

Test Report No. 608331-4-6 Test Report Date: March 2020

MASH TL-3 EVALUATION OF 2019 MASH 2-TUBE BRIDGE RAIL THRIE BEAM TRANSITION

by

William F. Williams, P.E. Associate Research Engineer

Wanda L. Menges Research Specialist

Glenn E. Schroeder Research Specialist

and

Darrell L. Kuhn, P.E. Research Specialist

Contract No.: 1602767 Test No.: 608331-01-4 / 608331-01-5 / 608331-01-6 Test Date: 2019-09-02 / 2019-09-05 / 2019-12-19

Sponsored by State of Alaska Department of Transportation and Public Facilities and North Dakota Department of Transportation

TEXAS A&M TRANSPORTATION INSTITUTE PROVING GROUND

Mailing Address: Roadside Safety & Physical Security Texas A&M University System 3135 TAMU College Station, TX 77843-3135 Located at: Texas A&M University System RELLIS Campus Building 7091 3100 State Highway 47 Bryan, TX 77807

DISCLAIMER

The contents of this report reflect the views of the authors, who are solely responsible for the facts and accuracy of the data, and the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the State of Alaska Department of Transportation and Public Facilities, North Dakota Department of Transportation, The Texas A&M University System, or Texas A&M Transportation Institute. This report does not constitute a standard, specification, or regulation. In addition, the above listed agencies/ companies assume no liability for its contents or use thereof. The names of specific products or manufacturers listed herein do not imply endorsement of those products or manufacturers.

The results reported herein apply only to the article tested. The full-scale crash tests were performed according to TTI Proving Ground quality procedures and according to the *MASH* guidelines and standards.

The Proving Ground Laboratory within the Texas A&M Transportation Institute's Roadside Safety and Physical Security Division ("TTI Lab" or "TTI LAB") strives for accuracy and completeness in its crash test reports. On rare occasions, unintentional or inadvertent clerical errors, technical errors, omissions, oversights, or misunderstandings (collectively referred to as "errors") may occur and may not be identified for corrective action prior to the final report being published and issued. If, and when, the TTI Lab discovers an error in a published and issued final report, the TTI Lab shall promptly disclose such error to State of Alaska Department of Transportation and Public Facilities, North Dakota Department of Transportation, and all parties shall endeavor in good faith to resolve this situation. The TTI Lab will be responsible for correcting the error that occurred in the report, which may be in form of errata, amendment, replacement sections, or up to and including full reissuance of the report. The cost of correcting an error in the report shall be borne by TTI Lab. Any such errors or inadvertent delays that occur in connection with the performance of the related testing contract shall not constitute a breach of the testing contract.

THE TTI LAB SHALL NOT BE LIABLE FOR ANY INDIRECT, CONSEQUENTIAL, PUNITIVE, OR OTHER DAMAGES SUFFERED BY STATE OF ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES, NORTH DAKOTA DEPARTMENT OF TRANSPORTATION OR ANY OTHER PERSON OR ENTITY, WHETHER SUCH LIABILITY IS BASED, OR CLAIMED TO BE BASED, UPON ANY NEGLIGENT ACT, OMISSION, ERROR, CORRECTION OF ERROR, DELAY, OR BREACH OF AN OBLIGATION BY THE TTI LAB.

Technical Report Documentation Pag

		reclinical Report Documentation Page			
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.			
4. Title and Subtitle		5. Report Date			
MASH TL-3 EVALUATION OF 20	19 MASH 2-TUBE BRIDGE	March 2020			
RAIL THRIE BEAM TRANSITION		6. Performing Organization Code			
7 Author(s)					
William F Williams Wanda I Ma	ngas Glann E. Schroadar, and	Test Penort No. 608331 01 4 6			
Dormall L. Kucher	inges, Otenin E. Seni beder, and	Test Report No. 008331-01-4-0			
Darrell L. Kunn					
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)			
Texas A&M Transportation Institute	e Proving Ground				
3135 TAMU	11. Contract or Grant No.				
College Station, Texas 77843-3135	1602767				
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered			
State of Alaska Department of	North Dakota Department	Technical Report:			
Transportation and Public Facilities	of Transportation	February 2016 – March 2020			
Bridge Section	608 East Boulevard Ave.	14. Sponsoring Agency Code			
3132 Channel Drive – Room 100	Bismarck, ND 58505				
Juneau, AK 99811-2500					
15. Supplementary Notes					
Project Title: MASH Testing – Bridge Rail and Thrie Beam Transition					
Name of Contacting Representative	Elmer E. Marx – Alaska DOT&PF				
16. Abstract					

The purpose of the tests reported herein was to assess the performance of the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition according to the safety-performance evaluation guidelines included in AASHTO MASH. The crash tests were performed in accordance with MASH TL-3, which involves two fullscale crash tests (MASH Tests 3-20 and 3-21). However, MASH states that when there are transitions between two barrier types with different stiffness, one from a more flexible barrier and the other to a more rigid barrier, a full-scale crash test is recommended for both types. Therefore, MASH Test 3-21 was performed at the transition from the thrie beam rail to bridge rail, and at the transition from the W-beam rail to thrie beam rail.

This report provides details of the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition, detailed documentation of the crash tests and results, and an assessment of the performance of the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition for MASH TL-3 transition evaluation criteria.

The 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition performed acceptably for MASH TL-3 transitions.

		[
17. Key Words	18. Distribution Statement			
Transition, bridge rail, thrie beam, lo	Copyrighted. Not to be copied or reprinted without			
barrier, crash testing, MASH, roadside safety.		consent from the State of Alaska Department of		
		Transportation and Public Facilities and North		
	Dakota Departme	ent of Transportation	on.	
19. Security Classif.(of this report)	20. Security Classif.(of th	is page)	21. No. of Pages	22. Price
Unclassified Unclassified			122	

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized.

SI* (MODERN METRIC) CONVERSION FACTORS				
APPROXIMATE CONVERSIONS TO SI UNITS				
Symbol	When You Know	Multiply By	To Find	Symbol
-	•	LENGTH	·	
in	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km
		AREA		
in ²	square inches	645.2	square millimeters	mm²
ft ²	square feet	0.093	square meters	m²
yd²	square yards	0.836	square meters	m²
ac mi ²	acres	0.405		na km²
1111-	square miles		square kilometers	KIII-
floz	fluid ounces	29 57	milliliters	ml
nal	gallons	3 785	liters	1
ft ³	cubic feet	0.028	cubic meters	m ³
vd ³	cubic vards	0.765	cubic meters	m ³
<i>.</i>	NOTE: volumes	greater than 1000L	shall be shown in m ³	
		MASS		
oz	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
Т	short tons (2000 lb)	0.907	megagrams (or metric ton")	Mg (or "t")
	TEMPE	ERATURE (exac	t degrees)	
°F	Fahrenheit	5(F-32)/9	Celsius	°C
		or (F-32)/1.8		
	FORCE	and PRESSURE	or STRESS	
lbf	poundforce	4.45	newtons	N
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa
	APPROXIMAT	E CONVERSION	S FROM SI UNITS	1
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
mm	millimeters	0.039	Inches	in 4
m	meters	3.28	reet	π
m km	kilomotors	1.09	yards	ya mi
NIII	KIIOITIEIEIS		Times	1111
mm ²	square millimeters		square inches	in ²
m ²	square meters	10 764	square feet	ft ²
m ²	square meters	1 195	square vards	vd ²
ha	hectares	2.47	acres	ac
km ²	Square kilometers	0.386	square miles	mi ²
		VOLUME	•	
mL	milliliters	0.034	fluid ounces	oz
L	liters	0.264	gallons	gal
m ³	cubic meters	35.314	cubic feet	ft ³
m ³	cubic meters	1.307	cubic yards	yd ³
		MASS		
g	grams	0.035	ounces	oz
kg	kilograms	2.202	pounds	lb
Mg (or "t")	megagrams (or "metric ton")	1.103	short tons (2000lb)	Т
	TEMPE	ERATURE (exac	t degrees)	
°C	Celsius	1.8C+32	Fahrenheit	۴F
	FORCE	and PRESSURE	or STRESS	
Ν	newtons	0.225	poundforce	lbf
kPa	kilopascals	0.145	poundforce per square inch	lb/in ²

*SI is the symbol for the International System of Units

REPORT AUTHORIZATION

REPORT REVIEWED BY:

DocuSigned by: Glenn Schoeder

E692F9CB5047487...

Glenn Schroeder, Research Specialist Drafting & Reporting

- DocuSigned by: Gary Gerke - FBA2101E9F6B4B7.

Gary Gerke, Research Specialist Construction

DocuSigned by: Scott Dobrowoliny -1C613885787C44C

Scott Dobrovolny, Research Specialist Mechanical Instrumentation

DocuSigned by: Bill Griffith 44A122CB271845B

Bill L. Griffith, Research Specialist Deputy Quality Manager

DocuSigned by:

Matt Robinson

Matthew N. Robinson, Research Specialist Test Facility Manager & Technical Manager -DocuSigned by:

Ken Reeves -60D556935596468.

Ken Reeves, Research Specialist Electronics Instrumentation

Richard Badillo, Research Specialist Photographic Instrumentation

-DocuSigned by:

Wande L. Menger — B92179622AF24FE...

Wanda L. Menges, Research Specialist Research Evaluation and Reporting

--- DocuSigned by: トー Mデレー

_____D4CC23E85D5B4E7

Darrell L. Kuhn, P.E., Research Specialist Quality Manager

—pocusigned by: William F. Williams, P.E.

2B8AC4<u>D2B3784AE</u>

William F. Williams, P.E. Associate Research Engineer

This page intentionally left blank.

TABLE OF CONTENTS

	P	age		
Disclaim	er	ii		
List of F	igures	ix		
List of T	ables	xi		
Chapter	1. Introduction	1		
1.1	Background 1			
1.2	Objective	1		
Chapter	2. System Details	3		
2.1.	Test Article and Installation Details	3		
2.2.	Design Modifications during Tests	3		
2.3.	Material Specifications	6		
2.4.	Soil Conditions	6		
Chapter	3. Test Requirements and Evaluation Criteria	7		
3.1.	Crash Test Performed / Matrix	7		
3.2.	Evaluation Criteria	7		
Chapter	4. Test Conditions	9		
4 1	Test Eacility	9		
4.2	Vehicle Tow and Guidance System	9		
43	Data Acquisition Systems	9		
1.5	3.1 Vehicle Instrumentation and Data Processing	9		
-т. Д	3.2 Anthronomorphic Dummy Instrumentation	10		
-т. Л	3.3 Photographic Instrumentation Data Processing	11		
Chanter	5 $MASH$ Tast 3.20 (Crosh Tast No. 608331-01-4)	13		
5 1	Test Designation and Actual Impact Conditions	12		
5.1	Weather Conditions	12		
5.2 5.2	Test Valiale	. 13		
5.5 5 4	Test Description	. 13		
5.4	Test Description	. 14		
5.5 5.6	Damage to Test Installation	. 14		
5.6	Damage to Test Venicle	. 15		
5.7	Occupant Risk Factors	. 15		
Chapter	6. MASH Test 3-21 at Transition from Thrie Beam to Bridge Rail	4.0		
	(Crash Test No. 608331-01-5)	. 19		
6.1	Test Designation and Actual Impact Conditions	, 19		
6.2	Weather Conditions	. 19		
6.3	Test Vehicle	. 19		
6.4	Test Description	. 20		
6.5	Damage to Test Installation	. 20		
6.6	Damage to Test Vehicle	. 22		
6.7	Occupant Risk Factors	. 22		
Chapter	7. MASH Test 3-21 at Transition from W-Beam to Thrie Beam (Crash			
_	Test No. 608331-01-6)	. 25		
7.1	Test Designation and Actual Impact Conditions	. 25		
7.2	Weather Conditions	. 25		

TABLE OF CONTENTS (CONTINUED)

		Page
7.3	Test Vehicle	25
7.4	Test Description	26
7.5	Damage to Test Installation	26
7.6	Damage to Test Vehicle	29
7.7	Occupant Risk Factors	30
Chapter	8. Summary and Conclusions	33
8.1	Assessment of Test Results	33
8.2	Conclusions	33
Reference	Ces	39
Appendi	x A. Details of the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition	41
Appendi	x B. Supporting Certification Documents	67
Appendi	x C. Soil Properties	73
Appendi	x D. MASH Test 3-20 (Crash Test No. 608331-01-4)	77
D1	Vehicle Properties and Information	77
D2	Sequential Photographs	80
D3	Vehicle Angular Displacements	83
D4	Vehicle Accelerations	84
Appendi	x E. MASH Test 3-21 (Crash Test No. 608331-01-5)	87
E1	Vehicle Properties and Information	87
E2	Sequential Photographs	91
E3	Vehicle Angular Displacements	94
E4	Vehicle Accelerations	95
Appendi	x F. MASH Test 3-21 (Crash Test No. 608331-01-6)	99
F1	Vehicle Properties and Information	99
F2	Sequential Photographs	103
F3	Vehicle Angular Displacements	106
F4	Vehicle Accelerations	107

