Mw</td>
<td>Wet Mass A + C</td>
<td>1150.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Time / Grad Mass</td>
<td>1736.7</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Dry Mass + Container</td>
<td>1110.4</td>
<td></td>
</tr>
</tbody>
</table>

W	Moisture, %	3.6
W = [(Mw - Md) / Md] x 100	Test by date: P.H. 3/24/11	
Change	0.03	

<table>
<thead>
<tr>
<th>Liquid and Plastic Limit</th>
<th>WAQTG FOP for T 69 and 89</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>Number of Blows</th>
<th>Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>Moist Mass + Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>Md</td>
<td>Dry Mass + Container</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W</th>
<th>Moisture Content, %</th>
<th>[(Mw - Md) / Md] x 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>LL</td>
<td>W x (N / 25)^1/2</td>
<td>Test by date: Plasticity index LL / PL</td>
</tr>
</tbody>
</table>

Remarks:

Signature / Date: Patrick H. Harmon / #007 / 3-24-11

Checked by / Date: CJK / 3-25-11
Fracture

- **Fractured Mass** (F)
 - % Fractured: \[\left(\frac{(O - (Q + N))}{N} \right) \times 100 \]
- **Questionable Mass** (Q)
 - % Questionable: \[(\frac{Q}{Q + N}) \]
- **Unfractured Mass** (U)
 - % Unfractured: \[(\frac{2}{Q + N}) \]
- **Test by/da/b: Spec. (min.**)

Gradation

- **Grades**:
 - "75 / 3"
 - "50 / 12"
 - "37.5 / 1.15"
- **Cumulative Mass Retained**
 - \[C = (F + N) \]
- **% Passing**
 - \[\text{% Passing} = \left(\frac{C}{N}\right) \]
- **Specs.**

Moisture Content

- **Calculation**:
 - \[W = \left(\frac{M_w - M_d}{M_d}\right) \times 100 \]
- **% Change**
 - \[\% \text{Change} = \left(\frac{M_p - M_n}{M_n}\right) \times 100 \]
- **Test by/da/b: Spec. (min.**)

Liquid and Plastic Limit

- **Number of Blows** (N)
- **Moist Mass + Container** (M)
- **Dry Mass + Container** (M)
- **Plasticity Index**
 - \[W = (N - 25) \]
- **LL Spec.**
- **PL Spec.**

Remarks

- **Remark**
- **Signature / Date:**
- **Checked by / Date:**

Effective May 1, 2016

SP 10-28

Alaska Test Methods Manual
Fracture

<table>
<thead>
<tr>
<th>Fractured Mass F</th>
<th>Questionable Mass Q</th>
<th>Unfractured Mass N</th>
<th>% Fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1113.4</td>
<td>132.3</td>
<td>352.6</td>
<td>74</td>
</tr>
</tbody>
</table>

Test by date: PH 7/21-10

Gradation

<table>
<thead>
<tr>
<th>Size (mm)</th>
<th>USC</th>
<th>Increment 1</th>
<th>Increment 2</th>
<th>Cumulative Mass Retained</th>
<th>Cumulative % Retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>"75 / 3"</td>
<td>50 / 2"</td>
<td>25 / 1"</td>
<td>"19.0 / 3/4"</td>
<td>251.8</td>
<td>3.1</td>
</tr>
<tr>
<td>"37.5 / 1/2"</td>
<td></td>
<td></td>
<td>"12.5 / 1/2"</td>
<td>1253.8</td>
<td>10.5</td>
</tr>
<tr>
<td>"6.3 / 1/4"</td>
<td></td>
<td></td>
<td>"8.9 / 3/8"</td>
<td>2222.1</td>
<td>27.5</td>
</tr>
<tr>
<td>"4.75 / #4"</td>
<td></td>
<td></td>
<td>"3.25 / #10"</td>
<td>3291.5</td>
<td>40.7</td>
</tr>
<tr>
<td>Indiv. Pan</td>
<td></td>
<td></td>
<td>"2.36 / #8"</td>
<td>4067.7</td>
<td>50.3</td>
</tr>
<tr>
<td>CA Check Sum: 0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Moisture Content

<table>
<thead>
<tr>
<th>C</th>
<th>Container</th>
<th>Constant Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>672.1</td>
<td>376.593</td>
</tr>
<tr>
<td>Mw</td>
<td>Wet Mass A - C</td>
<td>3111.7</td>
</tr>
<tr>
<td>B</td>
<td>Dry Mass B - C</td>
<td>366.19</td>
</tr>
</tbody>
</table>

W = (MW - Md) / Md x 100

W = 3.4

Test by date: PH 7/21-10

Liquid and Plastic Limit

<table>
<thead>
<tr>
<th>N</th>
<th>Number of Blows</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

C = Container

A = Moist + Container

Mw = Moist A - C

B = Dry Mass + Container

Md = Dry Mass B - C

W = Moisture Content, [%] = (Mw - Md) / Md x 100

LL = W x (N / 25) + 16

Test by date: PH 7/21-10

Plasticity Index LL-PL

3 / 6 max

Remarks:

Signature / Date: Pat Harmon / #007 / 7-21-10

Checked by / Date: MK 7-22-10

Alaska Test Methods Manual SP 10-29 Effective May 1, 2016
FRACTURE — WACTC FOP for T 335

- **Single Face**
- **Double Face**
- **All Face**

<table>
<thead>
<tr>
<th>Fractured Mass F</th>
<th>%Q</th>
<th>Questionable Mass Q</th>
<th>%Questionable</th>
<th>Unfractured Mass U</th>
<th>% Fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% (Q - O)/(Q + O + N)</td>
<td></td>
<td></td>
<td>c: (O - (Q/2))/ (O + N/2)</td>
<td>c: Spec. (min.)</td>
</tr>
</tbody>
</table>

Test by/date: PH7-21-16

MOISTURE CONTENT — WACTC FOP for T 255 / T 285

<table>
<thead>
<tr>
<th>C</th>
<th>Container</th>
<th>Constant Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>moist + container</td>
<td>Time</td>
</tr>
<tr>
<td>Mw</td>
<td>wet mass A - C</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>dry mass + container</td>
<td></td>
</tr>
<tr>
<td>Md</td>
<td>dry mass B - C</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>moisture, %</td>
<td></td>
</tr>
<tr>
<td>W =</td>
<td>[(Mw - Md) / Md] x 100</td>
<td>% change</td>
</tr>
<tr>
<td>Test by/date:</td>
<td>% change = [(Mw - M) / M] x 100</td>
<td></td>
</tr>
<tr>
<td>Mp</td>
<td>previous mass measured</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>new mass measured</td>
<td></td>
</tr>
</tbody>
</table>

GRADATION — WACTC FOP for T 277 / T 111 - Method C

<table>
<thead>
<tr>
<th>mm / USC</th>
<th>Increment 1</th>
<th>Increment 2</th>
<th>Cumulative Mass Retained C</th>
<th>Cumulative % Retained (C/M) x 100</th>
<th>% Passing = on - % Retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 / 6"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 / 4"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75 / 3"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 / 2"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.5 / 1/2"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 / 1"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.0 / 3/4"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5 / 1/2"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.5 / 3/8"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3 / 1/4"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.75 / #4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Indiv. Pan: c: M1

GA Check Sum: (c: 0.5%)

Dry Mass AFTER Sieving: (D + M1)

Original Dry Mass BEFORE Sieving: c: G

Test by/date:

