Overview
In accord with the Federal Highway Administration and Department of Transportation and Public Facilities (FHWA&DOT&PF) Stewardship and Oversight Agreement (signed Sept. 22, 2009), the Alaska Division is performing its annual assessment of the overall Federal bridge program. This assessment will be used to identify best practices and analyze potential program risks, which in turn will drive the number and type of reviews which may be conducted in the year.

The program analysis will also identify a three year vision for the program.

Background
Many of the nation’s bridges were built in the late 1960s as part of the Interstate program, with an intended design life of 40-50 years. A similar “boom” of bridges in Alaska came during the pipeline era of the mid to late 1970s.

Bridge failures in the late 1960s and the 1970s led to a mandatory Federal bridge inspection program, which today includes scour and bridge load rating and posting components. In 2001, FHWA published an advance notice of proposed rulemaking to revise the National Bridge Inspection Standards (NBIS) regulation. In 2003, the proposed rule was published for comment, and a Final Rule was adopted and incorporated into the 2005 Code of Federal Regulations (CFR).

A series of program audits and reviews, beginning around 2005, by the Office of Inspector General (OIG) of the U.S. Department of Transportation (DOT), and by the U.S. Government Accountability Office (GAO) have all tended toward the adoption of risk-based, data driven oversight of the bridge program, including compliance with the NBIS, using quantitative performance measures. FHWA responded to many of these concerns by revising the NBIS Compliance Review process, establishing 23 quantitative metrics to be used in determining compliance in the CY2011 review. Some adjustments to the process recommended by a joint AASHTO-FHWA Task Force are being worked into the process for PY2013.

The Alaska Division developed a new Stewardship and Oversight Agreement in FFY 2010 that has increased the level of oversight for High Profile projects and defined the Alaska Division’s strategy to identify high risk areas. Oversight in accord with this agreement follows the same risk-based philosophy as has been recommended specifically for the bridge program.
Vision/End-state

Vision Statement: Ensure NBIS compliance and broaden the areas of excellence in Alaska’s bridge program (including planning & programming, design, and the fabrication, construction & contracting of bridges, and in maintaining bridge infrastructure).

- **Near term results (2013):**
 - Results from the bridge condition inventory are continually better-integrated into the DOT&PF planning & programming cycle
 - DOT&PF maintains & broadens excellence in bridge & foundation design
 - Strategically improving bridge fabrication, construction & contracting practices for Alaska Federal-aid projects
 - NBI Performance Metrics are implemented
 - DOT&PF load ratings and scour evaluations are completed for all NBI bridges.

- **Far term results (2015*):**
 - Results from the bridge condition inventory are automatically integrated into the DOT&PF planning & programming cycle, for all non-Federally-owned NBI bridges
 - DOT&PF maintains & broadens excellence in bridge & foundation design, *with established national recognition for areas of excellence*
 - Strategic improvements in bridge fabrication, construction & contracting practices have been made, with evidence of improved cost, schedule, or serviceability of the structures produced for Alaskan Federal-aid projects
 - NBI Performance Metrics are routinely used to evaluate NBIS compliance, *and improvements in the program have been implemented.*
 - DOT&PF has completed overdue load ratings and scour evaluations statewide, is keeping current with quarterly workloads, and these programs are in “maintenance mode.”

Core Elements/Subelements

Planning & Programming
- Use of Highway Bridge Program funds
- Use of NHS, IM, STP and other Federal programs
- Effects of non-FHWA funding sources on condition of bridge inventory

Design
- Geotechnical
 - Foundations
 - Retaining Walls
 - Tunnels
- Hydrology & Hydraulic Design
- Bridge & Structure Design
 - Seismic
 - Accelerated Bridge Construction

italics added to highlight the distinction between near- and far-term results
Contracting, Fabrication & Construction
- Specifications
- Precasting QA
- Steel Fabrication QA
- DOT&PF Construction Manual

Maintaining Infrastructure
- Bridge Management Systems
- Bridge Security
- NBIS
 - Scour & Underwater Evaluation
 - Fracture Critical Evaluation
 - Load Rating & Posting
- Maintenance Activities

Research
- Identified Strategic Focus Areas
- Implementation of Promising Technologies

Prior year follow-up
Since the 2011 Bridge Program Analysis, the focus has been on NBIS compliance, specifically the compliance review, its methodology, execution, and resultant review and acceptance of Plans of Corrective Action.

