STATE OF ALASKA DEPARTMENT OF TRANSPORTATION & PUBLIC FACILITIES (DOT & PF) DALTON HIGHWAY MP 0-9 RECONSTRUCTION VALUE ENGINEERING STUDY FINAL REPORT JULY 25, 2017

VE TEAM

Eric Meng, CVS, VE Team Leader Kelly Kilpatrick, VE Study Project Manager / Roadway Engineer Dwight Stuller, Construction / Maintenance Lon Krol, Civil Engineer David Jensen, Civil Engineer Maria Kampsen, Geotechnical Engineer Richard Pribyl, Hydraulic Engineer Matthew Mettler, Structural Engineer Sarah Partap, VE Project Manager Adrianne Larsen, VE Project Coordinator

TABLE OF CONTENTS

I.	INTRODUCTION EXECUTIVE SUMMARY	Page
	EXECUTIVE SUMMARY PROJECT DESCRIPTION AND PLANS PROPOSAL SUMMARY	
II.	Value Engineering Proposals Ve Proposals	8
III.	Value Engineering and Technical Comments Technical Comments Cost / Budget Analysis Risk Analysis	
IV.	Value Engineering Methodology Ve Purpose and Methodology Ve Team	
V.	Appendix Functional Analysis Ve Implementation Form Completed ve Implementation Form Creativity Alternative Sheets	

EXECUTIVE SUMMARY

Purpose and Goals of the Study

This Value Engineering (VE) report is presented to the Alaska Department of Transportation and Public Facilities (DOT & PF) to assist in decision making at the 40% design level. The goals for this VE study were to identify component and planning alternatives that may offer first cost or life cycle cost benefits and/or improve project quality. During the kick-off meeting, the design team defined the following criteria as most important to the project:

- Safety reduce accidents
- Increase traffic mobility truck
- Support tourism
- Maintainability
- Constructability
- Highway standards
- Budget

Project Risk

The VE team assessed project risks and identified the following as warranting the most attention during planning and design. These were also used to guide the VE team's choice of alternatives developed in this study:

- Drainage culvert requirements
- Permitting schedule
- ROW claims process
- Unsuitable sub grade differing site conditions
- ACE embankment amount required
- Pipeline impacts resolution
- Public safety

Value Engineering Team

The multi-disciplined VE team included the following disciplines: Structural, Civil, Hydraulics, Construction, Geotechnical, Maintenance, and the Certified Value Specialist (CVS) team leader. At the initial kick-off meeting the study goals, objectives and criteria were presented by Alaska DOT & PF design team representatives. The VE team worked together for five days, using the formal Value Methodology and VE job plan. The essential and secondary functions from the project components were identified with their associated costs; alternative ideas were generated and the most viable VE alternatives were

DOWL

Value Engineering

developed and analyzed against project criteria. Recommended proposals were presented in an oral presentation at the conclusion of the study and documented herein.

Value Engineering Proposals

Key VE proposals include:

- Alternative culvert and drainage materials for improved life span
- Bridge structural design refinement
- Reduced bridge size to meet design criteria for reduced cost
- Structural plate configuration for bridge in lieu of precast concrete bridge to reduce cost and construction impacts
- Alternatives for roadway materials (including excavation and sourcing) in order to achieve more balanced earthwork throughout the project
- Alternative methods and materials to manage permafrost thawing and settlement, both during initial construction as well as long term
- Construction schedule and phasing considerations to accommodate cold weather and to reduce overall construction schedule impacts

Substantiate Current Design

In the process of comparing alternative concepts against the current design, the VE team noted a number of major design components that merit strong, continued support:

- The basic horizontal and vertical alignment and profile of the project through this corridor with a combination of reconstructed and new sections
- Proactive management of settlement issues