LIST OF FIGURES

Page

		1 age
Figure 2.1.	Details of 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition	4
Figure 2.2.	2019 MASH 2-Tube Bridge Rail Thrie Beam Transition prior to Testing	5
Figure 5.1.	Transition/Test Vehicle Geometrics for Test No. 608331-01-4.	13
Figure 5.2.	Test Vehicle before Test No. 608331-01-4	14
Figure 5.3.	Transition after Test No. 608331-01-4.	16
Figure 5.4.	Test Vehicle after Test No. 608331-01-4.	17
Figure 5.5.	Interior of Test Vehicle after Test No. 608331-01-4.	17
Figure 5.6.	Summary of Results for MASH Test 3-20 on 2019 MASH 2-Tube Bridge	
	Rail Thrie Beam Transition.	18
Figure 6.1.	2019 Transition/Test Vehicle Geometrics for Test No. 608331-01-5	19
Figure 6.2.	Test Vehicle before Test No. 608331-01-5	20
Figure 6.3.	Transition after Test No. 608331-01-5.	21
Figure 6.4.	Test Vehicle after Test No. 608331-01-5.	22
Figure 6.5.	Interior of Test Vehicle after Test No. 608331-01-5.	22
Figure 6.6.	Summary of Results for MASH Test 3-21 on 2019 MASH 2-Tube	
-	Transition from Thrie Beam to Bridge Rail	24
Figure 7.1.	Transition/Test Vehicle Geometrics for Test No. 608331-01-6.	25
Figure 7.2.	Test Vehicle before Test No. 608331-01-6	
Figure 7.3.	Transition after Test No. 608331-01-6.	27
Figure 7.4.	Posts 1 through 5 after Test No. 608331-01-6.	
Figure 7.5.	Posts 6 through 15 after Test No. 608331-01-6	29
Figure 7.6.	Test Vehicle after Test No. 608331-01-6.	30
Figure 7.7.	Interior of Test Vehicle after Test No. 608331-01-6.	30
Figure 7.8.	Summary of Results for MASH Test 3-21 2019 MASH 2-Tube Transition	
0	from W-Beam to Thrie Beam.	32
Figure D.1.	Sequential Photographs for Test No. 608331-01-4 (Overhead and Frontal	
0	Views).	80
Figure D.2.	Sequential Photographs for Test No. 608331-01-4 (Rear View)	82
Figure D.3.	Vehicle Angular Displacements for Test No. 608331-01-4.	83
Figure D.4.	Vehicle Longitudinal Accelerometer Trace for Test No. 608331-01-4	
8	(Accelerometer Located at Center of Gravity).	84
Figure D.5.	Vehicle Lateral Accelerometer Trace for Test No. 608331-01-4	
8	(Accelerometer Located at Center of Gravity).	85
Figure D.6.	Vehicle Vertical Accelerometer Trace for Test No. 608331-01-4	
1.8010 2.001	(Accelerometer Located at Center of Gravity)	86
Figure E.1	Sequential Photographs for Test No. 608331-01-5 (Overhead and Frontal	
i igui e Liii	Views)	91
Figure E.2	Sequential Photographs for Test No. 608331-01-5 (Rear View)	93
Figure E 3	Vehicle Angular Displacements for Test No. 608331-01-5	94
Figure E 4	Vehicle Longitudinal Accelerometer Trace for Test No. 608331-01-5	у т
1 15ur D.T.	(Accelerometer Located at Center of Gravity)	95
Figure E 5	Vehicle Lateral Accelerometer Trace for Test No. 608331-01-5	
1 15ui 0 11.0.	(Accelerometer Located at Center of Gravity)	96
	(reconcionation Located at Center of Gravity).	

LIST OF FIGURES (CONTINUED)

Figure E.6.	Vehicle Vertical Accelerometer Trace for Test No. 608331-01-5	
	(Accelerometer Located at Center of Gravity).	97
Figure F.1.	Sequential Photographs for Test No. 608331-01-6 (Overhead and Frontal	
	Views).	103
Figure F.2.	Sequential Photographs for Test No. 608331-01-6 (Rear View)	105
Figure F.3.	Vehicle Angular Displacements for Test No. 608331-01-6.	106
Figure F.4.	Vehicle Longitudinal Accelerometer Trace for Test No. 608331-01-6	
	(Accelerometer Located at Center of Gravity).	107
Figure F.5.	Vehicle Lateral Accelerometer Trace for Test No. 608331-01-6	
	(Accelerometer Located at Center of Gravity).	108
Figure F.6.	Vehicle Vertical Accelerometer Trace for Test No. 608331-01-6	
	(Accelerometer Located at Center of Gravity).	109

LIST OF TABLES

Table 3.1.	Test Conditions and Evaluation Criteria Specified for MASH TL-3	
	Transitions	. 7
Table 3.2.	Evaluation Criteria Required for MASH TL-3 Transitions	. 8
Table 5.1.	Events during Test No. 608331-01-4.	14
Table 5.2.	Occupant Risk Factors for Test No. 608331-01-4.	17
Table 6.1.	Events during Test No. 608331-01-5	20
Table 6.2.	Occupant Risk Factors for Test No. 608331-01-5.	23
Table 7.1.	Events during Test No. 608331-01-6.	26
Table 7.2.	Occupant Risk Factors for Test No. 608331-01-6.	31
Table 8.1.	Performance Evaluation Summary for MASH Test 3-20 on 2019 MASH 2-	
	Tube Bridge Rail Thrie Beam Transition.	34
Table 8.2.	Performance Evaluation Summary for MASH Test 3-21 on 2019 MASH 2-	
	Tube Bridge Rail Thrie Beam Transition from Thrie Beam to Bridge Rail	35
Table 8.3.	Performance Evaluation Summary for MASH Test 3-21 on 2019 MASH 2-	
	Tube Bridge Rail Thrie Beam Transition from W-Beam to Thrie Beam	36
Table 8.4.	Assessment Summary for MASH TL-3 Testing on 2019 MASH 2-Tube	
	Bridge Rail Thrie Beam Transition	37
Table C.1.	Summary of Strong Soil Test Results for Establishing Installation	
	Procedure	73
Table C.2.	Test Day Static Soil Strength Documentation for Test No. 608331-01-4	74
Table C.3.	Test Day Static Soil Strength Documentation for Test No. 608331-01-5	75
Table C.4.	Test Day Static Soil Strength Documentation for Test No. 608331-01-6	76
Table D.1.	Vehicle Properties for Test No. 608331-01-4	77
Table D.2.	Exterior Crush Measurements for Test No. 608331-01-4.	78
Table D.3.	Occupant Compartment Measurements for Test No. 608331-01-4	79
Table E.1.	Vehicle Properties for Test No. 608331-01-5	37
Table E.2.	Measurements of Vehicle Vertical CG for Test No. 608331-01-5	38
Table E.3.	Exterior Crush Measurements for Test No. 608331-01-5.	39
Table E.4.	Occupant Compartment Measurements for Test No. 608331-01-5	90
Table F.1.	Vehicle Properties for Test No. 608331-01-6) 9
Table F.2.	Measurements of Vehicle Vertical CG for Test No. 608331-01-6 10)0
Table F.3.	Exterior Crush Measurements for Test No. 608331-01-6)1
Table F.4.	Occupant Compartment Measurements for Test No. 608331-01-6 10)2

This page intentionally left blank.

Chapter 1. INTRODUCTION

1.1 BACKGROUND

In May 1998, Texas A&M Transportation Institute contracted with the Alaska Department of Transportation to perform engineering analyses, design, and full-scale testing on the following:

- 1.) Alaska Multi-State (2-Tube) Bridge Rail (1, 2, 3).
- 2.) Alaska Multi-State Bridge Rail Thrie Beam Transition (4, 5).
- 3.) Alaska Multi-State W-Beam Transition (6, 7).

Under that project (TTI Project No. 404311), TTI researchers performed engineering analyses, developed engineering details, and performed full-scale crash testing on the Alaska Multi-State (2-Tube) Bridge Rail (1-3). The bridge rail successfully met the performance requirements of National Cooperative Highway Research Program (NCHRP) *Report 350* Test Level 4 (TL-4) (8). TTI researchers evaluated the strength and performance of a new, taller Alaska Multi-State 2-Tube Bridge Rail, herein after it was re-designated as the 2019 MASH 2-Tube Bridge Rail, with respect to American Association of State Highway and Transportation Officials (AASHTO) Manual for Assessing Safety Hardware (*MASH*), Second Edition 2016, specifications (9, 10). TTI researchers performed engineering analyses and developed engineering details for this design to meet the performance requirements of *MASH* TL-4. TTI Proving Ground performed full-scale crash testing on the 2019 MASH 2-Tube Bridge Rail with respect to *MASH* TL-4, and the bridge rail performed acceptably.

1.2 OBJECTIVE

As part of this current project, TTI researchers performed analyses, designed, and fullscale tested a new Alaska Multi-State Bridge Rail Thrie Beam Transition. This new thrie beam transition design was tested with respect to *MASH* TL-3.

The purpose of the tests reported herein was to assess the performance of the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition according to the safety-performance evaluation guidelines included in AASHTO *MASH*. The crash tests were performed in accordance with *MASH* TL-3, which involves two full-scale crash tests (*MASH* Tests 3-20 and 3-21). However, *MASH* states that when there are transitions between two barrier types with different stiffness, one from a more flexible barrier and the other to a more rigid barrier, a full-scale crash test is recommended for both types. Therefore, *MASH* Test 3-21 was performed at the transition from the thrie beam rail to bridge rail, and at the transition from the W-beam rail to thrie beam rail.

This report provides details of the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition, detailed documentation of the three crash tests and results, and an assessment of the performance of the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition for *MASH* TL-3 evaluation criteria.

This page intentionally left blank.

Chapter 2. SYSTEM DETAILS

2.1. TEST ARTICLE AND INSTALLATION DETAILS

The 2019 MASH 2-Tube Bridge Rail test installation was comprised of a 154-ft long section of reinforced concrete bridge deck that incorporated two steel rails, a 12¹/₂-ft long (nominal) section of two nested thrie beams (RTM08a) attached to the bridge rails with a thrie beam terminal connector (RTE01b) and unique guardrail connector, a standard symmetrical 75-inch long (nominal) thrie-beam-to-W-beam transition rail section (RWT01b), 25 ft of W-beam guardrail (in length of need), and a standard 9 ft-4¹/₂ inch long TxDOT DAT terminal (posts 1 and 2) at the end.

The total length of the installation was approximately 207 ft- $3\frac{1}{2}$ inches (53 ft- $3\frac{1}{2}$ inches transition + 154 ft bridge deck). The top edges of the DAT rail and W-beam were located 31 inches above grade. The top edge of the nested thrie beam was $34\frac{3}{4}$ inches above grade, and the top of the upper bridge rail was 38 inches above the bridge deck.

Posts 3 through 6 were 72 inches long (embedded 40 inches), posts 7 and 8 were 72 inches long, and posts 9 through 15 were 78 inches long. Posts 1 through 6 were spaced at 75 inches; posts 7 through 10 were at 37¹/₂ inches; and posts 10 through 15 were at 18³/₄ inches. Timber blockouts, 8-inches deep, were installed on posts 2 through 6. Posts 7 and 8 were fitted with 12-inch deep, short (14 inches) steel hollow structural section (HSS) tubing blockouts, and posts 9 through 15 were fitted with 12-inch deep, long (21¹/₈ inches) steel HSS blockouts,

The concrete portion of the 2019 MASH 2-Tube Bridge Rail test installation consisted of a reinforced cantilevered deck and curb, with two 2-inch wide joints extending through both the curb and the deck. The curb was 10 inches tall, with a 4-inch thick lift of grout, yielding a 6-inch tall traffic side face. The curb was 18 inches wide at the base, and 17 inches wide at the top, with the traffic side face sloping 1-inch toward the field side. Anchor bolts were cast in the deck and extended through the curb.

Sixteen fabricated steel posts were longitudinally spaced on 10 ft centers, beginning at 24 inches from each end of the concrete curb. Two steel rectangular HSS rail elements spanned the posts and extended past them at each end of the installation. The tops of the rails were located 24 inches and 38 inches above grade.

Figure 2.1 presents overall information on the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition, and Figure 2.2 provides photographs of the installation. Appendix A provides further details of the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition.

2.2. DESIGN MODIFICATIONS DURING TESTS

No modification was made to the installation during the testing phase.

608331 4-5\608331 4-6 Drawing

T:\1-ProjectFiles\608331- Alaska - Williams\Drafting,

Figure 2.1. Details of 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition.

Figure 2.2. 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition prior to Testing.

2.3. MATERIAL SPECIFICATIONS

The specified minimum unconfined compressive strength of the concrete was 4000 psi for the curb, and 5000 psi for the deck. On December 10, 2018 (date of the first test on the 2-Tube Bridge Rail and deck), the average compressive strength of the concrete was 5060 psi (at 42 days) for the curb, and 5670 psi (at 44 days) for the deck.

Appendix B provides material certification documents for the materials used to install/construct the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition.

2.4. SOIL CONDITIONS

The transition and terminal of the test installation were installed in soil meeting grading B of AASHTO standard specification M147 "Materials for Aggregate and Soil Aggregate Subbase, Base and Surface Courses."

In accordance with Appendix B of *MASH*, soil strength was measured the day of the crash test. During installation of the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition for full-scale crash testing, two 6-ft long W6×16 posts were installed in the immediate vicinity of the transition using the same fill materials and installation procedures used in the test installation and the standard dynamic test. Table C.1 in Appendix C presents minimum soil strength properties established through the dynamic testing performed in accordance with *MASH* Appendix B.

As determined by the tests summarized in Appendix C, Table C.1, the minimum post loads required for deflections at 5 inches, 10 inches, and 15 inches, measured at a height of 25 inches, are 3940 lb, 5500 lb, and 6540 lb, respectively (90 percent of static load for the initial standard installation).

On the day of Test No. 608331-01-4, September 2, 2019, loads on the post at deflections of 5 inches, 10 inches, and 15 inches were 9087 lbf, 9948 lbf, and 10,395 lbf. Table C.2 in Appendix C shows the strength of the backfill material in which the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition was installed met minimum *MASH* requirements.