For the summary of PY12 activities in the chart below, “Program Risk” indicates the risk of not achieving the objectives of the program, not the risk of an event the program must deal with. For example, the program risk for “Bridge Security” is that objective of the program will not be carried out, not the risk of any specific bridge or set of bridges being attacked. The risk for the “Highway Bridge Program” is that the prompt replacement or rehabilitation of deficient bridges in the state will not be achieved. The risk to the “Highway Bridge Program” is not the risk of failure of any particular bridge.

<table>
<thead>
<tr>
<th>Program Area</th>
<th>Program Risk</th>
<th>Response Strategy</th>
<th>Outcomes/Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming</td>
<td>Moderate</td>
<td>Mitigate</td>
<td>DOT&PF Planning studying</td>
</tr>
<tr>
<td>Geotechnical (Foundations)</td>
<td>Low</td>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>Geotechnical (Retaining Walls)</td>
<td>Low</td>
<td>Accept</td>
<td></td>
</tr>
<tr>
<td>Geotechnical (Tunnels)</td>
<td>Low</td>
<td>Accept</td>
<td>Will implement Tunnel Inspection Standards when Final Rule is published; still pending</td>
</tr>
<tr>
<td>Hydraulic Design</td>
<td>Low</td>
<td>Accept</td>
<td>See “Scour Program,” separately, below</td>
</tr>
</tbody>
</table>
Performance Measures/Compliance Indicators

Level of review for measures/indicators:

- Minimum Level of Review (MLR): based primarily on the knowledge of the program by the FHWA Division Bridge Engineer (DBE), usually supplemented by interviews or some data/trend review, etc. to confirm the evaluation.
- Intermediate Level Review (ILR): Involves activities such as sampling of data items for statistical representation, other analysis of data or trends, more detailed interviews and reviews of documentation, in order to provide a broader basis for performance evaluation than the immediate personal program knowledge of the DBE or the MLR.
- In-Depth Review (IDR): Includes such activities as detailed analysis of data, examining and verifying assumptions, research on records and details of calculations, large sample sizes, and a greater level of effort and detail than the ILR.

<table>
<thead>
<tr>
<th>Measure/Indicator</th>
<th>Target</th>
<th>Current Value</th>
<th>Trends / Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Programming)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent of Deck Area on Deficient Bridges (non-Federal NBI Bridges)</td>
<td></td>
<td>22% (per DOT&PF 2010)</td>
<td>Trend of a five-year moving average may be taken into consideration, due to small number of bridge jobs per year.</td>
</tr>
<tr>
<td>(Programming)</td>
<td>Proposed: Ratio of Newly Deficient Bridges/yr to number of Deficient Bridges/yr programmed in STIP</td>
<td>< 1.0</td>
<td>1.31</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>(111 became deficient 2006-2010; 17 were fixed in 2010)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Geotechnical-Foundations)</td>
<td>Proposed: Site investigation and geotechnical claims costs per sf of bridge deck constructed</td>
<td>Not established</td>
<td>N/A</td>
</tr>
<tr>
<td>(Geotechnical-Retaining Walls)</td>
<td>Compliance with AASHTO LRFD Specifications</td>
<td>Full compliance beginning Oct. 1, 2010</td>
<td>TBD</td>
</tr>
<tr>
<td>(Geotechnical-Tunnels)</td>
<td>TBD (pending Final Rule)</td>
<td>N/A</td>
<td>TBD</td>
</tr>
<tr>
<td>(Hydraulic Design)</td>
<td>None Established</td>
<td>Not established</td>
<td>N/A</td>
</tr>
<tr>
<td>(Bridge Design)</td>
<td>Compliance with AASHTO LRFD Specifications</td>
<td>Full compliance</td>
<td>True</td>
</tr>
<tr>
<td>(Construction) Bridge Construction Unit Cost</td>
<td>No Target</td>
<td>N/A</td>
<td>Used for funding purposes</td>
</tr>
<tr>
<td>(Scour Evaluations)</td>
<td>Reporting is on schedule</td>
<td>Both reports arrive on schedule at FHWA</td>
<td>False</td>
</tr>
<tr>
<td>(Scour Evaluations)</td>
<td>Scour-Critical Bridges with Scour Plans of Action</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>(Scour Evaluations)</td>
<td>Number of bridges not evaluated for scour</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(Scour Evaluations)</td>
<td>Number of Unknown Foundation Bridges</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(BMS)</td>
<td>None Established</td>
<td>No metric</td>
<td>N/A</td>
</tr>
<tr>
<td>(Bridge Security)</td>
<td>Bridges closed to public use</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
(NBIS) Compliance Metrics (CY2012+)
See detailed plans for metrics & implementation.