PROJECT DESCRIPTION AND PLANS

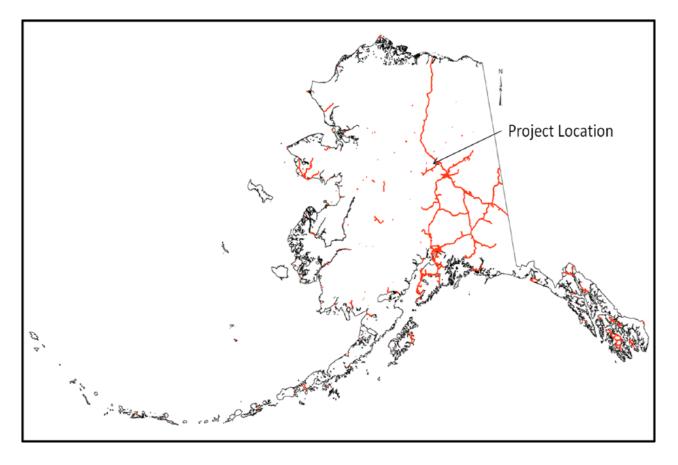
Construction Cost: <u>Right of Way Costs:</u>	\$39,470,000 \$500,000
TOTAL COST:	\$39,970,000
Total length:	10.66 miles
Cost per mile:	\$3,416,538

Location: Livengood, Alaska

Project Description (excerpted from the DOT & PF Design Study Report):

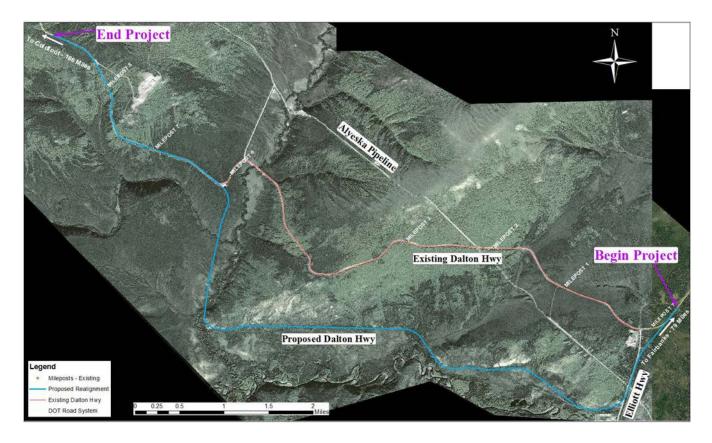
Background

The Alaska Department of Transportation and Public Facilities (DOT & PF), in cooperation with the Federal Highway Administration (FHWA) proposes to reconstruct the first nine miles of the James W. Dalton Highway (known simply as the Dalton Highway).

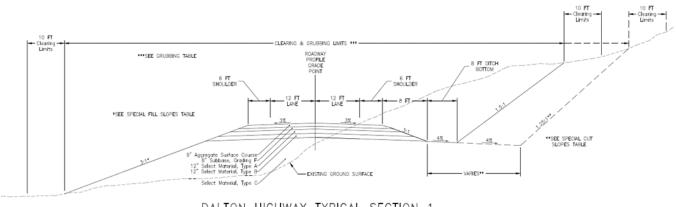

The Dalton Highway is classified as a rural principal arterial and is part of the National Highway System (NHS), extending from north of Fairbanks to Deadhorse. The Dalton Highway provides the only vehicle access route across Northern Alaska and serves as a critical supply route between commercial and industrial centers. The original roadway was built between 1971 and 1974 as a private haul route to support the Trans-Alaska Pipeline System (TAPS) and was constructed to the former State of Alaska Department of Highways secondary road standards. It was opened to the public in 1994 and currently supports heavy truck and tourism traffic.

This reconstruction project will upgrade this existing TAPS access route to arterial standards, improving safety and service. Approximately two thirds of the roadway will be realigned to meet standards, and a third will closely follow the existing alignment.

The proposed realignment portion of the project departs from the Elliott highway and travels down the West Fork Tolovana River Valley and Lost Creek Valley, staying near the valley bottom until rising again to tie back into MP6.5 of the existing Dalton Highway, in which the road continues to climb until reaching the end of the project, near the summit of 9 Mile Hill. The proposed road varies in elevation from 450' to 1450'.

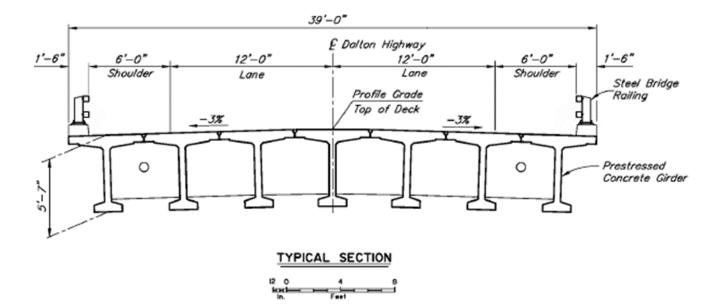

Proposed improvements include corrections to horizontal and vertical geometry, road widening, installation of a new bridge at the Lost Creek crossing, new culverts, new signage, constructing vehicle pullouts, removal of the existing culverts at Lost Creek, and existing highway abandonment (including retaining portions to provide access to adjacent land facilities).