On the day of Test No. 608331-01-5, September 5, 2019, load on the post at 5 inches of deflection was 11,359 lbf, which was almost triple the required load. It was determined during the test pull that any additional loading may impart stresses on the W6×16 post that could cause it to yield and bend, or could cause damage to the test pull equipment (e.g. winch, load cell, etc.) Therefore, the test was terminated and the loads at deflections of 10 inches and 15 inches were not measured. Table C.3 in Appendix C shows the strength of the backfill material in which the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition was installed met minimum *MASH* requirements.

On the day of Test No. 608331-01-6, December 19, 2019, loads on the post at deflections of 5 inches, 10 inches, and 15 inches were 9225 lbf, 8537 lbf, and 7504 lbf. Table C.2 in Appendix C shows the strength of the backfill material in which the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition was installed met minimum *MASH* requirements.

Chapter 3. TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1. CRASH TEST PERFORMED / MATRIX

Table 3.1 shows the test conditions and evaluation criteria recommended for *MASH* TL-3 transitions. However, *MASH* states that when there are transitions between two barrier types with different stiffness, one from a more flexible barrier and the other to a more rigid barrier, a full-scale crash test is recommended for both types. Therefore, *MASH* Test 3-21 was performed at the transition from the thrie beam rail to bridge rail, and at the transition from the W-beam rail to thrie beam rail.

Test Article	Test Designation	Test Vehicle	Impact Conditions		Evaluation Critaria
	Test Designation		Speed	Angle	Evaluation Criteria
Transitions	3-20	1100C	62 mi/h	25°	A, D, F, H, I
Transitions	3-21	2270P	62 mi/h	25°	A, D, F, H, I

 Table 3.1. Test Conditions and Evaluation Criteria Specified for MASH TL-3

 Transitions.

The target critical impact point (CIP) for each test was determined in accordance with the guidance provided in *MASH Section 2.3.2* and *MASH Figure 2-1*. For *MASH* Test 3-20, the target CIP was 5.1 ft upstream of the end of the concrete curb/deck. The target CIP for *MASH* Test 3-21 on the thrie beam to bridge rail transition was 7.0 ft upstream of the concrete curb/deck. The target CIP for *MASH* Test 3-21 on the W-beam to thrie beam transition was 7.3 ft upstream of the centerline of post 7. TTI researchers determined that *MASH* Test 3-20 on the W-beam to thrie beam transition was not necessary and was therefore not performed.

The crash tests and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

3.2. EVALUATION CRITERIA

The appropriate safety evaluation criteria from Tables 2-2 and 5-1 of *MASH* were used to evaluate the crash tests reported herein. The test conditions and evaluation criteria required for *MASH* TL-3 transitions are listed in Table 3.1, and the substance of the evaluation criteria in Table 3.2. An evaluation of the crash test results is presented in detail under the section Assessment of Test Results.

Evaluation Factors	Evaluation Criteria		
Structural Adequacy	A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.		
Occupant Risk	D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present undue hazard to other traffic, pedestrians, or personnel in a work zone.	
		Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.	
	<i>F</i> .	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	
	Н.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.	
	Ι.	The occupant ridedown accelerations should satisfy the following: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	

Table 3.2. Evaluation Criteria Required for MASH TL-3 Transitions.

Chapter 4. TEST CONDITIONS

4.1. TEST FACILITY

The full-scale crash tests reported herein were performed at Texas A&M Transportation Institute (TTI) Proving Ground, an International Standards Organization (ISO)/International Electrotechnical Commission (IEC) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash tests were performed according to TTI Proving Ground quality procedures, and according to the *MASH* guidelines and standards.

The test facilities of the TTI Proving Ground are located on the Texas A&M University System RELLIS Campus, which consists of a 2000-acre complex of research and training facilities situated 10 miles northwest of the flagship campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, durability and efficacy of highway pavements, and evaluation of roadside safety hardware and perimeter protective devices. The site selected for construction and testing of the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition was along the edge of an out-of-service apron. The apron consists of an unreinforced jointed-concrete pavement in 12.5-ft \times 15-ft blocks nominally 6 inches deep. The aprons were built in 1942, and the joints have some displacement, but are otherwise flat and level.

4.2 VEHICLE TOW AND GUIDANCE SYSTEM

Each test vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point, through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released and ran unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site (no sooner than 2 s after impact), after which the brakes were activated, if needed, to bring the test vehicle to a safe and controlled stop.

4.3 DATA ACQUISITION SYSTEMS

4.3.1 Vehicle Instrumentation and Data Processing

Each test vehicle was instrumented with a self-contained, on-board data acquisition system. The signal conditioning and acquisition system is a 16-channel, Tiny Data Acquisition System (TDAS) Pro produced by Diversified Technical Systems, Inc. The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid state units designed for crash test service. The TDAS Pro hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the 16 channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 samples per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit should the primary battery cable be severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark and initiates the recording process. After each test, the data are downloaded from the TDAS Pro unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each of the TDAS Pro units is returned to the factory annually for complete recalibration and all instrumentation used in the vehicle conforms to all specifications outlined by SAE J211. All accelerometers are calibrated annually by means of an ENDEVCO[®] 2901, precision primary vibration standard. This standard and its support instruments are checked annually and receive a National Institute of Standards Technology (NIST) traceable calibration. The rate transducers used in the data acquisition system receive a calibration via a Genisco Rate-of-Turn table. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel, per SAE J211. Calibrations and evaluations are also made any time data are suspect. Acceleration data are measured with an expanded uncertainty of ± 1.7 percent at a confidence factor of 95 percent (k=2).

TRAP uses the data from the TDAS Pro to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and the highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with an SAE Class 180-Hz low-pass digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation of the vehicle-fixed coordinate systems being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k=2).

4.3.2 Anthropomorphic Dummy Instrumentation

An Alderson Research Laboratories Hybrid II, 50th percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed in the front seat on the impact side of the 1100C vehicle. The dummy was not instrumented.

According to *MASH*, use of a dummy in the 2270P vehicle is optional. However, it is recommended a dummy be used when testing "any longitudinal barrier with a height greater than or equal to 33 inches." Use of the dummy in the 2270P vehicle is recommended for tall rails to

evaluate the "potential for an occupant to extend out of the vehicle and come into direct contact with the test article." Although this information is reported, it is not part of the impact performance evaluation. Since the rail height of the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition was 34¾ inches, a dummy was placed in the front seat of the 2270P vehicle on the impact side and restrained with lap and shoulder belts.

A dummy was not used in *MASH* Test 3-21 test of the W-beam to three beam transition as the rail height at impact was 31 inches.

4.3.3 Photographic Instrumentation Data Processing

Photographic coverage of each test included three digital high-speed cameras:

- One overhead with a field of view perpendicular to the ground and directly over the impact point;
- One placed behind the installation at an angle; and
- A third placed to have a field of view parallel to and aligned with the installation at the downstream end.

A flashbulb on the impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the transition. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.

This page intentionally left blank.

Chapter 5. MASH TEST 3-20 (CRASH TEST NO. 608331-01-4)

5.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 3-20 involves an 1100C vehicle weighing 2420 lb \pm 55 lb impacting the CIP of the transition at an impact speed of 62 mi/h \pm 2.5 mi/h and an angle of 25° \pm 1.5°. The target CIP for *MASH* Test 3-20 on the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition was 5.10 ft \pm 1 ft upstream of the end of the concrete curb/deck. Figure 5.1 depicts the target CIP.

Figure 5.1. Transition/Test Vehicle Geometrics for Test No. 608331-01-4.

The 2007 Kia Rio^{*} used in the test weighed 2446 lb, and the actual impact speed and angle were 60.9 mi/h and 26.5°, respectively. The actual impact point was 6.06 ft upstream of the end of the concrete curb/deck. Minimum target impact severity (IS) was 51 kip-ft, and actual IS was 61 kip-ft.

5.2 WEATHER CONDITIONS

The test was performed on the morning of September 2, 2019. Weather conditions at the time of testing were as follows: wind speed: 4 mi/h; wind direction: 105° (vehicle was traveling at magnetic heading of 335°); temperature: $93^{\circ}F$; relative humidity: 53 percent.

5.3 TEST VEHICLE

Figures 5.1 and 5.2 show the 2007 Kia Rio used for the crash test. The vehicle's test inertia weight was 2446 lb, and its gross static weight was 2611 lb. The height to the lower edge of the vehicle bumper was 7.75 inches, and height to the upper edge of the bumper was 21.5 inches. Table D.1 in Appendix D1 gives additional dimensions and information on the

^{*} The 2007 model vehicle used is older than the 6-year age noted in *MASH*, and was selected based upon availability. An older model vehicle is permitted by AASHTO as long as it is otherwise *MASH* compliant. Other than the vehicle's year model, this 2007 model vehicle met the *MASH* requirements.

vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 5.2. Test Vehicle before Test No. 608331-01-4.

5.4 TEST DESCRIPTION

The test vehicle was traveling at an impact speed of 60.9 mi/h when it contacted the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition 6.06 ft upstream of the end of the concrete curb/deck at an impact angle of 26.5°. Table 5.1 lists events that occurred during Test No. 608331-01-4. Figures D.1 and D.2 in Appendix D2 present sequential photographs during the test.

TIME (s)	EVENTS
0.000	Vehicle contacts transition
0.023	Vehicle begins to redirect
0.091	Vehicle makes a slight increase in clockwise yaw rate
0.234	Vehicle traveling parallel with transition
0.355	Left rear corner and bumper of vehicle contacts transition
0.447	Vehicle loses contact with transition while traveling at 39.5 mi/h,
	trajectory of 7.1°, and heading of 14.0°

Table 5.1. Events during Test No. 608331-01-4.

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The test vehicle exited within the exit box criteria defined in *MASH*. After loss of contact with the transition, the vehicle came to rest 145 ft downstream of the impact point and 137 ft toward the traffic lanes.

5.5 DAMAGE TO TEST INSTALLATION

Figure 5.3 shows the damage to the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition. Posts 12 through 15 were leaning back at 89°, and the soil was disturbed around each

of those posts. There was no visible soil disturbance at posts 1 and 2. The bottom edge of the thrie beam rail was deformed in the impact area, and the concrete deck cracked at post 16 (the first post on the bridge deck). Working width* was 26.1 inches, and height of working width was 34.75 inches. Maximum dynamic deflection during the test was 3.5 inches, and maximum permanent deformation was 1.25 inches.

5.6 DAMAGE TO TEST VEHICLE

Figure 5.4 shows the damage sustained by the vehicle. The front bumper, hood, grill, radiator and support, left front strut and tower, left lower control arm, left front tire and rim, left front fender, left front door and glass, left front floor pan, and left rear quarter panel were damaged. No fuel tank damage was observed. The windshield sustained stress cracks from displacement of the left A-pillar, and the roof was slightly deformed. A small hole in the windshield was caused by the impact of the hood. Maximum exterior crush to the vehicle was 14.0 inches in the side plane at the left front corner at bumper height. Maximum occupant compartment deformation was 3.5 inches in the left kick panel area. Figure 5.5 shows the interior of the vehicle. Tables D.3 and D.4 in Appendix D1 provide exterior crush and occupant compartment measurements.

5.7 OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 5.2. Figure D.3 in Appendix D3 shows the vehicle angular displacements, and Figures D.4 through D.6 in Appendix D4 show acceleration versus time traces. Figure 5.6 summarizes pertinent information from the test.

^{*} Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 5.3. Transition after Test No. 608331-01-4.

Figure 5.4. Test Vehicle after Test No. 608331-01-4.

Figure 5.5. Interior of Test Vehicle after Test No. 608331-01-4.

Occupant Risk Factor	Value	Time
Occupant Impact Velocity (OIV)		
Longitudinal	22.6 ft/s	at 0.0824 s on left side of interior
Lateral	30.5 ft/s	at 0.0824 s on left side of interior
Occupant Ridedown Accelerations		
Longitudinal	14.5 g	0.0975 - 0.1075 s
Lateral	9.2 g	0.0940 - 0.1040 s
Theoretical Head Impact Velocity (THIV)	41.0 km/h 11.4 m/s	at 0.0805 s on left side of interior
Acceleration Severity Index (ASI)	2.17	0.0496 - 0.0996 s
Maximum 50-ms Moving Average		
Longitudinal	-12.0 g	0.0292 - 0.0792 s
Lateral	16.8 g	0.0303 - 0.0803 s
Vertical	-3.6 g	0.0850 - 0.1350 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	12°	1.9987 s
Pitch	3°	2.0000 s
Yaw	63°	1.5386 s

Table 5.2. Occupant KISK Factors for Test No. 000551-01-4	Tabl	le 5.2.	Occupant	Risk	Factors	for	Test No.	608331-01-4
---	------	---------	----------	------	---------	-----	----------	-------------

Impact Angle

Exit Angle Box

General Information		Impact Conditions	
Test Agency	Texas A&M Transportation Institute (TTI)	Speed	60.9 mi/h
Test Standard Test No	MASH Test 3-20	Angle	26.5°
TTI Test No	608331-01-4	Location/Orientation	6.06 ft upstream of
Test Date	2019-09-02		end of curb/deck
Test Article		Impact Severity	61 kip-ft
Туре	Transition		
Name	2019 MASH 2-Tube Bridge Rail Thrie	Exit Conditions	
	Beam Transition	Speed	39.5 mi/h
Installation Length	207 ft 31/2 inches (incl 154 ft of deck)	Trajectory/Heading Angle	7.1° / 14.0°
Material or Key Elements	Thrie beam guardrail terminal to 38-inch	Occupant Risk Values	
-	tall 2-tube bridge rail, 34¾ inch tall thrie	Longitudinal OIV	22.6 ft/s
	beam guardrail section, symmetrical	Lateral OIV	30.5 ft/s
	W-beam to thrie beam terminal, 25 ft of	Longitudinal Ridedown	14.5 g
	W-beam guardrail	Lateral Ridedown	9.2 g
Soil Type and Condition	AASHTO M147 Grading B Soil (crushed	THIV	41.0 km/h
	limestone), Damp	ASI	2.17
Test Vehicle		Max. 0.050-s Average	
Type/Designation	1100C	Longitudinal	-12.0 g
Make and Model	2007 Kia Rio	Lateral	16.8 g
Curb	2470 lb	Vertical	-3.6 g
Test Inertial	2446 lb		
Dummy	165 lb		
Gross Static	2611 lb		

8

Post-Impact Trajectory

A -

6

★B

9

C -14

3

4-space W-beam Guardrail 12 gauge - RWM04a

Stopping Distance	145 ft downstream
Vahiela Stability	137 It two trainc
venicle Stability	
Maximum Yaw Angle	63°
Maximum Pitch Angle	3°
Maximum Roll Angle	12°
Vehicle Snagging	No
Vehicle Pocketing	No
Test Article Deflections	
Dynamic	3.5 inches
Permanent	1.25 inches
Working Width	26.1 inches
Height of Working Width	34.75 inches
Vehicle Damage	
VDS	11LFQ6
CDC	11FLEW5
Max. Exterior Deformation	14.0 inches
OCDI	FL0010000
Max. Occupant Compartment	
Deformation	3.5 inches

Figure 5.6. Summary of Results for MASH Test 3-20 on 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition.