SEED AND PLASTIC LIMIT — WACTC FOP for T 199 and 201

<table>
<thead>
<tr>
<th>N</th>
<th>Number of Blows</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Container</td>
</tr>
<tr>
<td>A</td>
<td>moist + container</td>
</tr>
<tr>
<td>Mw</td>
<td>moist mass A - C</td>
</tr>
<tr>
<td>B</td>
<td>dry mass + container</td>
</tr>
<tr>
<td>Md</td>
<td>dry mass B - C</td>
</tr>
<tr>
<td>W</td>
<td>moisture Content, %</td>
</tr>
<tr>
<td>[(Mw - Md) / Md] x 100</td>
<td></td>
</tr>
<tr>
<td>LL</td>
<td>W x (N / 25)^2/3</td>
</tr>
<tr>
<td>Test by/date:</td>
<td>plastic index</td>
</tr>
</tbody>
</table>

Comments:

- **FM:**
 - c: Fineness Modulus Target (% from Md)
 - c: Fineness Modulus Limits (10% of Md Design FM)

Signature / Date:

Checked by / Date:

Effective May 1, 2016

SP 10-30

Alaska Test Methods Manual
<table>
<thead>
<tr>
<th>FRACTURE</th>
<th>WAQTC FOP for T 335</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fractured Mass F</td>
<td>0.0 / 0.0 / 0.0</td>
</tr>
<tr>
<td>Unfractured Mass N</td>
<td>0.0 / 0.0 / 0.0</td>
</tr>
<tr>
<td>% Fracture</td>
<td>0.0 / 0.0 / 0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRADATION</th>
<th>WAQTC FOP for T 27 / T 11</th>
<th>Method C</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm / USC</td>
<td>Increment 1</td>
<td>Increment 2</td>
</tr>
<tr>
<td>150 / 5"</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>100 / 4"</td>
<td>1646.8</td>
<td>1777.4</td>
</tr>
<tr>
<td>75 / 3"</td>
<td>2460.0</td>
<td>2866.7</td>
</tr>
<tr>
<td>50 / 2"</td>
<td>6675.4</td>
<td>7163.2</td>
</tr>
<tr>
<td>37.5 / 1.5"</td>
<td>10354.2</td>
<td>13456.4</td>
</tr>
<tr>
<td>25 / 1"</td>
<td>15674.3</td>
<td>17444.3</td>
</tr>
<tr>
<td>19.0 / 3/4"</td>
<td>16543.6</td>
<td>19555.3</td>
</tr>
<tr>
<td>12.5 / 1/2"</td>
<td>15941.2</td>
<td>20339.7</td>
</tr>
<tr>
<td>9.5 / 3/8"</td>
<td>21841.7</td>
<td>22437.9</td>
</tr>
<tr>
<td>6.3 / 1/4"</td>
<td>24633.8</td>
<td>23948.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GRINDING CONTENT</th>
<th>WAQTC FOP for T 255 f</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Container</td>
</tr>
<tr>
<td>672.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moist Mass A - C</th>
<th>861.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moist Mass A - C</td>
<td>861.7</td>
</tr>
<tr>
<td>Dry Mass B - C</td>
<td>827.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V</th>
<th>Moisture, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W</th>
<th>[(Mw - M) / M] x 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

| Test by date: PH7-2-10 |

<table>
<thead>
<tr>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>#200 determined on minus 3-inch material</td>
</tr>
<tr>
<td>Deleterious Free</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FM</th>
<th>Fineness Modulus Target (From 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Sand Equivalent — WAQTC FOP for T 176

<table>
<thead>
<tr>
<th>Trial No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Average SE</th>
<th>Sedimentation Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand Reading (SR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clay Reading (CR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand Equivalent (SE)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sedimentation Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*SE = (SR + CR) * 100

Test by / date: _____________

Flat and Elongated — ATM 306

<table>
<thead>
<tr>
<th>Size Fraction mm — in.</th>
<th>% Retained (Original Gradation)</th>
<th>F&E Group CPR (Rel. to +No. 4)</th>
<th>F&E Group IPR</th>
<th>Size Group Mass</th>
<th>Mass F&E Size Group</th>
<th>% F&E Size Group (B)</th>
<th>Weighted % F&E Size Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>-37.5 to +19.0</td>
<td>-1½ to +½</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-19.0 to +9.5</td>
<td>-¾ to +½</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-9.5 to +4.75</td>
<td>-¾ to +No. 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F&E Group CPR = (Smallest Sieve in Group % Retained ÷ % No. 4 Retained) x 100

F&E Group IPR = F&E Group CPR – Next Larger Group CPR

% F&E Size Group (B) = [(Mass F&E Size Group) ÷ (Size Group Mass)] x 100

Weighted F&E Size Group = [B] x F&E Group IPR ÷ 100

Total Weighted %

Test by / date: _____________

Remarks: __

Signature / Date: _____________

Checked by / Date: _____________

CPR = Cumulative Percent Retained
IPR = Individual Percent Retained
Sand Equivalent — WAQTC FOP for T 176

<table>
<thead>
<tr>
<th>Trial No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand Reading (SR)</td>
<td>4.1</td>
<td>4.3</td>
<td>4.1</td>
</tr>
<tr>
<td>Clay Reading (CR)</td>
<td>6.3</td>
<td>6.7</td>
<td>6.5</td>
</tr>
<tr>
<td>Sand Equivalent (SE)*</td>
<td>66</td>
<td>65</td>
<td>64</td>
</tr>
<tr>
<td>Sedimentation Time</td>
<td>20 min.</td>
<td>20 min.</td>
<td>20 min.</td>
</tr>
</tbody>
</table>

Average SE = \[(SR \div CR) \times 100\] = 65

Test by/date: J.C. / 7-10-10

Flat and Elongated — ATM 306

<table>
<thead>
<tr>
<th>Size Fraction mm — in.</th>
<th>% Retained (Original Gradation)</th>
<th>F&E Group CPR (Rel to +No. 4)</th>
<th>F&E Group IPR</th>
<th>Size Group Mass</th>
<th>Mass F&E Size Group</th>
<th>% F&E Size Group (B)</th>
<th>Weighted % F&E Size Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>-37.5 to +19.0 -1(\frac{1}{2}) to +(\frac{3}{4})</td>
<td>35</td>
<td>60</td>
<td>60</td>
<td>753.6</td>
<td>14.5</td>
<td>1.9</td>
<td>1.1</td>
</tr>
<tr>
<td>-19.0 to +9.5 -(\frac{3}{4}) to +(\frac{3}{4})</td>
<td>58</td>
<td>100</td>
<td>40</td>
<td>104.9</td>
<td>3.3</td>
<td>3.1</td>
<td>1.2</td>
</tr>
</tbody>
</table>

F&E Group CPR = (Smallest Sieve in Group % Retained ÷ % No. 4 Retained) \times 100
Total Weighted % = 2

F&E Group IPR = F&E Group CPR - Next Larger Group CPR
Test by/date: J.C. / 7-12-10

% F&E Size Group (B) = \[[\text{Mass F&E Size Group}] \div \text{(Size Group Mass)}\] \times 100

Weighted F&E Size Group = \[(B) \times F&E Group IPR\] \div 100

Remarks:

Signature / Date: J. Christensen / #165 / 7-12-10
Checked by / Date: B. Anderson / 7-13-10

CPR = Cumulative Percent Retained
IPR = Individual Percent Retained
Effective May 1, 2016