Project Location



Value Engineering

Project Plan – Image


Typical Rodway Cross Section

DALTON HIGHWAY TYPICAL SECTION 1

Value Engineering

Typical Bridge Cross Section

VALUE ENGINEERING

PROPOSAL SUMMARY

Prop. #	VALUE ENGINEERING ALTERNATIVES	Current Concept	VE Proposal	Difference	LCCA 30 Year Difference
D1a	Drainage - Pipe Culvert - Culvert Gauge	\$ 801,000	\$ 1,341,000	\$ (540,000)	\$ 267,000
D1b	Drainage - Pipe Culvert Material Upgrade	\$ 790,000	\$ 1,396,000	\$ (606,000)	\$ 100,000
D2	Drainage - Pipe Installation Method	\$ 493,000	\$ 251,000	\$ 242,000	
D3	Drainage - Pipe Bedding - Insulated	\$ 790,000	\$ 1,233,000	\$ (443,000)	\$ 264,000
B1	Bridge - Structural Design Refinement	\$ 2,334,000	\$ 1,915,000	\$ 419,000	
B2	Bridge - Width Criteria	\$ 2,334,000	\$ 2,051,000	\$ 283,000	
В3	Bridge - Span	\$ 2,334,000	\$ 2,057,000	\$ 277,000	
B4	Bridge - Structural Plate	\$ 2,334,000	\$ 1,265,000	\$ 1,069,000	
R1	Roadway Construction - Materials Sourcing	\$ 20,436,000	\$ 17,082,000	\$ 3,354,000	
R2	Roadway - Surface	\$ 2,904,000	\$ 2,684,000	\$ 220,000	\$ 6,702,000
R3	Roadway - Surface Section	\$ 4,320,000	\$ 3,210,000	\$ 1,110,000	
G1	Geotechnical - Permafrost Provisions - Thermal Berms	\$ 9,185,000	\$ 10,527,000	\$ (1,342,000)	
G2	Geotechnical - Permafrost Provisions - Tundra Excavation	\$ 198,000	\$ 124,000	\$ 74,000	
G3	Geotechnical - Permafrost Provisions - Deep Excavation / Oversized Embankments	\$ 11,500,000	\$ 7,351,000	\$ 4,149,000	
G4	Geotechnical - Permafrost Provisions - ACE Embankment Height	\$ 10,768,000	\$ 12,723,000	\$ (1,955,000)	
C1	Construction - Schedule	\$ 8,155,000	\$ 5,659,000	\$ 2,496,000	
	Technical Comments				
T1	Material Criteria - Degradation Values				
T2	Construction Delivery				
Т3	Construction Considerations				
T4	Utilities - Pipeline Casing				
Т5	Planning - Alignment				
	LCCA indicates life cycle cost analysis				

VE PROPOSALS

			Proposal	D1A						
COMPONENT : Drainage – Pipe	Culvert – Culv	ert Gauge	AUTHOR	RDP						
CURRENT CONCEPT:										
Existing culverts will be replaced with new corrugated steel pipe (CSP) culverts; diameters include 18", 24", 36", 48", and 72".										
VE CONCEPT:										
Increase pipe thickness (gage) of CSP culverts in areas of poor soils with high probability of settlement to increase structural strength and extend functional life. Install deadman end anchors on W Fork Tolovona Tributary and Rosebud Creek culverts.										
FUNCTIONS Convey water	Support Load	ds Resist deformation								
CURRENT CONCEPT	PROPOSED CHA	NGE	DIFFERENCE							
\$ 801,000	\$	1,341,000	\$	(540,000)						
\$ 1,607,982 (LCCA)	\$ 1,341	,000 (LCCA)	\$ 266,982 (LCCA)							
Advantages:		DISADVANTAGES:								
Improved culvert perform	mance	Increased initial construction costs								