Chapter 6. MASH TEST 3-21 AT TRANSITION FROM THRIE BEAM TO BRIDGE RAIL (CRASH TEST NO. 608331-01-5)

6.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 3-21 involves a 2270P vehicle weighing 5000 lb ±110 lb impacting the CIP of the transition at an impact speed of 62 mi/h ±2.5 mi/h and an angle of $25^{\circ} \pm 1.5^{\circ}$. The target CIP for *MASH* Test 3-21 on the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition was 7.00 ft ±1 ft upstream of the end of the concrete curb/deck. Figure 6.1 depicts the target CIP.

Figure 6.1. 2019 Transition/Test Vehicle Geometrics for Test No. 608331-01-5.

The 2013 RAM 1500 pickup truck used in the test weighed 5050 lb, and the actual impact speed and angle were 61.9 mi/h and 25.3°, respectively. The actual impact point was 6.52 ft upstream of the end of the concrete curb/deck. Minimum target IS was 106 kip-ft, and actual IS was 118 kip-ft.

6.2 WEATHER CONDITIONS

The test was performed on the morning of September 5, 2019. Weather conditions at the time of testing were as follows: wind speed: 2 mi/h; wind direction: 244° (vehicle was traveling at magnetic heading of 335°); temperature: $91^{\circ}F$; relative humidity: 57 percent.

6.3 TEST VEHICLE

Figures 6.1 and 6.2 show the 2013 RAM 1500 pickup truck used for the crash test. The vehicle's test inertia weight was 5050 lb, and its gross static weight was 5215 lb. The height to the lower edge of the vehicle bumper was 11.75 inches, and height to the upper edge of the bumper was 27.0 inches. The height to the vehicle's center of gravity was 28.25 inches. Tables E.1 and E.2 in Appendix E1 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 6.2. Test Vehicle before Test No. 608331-01-5.

6.4 TEST DESCRIPTION

The test vehicle was traveling at an impact speed of 61.9 mi/h when it contacted the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition 6.52 ft upstream of the end of the concrete curb/deck at an impact angle of 25.3°. Table 6.1 lists events that occurred during Test No. 608331-01-5. Figures E.1 and E.2 in Appendix E2 present sequential photographs during the test.

TIME (s)	EVENTS
0.000	Vehicle contacts transition
0.035	Vehicle begins to redirect
0.149	Right front tire leaves the pavement
0.210	Vehicle traveling parallel with transition
0.207	Left rear bumper and corner of vehicle contacts transition
0.377	Vehicle loses contact with transition while traveling at 47.9 mi/h,
	trajectory of 6.9°, and heading of 6.5°

Table 6.1. Events during Test No. 608331-01-5.

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The test vehicle exited within the exit box criteria defined in *MASH*. Brakes on the vehicle were applied at 3.0 s after impact, and the vehicle subsequently came to rest 174 ft downstream of the impact point.

6.5 DAMAGE TO TEST INSTALLATION

Figure 6.3 shows the damage to the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition. There was no visible indication of movement at posts 1 through 10. The soil was disturbed around post 10, and posts 10, 11, and 12 were leaning 89° toward the field side. There was a 0.5-inch gap in the soil on the traffic side of post 12. Posts 13-15 were leaning slightly toward field side, posts 13 and 15 had an 0.5-inch gap between the posts and soil on the traffic

and field sides, and post 14 on the field side only. Working width^{*} was 26.9 inches, and height of working width was 34.75 inches. Maximum dynamic deflection during the test was 6.1 inches, and maximum permanent deformation was 3.75 inches.

Figure 6.3. Transition after Test No. 608331-01-5.

^{*} Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

6.6 DAMAGE TO TEST VEHICLE

Figure 6.4 shows the damage sustained by the vehicle. The front bumper, hood, grill, radiator and support, left front fender, left front tire and rim, left upper and lower A-arms, left front door and window glass, left front floor pan, left rear door, left rear cab corner, left rear exterior bed, left rear rim, and rear bumper were damaged. No fuel tank damage was observed. Maximum exterior crush to the vehicle was 15.0 inches in the side plane at the left front at bumper height. Maximum occupant compartment deformation was 4.0 inches in the left side kick panel. Figure 5.5 shows the interior of the vehicle. Tables E.3 and E.4 in Appendix E1 provide exterior crush and occupant compartment measurements.

Figure 6.4. Test Vehicle after Test No. 608331-01-5.

Figure 6.5. Interior of Test Vehicle after Test No. 608331-01-5.

6.7 OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 6.2. Figure E.3 in Appendix E3 shows the vehicle angular displacements, and Figures E.4 through E.6 in Appendix E4 show acceleration versus time traces. Figure 6.6 summarizes pertinent information from the test.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	20.3 ft/s	at 0 1075 a an left side of interior
Lateral	23.6 ft/s	at 0.1075 s on left side of interior
Occupant Ridedown Accelerations		
Longitudinal	7.4 g	0.1313 - 0.1413 s
Lateral	13.0 g	0.2459 - 0.2559 s
THIV	9.3 m/s	at 0.1042 s on left side of interior
ASI	1.51	0.0598 - 0.1098 s
Maximum 50-ms Moving Average		
Longitudinal	-8.7 g	0.0477 - 0.0977 s
Lateral	10.9 g	0.0386 - 0.0886 s
Vertical	-4.7 g	0.0572 - 0.1072 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	8°	1.1616 s
Pitch	11°	1.9957 s
Yaw	43°	0.8706 s

Table 6.2. Occupant Risk Factors for Test No. 608331-01-5.

•	`
ų,	\mathbf{J}
-	\geq

Impact Angle

Gross Static 5215 lb

<u>-</u>		
General Information		Impact Conditions
Test Agency	Texas A&M Transportation Institute (TTI)	Speed 61.9 mi/h
Test Standard Test No	MASH Test 3-21	Angle 25.3°
TTI Test No	608331-01-5	Location/Orientation 6.52 ft upstream of
Test Date	2019-09-05	end of curb/deck
Test Article		Impact Severity 118 kip-ft
Туре	Transition	
Name	2019 MASH 2-Tube Bridge Rail Thrie	Exit Conditions
	Beam Transition	Speed 47.9 mi/h
Installation Length	207 ft 31/2 inches (incl 154 ft of deck)	Trajectory/Heading Angle 6.9° / 6.5°
Material or Key Elements	Thrie beam guardrail terminal to 38-inch	Occupant Risk Values
-	tall 2-tube bridge rail, 34¾ inch tall thrie	Longitudinal OIV 20.3 ft/s
	beam guardrail section, symmetrical	Lateral OIV 23.6 ft/s
	W-beam to thrie beam terminal, 25 ft of	Longitudinal Ridedown 7.4 g
	W-beam guardrail	Lateral Ridedown 13.0 g
Soil Type and Condition	AASHTO M147 Grading B Soil (crushed	THIV 33.5 km/h
	limestone), Damp	ASI 1.51
Test Vehicle		Max. 0.050-s Average
Type/Designation	2270P	Longitudinal8.7 g
Make and Model	2013 RAM 1500 Pickup	Lateral 10.9 g
Curb	5168 lb	Vertical4.7 g
Test Inertial	5050 lb	
Dummy	165 lb	

Heading Angle

-Exit Angle Box

Post-Impact Trajectory

3

4-space W-beam Guardrail-12 gauge - RWM04a

A 🔫

	Stopping Distance	174 ft downstream
		Aligned w/traffic face
f	Vehicle Stability	
	Maximum Yaw Angle	43°
	Maximum Pitch Angle	11°
	Maximum Roll Angle	8°
	Vehicle Snagging	No
	Vehicle Pocketing	No
	Test Article Deflections	
	Dynamic	6.1 inches
	Permanent	3.75 inches
	Working Width	26.9 inches
	Height of Working Width	34.75 inches
	Vehicle Damage	
	VDS	11LFQ5
	CDC	11FLEW4
	Max. Exterior Deformation	15.0 inches
	OCDI	FL0011000
	Max. Occupant Compartment	
	Deformation	4.0 inches

₿

9

C-14

Figure 6.6. Summary of Results for MASH Test 3-21 on 2019 MASH 2-Tube Transition from Thrie Beam to Bridge Rail.
Chapter 7. *MASH* TEST 3-21 AT TRANSITION FROM W-BEAM TO THRIE BEAM (CRASH TEST NO. 608331-01-6)

7.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 3-21 involves a 2270P vehicle weighing 5000 lb ±110 lb impacting the CIP of the transition at an impact speed of 62 mi/h ±2.5 mi/h and an angle of $25^{\circ} \pm 1.5^{\circ}$. The target CIP for *MASH* Test 3-21 on the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition was 7.3 ft ±1 ft upstream of the centerline of post 7. Figure 7.1 depicts the target CIP.

Figure 7.1. Transition/Test Vehicle Geometrics for Test No. 608331-01-6.

The 2013 RAM 1500 used in the test weighed 5038 lb, and the actual impact speed and angle were 62.6 mi/h and 24.9°. The actual impact point was 7.5 ft upstream of the centerline of post 7. Minimum target IS was 106 kip-ft, and actual IS was 117 kip-ft.

7.2 WEATHER CONDITIONS

The test was performed on the morning of December 19, 2019. Weather conditions at the time of testing were as follows: wind speed: 1 mi/h; wind direction: 140° (vehicle was traveling at magnetic heading of 335°); temperature: 45° F; relative humidity: 66 percent.

7.3 TEST VEHICLE

Figure 7.2 shows the 2013 RAM 1500 pickup truck used for the crash test. The vehicle's test inertia weight was 5038 lb, and its gross static weight was 5038 lb. The height to the lower edge of the vehicle bumper was 11.75 inches, and height to the upper edge of the bumper was 27.0 inches. The height to the vehicle's center of gravity was 29.0 inches. Tables F.1 and F.2 in Appendix F1 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 7.2. Test Vehicle before Test No. 608331-01-6.

7.4 TEST DESCRIPTION

Table 7.1 lists events that occurred during Test No. 608331-01-6. Figures F.1 and F.2 in Appendix F2 present sequential photographs during the test.

TIME (s)	EVENTS
0.000	Vehicle contacts transition
0.017	Post 5 and 6 begin to deflect toward protected side
0.028	Vehicle begins to redirect
0.028	Post 7 begins to deflect toward protected side
0.053	Post 4 begins to rotate counter-clockwise
0.125	Right front tire lifts off pavement
0.203	Right rear tire lifts off pavement
0.284	Vehicle is traveling parallel with transition
0.609	Vehicle loses contact with transition while traveling at 31.8 mi/h,
	trajectory of 23.3°, and heading of 24.7°
0.776	Right front tire makes contact with pavement
0.885	Left rear tire makes contact with pavement

Table 7.1. Events during Test No. 608331-01-6.

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The test vehicle exited within the exit box criteria defined in *MASH*. Brakes on the vehicle were applied at 3.5 s after impact. After loss of contact with the barrier, the vehicle came to rest 133 ft downstream of the impact and 2 ft toward traffic lanes.

7.5 DAMAGE TO TEST INSTALLATION

Figures 7.3 through 7.5 show the damage to the transition. The metal rail element released from posts 1-5 and 7-10. Post 1 was pulled downstream 0.75 inch and post 2 was split.

Post 5 was leaning toward field side 88°, and there was a gap between the soil and post of 0.5 inch on the field side and 1.0 inch on the traffic side. Post 6 was leaning toward field side 76°, and there was a gap between the soil and post of 1.5 inches on the field side and 6.0 inches on the traffic side. Posts 7 through 9 were pushed toward field side and downstream. Post 10 was leaning toward field side 80°, and the gap between the soil and post was 3.0 inches on the field side 84°, and the gap between the soil and post 12 was leaning toward field side 87°, and the gap between the soil and post 12 was leaning toward field side 87°, and the gap between the post and soil was 0.13 inches on the traffic side and 1.5 inches on the field side 0.75 inch. Post 13 was leaning toward field side 88°, and the post was pushed toward field side 0.75 inch. Post 14 was pushed toward field side 0.5 inch, and the soil around post 15 was disturbed only. Working width* was 44.7 inches, and height of working width was 61.8 inches.

Figure 7.3. Transition after Test No. 608331-01-6.

^{*} Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 7.4. Posts 1 through 5 after Test No. 608331-01-6.

Figure 7.5. Posts 6 through 15 after Test No. 608331-01-6.