SP 10-34
Alaska Test Methods Manual
Moisture of HMA — WAQT FOP for T329

<table>
<thead>
<tr>
<th>Oven, °F</th>
<th>Sample, °F</th>
<th>Time In</th>
<th>Time Out</th>
<th>% Change @ ±0.0°F = [(Wp - Mf) / Mf] x 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>235</td>
<td>180</td>
<td>1:15 PM</td>
<td>3:15 PM</td>
<td>% Change @ ±0.0°F = [(Wp - Mf) / Mf] x 100</td>
</tr>
<tr>
<td>C Container, 0.1 g</td>
<td>237.1</td>
<td>235.9</td>
<td>0.2%</td>
<td></td>
</tr>
<tr>
<td>A Wet + Container</td>
<td>2359.5</td>
<td>2359.30</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>B Dry + Container</td>
<td>2358.7</td>
<td>2358.30</td>
<td>0.01%</td>
<td></td>
</tr>
<tr>
<td>MI Moist A - C</td>
<td>2122.4</td>
<td>2122.03</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>MF Dry A - C</td>
<td>2121.6</td>
<td>2121.03</td>
<td>0.00%</td>
<td></td>
</tr>
<tr>
<td>W Moisture Content, %</td>
<td>0.04</td>
<td>0.00%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bulk Specific Gravity — WAQT FOP for T166 / T275

<table>
<thead>
<tr>
<th>Method C / A</th>
<th>Panel</th>
<th>Joint</th>
<th>% Change @ ±0.0°F = [(Wp - Mf) / Mf] x 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>C Weight in Water, 0.1 g</td>
<td>1223.4</td>
<td>516.0</td>
<td></td>
</tr>
<tr>
<td>B Mass at SSD, 0.1 g</td>
<td>2098.3</td>
<td>1651.2</td>
<td></td>
</tr>
<tr>
<td>X Dry Mass + Pan, 0.1 g</td>
<td>2327.8</td>
<td>1345.6</td>
<td></td>
</tr>
<tr>
<td>Y Pan, 0.1 g</td>
<td>239.4</td>
<td>1345.4</td>
<td></td>
</tr>
<tr>
<td>A Dry Mass in Air, 0.1 g (X - Y)</td>
<td>2091.4</td>
<td>1345.4</td>
<td></td>
</tr>
</tbody>
</table>

AGC Content of HMA by Ignition — WAQT FOP for T308 (Internal Balance)

<table>
<thead>
<tr>
<th>Method A</th>
<th>Furnace No. / ID</th>
<th>Furnace Temp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B Basket Assembly Mass</td>
<td>2987.8</td>
<td>0.1 g</td>
</tr>
<tr>
<td>C Sample Mass + Basket Assembly</td>
<td>5356.7</td>
<td>Before Ignition</td>
</tr>
<tr>
<td>MI Initial Sample Mass</td>
<td>2378.9</td>
<td>0.1 g</td>
</tr>
<tr>
<td>D Basket Assembly + Sample Mass</td>
<td>5356.4</td>
<td>± 5 g of Mass C</td>
</tr>
<tr>
<td>MF Final Sample Mass</td>
<td>2247.9</td>
<td>Aggregate Mass</td>
</tr>
</tbody>
</table>

MSG of HMA Mix — WAQT FOP for T 209 — Flask Method

D Mass of Flash + Lid + Water @ 77±0.9°F, 0.1 g	7363.8
B Mass of Flash + Lid, 0.1 g	2584.8
C Mass of Flash + Lid + Sample, 0.1 g	5027.5
E Flash + Lid + De-aired Water + Sample, 0.1 g	8507.6
R Temperature Correction Factor	1.00000

Remarks — Gauge / Ignition Printout

- [Blank]
STATE OF ALASKA
DOT & PF
HMA Extracted Aggregate Gradation
FOP for T 30 - FIELD WORKSHEET

Sample No: HMA-G-1

Project Name: Haines Highway-Ferry Terminal to Union Street

Federal No: NH-095-06(18)
AKSAS No: 72170

Material: HMA Type II B
Source: Haines Quarry & U.S. Oil

Item No: 431(1)
Location: Haines, AK

Sta. / Sampled from: 133+00
C & Grade Reference: 6' Rt., Top Lift
Quantity Represented: Lot: 1
Sublot: 1
Date / Time: 03/24/10 9:00 AM

FRACTURE — WAQTC FOP for T 336

<table>
<thead>
<tr>
<th>Fractured Mass</th>
<th>Questionable Mass</th>
<th>Unfractured Mass</th>
<th>% Fracture</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Q</td>
<td>N</td>
<td>93</td>
</tr>
<tr>
<td>% = (Q + 2Q/F + Q/H) x 100</td>
<td>% Questionable = 2</td>
<td>Recruit if >15%</td>
<td></td>
</tr>
</tbody>
</table>

Test bydate: IE 3-24-10
% Spec. (min.): 80%

MOISTURE CONTENT — WAQTC FOP for T 266 / T 268

<table>
<thead>
<tr>
<th>C</th>
<th>Container</th>
<th>448.4</th>
<th>Constant Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Wet Mass + Container</td>
<td>2884.3</td>
<td>2584.3</td>
</tr>
<tr>
<td>Mw</td>
<td>A - C</td>
<td>2235.9</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Dry Mass + Container</td>
<td>2584.0</td>
<td></td>
</tr>
<tr>
<td>Md</td>
<td>Dry Mass B - C</td>
<td>2135.6</td>
<td></td>
</tr>
</tbody>
</table>

W: 4.7

W = ([Wm - Md] / Md) x 100: 0.01

Test bydate: IE 3-24-10
% Change = ([W] - [W]) / [W]) x 100:

LIQUID AND PLASTIC LIMIT — WAQTC FOP for T 19 and T 90

<table>
<thead>
<tr>
<th>N</th>
<th>Number of Blows</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Container</td>
<td>14.20</td>
</tr>
<tr>
<td>A</td>
<td>Moist Mass + Container</td>
<td>34.22</td>
</tr>
<tr>
<td>Mw</td>
<td>Moist Mass A - C</td>
<td>20.02</td>
</tr>
<tr>
<td>B</td>
<td>Dry Mass + Container</td>
<td>31.46</td>
</tr>
<tr>
<td>Md</td>
<td>Dry Mass B - C</td>
<td>17.25</td>
</tr>
<tr>
<td>W</td>
<td>Moisture Content, %</td>
<td>16.1</td>
</tr>
<tr>
<td>LL</td>
<td>W x (N / 25)²</td>
<td>16</td>
</tr>
</tbody>
</table>

Test bydate: IE #110 / 3-25-10
LL Spec.: 12.8
PL Spec.: 13

HMA AGGREGATE GRADATION — WAQTC FOP for T 30

<table>
<thead>
<tr>
<th>mm / USC</th>
<th>Cumulative Mass Retained C</th>
<th>Cumulative % Retained (C/m) x 100</th>
<th>% Passing - 100 % Retained</th>
<th>% Aggregate Correction Add/Subtract</th>
<th>Reported % Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 / 2"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.5 / 11/2"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 / 1"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.0 / 3/4"</td>
<td>0.0</td>
<td>0.0</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12.5 / 1/2"</td>
<td>501.1</td>
<td>22.3</td>
<td>77.7</td>
<td>0.0</td>
<td>78</td>
</tr>
<tr>
<td>9.5 / 3/8"</td>
<td>816.0</td>
<td>36.4</td>
<td>63.6</td>
<td>0.0</td>
<td>64</td>
</tr>
<tr>
<td>6.3 / 1/4"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.75 / 4"</td>
<td>1259.9</td>
<td>56.1</td>
<td>43.9</td>
<td>0.0</td>
<td>44</td>
</tr>
<tr>
<td>2.36 / 8"</td>
<td>1551.7</td>
<td>69.1</td>
<td>30.9</td>
<td>0.0</td>
<td>31</td>
</tr>
<tr>
<td>2.00 / #10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.18 / #16</td>
<td>1729.7</td>
<td>77.0</td>
<td>23.0</td>
<td>0.0</td>
<td>23</td>
</tr>
<tr>
<td>0.850 / #20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* .600 / #30</td>
<td>1858.2</td>
<td>82.7</td>
<td>17.3</td>
<td>0.0</td>
<td>17</td>
</tr>
<tr>
<td>.425 / #40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.300 / #50</td>
<td>1967.8</td>
<td>87.6</td>
<td>12.4</td>
<td>0.0</td>
<td>12</td>
</tr>
<tr>
<td>.150 / #100</td>
<td>2052.1</td>
<td>91.4</td>
<td>8.6</td>
<td>0.0</td>
<td>9</td>
</tr>
<tr>
<td>.075 / #200</td>
<td>2115.5</td>
<td>94.2</td>
<td>* 5.8</td>
<td>0.0</td>
<td>5.8</td>
</tr>
<tr>
<td>Pan (only)</td>
<td>20.0</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pan: 20.0 = P
%: 200 = ([W - A] / P) x 100