- Reduced pipe deformation
- Reduced maintenance
- Life cycle cost savings

Value Engineering

	Proposal	D1A					
COMPONENT : Drainage – Pipe Culvert – Culvert Gauge	AUTHOR	RDP					
DISCUSSION:							
Consider installing heavy-gage (10- or 12-gage) CSP culverts in areas of known poor soils (ice-rich soils). Heavy gage pipes have greater structural strength to resist deformation from settlement, frost-jacking, and aufeis formation. Heavy gage pipes also increase design life in areas of high abrasion and/or corrosion.							
Installation of deadman end anchors on large pipes (48" and 72") may also reduce effects of settlement on culverts.							
Unit costs of heavy-gage (10/12-gage) pipe are roughly twice pipe. Higher initial construction costs are offset by 30-year lif assuming eventual need to replace standard 16-gage culver	e cycle mainter	nance costs,					

pipes, and the 48" and 72" pipes assumed) due to settlement- or abrasion-related failure.

										Prc)PO	SAL	D
DNENT : Draina	age	– Pip	e C	ulver	t —	Culve	ert Gau	uge		Auth	HOR		RD
D1Drainage - F	Pine	Costs	hu í	Gade		-		-					
Unit cost calcu					and	heavu	Dage r	nine					
						noary	9090 P	.po					
Estimate Costs	5					Cor	, itech 16	GA WS	Ma	arkup			
CSP 18 Inch	\$	90		LF			\$	25		3.60			
CSP 24 Inch	\$	150	—	LF			\$	30		5.00			
CSP 36 Inch	\$	200		LF			\$	45		4.44			
CSP 48 Inch	\$	300	<u> </u>	LF			\$	60		5.00			
CSP 72 Inch	\$	400	—	LF			\$	100		4.00			
	·							Ave:		4.41			
Contech Unit C	Dosts	s	6	8/2017									
Assumes weld	ded s	eams			band	ds for i	ioints; 2	20-foot st	ick le	engthe	3		
						aa ws				_		Mark	up
CSP 18 Inch	\$	25	\$	37		NIA				1.48			
CSP 24 Inch	\$	30	\$	50		NIA				1.67			
CSP 36 Inch	\$	45	\$	74	\$	93				1.64		2.07	
CSP 48 Inch	\$	60	\$	98	\$	123				1.63		2.05	
CSP 72 Inch	\$	100	\$	165	\$	210				1.65		2.10	
								Ave:		1.61		2.07	
Unit Costs*	12 G	iA WS	10 G	ia ws	ò		Unit C	losts*	12 G	A WS	10 G	A WS	6
CSP 18 Inch	\$	163					CSP 1	8 Inch	\$	145			
CSP 24 Inch	\$	220					CSP 2	24 Inch	\$	242			
CSP 36 Inch	\$	326	\$	410			CSP 3	36 Inch	\$	323	\$	414	
CSP 48 Inch	\$	432	\$	542			CSP 4	18 Inch	\$	484	\$	622	
CSP 72 Inch	\$	727	\$	926			CSP 7	72 Inch	\$	646	\$	829	
*Using 4.41 sc	ale u	ipone	estim	nate co	sts		*Usin;	g 1.61 ani	d 2.01	7 base	e sca	le up	
Unit Costs	12 G	iA WS	10 G	ia ws	5								
CSP 18 Inch	\$	160	\$	-									
CSP 24 Inch	\$	240	\$	-									
CSP 36 Inch	\$	330	\$	420									
CSP 48 Inch	\$	460	\$	590									
	\$	690	\$	880									

		Proposal	D1A
MPONENT : Drainage – Pipe Culvert	 Culvert Gauge 	AUTHOR	RDP
PALTON 0-9 VE	6	18/2017	
DI 45'	A E-1 = 45 × 0.0 A Subbure F = 49 A Borrow = 37	5' × 0.75' 345F	
D2 245 12 30' 235 12 30' 41' 5	7 4:1 Cit slope holf-ouch l of pipe Vol El = 24573 Vol E = 237×47 Vol B = 237×48	× 75/27 = 276	in the second
42' 36'+2(5') 2 30' 30'	L': 50'+162 = 10	06' = (285') × 106' / = 13,34	127 14 CF
L=162 '	ABOUTE 4X CALD W FOR DETUUR RO AND NODE OF	nos/laves (2)	5

COMPONENT LIFE CYCLE COST ANALYSIS (LCCA)

Dalton Highway MP 0 - 9 Reconstruction

Project:	Dalton Highway MP 0 - 9 Reconstruction
Client:	Alaska Department of Transportation and Public Facilities
Date:	6/9/2017
By:	
COMPONENT	Drainage -Pipe Culvert - Culvert Gauge
COMPONENT #	D1a
Escalation rate	0.03
Discount rate	0.015
Study Period	30 Yrs.
Instructions: Enter escalation	, discount, and study period above.