7.6 DAMAGE TO TEST VEHICLE

Figure 7.6 shows the damage sustained by the vehicle. The front bumper, radiator and support, hood, grill, left front fender, left frame rail, left upper and lower control arms, left front tire and rim, left front door, left rear exterior bed, left rear rim, and rear bumper were damaged. No fuel tank damage was observed. The windshield showed stress cracks radiating upward and inward from the lower left A-post. Maximum exterior crush to the vehicle was 20.0 inches in the side plane at the left front corner at bumper height. No occupant compartment deformation or intrusion was observed. Figure 7.7 shows the interior of the vehicle. Tables F.3 and F.4 in Appendix F1 provide exterior crush and occupant compartment measurements.

Figure 7.6. Test Vehicle after Test No. 608331-01-6.

Figure 7.7. Interior of Test Vehicle after Test No. 608331-01-6.

7.7 OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 7.2. Figure F.3 in Appendix F3 shows the vehicle angular displacements, and Figures F.4 through F.6 in Appendix F4 show acceleration versus time traces. Figure 7.8 summarizes pertinent information from the test.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	24.9 ft/s	at 0,1420 a on laft side of interior
Lateral	16.4 ft/s	at 0.1439's on left side of interior
Occupant Ridedown Accelerations		
Longitudinal	10.7 g	0.1467 - 0.1567 s
Lateral	9.8 g	0.2125 - 0.2225 s
THIV	8.6 m/s	at 0.1373 s on left side of interior
ASI	1.02	0.2115 - 0.2615 s
Maximum 50-ms Moving Average		
Longitudinal	-9.1 g	0.1163 - 0.1663 s
Lateral	7.7 g	0.1863 - 0.2363 s
Vertical	-4.6 g	0.7919 - 0.8419 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	15°	0.7865 s
Pitch	14°	0.8046 s
Yaw	53°	0.8341 s

 Table 7.2. Occupant Risk Factors for Test No. 608331-01-6.

General Information

General Information		Impact Conditions
Test Agency	Texas A&M Transportation Institute (TTI)	Speed 62.6 mi/h
Test Standard Test No	MASH Test 3-21	Angle 24.9°
TTI Test No	608331-01-6	Location/Orientation 7.5 ft upstream of
Test Date	2019-12-19	post 7
Test Article		Impact Severity 117 kip-ft
Туре	Transition	
Name	2019 MASH 2-Tube Bridge Rail Thrie	Exit Conditions
Installation Length	Beam Transition	Speed 31.8 mi/h
Material or Key Elements	207 ft 31/2 inches (incl 154 ft of deck)	Trajectory/Heading Angle 23.3° / 24.7°
	Thrie beam guardrail terminal to 38-inch	Occupant Risk Values
	tall 2-tube bridge rail, 34¾ inch tall thrie	Longitudinal OIV 24.9 ft/s
	beam guardrail section, symmetrical	Lateral OIV 16.4 ft/s
	W-beam to thrie beam terminal, 25 ft of	Longitudinal Ridedown 10.7 g
	W-beam guardrail	Lateral Ridedown 9.8 g
Soil Type and Condition	AASHTO M147 Grading B Soil (crushed	THIV 8.6 m/s
	limestone), Damp	ASI 1.02
Test Vehicle		Max. 0.050-s Average
Type/Designation	2270P	Longitudinal9.1 g
Make and Model	2013 RAM 1500 Pickup	Lateral 7.7 g
Curb	4890 lb	Vertical4.6 g
Test Inertial	5038 lb	
Dummy	No dummy	
Gross Static	5038 lb	

Post-Impact Trajectory

133 ft downstream
2 ft twd traffic
2 it two traine
53°
14°
15°
No
No
33.6 inches
28.0 inches
44.7 inches
61.8 inches
11LFQ5
11FLEW4
20.0 inches
LF0000000
None

Figure 7.8. Summary of Results for MASH Test 3-21 2019 MASH 2-Tube Transition from W-Beam to Thrie Beam.

Chapter 8. SUMMARY AND CONCLUSIONS

8.1 ASSESSMENT OF TEST RESULTS

The crash tests reported herein were performed in accordance with *MASH* TL-3 transitions. An assessment of each test based on the applicable safety evaluation criteria for *MASH* TL-3 transitions is provided in Tables 8.1 through 8.3.

8.2 CONCLUSIONS

Table 8.4 shows the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition performed acceptably as reported herein for a *MASH* TL-3 transition.

Table 8.1. Performance Evaluation Summary for MASH Test 3-20 on 2019 MASH 2-Tube Bridge Rail Thrie BeamTransition.

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 608331-01-4	Test Date: 2019-09-02
	MASH Test 3-20 Evaluation Criteria	Test Results	Assessment
<u>Stru</u> A.	actural Adequacy Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle	The 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition contained and redirected the	
	should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection was 3.5 inches.	Pass
<u>Occ</u>	cupant Risk		
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or present hazard to others in the area.	Pass
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.	Maximum occupant compartment deformation was 3.5 inches in the left kick panel area.	
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 12° and 3°, respectively.	Pass
Н.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.	Longitudinal OIV was 22.6 ft/s, and lateral OIV was 30.5 ft/s.	Pass
Ι.	The occupant ridedown accelerations should satisfy the following limits: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	Longitudinal occupant ridedown acceleration was 14.5 g, and lateral occupant ridedown acceleration was 9.2 g.	Pass

Table 8.2. Performance Evaluation Summary for MASH Test 3-21 on 2019 MASH 2-Tube Bridge Rail Thrie BeamTransition from Thrie Beam to Bridge Rail.

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 608331-01-5	Test Date: 2019-09-05
	MASH Test 3-21 Evaluation Criteria	Test Results	Assessment
Str	uctural Adequacy		
А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	The 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection was 6.1 inches.	Pass
<u>Occ</u>	cupant Risk		
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or present hazard to others in the area.	Pass
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.	Maximum occupant compartment deformation was 4.0 inches in the left front kick panel.	
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 8° and 11°, respectively.	Pass
Н.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.	Longitudinal OIV was 20.3 ft/s, and lateral OIV was 23.6 ft/s.	Pass
Ι.	The occupant ridedown accelerations should satisfy the following limits: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	Longitudinal occupant ridedown acceleration was 7.4 g, and lateral occupant ridedown acceleration was 13.0 g.	Pass

Test Agency: Texas A&M Transportation Institute Test No.: 608331-01-6 Test Date: 2019-12-19 MASH Test 3-21 Evaluation Criteria **Test Results** Assessment **Structural Adequacy** Test article should contain and redirect the vehicle or The 2019 MASH 2-Tube Bridge Rail Thrie Α. bring the vehicle to a controlled stop; the vehicle Beam Transition contained and redirected the should not penetrate, underride, or override the 2270P vehicle. The vehicle did not penetrate, Pass installation although controlled lateral deflection of underride, or override the installation. Maximum the test article is acceptable. dynamic deflection was 33.6 inches. **Occupant Risk** D. Detached elements, fragments, or other debris from No detached elements, fragments, or other debris the test article should not penetrate or show potential were present to penetrate or show potential for for penetrating the occupant compartment, or present penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or hazard to others in the area. Pass personnel in a work zone. Deformations of, or intrusions into, the occupant No occupant compartment deformation or compartment should not exceed limits set forth in intrusion was observed. Section 5.2.2 and Appendix E of MASH. *F*. The vehicle should remain upright during and after The 2270P vehicle remained upright during and collision. The maximum roll and pitch angles are not after the collision event. Maximum roll and pitch Pass to exceed 75 degrees. angles were 15° and 14° , respectively. H. Occupant impact velocities (OIV) should satisfy the Longitudinal OIV was 24.9 ft/s, and lateral OIV following limits: Preferred value of 30 ft/s, or was 16.4 ft/s. Pass maximum allowable value of 40 ft/s. The occupant ridedown accelerations should satisfy Longitudinal occupant ridedown acceleration I. was 10.7 g, and lateral occupant ridedown the following limits: Preferred value of 15.0 g, or Pass maximum allowable value of 20.49 g. acceleration was 9.8 g.

Table 8.3. Performance Evaluation Summary for MASH Test 3-21 on 2019 MASH 2-Tube Bridge Rail Thrie BeamTransition from W-Beam to Thrie Beam.

Table 8.4. Assessment Summary for MASH TL-3 Testing on 2019 MASH 2-TubeBridge Rail Thrie Beam Transition.

Evaluation Factors	Evaluation Criteria	Test No. 608331-01-4	Test No. 608331-01-5	Test No. 608331-01-6
Structural Adequacy	А	S	S	S
	D	S	S	S
Occupant	F	S	S	S
Risk	Н	S	S	S
	Ι	S	S	S
MASH Test No.		MASH Test 3-20	MASH Test 3-21 at Transition to Bridge Rail	MASH Test 3-21 at Transition to Thrie Beam
Pass	/Fail	Pass	Pass	Pass

Key: S = Satisfactory

U = Unsatisfactory

NA = Not applicable

This page intentionally left blank.

REFERENCES

- C. E. Buth, W. F. Williams, W. L. Menges, and S. K. Schoeneman. NCHRP Report 350 Test 4-10 of the Alaska Multi-State Bridge Rail, Test Report No.; 404311-1, Texas A&M Transportation Institute, College Station, TX, December 1998.
- C. E. Buth, W. F. Williams, W. L. Menges, and S. K. Schoeneman. NCHRP Report 350 Test 4-11 of the Alaska Multi-State Bridge Rail, Test Report No.; 404311-2, Texas A&M Transportation Institute, College Station, TX, December 1998.
- 3. C. E. Buth, W. F. Williams, W. L. Menges, and S. K. Schoeneman. *NCHRP Report 350 Test 4-12 of the Alaska Multi-State Bridge Rail*, Test Report No.; 404311-3, Texas A&M Transportation Institute, College Station, TX, February 1998.
- C. E. Buth, W. F. Williams, W. L. Menges, and S. K. Schoeneman. NCHRP Report 350 Test 4-21 of the Alaska Multi-State Bridge Rail Thrie Beam Transition, Test Report No.; 404311-5, Texas A&M Transportation Institute, College Station, TX, July 1999.
- C. E. Buth, W. F. Williams, W. L. Menges, and S. K. Schoeneman. NCHRP Report 350 Test 4-22 of the Alaska Multi-State Bridge Rail Thrie Beam Transition, Test Report No.; 404311-6, Texas A&M Transportation Institute, College Station, TX, July 1999.
- C. E. Buth, W. F. Williams, W. L. Menges, and S. K. Schoeneman. NCHRP Report 350 Test 3-21 of the Alaska Multi-State Bridge Rail W-Beam Transition, Test Report No.; 404311-7, Texas A&M Transportation Institute, College Station, TX, July 2000.
- C. E. Buth, W. F. Williams, W. L. Menges, and S. K. Schoeneman. NCHRP Report 350 Test 3-20 of the Alaska Multi-State Bridge Rail W-Beam Transition, Test Report No.; 404311-8, Texas A&M Transportation Institute, College Station, TX, August 2000.
- 8. H. E. Ross, D. L. Sicking, R. A. Zimmer, and J. D. Michie, *Recommended Procedures for the Safety Performance Evaluation of Highway Features*, National Cooperative Highway Research Program Report 350, Transportation Research Board, National Research Council, Washington, D.C., 1993.
- 9. W. F. Williams, W. L. Menges, and Bill L. Griffith. *MASH TL-4 Evaluation of 2019 MASH 2-Tube Bridge Rail*. Test Report No. 608331-01-1A-2-3. Texas A&M Transportation Institute, College Station, TX, April 2019.
- 10. AASHTO. *Manual for Assessing Roadside Safety Hardware, Second Edition.* 2016, American Association of State Highway and Transportation Officials: Washington, D.C.
- 11. AASHTO/FHWA Joint Implementation Agreement for Manual for Assessing Safety Hardware (MASH). <u>https://safety.fhwa.dot.gov/roadway_dept/countermeasures/reduce_crash_severity/docs/</u> <u>memo_joint_implementation_agmt.pdf</u>, January 7, 2016, last access January 2019.

This page intentionally left blank.

Scale 1:10

limestone road base, compacted to MASH standard.

2a. Backfill Post holes with AASHTO M147-65(2004), grade B crushed

2C. All steel components, including hardware, shall be galvanized.

2b. Recessed Guardrail Nuts on all 5/8" Bolts unless otherwise indicated.

Q:\Accreditation-17025-2017\EIR-000 Project Files\608331- Alaska - Williams\Drafting, 608331 4-5\608331 4-6 Drawing

±21-3/4"

- 24"

Short Tubing Blockout

Isometric View

@ Posts 7 and 8

Roadside Safety and Physical Security Division -Proving Ground

Sheet 2 of 13 Transition - Plan

2020-03-24

Bolt, 5/8 x 1 1/2" hex

n (r

14 D-

Bolt, 5/8 x 1 1/2" hex

10

Thrie-beam Terminal Connector

RTE01b

Texas A&M

Drawn by GES Scale 1:100

Transportation Institute

Project #608331 4-6 Alaska Bridge Transition

TR No. 608331-4-6

2020-03-26

52

2020-03-26

SPECIFICATIONS

The geometry and material specifications for this oval shoulder button-headed bolt and hex nut are found in AASHTO M 180. The bolt shall have 5/8-11 [M16x2] threads as defined in ANSI B1.1 [ANSI B1.13M] for Class 2A [6g] tolerances. Bolt material shall conform to ASTM A307 Grade A [ASTM F 568M Class 4.6], with a tensile strength of 60 ksi [400 MPa] and yield strength of 36 ksi [240 MPa]. Material for corrosion-resistant bolts shall conform to ASTM A325 Type 3 [ASTM F 568M Class 8.8.3], with tensile strength of 120 ksi [830 MPa] and yield strength of 92 ksi [660 MPa]. This bolt material has corrosion resistance comparable to ASTM A588 steels. Metric zinc-coated bolt heads shall be marked as specified in ASTM F 568 Section 9 with the symbol "4.6."