Cumulative Mass AFTER Sieving: 2135.9
Cumulative Mass BEFORE Sieving: 1858.2

Dry Mass AFTER Wash BEFORE Sieving: 2426.4
Dry Mass BEFORE Wash: 2246.4

Check Sum: (A - G) / M x 100 = 0.0

FM:
FM: 2426.4 / 2246.4 = 0.1
FM Limits: (± 0.2 of Mix Design FM)

FM: (Fineness Modulus = Total of % Retained of **Sieves / 100**)
HMA Aggregate Gradation — WAQTC FOP for T 30

<table>
<thead>
<tr>
<th>mm / USC</th>
<th>Correction Factor Blank Sample</th>
<th>Correction Factor Sample #1</th>
<th>Correction Factor Sample #2</th>
<th>Difference from Blank Sample</th>
<th>Average Difference</th>
<th>Sieves to Adjust</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 / 1"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Add Subtract</td>
</tr>
<tr>
<td>19.0 / 3/4"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.5 / 1/2"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.5 / 3/8"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.75 / #4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.36 / #8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.18 / #16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.600 / #30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.300 / #50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.150 / #100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.075 / #200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks:

M vs. Mf Check #1 = \(\frac{(Mf - M)}{Mf} \times 100 \)

M vs. Mf Check #2 = \(\frac{(Mf - M)}{Mf} \times 100 \)

Signature / Date:

Checked by / Date:

--

Effective May 1, 2016

SP 10-38

Alaska Test Methods Manual
HMA AGGREGATE GRADATION

<table>
<thead>
<tr>
<th>mm / USC</th>
<th>Allowable Difference</th>
<th>Blank Sample</th>
<th>Sample #1</th>
<th>Sample #2</th>
<th>Difference from Blank Sample</th>
<th>Average Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 / 1"</td>
<td>± 5.0%</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>19.0 / 3/4"</td>
<td>± 5.0%</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12.5 / 1/2"</td>
<td>± 5.0%</td>
<td>78.3</td>
<td>80.4</td>
<td>79.1</td>
<td>-2.1</td>
<td>-0.8</td>
</tr>
<tr>
<td>9.5 / 3/8"</td>
<td>± 5.0%</td>
<td>62.3</td>
<td>61.4</td>
<td>61.3</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>4.75 / #4</td>
<td>± 5.0%</td>
<td>42.2</td>
<td>41.6</td>
<td>41.0</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>2.36 / #8</td>
<td>± 5.0%</td>
<td>28.7</td>
<td>28.5</td>
<td>28.2</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>1.18 / #16</td>
<td>± 3.0%</td>
<td>21.1</td>
<td>20.6</td>
<td>20.3</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>600 / #30</td>
<td>± 3.0%</td>
<td>14.9</td>
<td>15.3</td>
<td>14.9</td>
<td>-0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>300 / #50</td>
<td>± 3.0%</td>
<td>11.0</td>
<td>11.3</td>
<td>11.0</td>
<td>-0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>.150 / #100</td>
<td>± 3.0%</td>
<td>8.2</td>
<td>8.5</td>
<td>8.2</td>
<td>-0.3</td>
<td>0.0</td>
</tr>
<tr>
<td>.075 / #200</td>
<td>± 0.5%</td>
<td>5.5</td>
<td>6.0</td>
<td>5.7</td>
<td>-0.5</td>
<td>-0.2</td>
</tr>
</tbody>
</table>

Correction Factor Blank Sample

- **Cumulative Mass Retained (C/M) x 100**
- **% Passing %= % Retained**

Correction Factor Sample #1

- **Cumulative Mass Retained (C/M) x 100**
- **% Passing %= % Retained**

Correction Factor Sample #2

- **Cumulative Mass Retained (C/M) x 100**
- **% Passing %= % Retained**

Aggregate Correction

- **Sample #1**
- **Sample #2**

Asphalt Cement Correction

<table>
<thead>
<tr>
<th>Mix Design %AC #1</th>
<th>WAQTIC FOP for T 308</th>
<th>Mix Design %AC #2</th>
<th>WAQTIC FOP for T 308</th>
<th>AC Correction Factor (average of differences)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.00</td>
<td>6.41</td>
<td>6.00</td>
<td>6.33</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Remarks:

- M vs. Mf Check #1 = 0.0
- M vs. Mf Check #2 = 0.0

- Signature / Date: T.J. Hom / #000 / 6-25-09
- Checked by / Date: MK / 6-26-09

Alaska Test Methods Manual

SP 10-39

Effective May 1, 2016
OVEN DRY MOISTURE (0.1\%)

1)
2)
3)
4)
5)

\[\frac{1}{2} \text{(A) } \]

AVERAGE

GAUGE MOISTURE (0.1\%)

1)
2)
3)
4)
5)

\[\frac{1}{2} \text{(B) } \]

AVERAGE

\[A - B = \text{(C) } \]

OFFSET FACTOR \((k) = \frac{C}{100 + B} \times 1000 \]

NOTE:

*Round (A), (B), & (C) to one decimal place.

**Report offset factor \((k \text{ value}) \) as a whole number.

***Remember to maintain the appropriate algebraic symbol \((– \text{ or } +) \)

MOISTURE CONTENT — WAQC FOP fr T 255 / T 265

\[\%M = \frac{[(a - b) \times (b - c)]}{100} \]

<table>
<thead>
<tr>
<th>Sample #</th>
<th>c</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tare Mass</td>
<td>Wet Mass + Tare</td>
<td>Dry Mass + Tare</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks: ____________________________

Signature / Qualification No / Date:

Checked by / Date:

Effective May 1, 2016

SP 10-40

Alaska Test Methods Manual
Alaska Test Methods Manual SP 10-41 Effective May 1, 2016

Project Name: Old Glenn Highway, South Birchwood Loop to Peters Creek
Federal No: ARA-0558(7) AKSAS No: 50946
Material: Borrow, Type A Source: Moose Horn Pt./Granite
Item No: 206(6A) Location: Chugiak, AK
Gauge Serial No. / Model No: 33402 / Troxler 3430

OVEN DRY MOISTURE (0.1%)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>6.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2)</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3)</td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4)</td>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5)</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
A = \frac{B}{C}\]

\[
A = \frac{B}{C} = -0.6 \quad \text{(C)}
\]

GAUGE MOISTURE (0.1%)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>7.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2)</td>
<td>5.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3)</td>
<td>4.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4)</td>
<td>5.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5)</td>
<td>4.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\frac{A}{B} = 4.9 \quad \text{(A)}
\]

\[
\frac{5.5}{B} = 5.5 \quad \text{(B)}
\]

\[
\text{OFFSET FACTOR (k)} = \frac{C}{100 + B} \times 1000 = -6 \quad ** / ***
\]