<table>
<thead>
<tr>
<th>Persistent Error Report</th>
<th>FHWA HQ reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliant (all 23 metrics)</td>
<td>Noncompliant on 3 metrics</td>
</tr>
<tr>
<td>0</td>
<td>MLR: making good progress</td>
</tr>
</tbody>
</table>

Status of Program
The current state of the Bridge program is compliance or conditional compliance on 20 of 23 metrics, and noncompliance on three others, since all but three Alaska DOT&PF Plans of Corrective Action were accepted.

Situation (SWOT) Analysis
Strengths and Opportunities

<table>
<thead>
<tr>
<th>Strength</th>
<th>Opportunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design</td>
<td>Expand exchanges of personnel between Bridge Section & Construction to develop relationships internal to DOT&PF & broaden expertise of both</td>
</tr>
<tr>
<td>o Seismic</td>
<td></td>
</tr>
<tr>
<td>o Hydraulic</td>
<td></td>
</tr>
</tbody>
</table>

Weakness/Risk Identification

<table>
<thead>
<tr>
<th>Weakness</th>
<th>Threat/Source of Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning & Programming</td>
<td>NBIS Compliance requirements under the 23 metrics; policy/procedure & inspection timeliness issues</td>
</tr>
<tr>
<td>Maintaining Infrastructure</td>
<td>Accelerating deterioration of 1970s bridges approaching their design life</td>
</tr>
<tr>
<td>o NBIS compliance</td>
<td>Bridge Security if international environment becomes inflamed/unstable</td>
</tr>
<tr>
<td>o Scour Evaluations completion</td>
<td></td>
</tr>
<tr>
<td>o Load Rating & Posting turnaround</td>
<td></td>
</tr>
</tbody>
</table>

Evaluation of Results/ Risk Assessment Summary

<table>
<thead>
<tr>
<th>Program Area/Activity</th>
<th>Likelihood/Impact H-M-L</th>
<th>Risk Statement</th>
<th>Response Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM PRESERVATION (HBP & other funding)</td>
<td>Likely; Moderate Impact</td>
<td>If bridge repair and replacement is not adequately funded… Then Alaska’s backlog of bridge repair and replacement needs will increase.</td>
<td>Mitigate; Continue encouraging DOT&PF use of bridge list as linkage between inspection and programming of bridges.</td>
</tr>
<tr>
<td>DESIGN</td>
<td>Likely; Moderate Impact</td>
<td>If Coast Guard Bridge Permits are not processed in a timely way… Then the backlog of bridge repairs will fall further behind, and programming funds will become more difficult.</td>
<td>Mitigate in coordination with FHWA HQ.</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------</td>
<td>---</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>DESIGN (Geotechnical)</td>
<td>Unlikely; Moderate Impact</td>
<td>If bridges are not designed, checked, and constructed properly. Then a poor quality product may impact system preservation or even safety.</td>
<td>Accept; In another year, encourage RC Geotech review/peer exchange</td>
</tr>
<tr>
<td>DESIGN (Hydraulics /Hydrology)</td>
<td>Unlikely; Major Impact</td>
<td>If bridges are not designed, checked, and constructed properly… Then a poor quality product may impact system preservation or even safety.</td>
<td>Mitigate; Division Office involvement in scour issues (Scour is still leading cause of in-service bridge failure in US)</td>
</tr>
<tr>
<td>DESIGN (Bridge and Structure Design)</td>
<td>Unlikely; Moderate Impact</td>
<td>If bridges are not designed, checked, and constructed properly… Then a poor quality product may impact system preservation or even safety.</td>
<td>Mitigate; Division office involvement in construction contract specifications for structures. (Bridge Manual four years overdue. Construction specs are vague in structures area.)</td>
</tr>
<tr>
<td>SYSTEM PRESERVATION (Bridge Management Systems)</td>
<td>Almost Certain; Minor Impact</td>
<td>If bridge management practices are not implemented… Then Alaska will miss opportunities to stretch its available resources in maintaining bridges and delaying the need for replacements.</td>
<td>Accept; Continue promoting use & integration of systematic preventative maintenance strategies and exploration of PONTIS-driven, engineer-refined preventative maintenance.</td>
</tr>
</tbody>
</table>
System Preservation (Bridge Security) | Unlikely; Catastrophic Impact | If bridge security activities are not enhanced... Then Alaskan bridges will remain vulnerable to the same degree as at present. | Accept. [Attacking bridges in Alaska does little to strike fear into the rest of the US because of our remoteness. A strategically-motivated attack would be more likely to be targeted at the state's bridges, but there should be some precursors to that such as diplomatic tensions, breakdown in relations, movement of conventional forces, etc.]