Nuts shall have ANSI B1.1 Class 2B [ANSI B1.13M Class 6h] 5/8-11 [M16x2] threads. The geometry of the nuts, with the exception of the recess shown in the drawing, shall conform to ANSI B18.2.2 [ANSI B18.2.4.1M Style 1] for zinc-coated hex nuts (shown in drawing) and ANSI B18.2.2 [ANSI B18.2.4.6M] for heavy hex corrosion-resistant nuts (not shown in drawing). Material for zinc-coated nuts shall conform to the requirements of AASHTO M 291 (ASTM A 563) Grade A [AASHTO M 291M (ASTM A 563M) Class 5], and material for corrosion-resistant nuts shall conform to the requirements of AASHTO M 291 (ASTM A 563M) Class 8S3].

When zinc-coated bolts and nuts are required, the coating shall conform to either AASHTO M 232 (ASTM A 153/A 153M) for Class C or AASHTO M 298 (ASTM B 695) for Class 50. Zinc-coated nuts shall be tapped over-size as specified in AASHTO M 291 (ASTM A 563) [AASHTO M 291M (ASTM A 563M)], except that a diametrical allowance of 0.020 inch [0.510 mm] shall be used instead of 0.016 inches [0.420 mm].

	Stress Area of	Min. Bolt
Designator	Threaded Bolt Shank	Tensile Strength
	$(in^2 [mm^2])$	(kips [kN])
FBB01-05	0.226 [157.0]	13.6 [62.8]

Dimensional tolerances not shown or implied are intended to be those consistent with the proper functioning of the part, including its appearance and accepted manufacturing practices.

INTENDED USE

These bolts and nuts are used in numerous guardrail and median barrier designs.

GUARDRAIL BOLT AND RECESSED NUT

FBB01-05			
SHEET NO.	DATE		
2 of 2	5/2/2018		

TR No. 608331-4-6

85

2020-03-26

SPECIFICATIONS

Corrugated sheet thrie beam guardrail shall conform to the current requirements of AASHTO M180. The section shall be manufactured from sheets with a nominal width of 29¹/₂" [750]. RTM08a shall conform to AASHTO M180 Class A and RTM08b shall conform to Class B. Thrie beams may be either Type I or II (zinc-coated) or Type IV (corrosion resistant steel). Corrosion resistant steel should conform to ASTM A606 for Type IV material and shall not be zinc-coated, painted or otherwise treated. Inertial properties are calculated for the whole cross-section without a reduction for the splice bolt holes or slots.

Designator	Area	Ix	I y	S _x	S y
	in. ² [10 ³ mm ²]	in. ⁴ [10 ⁶ mm ⁴]	in. ⁴ [10 ⁶ mm ⁴]	in. ³ [10 ³ mm ³]	in. ⁴ [10 ³ mm ³]
RTM08a RTM08b	3.16 [2.0] 4.03 [2.6]	3.8 [1.6] 4.8 [2.0]		2.22 [36.4] 2.87 [47.0]	

Dimensional tolerances not shown or implied are intended to be those consistent with the proper functioning of the part, including its appearance and accepted manufacturing practices.

INTENDED USE

The 8-space three beam guardrail is used in the W-beam to three beam transition with standard posts (STG03a-b).

8-SPACE THRIE-BEAM GUARDRAIL

RTM08a-b	
SHEET NO.	DATE:
2 of 2	12/6/2016

		SPE	CIFICATION	s			
Corrugated she section shall be shall conform to protection may resistant steel s painted or othe a reduction for	et steel beams e manufactured to AASHTO M be either Typ should conform rwise treated. the splice bol	s shall conform d from sheets v M180 Class A a be II (zinc-coate n to ASTM A6 Inertial propert t holes.	to the current with a nominal and RWM04b ed) or Type IV 006 for Type IV erties are calcul	requirements of width of 483 is shall conform (corrosion res material and ated for the w	of AASHTO M1 mm. Guardrail i to Class B. Cor sistant steel). Co shall not be zind hole cross-sectio	80. The RWM04a rosion prrosion c-coated, n without	(~~
Designator	Area (10 ³ mm ²)	I_x (10 ⁶ mm ⁴)	I _y (10 ⁶ mm ⁴)	S _x (10 ³ mm ³)	S _y (10 ³ mm ³)		
RWM04a-b	1.3	1.0		23			
Dimensional to functioning of	lerances not s the part, inclu	hown or implie ding its appear	ed are intended ance and accept	to be those co ted manufactu	nsistent with the ring practices.	e proper	
This corrugated	i shaat staal h	IN]	FENDED USE	in transition a	atoms STDM) on	A STEO2	
or when a redu	ced post space	ng is desired in	n the SGR02, S	SGR04a-b, SG	M02, and $SGM($)4a-b.	
				:			
							<i>[</i>]
				,			(
				•			
	4-SF	PACE W-I	BEAM G	JARDRA	IL.		
RWMO)4a-b						(
SKEET NO.	DATE	1					
2 of 2	04-01-95		1914	1917	Canal .		

SPECIFICATIONS

Blockouts shall be made of timber with a stress grade of at least 1160 psi [8 MPa]. Grading shall be in accordance with the rules of the West Coast Lumber Inspection Bureau, Southern Pine Inspection Bureau, or other appropriate timber association. Timber for blockouts shall be either rough-sawn (unplaned) or S4S (surfaced four sides) with nominal dimensions indicated. The variation in size of blockouts in the direction parallel to the axis of the bolt holes shall not be more than $\pm \frac{1}{4}$ inch [6 mm]. Only one type of surface finish shall be used for posts and blockouts in any one continuous length of guardrail.

All timber shall receive a preservation treatment in accordance with AASHTO M 133 after all end cuts are made and holes are drilled.

Dimensional tolerances not shown or implied are intended to be those consistent with the proper functioning of the part, including its appearance and accepted manufacturing practices.

INTENDED USE

Blockout PDB01a is used with wood post PDE01 or PDE02 in the SGR04b strong-post W-beam guardrail and the SGM04b median barrier. Blockout PDB01b is routed to be used with steel post PWE01 or PWE02 in the SGR04c guardrail and the SGM04a median barrier.

	W -
ΒΠΒΛ	1.a. h
rdbu	1 a- D
SHEET NO.	DATE
2 of 2	7/06/2005

APPENDIX B. SUPPORTING CERTIFICATION DOCUMENTS

8.0000" X 96.0000"	HEAT: 375904		CERTIFIC	ATE OF A	0-9 Page:1
STEEL PROCESSI	NG	т	Cert Number est Reference	38789-5 52133	6/18/2019
RIPLE-S STEEL SUPPLY CO. 000 JENSEN DRIVE IOUSTON, TX 77026			Issued BESHERT JOINT VE STEEL W TRIPLES 15355 JAC HOUSTON	from STEEL PROCESSING NTURE OF AREHOUSE CO & STEEL HOLDINGS INC STEEL HOLDINGS INC STRO PORT GOLLEVA N, TX 77015	RO
old To: TRIPLE-S STEEL SUPP hip To: TRIPLE-S STEEL, 6000 ustomer 100200/0 Y ur Order 19485-1-1 F	LY CO., 6000 JENSEN DRIVE, HOUSTON, JENSEN DRIVE, HOUSTON, TX 77026 Reference our Order HOU-185586 (6/12/2019) acking List 38789-1 (6/18/2019)	TX 77026	- 		
EMPERED LEVELED PLATE A36/SA36 5000* x 48* x 96*	Product Information Heat J75904	1 2 2 2 2 2	ag 3566C 3666D 3666E 3866F	Pcs 15 15 15 10 55	LBS 9,805 9,805 9,805 6,536 35,951
C Mn 0.0466 0.80 Cu Al 0.07 0.016	Si P S 0.022 0.013 0.003 V TI Cb 0.001 0.001 0.013	Cr 1 0.02 CbV 0.014	C.E.: 0.1	935 Ní .04	D.I.: 0 Mo 0:01
	Physical Tests				
YIELD - H (T) 55.7 KSI	TENSILE - H (T) ELO	NGATION - H (T)		YIELD . M (n
YIELD - H (T) 55.7 KSI TENSILE - M (T) 62.6 KSI	TENSILE - H (T) ELO 63.2 KSI ELONGATION - M (T) 34.5 %	NGATION - H (T) 34.5 %		YIELD - M (56.7 KSI	<u>ת</u> אי
YIELD - H (T) 55.7 KSI TENSILE - M (T) 62.6 KSI oduci of Coil puntry of Origin: Korea	TENSILE - H (T) ELO 63.2 KSI 63.2 KSI ELONGATION - M (T) 34.5 %	NGATION - H (T) 34.5 %		YIELD - M (56.7 KSI	<u>n</u>
YIELD - H (T) 55.7 KSI TENSILE - M (T) 62.6 KSI oduct of Coil wortry of Origin: Korea	TENSILE - H (T) ELO 63.2 KSI ELONGATION - M (T) 34.5 % 34.5 %	NGATION - H (T) 34.5 %		YIELD - M (56.7 KSI	<u>n</u>
YIELD - H (T) 55,7 KSI TENSILE - M (T) 62,6 KSI oduct of Coil buntry of Origin: Korea	TENSILE - H (T) ELO 63.2 KSI 1 ELONGATION - M (T) 34.5 %	NGATION - H (T) 34.5 %		YIELO - M (56.7 KSI	<u>n</u>
YIELD - H (T) 55.7 KSI TENSILE - M (T) 62.6 KSI oduci of Coli Junitry of Origin: Korea	TENSILE - H (T) ELO 63.2 KSI ELONGATION - M (T) 34.5 % 34.5 %	NGATION - H (T) 34.5 %		YIELO - M (56.7 KSI	<u>n</u>
YIELD - H (T) 55.7 KSI TENSILE - M (T) 62.6 KSI oduci of Coil Junitry of Origin: Korea	TENSILE - H (T) ELO 63.2 KSI ELONGATION - M (T) 34.5 % 34.5 %	NGATION - H (T) 34.5 %		YIELO - M (56.7 KSI	

PLATE A36 TEMPER LEVELED 1/2 X 48.0000" X 96.0000" Our Orger 19485-1-1 Your Or 검사증명서 HYUNDAI STEEL MILL TEST CERTIFICATE 1460 원네busanup-Ro, Songel-Eup, Dangin-Si, Chungmen, Koree 주문번호 E190200039 Order No. TOUT UTDE 품 양 Hot Rolled Col 고객사 Commodity Customer : Beshen Steel 증명서 번호 Certificate No. : 20190324-HS-013-010 제품규격 ASTM A 36 주문자 Specification Contractor SKC 발생입자 :2019-03-24 Date of Issue 반장시험 화학성문 Chemical Composition(%) HUH 제품치우 Dimension (inch) 88 Weicht (Ka) Tanulo Test 2:x100 3:x1,000 4:x10,000 5:x100,000 제김번호 제중비송 Heat No. Product No. TS YP EL YPE RA TR Dution S C N CU MO NO TI V MIC
 C
 S
 Mn
 P
 S
 O
 N
 Qu
 Mo
 ND
 Ti
 V
 Sd -M

 4
 3
 3
 4
 4
 2
 3
 2
 3
 3
 3
 3
 C S (%) (%) evint, (%) (%) 0.5053"NOM x 48" x C 1 21,460 ,75802 HC\$0963 380.9 448.9 41
 2
 L
 446
 28
 920
 120
 24

 2
 L
 446
 26
 920
 130
 31

 2
 L
 466
 22
 800
 130
 31

 2
 L
 466
 22
 800
 130
 31
 2 3 2 3 2 3 2 4 2 4
 70
 1

 70
 1

 70
 1

 70
 1

 70
 1

 70
 1

 12
 1
 2
 25

 12
 1
 2
 25

 12
 1
 2
 25

 12
 1
 2
 25

 13
 1
 1
 16

 13
 1
 1
 18
 0.5083"NOM x 48" x C 1 21,640 J75902 HC30664 380.9 449.9 41 0.5063"NOM x 48" x C 21,450 J75802 1 3 344.8 446.0 42 344.1 444.2 42 HCSO555 0.5053"NOM x 48" x C 1 21,480 J75904 HC90573 D 5063"NOM x 48" x C 1 21,680 J75804 HC\$0574 B 344.1 444.2 42 *** Sub Total(016) *** 5 107,7100(a) Position - 1:1op, M:Middie, B:Botton Tensle test - Direction:Transverse, Gaupe length:50mm (Rectangular), YP Mid : 2 (0.2% off-set),5 (0.5% underload), U (Upper yield point), L iLower yield point) Division - P:Product analysis, L'Ladie analysis 0 E 신기의 제품은 경사의 결과 직접된 규가에 합격한 것을 줄말합니다. WE HEREEY CERTEY THAT THE MATERAL HAS BEEN MACE AND TISTED N ACCORDANCE WITH THE ABOVE SPECIFICATION AND THE RECUREMENTS Sonature S. B. Park BL HOU-775673-8 6/21/2019 Order HOU-251290-9 Page:2 Chief Of Quality Assurance Teem e 별 실시함였시는 현황한 전지원세원지위할 물것 운영문의 다 음악된 시설입니다. 전지원세명 내용은 유민화할 귀운영함에서 유인되 삼 구 있습니다.[http://se.orundai-stee(con/cz/cm/bom.jzb) * The New Test Certificate is a copy Tabl Tab boom primes from onformal electronic document(With digital sound). The wer also is chacts an onjoine electronic contained partial (http://se.orundai-steetcon/cz/cm/boom.jzb) * [/점상 중대/함]는 권사감영서에 열기는 구국 및 사용시 원활은 것 같이 또 같이 관 문자는 방법 수 있는데요. * [Canton for Use] Demage on products and safety problems may area if used other than to the safet stated in this Mail Test Certification. · · · · ·