NOTE:
- Round (A), (B), & (C) to one decimal place.
- Report offset factor (k value) as a whole number.
- Remember to maintain the appropriate algebraic symbol (− or +)

MOISTURE CONTENT — WAQTC Gen Tel 255 / T 265

<table>
<thead>
<tr>
<th>Sample #</th>
<th>c</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tare Mass</td>
<td>Wet Mass + Tare</td>
<td>Dry Mass + Tare</td>
</tr>
<tr>
<td>1</td>
<td>1.25</td>
<td>11.97</td>
<td>11.28</td>
</tr>
<tr>
<td>2</td>
<td>1.12</td>
<td>12.02</td>
<td>11.55</td>
</tr>
<tr>
<td>3</td>
<td>1.83</td>
<td>13.53</td>
<td>13.11</td>
</tr>
<tr>
<td>4</td>
<td>1.46</td>
<td>12.66</td>
<td>12.12</td>
</tr>
<tr>
<td>5</td>
<td>1.55</td>
<td>11.88</td>
<td>11.46</td>
</tr>
</tbody>
</table>

Remarks:

Signature / Qualification No. / Date: Cleve Cooper / #002 / 3-29-11

Checked by / Date: Tom Fisher / 3-30-11
Effective May 1, 2016

Sample No:

<table>
<thead>
<tr>
<th>Lane:</th>
<th>Width:</th>
<th>Station to Station:</th>
<th>Standard Count:</th>
<th>Date:</th>
</tr>
</thead>
</table>

All readings are to be Wet Density readings and taken in backscatter position (15 sec. or 1 min.)

Continue the compaction & testing cycle until there is less than 1 lb/ft³ increase of the average of all three locations for two consecutive passes.

<table>
<thead>
<tr>
<th>Equipment:</th>
<th>Pass #</th>
<th>Location 1</th>
<th>Location 2</th>
<th>Location 3</th>
<th>Average</th>
<th>Change</th>
<th>Remarks / Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drum Roller</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roller Brand:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model Number:</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency (VPM):</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amplitude:</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumatic Roller</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Locations</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading 1 (time)</td>
<td></td>
</tr>
<tr>
<td>Reading 2 (time)</td>
<td></td>
</tr>
<tr>
<td>Average Wet Density</td>
<td></td>
</tr>
</tbody>
</table>

Relative Standard Density

Moisture control is not required for HMA or ATB.

Reading 1 % Moisture			
Reading 2 % Moisture			
Average % Moisture			

Remarks:

<table>
<thead>
<tr>
<th>Tested By / Qualification No</th>
<th>Signature / Date</th>
<th>Checked by / Date</th>
</tr>
</thead>
</table>

Effective May 1, 2016

SP 10-42

Alaska Test Methods Manual
*All readings are to be Wet Density readings and taken in backscatter position (15 sec. or 1 min.).

**Continue the compaction & testing cycle until there is less than 1 lb/ft³ increase of the average of all three locations for two consecutive passes.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Pass #</th>
<th>*Location 1</th>
<th>*Location 2</th>
<th>*Location 3</th>
<th>Average</th>
<th>**Change</th>
<th>Remarks / Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drum Roller</td>
<td>1</td>
<td>127.6</td>
<td>134.6</td>
<td>129.0</td>
<td>130.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>132.2</td>
<td>138.8</td>
<td>128.5</td>
<td>133.2</td>
<td>2.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>135.3</td>
<td>140.0</td>
<td>135.9</td>
<td>137.1</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>136.5</td>
<td>144.7</td>
<td>137.5</td>
<td>139.6</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>137.2</td>
<td>143.4</td>
<td>137.8</td>
<td>139.5</td>
<td>(0.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>139.2</td>
<td>144.5</td>
<td>140.5</td>
<td>141.4</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>139.7</td>
<td>144.8</td>
<td>140.3</td>
<td>141.6</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Pneumatic Roller</td>
<td>8</td>
<td>142.4</td>
<td>145.1</td>
<td>140.5</td>
<td>142.7</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>144.7</td>
<td>147.8</td>
<td>143.7</td>
<td>145.4</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>142.4</td>
<td>148.6</td>
<td>141.3</td>
<td>144.1</td>
<td>(1.3)</td>
<td>Visible cracking observed</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>142.1</td>
<td>148.0</td>
<td>143.6</td>
<td>144.6</td>
<td>0.5</td>
<td>Less than 1% increase on 2nd compaction pass</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Locations</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading 1 (t/mm)</td>
<td>144.4</td>
<td>145.3</td>
<td>147.1</td>
<td>144.0</td>
<td>146.8</td>
<td>145.2</td>
<td>148.4</td>
<td>148.7</td>
<td>142.1</td>
<td>142.8</td>
</tr>
<tr>
<td>Reading 2 (t/mm)</td>
<td>144.6</td>
<td>145.3</td>
<td>147.3</td>
<td>144.2</td>
<td>146.8</td>
<td>145.3</td>
<td>148.4</td>
<td>148.2</td>
<td>143.5</td>
<td>142.2</td>
</tr>
<tr>
<td>Average Wet Density</td>
<td>144.5</td>
<td>145.3</td>
<td>147.2</td>
<td>144.1</td>
<td>146.8</td>
<td>145.3</td>
<td>148.4</td>
<td>148.5</td>
<td>142.8</td>
<td>142.5</td>
</tr>
</tbody>
</table>

Relative Standard Density

Moisture control is not required for HMA or ATB.

Reading 1 % Moisture	8.6	8.0	8.5	7.6	7.7	7.2	7.6	7.5	8.3	9.2
Reading 2 % Moisture	8.9	8.1	8.3	7.9	7.7	7.4	7.4	7.3	8.2	8.8
Average % Moisture	8.8	8.1	8.4	7.8	7.7	7.3	7.5	7.4	8.3	9.0

Remarks:

Tested By/Qualification No M. Goldfarb / #538 / 8-28-10

Signature / Date:

Checked by / Date: J. Smith / 8-29-10
Effective May 1, 2016 SP 10-44 Alaska Test Methods Manual

BATCH (SCALE) WEIGHTS

<table>
<thead>
<tr>
<th>Component</th>
<th>Formula</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse Aggregate</td>
<td>CA</td>
<td>(gallons x 8.33)</td>
</tr>
<tr>
<td>Intermediate Aggregate</td>
<td>IA</td>
<td>(gallons x 8.33)</td>
</tr>
<tr>
<td>Fine Aggregate or Sand</td>
<td>FA</td>
<td>(gallons x 8.33)</td>
</tr>
<tr>
<td>Cements</td>
<td>(\text{Total})</td>
<td></td>
</tr>
<tr>
<td>Water from batch ticket</td>
<td>(\text{Total})</td>
<td>(gallons x 8.33)</td>
</tr>
<tr>
<td>Water plus water added at site</td>
<td>(\text{Total})</td>
<td>(gallons x 8.33)</td>
</tr>
<tr>
<td>Total Batch Weight</td>
<td>(A + B + C + D + E + E1)</td>
<td></td>
</tr>
</tbody>
</table>

AGGREGATE MOISTURE CORRECTIONS

<table>
<thead>
<tr>
<th>Type</th>
<th>Formula</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>(\text{Moisture} \times \frac{1}{1 + \text{total moisture}})</td>
<td></td>
</tr>
<tr>
<td>IA</td>
<td>(\text{SSD Weight} \times \frac{1}{1 + \text{absorption}})</td>
<td></td>
</tr>
<tr>
<td>FA</td>
<td>(\text{Moisture} \times \frac{1}{1 + \text{absorption}})</td>
<td></td>
</tr>
</tbody>
</table>