System Preservation (NBIS) | Likely; Moderate Impact | If DOT&PF not compliant with all 23 NBIS metrics... Then further plans of action will be required, with risk to the overall program from noncompliance. | Mitigate; Division Office involvement in new NBIS implementation (Biggest effort for AKDO DBE.)

Implementation Schedule/Multi-Year Plan (1-3 years)

PY13
- **Internal**
 - Update SOPs
 - Update Program Analysis
 - Conduct Risk Assessments
 - Compile Bridge review findings and observations
 - Develop & implement action plan addressing findings from prior reviews;
 - Implement and track action items
- **External**
 - DOT&PF completes implementation of PCAs

PY14
- **Internal**
 - Update SOPs
 - Update Program Analysis
 - Conduct Risk Assessments
 - Compile Bridge review findings and observations;
 - Implement and track action items
- **External**
 - DOT&PF completes implementation of PCAs
Internal
- Update SOPs
- Update Program Analysis
- Conduct Risk Assessments
- Compile Bridge review findings and observations;
- Implement and track action items

External
- DOT&PF completes implementation of PCAs

Appendix A – Audit Sequence

The U.S. Department of Transportation’s Office of Inspector General (OIG) conducted a 2006 audit of FHWA’s oversight. Their summary reads:

“On March 21, we issued a final report on state transportation departments’ actions in calculating load ratings and posting weight limits on structurally deficient National Highway System bridges and FHWA’s oversight of state actions. We found that inaccurate or outdated maximum weight limit calculations and posting entries were recorded in bridge databases of the state transportation departments and in the National Bridge Inventory, and that FHWA can do more to oversee states’ actions in inspecting bridges, calculating load limits and posting maximum weight limits. FHWA concurred with our recommendations to revise its annual compliance reviews of state bridge programs and evaluate greater use of computerized bridges management systems.”

On August 1, 2007, during the evening rush hour, a bridge carrying Interstate 35W over the Mississippi River collapsed. Thirteen died and 145 were injured. The OIG was called in to review FHWA’s oversight:

“On August 3, 2007, the Inspector General (IG) responded to Secretary Peters’ request that the Office of Inspector General (OIG) conduct an independent review of the National Bridge Inspection Program and the Federal Highway Administration’s (FHWA) oversight of the Nation’s bridges. Our overall objective is to evaluate FHWA’s implementation of the National Bridge Inspection Program and make recommendations for improvement in order to provide assurance to the Secretary, the Congress and the traveling public that FHWA is doing everything that should be done to ensure bridge safety.”