PO/REL HOU-35377/ HEAT: J75904

TR No. 608331-4-6

89

2020-03-26

NGOLAR TUBING A500 GR B X .250 X 20'	PO/REL HOU-35377/ HEAT: A8U3188	BL HOU-775673-9 6/21/2019 Order HOU-251290-10 Page:1		
Southland Tube a Nucor Company	3525 Richard Arrington Jr Blvd N Birmingham, AL 35234 800-543-9024 Fax: 205-251-1553	https://www.nucortubular.com https://www.ntpportal.com Certificate Number: BHM 950476		
Sold By: SOUTHLAND TUBE INCORPORATED 3525 Richard Arrington Jr Blvd N Birmingham, AL 35234 Tel: 800-543-9024 Fax: 205-251-1553	Purchase Order No: HOU-183284 Sales Order No: BHM 494279 - 4 Bill of Lading No: BHM 3197 - 3 Invoice No:	Shipped: 1/4/2019 Invoiced:		
Sold To: 2039 - TRIPLE "S" STEEL SUPPLY P.O. BOX 21119 HOUSTON, TX 77226	Ship To: 8 - IRVINGTON WAREHOUSE 8411 IRVINGTON HOUSTON, TX 77022			
CERTIFICATE of ANALYSIS an Customer Part No:	nd TESTS c	Certificate No: BHM 950476		
TUBING A500 GRADE B(C) 12" X 6" X 1/4" X 40'		Test Date: 1/3/2019 Total Pieces Total Weight		
Bundle Tag Mill Heat Specs		18 21,045		
719919 78 1815098 YLD=5 731578 78N 1815097 YLD=6	5284/TEN=80606/ELG=29.5/RWB=84.4 0.8099 6200/TEN=75300/ELG=31/RWB=83.37 0.7463 1000/TEN=76800/ELG=32.5/RWB=84.89 0.7943	Pieces Weight 6 7,015 6 7,015		
Mill #: 78N Heat #: 1815097 Carbon Eq: 0	0.3766 Heat Src Origin: MELTED AND MANUFACT	6 7,015		
C Mn P S S 0.2200 0.8400 0.0050 0.0010 0.00	Si Al Cu Cr Mo V	NI SA		
Ti Ca 0.0010 0.0020	300 0.0280 0.0900 0.0300 0.0100 0.0030	0.0300 0.0050 0.0050		
LEED Information (based on the most recent		E.		
Method Location	Recycled Content Boot Content	- Norman - Andrew - A		
EAF Berkeley, SC	40.0% 21	Post Industrial		
Mill #: 78 Heat #: 1815098 Carbon Eq: 0.36	21 Heat Sco Origin MELTER	(01270)		
C Mn P S Si	ALL CULL C	ED IN THE USA		
0.2100 0.8200 0.0050 0.0030 0.030	00 0.0260 0.0700 0.0300 0.0100 0.0040	NI Sn N 0.0300 0.0050 0.0060		
LEED Information (based on the most recent)	EED internet			
Method Location	Recycled Content Rept Content			
Berkeley, SC	40.0% 29.	Post Industrial 8% 10.2%		
Mill #: 6N Heat #: A8U3188 Carbon Eq: 0.39	95 Heat Src Origin: MELTED AND MANUE			
C MN P S Si		UIN THE USA		
Cb Ti B Ca Ce 0.0030 0.0020 0.0021 0.0040	0.1500 0.0000 0.0500 0.0600 0.0160 0	AI N V 0.0240 0.0060 0.0050		
LEED Information (based on the most recent LE	ED information from the			
Method Location	Recycled Content Post Consumer			
Iuscaloosa, AL	56.6% 31.6	Post Industrial % 25.0%		
	Date (
	rage - 1			
	the second se			

PO/REL HOU-35377/ HEAT: A8U3188

BL HOU-775673-9 6/21/2019 Order HOU-251290-10 Page.2

Southland Tube a Nucor Company 3525 Richard Arrington Jr Blvd N Birmingham, AL 35234 800-543-9024 Fax: 205-251-1553

https://www.nucortubular.com https://www.ntpportal.com Certificate Number: BHM 950476

Certification:

I certify that the above results are a true and correct copy of records prepared and maintained by Southland Tube Incorporated. Swom this day, 1/3/2019.

WE PROUDLY MANUFACTURE ALL OUR PRODUCTS IN THE USA NUCOR TUBULAR PRODUCTS ARE MANUFACTURED, TESTED, AND INSPECTED IN ACCORDANCE WITH ASTM STANDARDS. MATERIAL IDENTIFIED AS A500 GRADE B(C) MEETS BOTH ASTM A500 GRADE B AND A500 GRADE C SPECIFICATIONS.

Barney Hatten Supervisor of Technical Services & Quality Standards

CURRENT STANDARDS: A252-10 A500/A500M-18 A513/A513M-15 ASTM A53/A53M-12 | ASME SA-53/SA-53M-13 A847/A847M-14 A1085/A1085M-15

Page - 2

TR No. 608331-4-6

71

This page intentionally left blank.

APPENDIX C.

SOIL PROPERTIES

Table C.2. Test Day Static Soil Strength Documentation for Test No. 608331-01-4.

Date	2019-09-02
Test Facility and Site Location	TTI Proving Ground – 3100 SH 47, Bryan, Tx
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines
Fill Material Description (ASTM D2487) and sieve analysis	AASHTO Grade B Soil-Aggregate (see sieve analysis)
Description of Fill Placement Procedure	6-inch lifts tamped with a pneumatic compactor

Table C.3. Test Day Static Soil Strength Documentation for Test No. 608331-01-5.

Date	2019-09-05
Test Facility and Site Location	TTI Proving Ground – 3100 SH 47, Bryan, Tx
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines
Fill Material Description (ASTM D2487) and sieve analysis	AASHTO Grade B Soil-Aggregate (see sieve analysis)
Description of Fill Placement Procedure	6-inch lifts tamped with a pneumatic compactor

Table C.4. Test Day Static Soil Strength Documentation for Test No. 608331-01-6.

Date	2019-12-19
Test Facility and Site Location	TTI Proving Ground – 3100 SH 47, Bryan, Tx
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines
Fill Material Description (ASTM D2487) and sieve analysis	AASHTO Grade B Soil-Aggregate (see sieve analysis)
Description of Fill Placement Procedure	6-inch lifts tamped with a pneumatic compactor

APPENDIX D. MASH TEST 3-20 (CRASH TEST NO. 608331-01-4)

D1 VEHICLE PROPERTIES AND INFORMATION

Table D.1. Vehicle Properties for Test No. 608331-01-4.

Date:	2019-09-02	Test No.:	608331-4	VIN No.: KNADE123	376251020
Year:	2007	Make:	Kia	Model: <u>Rio</u>	
Tire Inf	lation Pressure: <u>32</u>	PSI	Odometer: <u>137463</u>	Tire Size:	185/65R14
Descrit	be any damage to the	e vehicle pric	or to test: <u>None</u>		
• Deno	otes accelerometer lo	ocation.			
NOTES	S: <u>None</u>		- A M		N T
			-		
Engine Engine	Type: <u>4 CYL</u> CID: 1.61		_		
	nission Type: Auto or	Manual	Q	R	A
	FWD 🔲 RWD al Equipment:	4WD	P		
None) }		-		
Dummy	y Data:				
Type: Mass:	50th Perce 165 lb	ntile Male			
Seat F	Position: IMPACT SI	DE	_	X	
Geome	etry: inches			0	
A <u>66.3</u>	38 F <u>33</u>	.00	K <u>12.25</u>	P <u>4.12</u>	U <u>14.75</u>
В <u>51.5</u>	50 G		L <u>25.25</u>	Q <u>22.50</u>	V <u>20.50</u>
C <u>165</u>	<u>.75 H 35.</u>	.04	M <u>57.75</u>	R <u>15.50</u>	W <u>35.00</u>
D <u>34.0</u>	<u>00 7.7</u>	′5	N <u>57.70</u>	S <u>8.25</u>	X <u>72.50</u>
E <u>98.7</u>	7 <u>5</u> J <u>21</u> .	.50	O <u>27.00</u>	T <u>66.20</u>	
Whe	eel Center Ht Front	11.00	Wheel Center Ht	Rear <u>11.00</u>	W-H <u>0.00</u>
F	RANGE LIMIT:A = 65 ±3 inches; TOP OF RADIATOR SU	C = 169 ±8 inches; JPPORT = <u>28.25</u>	E = 98 ±5 inches; F = 35 ±4 inches; H _ inches; (M+N)/2 = 56 ±2 inches; W	H = 39 ±4 inches; O (Bottom of Hood L -H < 2 inches or use MASH Paragraph	ip) = 24 ±4 inches 1 A4.3.2
GVWR	Ratings:	Mass: Ib	<u>Curb</u>	Test Inertial	Gross Static
Front	1718	M _{front}	1602	1578	1663
Back	1874	M _{rear}	868	868	948
Total	3638	M _{Total}	2470	_2446	_2611
Mace F	Distribution:		Allowable TIM = 242	20 lb ±55 lb Allowable GSM = 2585 lb	± 55 lb
lb	LF:	766	RF: <u>812</u>	LR: <u>452</u>	RR: <u>416</u>

Date:	2019-09-02	Test No.:	608331-4	VIN No.:	KNADE123376251020
Year:	2007	Make:	Kia	Model:	Rio

Table D.2. Exterior Crush Measurements for Test No. 608331-01-4.

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable						
End Damage	Side Damage					
Undeformed end width	Bowing: B1 X1					
Corner shift: A1	B2 X2					
A2						
End shift at frame (CDC)	Bowing constant					
(check one)	X1+X2					
< 4 inches	2 =					
\geq 4 inches						

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L**	C_1	C_2	C_3	C4	C5	C_6	±D
1	Front plane at bumper ht	15	8	20	8	6	2	-	-	-	-22
2	Side plane at bumper ht	15	14	48	1	3	5	8	10	15	64
	Measurements recorded										
	🖌 inches or 🗌 mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Date:	2019-09-02	Test No.:	608331-4		VIN No.:	KNADE12337	76251020		
Year:	2007	Make:	Kia		Model:	Rio			
				OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT					
	F				Before	After (inches)	Differ.		
	Ğ			A1	67.50	67.50	0.00		
				A2	67.25	67.25	0.00		
<u> </u>				A3	67.75	67.75	0.00		
				B1	40.50	40.50	0.00		
				B2	39.00	39.00	0.00		
	B1, B2, E	33, B4, B5, B6		B3	40.50	40.50	0.00		
				B4	36.25	36.25	0.00		
		B5	36.00	36.00	0.00				
$\exists e$	D1, D2, & D3	803		B6	36.25	36.25	0.00		
				C1	26.00	23.00	-3.00		
				C2	0.00	0.00	0.00		
				СЗ	26.00	26.00	0.00		
				D1	9.50	11.50	2.00		
	/			D2	0.00	0.00	0.00		
				D3	9.50	9.50	0.00		
		2 00		E1	51.50	53.00	1.50		
				E2	51.00	55.50	4.50		
				F	51.00	51.00	0.00		
				G	51.00	51.00	0.00		
				н	37.50	37.50	0.00		
				I	37.50	37.50	0.00		
Lateral a	area across the cab	from		J	51.00	47.50	-3.50		
driver's s	ide kick panel to pa	ssenger's side	kick panel.						

Table D.3. Occupant Compartment Measurements for Test No. 608331-01-4.

D2 SEQUENTIAL PHOTOGRAPHS

Figure D.1. Sequential Photographs for Test No. 608331-01-4 (Overhead and Frontal Views).

0.200 s

Figure D.1. Sequential Photographs for Test No. 608331-01-4 (Overhead and Frontal Views) (Continued).

0.600 s

TR No. 608331-4-6

0.000 s

0.100 s

0.200 s

0.300 s

0.400 s

0.500 s

0.600 s

0.700 s

Figure D.2. Sequential Photographs for Test No. 608331-01-4 (Rear View).

Figure D.3. Vehicle Angular Displacements for Test No. 608331-01-4.

83

X Acceleration at CG

D4

VEHICLE ACCELERATIONS

Figure D.4. Vehicle Longitudinal Accelerometer Trace for Test No. 608331-01-4 (Accelerometer Located at Center of Gravity).

84

(Accelerometer Located at Center of Gravity).

Figure D.6. Vehicle Vertical Accelerometer Trace for Test No. 608331-01-4 (Accelerometer Located at Center of Gravity).