WATER WEIGHT CORRECTIONS

<table>
<thead>
<tr>
<th>Type</th>
<th>Formula</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>(\text{Free Water in CA} \times (A - c))</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>(\text{Free Water in IA} \times (U - f))</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>(\text{Free Water in FA} \times (C - j))</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>(\text{Total Water Weight} \times (E + E1 + G + H + J))</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>(\text{Total Water in Gallons} \times (K \times 8.33))</td>
<td></td>
</tr>
</tbody>
</table>

TEST DATA

<table>
<thead>
<tr>
<th>Test</th>
<th>Formula</th>
<th>Unit</th>
</tr>
</thead>
</table>

BATCH DATA

<table>
<thead>
<tr>
<th>Component</th>
<th>Formula</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacks of Cement per Batch</td>
<td>(\text{O} / 94)</td>
<td></td>
</tr>
<tr>
<td>Yield, CY per Batch</td>
<td>(\text{F} / \text{M} / 77)</td>
<td></td>
</tr>
<tr>
<td>Water / Cementitious Ratio, lbs / lbs</td>
<td>(K / E)</td>
<td></td>
</tr>
<tr>
<td>% 2nd cementitious material</td>
<td>(\text{L2} \times 100)</td>
<td></td>
</tr>
<tr>
<td>% 3rd cementitious material</td>
<td>(\text{U} \times 100)</td>
<td></td>
</tr>
<tr>
<td>% Sand</td>
<td>(\text{H} / (\text{C} + \text{F} + \text{E}))</td>
<td></td>
</tr>
<tr>
<td>Mix Ratios</td>
<td>(\text{c} / \text{f} ; \text{c} / \text{f} ; \text{c} / \text{f})</td>
<td></td>
</tr>
</tbody>
</table>

SSD BATCH WEIGHTS REDUCED FOR 1 CY

<table>
<thead>
<tr>
<th>Component</th>
<th>% off MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse Aggregate</td>
<td></td>
</tr>
<tr>
<td>Intermediate Aggregate</td>
<td></td>
</tr>
<tr>
<td>Fine Aggregate</td>
<td></td>
</tr>
<tr>
<td>Cement Content</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td></td>
</tr>
</tbody>
</table>

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement Checks</td>
<td></td>
</tr>
<tr>
<td>Cement Factor, Sack/CY (MD)</td>
<td></td>
</tr>
<tr>
<td>W/Cn, Ins. Ins. (MD)</td>
<td></td>
</tr>
<tr>
<td>% 2nd cementitious material (MD)</td>
<td></td>
</tr>
<tr>
<td>% 3rd cementitious material (MD)</td>
<td></td>
</tr>
<tr>
<td>% Sand (MD)</td>
<td></td>
</tr>
<tr>
<td>Mix Ratios (MD)</td>
<td></td>
</tr>
</tbody>
</table>

MD TEST RESULT DATA

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks

- Admixture
- MD/acyr
- Batch from ticket
- acyr
- % off MD
STATE OF ALASKA DOT & PF

CONCRETE PLACEMENT REPORT

PROJECT NAME: Glenn Hwy., MP 109-118 Resurface, Box Culverts
Pour No.: 27

FEDERAL No.: IMM-6A1-5(27)
AK SAS No.: 52965

ITEM No.: 54(1)
TICKET No.: 227426
DATE: 7/30/11

TRUCK No.: 459
NMCA Certified: Yes
Mix Design No.: Cast5 SCC 6500

BATCH (SCALE) WEIGHTS

<table>
<thead>
<tr>
<th>Type of Construction: Box Culvert Section, 14x12x4'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range No.</td>
</tr>
<tr>
<td>Station(s)</td>
</tr>
<tr>
<td>Portion of Structure or Section Represented</td>
</tr>
</tbody>
</table>

AGGREGATE MOISTURE CORRECTIONS

- **CA**
 - Moisture (d,a) = 0.0038 \(\times \) 0.010 = 0.0052 (free water)
 - Dry Weight \(\frac{A}{(1 + \text{total moisture})} \) = 11310
 - SSD Weight \(\frac{b}{(1 + \text{absorption})} \) = 11423

- **IA**
 - Moisture (d,a) = 0.0049 \(\times \) 0.010 = 0.0049 (free water)
 - Dry Weight \(\frac{B}{(1 + \text{total moisture})} \) = 4828
 - SSD Weight \(\frac{e}{(1 + \text{absorption})} \) = 4876

- **FA**
 - Moisture (d,a) = 0.0077 \(\times \) 0.012 = 0.0092 (free water)
 - Dry Weight \(\frac{C}{(1 + \text{total moisture})} \) = 15811
 - SSD Weight \(\frac{h}{(1 + \text{absorption})} \) = 16001

* from Mr. Design

WATER WEIGHT CORRECTIONS

- **CA**
 - Free Water \(\frac{A-C}{(1 + \text{total moisture})} \) = 43
 - Free Water \(\frac{O-I}{(1 + \text{total moisture})} \) = 24
 - Free Water \(\frac{C-J}{(1 + \text{total moisture})} \) = 359

- **FA**
 - Total Water Weight \(\frac{E+I+G+H+J}{K+8.34} \) = 338.1

TEST DATA

- Concrete Temperature (°F) = 67
- slump (in) = 27.00
- Air Content, % (Agg Conc Fir similar Mix) = 6.0

- **M. Density, (pcf)**
 - 143.2

BATCH DATA

- **N. Sacks of Cement per batch**
 - 75.4

- **P. Yield, CY per batch**
 - \(\frac{I}{M} \times 27 \)

- **R. Water / Cementitious Ratio, lbs. / lbs.**
 - 0.40

- **S. % 2nd cementitious material**
 - \(\frac{E X T A \times 100}{E X T A + 100} \)

- **T. % 3rd cementitious material**
 - \(\frac{E X T A \times 100}{E X T A + 100} \)

- **U. % Sand**
 - \(\frac{F + G + H + J}{(F+G+H+J)} \times 100 \)

- **V. Mix Ratios 1: (C/O) + (I/O) + (E/O) + (G/O) + (H/O) + (J/O) + (K/O) + (L/O)**
 - 1.61 \(\times \) 0.09 \(\times \) 2.26

- **SSD BATCH WEIGHTS REDUCED FOR 1 CY**
 - Coarse Aggregate \(\frac{c}{(1 + P)} \times 1048 \times 0.40 \% \)
 - Intermediate Aggregate \(\frac{D}{(1 + P)} \times 447 \times 1.70 \% \)
 - Fine Aggregate \(\frac{G}{(1 + P)} \times 1498 \times 0.10 \% \)
 - Cement Content \(\frac{D}{(1 + P)} \times 650 \times 1.0 \% \)
 - Water \(\frac{K}{(1 + P)} \times 259 \times 12.3 \% \)

Remarks:

- **Admixture**
 - **M205**
 - **M205 at batch from ticket**
 - **M205 at ticket**

- **% off M205**
 - **Micro Air**
 - 5.0
 - 10.0%
 - **PS-140**
 - 18.8
 - 29%
 - **BASF VMA**
 - 35.6
 - 10.0%

SPECIFICATIONS

- **30" max. Spread**
 - **6.0% + 1.5%**

MID TEST RESULT DATA

- **6.0%**

MID CHECKS

- **6.9 Cement Factor, Sacks/CY (M2):**
 - 45 max

SPECIFICATIONS

- **Batch Weights / CY (from M2):**
 - **1023**
 - **1065**
 - **1438**
 - **1496**
 - **651**
 - **665**
 - **286**
 - **304**
 - **295**