On January 12, 2009, the OIG issued an assessment:

“On January 12, 2009 we issued our audit report on FHWA’s implementation of data–driven, risk–based oversight of the National Bridge Inspection Program. Our objectives were to evaluate FHWA’s (1) implementation of a data–driven, risk–based oversight to target bridge safety risks most in need of attention, particularly those related to load ratings and postings and (2) promotion of state use of bridge management systems. Our review found that FHWA made limited progress implementing data–driven, risk–based bridge oversight. Although FHWA’s annual review of state bridge inspection programs assured compliance with Federal standards, it did not incorporate routinely a systematic data–driven approach to identifying, prioritizing, and remediating nationwide bridge safety risks in coordination with states. Additionally, we found that FHWA could strengthen its role in expanding states’ use of bridge management systems, which are computerized systems that prioritize replacement and repair projects and help ensure bridge safety. We recommended that the FHWA Administrator develop and implement minimum requirements for data–driven, risk–based bridge oversight during bridge
engineers’ annual NBIS compliance reviews and develop a comprehensive plan to routinely conduct systematic, data–driven analysis to identify nationwide bridge safety risks, prioritize them, and target those higher priority risks for remediation in coordination with states. In implementing the plan, FHWA should (a) direct the Office of Bridge Technology to routinely and systematically identify and prioritize nationwide bridge safety risks and (b) direct the Division Offices to work with states to remediate higher priority nationwide bridge safety risks. We also recommended that FHWA develop a requirement for states to correct promptly data inaccuracies found by FHWA’s NBI data validation program and increase FHWA’s use of element–level data by (a) coordinating with AASHTO to update the standards for element–level data, (b) incorporating AASHTO’s updated standards into the NBIS through the rulemaking process, and (c) developing and implementing a plan to collect element–level data after AASHTO’s updated standards have been incorporated into the NBIS. We further recommended that FHWA initiate a program to collect data regularly on states’ use of bridge management systems, evaluate the data to identify those states most in need of assistance in implementing effective bridge management systems, and target those states for technical assistance and training resources.”

On January 14, 2010, the OIG issued a final report:

“On January 14th, we issued our report on FHWA’s oversight of the Highway Bridge Program (HBP) and National Bridge Inspection Program (NBIP). We assessed FHWA’s: (1) oversight of Federal-aid funds provided to states through the HBP for deficient bridges; and (2) enforcement of bridge inspection standards under the NBIP. This report concludes our audit work announced in August 2007 related to FHWA’s oversight of the Nation’s bridges.

We found that FHWA lacks sufficient data to evaluate states’ use of HBP funds because the agency is unable to link expenditures of HBP funds to improvements made to deficient bridges. In addition, the agency lacks the criteria and guidance necessary to determine whether states demonstrate overall compliance with bridge inspection standards under the NBIP.

We made the following specific recommendations to the Federal Highway Administrator to address these weaknesses:

1. Collect and analyze HBP expenditure data on a regular basis to identify activities undertaken by states, such as bridge replacement and rehabilitation, to improve the condition of the Nation’s deficient bridges;

2. Collaborate with states in setting quantifiable performance targets to measure progress in improving the condition of deficient bridges;

3. Report regularly to internal and external stakeholders on the effectiveness of states’ efforts to improve the condition of the Nation’s deficient bridges based on the analysis of HBP expenditure data and an evaluation of progress made in achieving performance targets;

4. Develop detailed criteria to help bridge engineers determine with greater consistency whether states demonstrate overall compliance with the NBIS;

5. Develop a policy providing clear, comprehensive, risk-based guidance that defines procedures Division Offices should follow to enforce compliance with the NBIS; and

6. Conduct a workforce assessment so that FHWA can identify strategic needs and target limited funding to higher priority staffing and training needs in implementing data-driven, risk-based bridge oversight.

The FHWA Administrator concurred and has provided plans to take action to implement them.”
On July 21, 2010, OIG representatives and the U.S. Government Accountability Office testified before Congress:

“On July 21, 2010, the Assistant Inspector General for Highway and Transit Audits testified before the House Transportation and Infrastructure Subcommittee on Highways and Transit regarding Federal Highway Administration (FHWA) oversight of the Highway Bridge Program and the National Bridge Inspection Program. OIG issued three reports over the last 4 years on FHWA’s bridge oversight. The Assistant Inspector General’s statement focused on FHWA’s efforts to: (1) implement a data-driven, risk-based approach to overseeing the Nation’s bridges; (2) ensure that states comply with bridge inspection standards; and (3) strengthen its oversight of states’ use of Federal bridge funding. The Assistant Inspector General recognized FHWA’s progress in implementing a data-driven, risk-based approach to bridge oversight and its efforts to address OIG’s related recommendations from prior reports; however, more needs to be done. Given the volume of needs of the Nation’s nearly 600,000 bridges and the limited funding available to repair and replace bridges, FHWA must target its oversight efforts at higher priority bridge safety risks and strengthen its oversight of states’ use of Federal bridge funding. In particular, more needs to be done to enable FHWA to evaluate the impact of the billions in Federal bridge money that have been allocated to states in recent years for improving the condition of deficient bridges.”

“One in four bridges in the United States is either structurally deficient and in need of repair, or functionally obsolete and is not adequate for today’s traffic. The Highway Bridge Program (HBP), the primary source of federal funding for bridges, provided about $7 billion to states in fiscal year 2010. This testimony addresses (1) the current state of the nation’s bridges and the impacts of the HBP and (2) the extent to which the HBP aligns with principles GAO developed to guide the re-examination of surface transportation programs. This testimony is based on prior GAO reports, updated with bridge data and information provided by agency officials. There are over 600,000 bridges on the nation’s roadways, of which one in four is deficient in some sense. Data indicate that the total number of deficient bridges has decreased over the past 12 years, even as the total number of bridges has increased, because of a reduction in the number of structurally deficient bridges. However, the impact of the federal investment in the HBP is difficult to measure, in part because there are no comprehensive and complementary data for state and local bridge spending. The lack of comprehensive information on state and local spending makes it impossible to (1) distinguish the impact of HBP funding from other funding to improve bridge conditions and (2) determine the extent to which states may be substituting increased HBP funding for state and local funds that they would otherwise have spent on bridges. Evaluating the impact of the HBP is important not only to understand the outcome of past spending but also to determine how to sensibly invest future federal resources. The HBP does not fully align with GAO’s principles for re-examining surface transportation programs in that the program lacks focus, performance measures, and fiscal sustainability. The program’s statutory goals are not focused on a clearly identified national interest but rather have expanded from improving deficient bridges to supporting preventive maintenance and many other projects, thus expanding eligibility to include almost any bridge. In addition, the program lacks measures linking funding to performance and does not utilize new tools such as bridge management systems. Fiscal sustainability also remains a challenge given the nearly $30 billion in additional revenues added to the Highway Account since fiscal year
2008, GAO is not making any new recommendations. In 2008, GAO recommended that the Secretary of Transportation work with Congress to (1) identify and define national goals for HBP, (2) develop and implement performance measures, (3) identify and evaluate best tools and practices, and (4) review and evaluate HBP funding mechanisms to align funding with performance. DOT generally agreed with these recommendations and has taken some actions to work with Congress to address issues GAO raised regarding the HBP, but much work remains. GAO provided a draft of this testimony to FHWA for review. We incorporated FHWA comments, as appropriate.”

On October 18, 2010, the OIG provided a letter to Congress assessing FHWA’s actions in response to their report.

“On October 18, 2010, we responded to provisions in the Senate Appropriations Committee Report accompanying the fiscal year 2010 appropriations bill for the Departments of Transportation and Housing and Urban Development, and Related Agencies. Specifically, we updated congressional members on actions the Federal Highway Administration (FHWA) has taken to date in response to findings and recommendations in our January 2009 report on the National Bridge Inspection Program. We reported that FHWA had made limited progress in implementing data-driven, risk-based bridge oversight and that it could strengthen its role in expanding states’ use of bridge management systems.

FHWA agreed to take corrective actions in response to our five recommendations. We commend FHWA for the action it took in resolving data errors in National Bridge Inventory data files. However, FHWA must follow through on its plan to work with states in mitigating higher priority nationwide bridge safety risks; implement its uniform definition of NBIS compliance and data-driven, risk-based metrics; work with AASHTO to update standards for element-level data; and provide support to states most in need of assistance with bridge management systems. Accordingly, we will continue to monitor FHWA’s actions until it demonstrates that it has fully implemented all our recommendations.”