APPENDIX E. MASH TEST 3-21 (CRASH TEST NO. 608331-01-5)

E1 VEHICLE PROPERTIES AND INFORMATION

	Tabl	e E.1. Vehic	le Propert	ies for T	Fest No. 6	08331-01-	5.	
Date: 2	2019-09-05	Test No.:	60833	81-5	VIN No.:	1C6RR6	SHTODS	501020
Year:	2013	Make:	RAI	M	_ Model:		1500	
Tire Size:	265/70 R ⁻	17		Tire	Inflation Pre	essure:	35 p	si
Tread Type:	Highway				Odo	meter: <u>1524</u>	02	
Note any dai	mage to the	vehicle prior to t	est: <u>None</u>	è				
 Denotes a 	icceleromete	r location.		ļ	◀X ◀₩►			
NOTES: N	one		1 +		717			
Engine Type Engine CID:	:: V-8 4.7 liter		A M WHEEL					N T
Transmission	n Type: or RWI	☐ Manual ⊃ 4WD		R H		TEST	INERTIAL C. M.	+
Optional Equ None	P-				 			
Dummy Data Type: Mass: Seat Positio	a: 50th pe on: IMPAC	rcentile male 165 Ib T SIDE	Ŭ J− <mark></mark> I−	F F -				
Geometry:	inches			-	FRONT	— C —	REAR	•
A78	. <u>50</u> F	40.00	К	20.00	_ P _	3.00	υ_	26.75
B74	.00 G	28.25	_ L	30.00	_ Q _	30.50	V _	30.25
C227	<u>.50</u> H	60.84	M	68.50	_ R _	18.00	W _	60.80
D44	.00	11.75	N	68.00	_ s _	13.00	× _	79.00
E 140	0.50 J	27.00		46.00	- ^T -	77.00	-	
Height F	ront	14.75 Cle	arance (Front)		6.00	Height - Fro	ont	12.50
Wheel Ce Height F	nter Rear	14.75 Cle	Wheel Well earance (Rear)		9.25	Bottom Fran Height - Re	ne :ar	22.50
RANGE LIMIT: A=	=78 ±2 inches; C=23	7 ±13 inches; E=148 ±12	inches; F=39 ±3 inc	:hes; G = > 28 ii	nches; H = 63 ±4 ii	nches; O=43 ±4 inche	s; (M+N)/2=67	±1.5 inches
GVWR Ratir	1gs:	Mass: Ib	Curt	<u>)</u>	Test	Inertial	<u>Gros</u>	<u>s Static</u>
	3000	IVIfront ⊾4		2302		2003		2340
Dack	6700	lVirear M		5168		5050		5215
1 Utai	0700	IVI Total		(Allowable	Range for TIM and	GSM = 5000 lb ±110	lb)	0210
Mass Distril	bution: ∟	F: <u>1475</u>	RF:	1388	LR:	1070	RR:	1117

Date:2019-	09-05 T	est No.: _	60833	608331-5		1C6RR6HTODS501020				
Year: 2013 Make:		RAM	RAM		1	500				
Body Style:	Quad Cab				Mileage:	152402				
Engine: <u>4.7 lit</u>	er	√-8	Transmission:			Automatic				
Fuel Level:	mpty	Bal	ast: 100				(440) lb max)		
Tire Pressure:	Front: 3	35 ps	i Rea	nr: <u>35</u>	psi S	Size: 265/70 R	17			
Measured Ve	hicle Wei	ghts: (l	b)							
LF:	1475		RF:	1388		Front Axle:	2863			
LR:	1070		RR:	1117		Rear Axle:	2187			
Left:	2545		Right:	2505		Total:	5050			
						5000 ±	110 lb allowed			
VVr	neel Base:	140.50	inches	Track: F:	68.50	inches R:	68.00	inches		
148 ±12 inche		es allowed			Track = (F+F	R)/2 = 67 ±1.5 inche	s allowed			
Center of Gra	vity, SAE	J874 Sus	pension M	ethod						
X:	60.85	inches	Rear of F	ront Axle	(63 ±4 inche	s allowed)				
Y:	-0.27	inches	Left -	Right +	of Vehicle	e Centerline				
Z :	28.25	inches	Above Gr	ound	(minumum 2	8.0 inches allowed)				
Hood Heid	aht:	46.00	inches	Front	Bumper H	leiaht:	27.00 i	inches		
	43 ±4 i	nches allowed	•			J				
Front Overhang:		40.00	inches	Rear	Bumper H	leight:	30.00 i	inches		
	39 ±3 i	nches allowed								
Overall Length:		227.50	inches							
	237 ±1	3 inches allow	ed							

Table E.2. Measurements of Vehicle Vertical CG for Test No. 608331-01-5.

Date:	2019-09-05	Test No.:	608331-5	VIN No.:	1C6RR6HTODS501020
Year:	2013	Make:	RAM	Model:	1500

Table E.3. Exterior Crush Measurements for Test No. 608331-01-5.

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable								
End Damage	Side Damage							
Undeformed end width	Bowing: B1 X1							
Corner shift: A1	B2 X2							
A2								
End shift at frame (CDC)	Bowing constant							
(check one)	X1+X2							
< 4 inches	2 =							
≥ 4 inches								

Note: Measure C_1 to C_6 from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

a .c		Direct Damage									
Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max**** Crush	Field L**	C_1	C ₂	C_3	C4	C ₅	C_6	±D
1	Front plane at bumper ht	22	14	28	14	9.5	5	3	1	0	-12
2	Side plane at bumper ht	22	15	62	15	11	-	-	8	8	+75
	Measurements recorded										
	√ inches or ☐ mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Table E.4. Occupant Compartment Measurements for Test No. 608331-01-5.

J*

E2 SEQUENTIAL PHOTOGRAPHS

Figure E.1. Sequential Photographs for Test No. 608331-01-5 (Overhead and Frontal Views).

0.100 s

0.200 s

Figure E.1. Sequential Photographs for Test No. 608331-01-5 (Overhead and Frontal Views) (Continued).

0.700 s

0.600 s

0.100 s

0.400 s

0.500 s

0.600 s

0.700 s

0.300 s

Figure E.2. Sequential Photographs for Test No. 608331-01-5 (Rear View).

0.200 s

1

Ø

E3

VEHICLE ANGULAR DISPLACEMENTS

Figure E.3. Vehicle Angular Displacements for Test No. 608331-01-5.

94

E4

VEHICLE ACCELERATIONS

Figure E.4. Vehicle Longitudinal Accelerometer Trace for Test No. 608331-01-5 (Accelerometer Located at Center of Gravity).

95

(Accelerometer Located at Center of Gravity).

Figure E.6. Vehicle Vertical Accelerometer Trace for Test No. 608331-01-5 (Accelerometer Located at Center of Gravity).

This page intentionally left blank.

APPENDIX F. MASH TEST 3-21 (CRASH TEST NO. 608331-01-6)

F1 VEHICLE PROPERTIES AND INFORMATION

	Та	able	F.1. Vehicl	e Prope	rties for T	est No. 6	08331-()1-6.		
Date:	2019-12-1	9	Test No.:	608	331-6	VIN No.	: <u> </u>	6RR6FT8	DS72	24487
Year:	2013		Make:	R	АМ	Model		150	0	
Tire Size	: 265/70	R 17			Tire	Inflation Pre	essure:		35 ps	si
Tread Ty	pe: <u>Highwa</u>	ay				Odd	ometer:	144145		
Note any	damage to t	he vel	hicle prior to t	est: <u>No</u>	ne					
• Denote	es accelerom	ieter lo	ocation.		ľ	◀───X- ◀──₩─►				
NOTES:	None			. 1 1		717				
Engine T Engine C	ype: <u>V-8</u> ID: <u>4.7 I</u>	liter			EEL					- N T
Transmis	sion Type: uto or WD _ ∏_ F		Manual		R) – Test inertial	, С. М.	
Optional <u>None</u>	Equipment:			. <u>† </u>				0)в
Dummy [Type: Mass: Seat Po	Data: No c psition:	dumm	y used 0 lb		- F - F				-D-1	
Geometr	ry: inches	_	40.00		-				· · · ·	-
A	78.50	F -	40.00	- <u>k</u> _	20.00	- P-	3.0	50	U _	26.75
в <u> </u>	227.50	с. ц	61.52	- L	68 50	- V - P	18 (0	V _	61.50
о <u> </u>	44.00	'' - I	11.75	- ^{IVI} N	68.00	-	13.0	00	х х	79.00
E	140.50	 J	27.00		46.00	- с - т	77.0	00	<u> </u>	
Whee	el Center	-	14.75 ole	Wheel We	ell ht	 6.00	Bottom	n Frame		12.50
Whee Heig	el Center ght Rear		14.75 Cle	Wheel We earance (Rea	ell ır)	9.25	Bottom Heigh	n Frame It - Rear		22.50
RANGE LIMI	T: A=78 ±2 inches; (C=237 ±1	3 inches; E=148 ±12	inches; F=39±3	inches; G = > 28 i	nches; H = 63 ±4 i	inches; O=43 ±	4 inches; (M+N	l)/2=67 ±	:1.5 inches
GVWR R	atings:		Mass: Ib	<u>C</u>	urb	<u>Test</u>	<u>Inertial</u>	<u>(</u>	Gross	<u>Static</u>
Front	3700	_	M _{front}		2877		2832			2832
Back	3900	_	M _{rear}		2013		2206			ZZUD
i otal	0700	-	IVI Total		4090 (Allowable	Range for TIM and	1 GSM = 5000	lb ±110 lb)		
Mass Dis Ib	stribution:	LF:	1393	RF:	1439	LR:	1157	RR:		049

Date:	12-19 T	est No.: _	60833 [.]	1-6	VIN:	1C6RR6FT8DS724487			
Year:20	13	Make:	RAN	1	Model:	1	500		
Body Style: _	Quad Cab				Mileage:	144145			
Engine: 4.7 liter V-8 Transmission: Automatic									
Fuel Level: Empty Ballast: 180 (440 lb n)) lb max)	
Tire Pressure:	Front: <u>3</u>	35 ps	i Rea	ır: <u>35</u>	psi S	Size: 265/70 R	17		
Measured Ve	hicle Wei	ghts: (I	b)						
LF:	1393		RF:	1439		Front Axle:	2832		
LR:	1157		RR:	1049		Rear Axle:	2206		
Left:	2550		Right:	2488		Total:	5038		
						5000 ±	110 lb allowed		
V/I	neel Base:	140.50	inches	Track: F:	68.50	inches R:	68.00	inches	
	148 ±12 inch	es allowed			Track = (F+F	R)/2 = 67 ±1.5 inche	s allowed		
Center of Gra	vity, SAE	J874 Sus	pension M	ethod					
X·	61.52	inches	Rear of F	ront Avle	(63 ±4 ipobo	allowed)			
X.	01.02	mones	Real of t						
Y:	-0.42	inches	Left -	Right +	of Vehicle	e Centerline			
Z :	29.00	inches	Above Gr	ound	(minumum 2	8.0 inches allowed)			
	-	40.00	inches	Event	Dunan ar Li		07.00	in ch c c	
ποσά πειζ	43 ±4 i	40.00 nches allowed	inches	FIOIL		eignt.	<u>27.00</u> I	ncnes	
Front Overha	ng:	40.00	inches	Rear	Bumper H	eight:	30.00 i	nches	
	39 ±3 i	nches allowed			-				
Overall Leng	gth:	227.50	inches						
	237 ±1	3 inches allow	ed						

Table F.2. Measurements of Vehicle Vertical CG for Test No. 608331-01-6.

Date:	2019-12-19	Test No.:	608331-6	VIN No.:	1C6RR6FT8DS724487		
Year:	2013	Make:	RAM	Model:	1500		

Table F.3. Exterior Crush Measurements for Test No. 608331-01-6.

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable								
End Damage	Side Damage							
Undeformed end width	Bowing: B1 X1							
Corner shift: A1	B2 X2							
A2								
End shift at frame (CDC)	Bowing constant							
(check one)	X1+X2 _							
< 4 inches	2							
≥ 4 inches								

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C_1	C ₂	C_3	C4	C5	C_6	±D
1	Front plane at bmpr ht	18	16	-	16	-	-	-	-	-	-
2	Side plane at bmpr ht	18	20	54	2	4	9	12	18	20	+70
	Measurements recorded										
	√inches or ☐mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Date:	2019-12-19	_ Test No.:	608331-6	V	/IN No.:	1C6RR6FT8DS724487			
Year:	2013	_ Make: _	RAM	N	lodel:	1500)		
	The	· +) (+	क्तान्न	OCCUPANT COMPARTM DEFORMATION MEASURE					
	F				Before	After (inches)	Differ.		
		E2 E3		41	65.00	65.00	0.00		
K				42	63.00	63.00	0.00		
		н	$\mathbb{P} \vdash \mathbf{P}$	43	65.50	65.50	0.00		
			E	B1	45.00	45.00	0.00		
			E	B2	38.00	38.00	0.00		
			E	B3	45.00	45.00	0.00		
)) E	34	39.50	39.50	0.00		
		B1-3 B4- A1-3		B5	43.00	43.00	0.00		
6	D1-	-3	- E	36	39.50	39.50	0.00		
				C1	26.00	26.00	0.00		
	\mathcal{I}		(C2	0.00	0.00	0.00		
			(C3	26.00	26.00	0.00		
			[D1	11.00	11.00	0.00		
			[D2	0.00	0.00	0.00		
			[D3	11.50	11.50	0.00		
		25		Ξ1	58.50	58.50	0.00		
	B1,4	<u>, , , , , , , , , , , , , , , , , , , </u>		E2	63.50	63.50	0.00		
	E	1-4	E	E3	63.50	63.50	0.00		
			E	Ξ4	63.50	63.50	0.00		
			F	=	59.00	59.00	0.00		
			(G	59.00	59.00	0.00		
			ł	H	37.50	37.50	0.00		

Table F.4. Occupant Compartment Measurements for Test No. 608331-01-6.

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

0.00

0.00

L

J*

37.50

25.00

37.50

25.00

F2 SEQUENTIAL PHOTOGRAPHS

Figure F.1. Sequential Photographs for Test No. 608331-01-6 (Overhead and Frontal Views).

0.100 s

0.200 s

Figure F.1. Sequential Photographs for Test No. 608331-01-6 (Overhead and Frontal Views) (Continued).

0.600 s

0.100 s

0.200 s

0.300 s

Figure F.2. Sequential Photographs for Test No. 608331-01-6 (Rear View).

0.400 s

0.500 s

0.600 s

0.700 s

Figure F.3. Vehicle Angular Displacements for Test No. 608331-01-6.

TR No. 608331-4-6

106

2.0

F4

Impact Speed: 62.6 mi/h

Impact Angle: 24.9°

(Accelerometer Located at Center of Gravity).

Figure F.6. Vehicle Vertical Accelerometer Trace for Test No. 608331-01-6 (Accelerometer Located at Center of Gravity).

109