INSPECTOR / QUAL No.: 568
CHECKED BY

DATE

PROJECT ENGINEER

DATE

Alaska Test Methods Manual
SP 10-45
Effective May 1, 2016
Effective May 1, 2016 SP 10-46 Alaska Test Methods Manual

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Pass #</th>
<th>Location 1</th>
<th>Location 2</th>
<th>Location 3</th>
<th>Average:</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roller #1:</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roller Brand:</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roller Model Number:</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roller Type:</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compaction Mode:</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Vibe □ Static</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roller #2:</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roller Brand:</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roller Model Number:</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roller Type:</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compaction Mode:</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>□ Vibe □ Static</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Locations ➔ 1 2 3 4 5 6 7 8 9 10

Reading 1 (1ctime) | Reading 2 (1ctime) | Average Dry Density | Relative Standard Density

Reading 1 (%moisture) | Reading 2 (%moisture) | Average Moisture

Remarks: ___________________________
Signature / Qualification No / Date: ___________________________
Checked by / Date: ___________________________

*Initial (Control Strip) readings shall be taken in backscatter position. The final (ten random location) readings shall be done with direct transmission when practicable. All readings are to be Dry Density.

**Continue the compaction & testing cycle until there is less than 1 lb/ft³ increase of the average of all three locations for two consecutive passes.
*Initial (Control Strip) readings shall be taken in backscatter position. The final (ten random location) readings shall be done with direct transmission when practicable. All readings are to be Dry Density.

**Continue the compaction & testing cycle until there is less than 1 lb/ft² increase of the average of all three locations for two consecutive passes.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Pass #</th>
<th>*Location 1</th>
<th>*Location 2</th>
<th>*Location 3</th>
<th>**Average:</th>
<th>Remarks:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roller #1:</td>
<td>1</td>
<td>134.9</td>
<td>126.2</td>
<td>144.5</td>
<td>135.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>136.6</td>
<td>134.2</td>
<td>137.6</td>
<td>136.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>133.2</td>
<td>138.3</td>
<td>146.7</td>
<td>139.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>138.7</td>
<td>138.7</td>
<td>140.9</td>
<td>139.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>131.6</td>
<td>138.8</td>
<td>146.1</td>
<td>138.8</td>
<td>2nd consecutive pass w/ less than 1 pcf increase.</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Roller #2:	1	1				
	2					
	3					
	4					
	5					
	6					
	7					

Locations → 1 2 3 4 5 6 7 8 9 10

<table>
<thead>
<tr>
<th>Reading 1 (1 minute)</th>
<th>135.7</th>
<th>150.9</th>
<th>142.5</th>
<th>132.8</th>
<th>131.9</th>
<th>130.8</th>
<th>138.0</th>
<th>140.2</th>
<th>139.8</th>
<th>134.7</th>
<th>Relative Standard Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reading 2 (1 minute)</td>
<td>138.7</td>
<td>151.5</td>
<td>141.8</td>
<td>133.1</td>
<td>135.2</td>
<td>131.2</td>
<td>138.3</td>
<td>140.8</td>
<td>138.1</td>
<td>134.6</td>
<td></td>
</tr>
<tr>
<td>Average Dry Density</td>
<td>137.2</td>
<td>151.2</td>
<td>142.2</td>
<td>132.9</td>
<td>133.6</td>
<td>131.0</td>
<td>138.2</td>
<td>140.5</td>
<td>139.0</td>
<td>134.7</td>
<td>138.0</td>
</tr>
</tbody>
</table>

Reading 1 (% moisture)	4.7	5.8	6.4	5.3	3.8	3.8	4.1	3.9	4.3	4.2	Average Moisture
Reading 2 (% moisture)	4.8	5.9	6.4	5.1	3.9	3.9	4.1	3.9	4.5	4.5	
Average % Moisture	4.8	5.9	6.4	5.2	3.9	3.9	4.1	3.9	4.4	4.4	4.7

 Remarks:

Signature / Qualification No / Date: Holly DeLand / #308 / 7-13-09

Checked by / Date: Jeanette Clugston / 7-15-09
In-Place Density of Bituminous Mixes

STATE OF ALASKA
DOT & PF

In-Place Density of Bituminous Mixes
WAQTC TM 8 - FIELD WORKSHEET

Effective May 1, 2016 SP 10-48 Alaska Test Methods Manual

Project Name:

Federal No:

Source:

Material:

Specification:

Gauge Model No:

Gauge Serial No:

Density Standard (pcf):

Standard No/ID:

Item No:

Quantity Represented:

Correlation Factor:

Location and Area Represented:

<table>
<thead>
<tr>
<th>FIELD DENSITY TEST NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>STATION</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>G</th>
<th>REFERENCE (Offset)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>GRADE REFERENCE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>QUANTITY REPRESENTED</th>
</tr>
</thead>
</table>

DENSITY DETERMINATION

- **D** Wet Density, lbs/ft³
 (Difference ± 2.5 lbs/ft³)

- **E** Average Wet Density

- **F** Adjusted Density
 (use *Correlation Factor*)

- **G** % Compaction
 (E or F / Density Std.) x 100

CORRELATION with CORES

WAQTC FOP for AASHTO T 166

<table>
<thead>
<tr>
<th>Core</th>
<th>Core 2</th>
<th>Core 3</th>
<th>Core 4</th>
<th>Core 5</th>
<th>Core 6</th>
<th>Core 7</th>
<th>Core 8</th>
<th>Core 9</th>
<th>Core 10</th>
</tr>
</thead>
</table>

- **H** Core Thickness
 (Inches)

- **A** Mass of Dry Specimen in Air

- **B** Mass of SSD Specimen in Air

- **C** Weight of Specimen in Water

- **J** Bulk Specific Gravity (0.001)
 A / (B - C)

- **K** Unit Weight = Bulk SpC x 62.4
 (pcf)

- **E** Average Wet Density
 (from above)

- **L** Difference = Unit Weight - Average Wet Density
 K - E

- **Filter material (Native fines) used?**

- **Remarks**

 Test by / Qualification No.

 Signature / Date:

 Checked by / Date:
Field Density Test Number

<table>
<thead>
<tr>
<th>Station</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>31-25</td>
<td>36-35</td>
<td>41-35</td>
<td>46-40</td>
<td>49-95</td>
<td>50-00</td>
<td>48-85</td>
<td>44-00</td>
<td>39-50</td>
<td>34-75</td>
</tr>
<tr>
<td>C1, Reference (Offset)</td>
<td>6RL</td>
<td>4RL</td>
<td>3RL</td>
<td>8RL</td>
<td>5RL</td>
<td>101L</td>
<td>41L</td>
<td>67L</td>
<td>31L</td>
<td>81L</td>
</tr>
</tbody>
</table>

Grade Reference
- Top CABC

Quantity Represented
- 375'
- 375'
- 375'
- 375'
- 375'
- 375'
- 375'
- 375'

Density Determination

Density Determination
- **Backscatter Mode**
- (Reading #2 is rotated 90° from Reading #1)

<table>
<thead>
<tr>
<th>D</th>
<th>Wet Density, lbs/ft³</th>
<th>Reading #1</th>
<th>143.5</th>
<th>145.2</th>
<th>144.1</th>
<th>143.8</th>
<th>142.9</th>
<th>146.0</th>
<th>145.6</th>
<th>144.3</th>
<th>143.9</th>
<th>146.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Average Wet Density</td>
<td></td>
<td>143.9</td>
<td>145.3</td>
<td>144.6</td>
<td>145.0</td>
<td>144.4</td>
<td>144.7</td>
<td>144.9</td>
<td>143.9</td>
<td>145.2</td>
<td>144.8</td>
</tr>
</tbody>
</table>

Adjusted Density
- (Reading #1 is rotated 90° from Reading #1)

| F | Adjusted Density | | 143.9 | 145.3 | 144.6 | 145.0 | 144.4 | 144.7 | 144.9 | 143.9 | 145.2 | 144.8 |

% Compaction
- (E or F / Density Std.) x 100

| G | % Compaction | | 98.9 | 99.9 | 99.2 | 99.2 | 98.8 | 99.9 | 99.9 | 99.0 | 99.4 | 100.0 |

Correlation with Cores

<table>
<thead>
<tr>
<th>H</th>
<th>Core Thickness (Inches)</th>
<th>Core 1</th>
<th>Core 2</th>
<th>Core 3</th>
<th>Core 4</th>
<th>Core 5</th>
<th>Core 6</th>
<th>Core 7</th>
<th>Core 8</th>
<th>Core 9</th>
<th>Core 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Mass of Dry Specimen in Air</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Mass of SSD Specimen in Air</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Weight of Specimen in Water</td>
<td></td>
</tr>
</tbody>
</table>

Remarks
- **Density Strip Average = 99.4%**

Test by / Qualification No.
- C.J. McKellan 999

Signature / Date
- Signature:
- Date:

Checked by / Date
- Checked by:
- Date: 06/24/10
Determination of Bulk Density of Sand and Cone Correction Factor

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mf</td>
<td>Mass of filled calibration container</td>
</tr>
<tr>
<td>Mt</td>
<td>Mass of the calibration container</td>
</tr>
<tr>
<td>V</td>
<td>Volume of the container in cubic feet</td>
</tr>
<tr>
<td>Pb</td>
<td>Bulk Density</td>
</tr>
</tbody>
</table>

\[
Pb = \frac{m_f - m_t}{V}
\]

Cone Correction Factor

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mf</td>
<td>Mass of Filled Apparatus</td>
</tr>
<tr>
<td>Mf</td>
<td>Mass of Apparatus After Filling Cone</td>
</tr>
<tr>
<td>C</td>
<td>Cone Correction Factor</td>
</tr>
</tbody>
</table>

\[
C = \frac{m_I - m_f}{Pb}
\]

Density Determination

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mf</td>
<td>Mass of Filled Apparatus</td>
</tr>
<tr>
<td>Mt</td>
<td>Mass of Apparatus After Filling Hole</td>
</tr>
<tr>
<td>Vh</td>
<td>Volume of Hole</td>
</tr>
<tr>
<td>Md</td>
<td>Mass of Dry Material from Hole</td>
</tr>
<tr>
<td>Pd</td>
<td>Dry Density</td>
</tr>
<tr>
<td>D</td>
<td>Corrected Standard Density</td>
</tr>
<tr>
<td>%C</td>
<td>Percent Compaction</td>
</tr>
</tbody>
</table>

\[
V_h = \frac{m_f - m_I}{Pb} - C
\]

\[
Pd = \frac{Md}{Pb}
\]
This page intentionally left blank.
Each materials sample taken on a construction contract project will be assigned a four part number that identifies the type of sample, the type of material, the test that will be performed on the sample and the sequential number of the test in that series on that type of material and sample. When a test sample fails to meet the specifications, the test number is circled in the Materials Testing Summary. A retest of a failing test is identified by adding the letter "A" after the test number for the first retest; a second retest adds the letter "B", and so on. Samples sent to the regional lab for testing will also be identified by this system, in addition to the project name and number, the location the sample was taken, and the name of the sampler. This sample identification system will be used on test results from the field lab and from the regional lab, and on the Materials Testing Summary form.

<table>
<thead>
<tr>
<th>Types of Tests</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Correction Factor - Ignition Oven</td>
<td>CF Mix Design MD</td>
</tr>
<tr>
<td>Field Density</td>
<td>D Moisture M</td>
</tr>
<tr>
<td>Fracture Count</td>
<td>F Oil Content 0</td>
</tr>
<tr>
<td>Gradation</td>
<td>G Plastic Index PI</td>
</tr>
<tr>
<td>Joint Density</td>
<td>JD Plastic Limit PL</td>
</tr>
<tr>
<td>Liquid Limit</td>
<td>LL Standard Density SD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Types of Samples</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptance</td>
<td>No prefix Information I</td>
</tr>
<tr>
<td>Independent Assurance</td>
<td>IA Quality Q</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Types of Materials</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregate Base Course</td>
<td>BC Gas Line Conduit GC</td>
</tr>
<tr>
<td>Aggregate Surface Course</td>
<td>SC Hot Mix Asphalt HMA</td>
</tr>
<tr>
<td>Asphalt Cement</td>
<td>AC Grout GR</td>
</tr>
<tr>
<td>Asphalt Pathway</td>
<td>AP Manhole Type (I, II, III) MH()</td>
</tr>
<tr>
<td>Asphalt Sidewalk</td>
<td>AS Medium Cure Liquid Asphalt MC</td>
</tr>
<tr>
<td>Asphalt Surface Treatment</td>
<td>AST Mineral Filler MF</td>
</tr>
<tr>
<td>Asphalt Treated Base Course</td>
<td>ATB Performance Grade Liquid Asphalt PG</td>
</tr>
<tr>
<td>Bed Course Material</td>
<td>BCM Porous Backfill PB</td>
</tr>
<tr>
<td>Bedding and Backfill</td>
<td>BB Reclaimed Asphalt Pavement RAP</td>
</tr>
<tr>
<td>Borrow Material Type(A, B, C)</td>
<td>BM() Rip Rap RR</td>
</tr>
<tr>
<td>Common Excavation</td>
<td>CX Rock Excavation RX</td>
</tr>
<tr>
<td>Concrete Coarse Aggregate</td>
<td>CA Sewer Conduit SC</td>
</tr>
<tr>
<td>Concrete Fine Aggregate</td>
<td>FA Sidewalk SW</td>
</tr>
<tr>
<td>Cover Coat Grading B</td>
<td>CCB Stone Mastic Asphalt SMA</td>
</tr>
<tr>
<td>Crushed Asphalt Base Course</td>
<td>CABC Structural Backfill Material B</td>
</tr>
<tr>
<td>Culvert</td>
<td>C Structural Plate Pipe SPP</td>
</tr>
<tr>
<td>Ditch Lining</td>
<td>DL Subbase SB</td>
</tr>
<tr>
<td>Electrical Conduit</td>
<td>EC Telephone Conduit TC</td>
</tr>
<tr>
<td>Electrical - Miscellaneous</td>
<td>EL Television Conduit TV</td>
</tr>
<tr>
<td>Emulsified Asphalt Materials</td>
<td>EAM Top Soil TS</td>
</tr>
<tr>
<td>Emulsified Treated Base</td>
<td>ETB Type A Inlet AI</td>
</tr>
<tr>
<td>Field Inlet</td>
<td>FI Unclassified Excavation EX</td>
</tr>
<tr>
<td>Filter Blanket</td>
<td>FB Useable Excavation, Type (A, B, C) EX()</td>
</tr>
<tr>
<td>Filter Material</td>
<td>FM Waste EXW</td>
</tr>
<tr>
<td>Fire Hydrant</td>
<td>FH Water Conduit WC</td>
</tr>
<tr>
<td>Foundation Fill</td>
<td>FF Waterline WL</td>
</tr>
<tr>
<td>Gabion Backfill</td>
<td>GB Warm Mix Asphalt WMA</td>
</tr>
</tbody>
</table>

Table VII, Materials Sample Identification System, also see ACM 5.4
This page intentionally left blank.