Enter annual costs, replacement costs (and appropriate replacement year), and salvage value. Enter these costs in the shaded cells using today's (current) dollars. For annual costs, escalation rates will be automatically entered, but can be individually overwritten below for differential escalation.

All costs will automatically be escalated and discounted.

ALTERNATIVE A : Current design			Std CSP Culverts INITIAL COST			ALTERNATIVE B:			Heavy gag	e CSP Culverts	DIFFERENCE	
									INITIA	LCOST	DIFF	ERENCE
				\$	801,000				\$	1,341,000	\$	(540,000)
O & M ANNUAL COS STAFFING OPERATIONS STAFFING MAINTENANCE SUPPLIES OPERATIONS SUPPLIES MAINTENANCE		-	ENERGY									
Subcomponente	Cost \$	in current	Esc.	Broc	Worth \$	Subcomponents	Cost in current \$	Esc.	Brock	North \$		
Subcomponents	φ		0.03	s	-	Subcomponents	current \$	0.030	s	-	\$	_
			0.03	\$				0.030	\$		\$ \$	
			0.03	\$	<u> </u>			0.030	\$		\$ \$	
			0.03	\$				0.030	\$		\$ \$	-
			0.03	\$				0.030	\$		\$	
			0.03	\$				0.030	\$	-	\$	
			0.03	\$				0.030	\$	-	\$	
				<u> </u>				0.000	<u> </u>		÷	
SUBT. O & M OVER LIFE CYC	L\$	-		\$	-				\$	-	\$	
								_	-			
REPLACEMENT and (STS									
Cubaannananta		in current	¥.,	Dues	Marth 6	Curk a summary survey	Cost in	M-	Duce	No with th		
Subcomponents	\$	F 400	Yr.		Worth \$	Subcomponents	current \$	Yr.		North \$	¢	c 700
CSP 18 Inch CSP 24 Inch	\$	5,400	15	\$	6,729				\$		\$ \$	6,729
CSP 24 Inch	\$ \$	75,000 250,000	15	\$ \$	93,461				\$ \$		э \$	93,461 311,536
CSP 48 Inch	\$	36,000	<u>15</u> 15	\$	311,536 44,861				\$	-	\$ \$	44,861
CSP 48 Inch CSP 72 Inch	ه \$	104,000	15	م \$	129,599						э \$	129,599
Borrow	ه \$	90,033	15	<u>э</u> \$	112,194				\$ \$		э \$	112,194
Aggregate Surface Course, E1	\$	62,877	15	\$	78,354				\$		\$ \$	78,354
Subbase, Grading F	\$	8,273	15	\$	10,310				\$		\$	10,310
Thaw Pipe 1/2 Inch Diameter	\$	16,000	15	\$	19,938				\$		\$	19,938
SUBT. REPLACEMENT	<u> </u>	10,000		\$	806,982				\$		\$	806,982
				<u> </u>					<u> </u>		÷	
TOT. O & M & REPL. (Pres. W	orth)			\$	806,982				\$	-	\$	806,982
TOT. INITIAL, O&M, & REPL. (Pres. V	Vorth)		\$	1,607,982				\$	1,341,000	\$	266,982
		in current					Cost in					
SALVAGE VALUE	\$		30	\$	-		current \$	30	\$	-	\$	
TOT. INITIAL, O&M, REPL. MI	NUS S/	ALVAGE		\$	1,607,982				\$	1,341,000	\$	266,982

D1a

COST ESTIMATE FORM

COMPONENT:

Drainage - Pipe Culvert - Culvert Gauge

VALUE ENGINEERING STUDY

CURRENT DESIGN **VE PROPOSAL** UNIT UNIT ITEM QTY UNIT COST TOTAL COST ITEM QTY UNIT COST TOTAL COST LF CSP 18 Inch 120 \$ 90 10,800 CSP 18 Inch, 12 Gage 60 LF \$ 160 9,600 150,000 CSP 24 Inch, 12 Gage CSP 24 Inch 1,000 LF \$ 150 500 LF \$ 240 120,000 CSP 36 Inch 200 2,500 LF \$ 500,000 CSP 36 Inch, 10 Gage ,250 LF \$ 420 525,000 CSP 48 Inch 300 36,000 CSP 48 Inch, 10 Gage 590 120 LF \$ 120 LF \$ 70,800 CSP 72 Inch 260 LF 104,000 CSP 72 Inch, 10 Gage LF \$ 880 \$ 400 260 228,800 \$14,000 Deadman 4 ΕA 56,000 CSP 18 Inch 60 LF \$ 90 5,400 150 CSP 24 Inch \$ 75,000 500 LF CSP 36 Inch 1,250 \$ LF 200 250,000 Assumes estimate unit costs are for standard 16 gage pipe Assumes 50% of pipes (<48") upgraded to heavy gage pipe 30-year life cycle assumes 50% of pipes (<48") replaced due to settlement Assumes 48" and 72" upgraded to heavy gage pipe Assumes 48" (WFT Trib #1) and 72" (Rosebud) replaced due to settlment Geotech prelim suggest ~42% of alignment is on ice-rich soils 800,800 Subtotal Subtotal 1,340,600 General Contractor Markup % General Contractor Markup % Total to nearest \$1000 801,000 Total to nearest \$1000 1,341,000 Difference (540,000)

MENG Analysis DOWL D1a Proposal

	Proposal	D1B					
COMPONENT: Drainage – Pipe Culvert Material Upgrade	AUTHOR	RDP					
CURRENT CONCEPT:							
Existing culverts will be replaced with new corrugated steel pipe (CSP) culverts; diameters include 18", 24", 36", 48", and 72".							
VE CONCEPT:							
Use straight-walled steel pipe (pile pipe) in lieu of CSP culverts in areas of poor soils with high probability of settlement to increase structural strength and extend functional life.							
FUNCTIONS							

Convey Water	Support Loads	Resist Deformation
--------------	---------------	--------------------

CURR	RENT CONCEPT	Propo	sed Cha	NGE	DIFFERENCE			
\$	790,000	\$		1,396,000	\$	(606,000)		
\$	1,496,458 (LCCA)	\$	1,396	6,000 (LCCA)	\$	100,458 (LCCA)		
A dv <i>i</i>	ANTAGES:		DISADVANTAGE	S:				
•	Improved culvert perform	nance		Increased initial construction costs				
•	Welded joints			Higher handling weights				
•	Reduced pipe deformati	on						
•	Reduced maintenance							
•	Life cycle cost savings							

	PROPOSAL	D1B
Сомромемт: Drainage – Pipe Culvert Material Upgrade	AUTHOR	RDP

DISCUSSION:

Consider installing straight-walled heavy steel culverts (steel pile) in areas of known poor soils (ice-rich soils). Steel pile pipes have greater structural strength to resist deformation from settlement, frost-jacking, and aufeis formation. Because sticks of pipe are welded together, there is very low risk of pipe separation due to differential settlement or heaving. Steel pile pipes also increase design life in areas of high abrasion and/or corrosion.

Steel pile pipe segments must be welded together during installation and may be more difficult to furnish relative to CSP. Steel pile pipe is substantially heavier per linear foot than CSP so may require larger equipment to install.

Unit costs of steel pile pipe are roughly 2.5 times those of standard CSP. Higher initial construction costs are offset by 30-year life cycle maintenance costs, assuming eventual need to replace CSP culverts (50% of 24" and 36" pipes, and the 48" and 72" pipes assumed) due to settlement- or abrasion-related failure.

COMPONENT LIFE CYCLE COST ANALYSIS (LCCA)

Project: Dalton Highway MP 0 - 9 Reconstruction Client: Alaska Department of Transportation and Public Facilities Date: 6/9/2017 By: COMPONENT Drainage - Pipe Culvert Material Upgrade COMPONENT # D1b Escalation rate 0.03 0.023 Discount rate Study Period 30 Yrs.

Instructions: Enter escalation, discount, and study period above.

Enter annual costs, replacement costs (and appropriate replacement year), and salvage value.

Enter these costs in the shaded cells using today's (current) dollars. For annual costs, escalation rates will be automatically entered,

but can be individually overwritten below for differential escalation.

All costs will automatically be escalated and discounted.

ALTERNATIVE A : Current des	sign			Std	CSP Culverts	ALTERNATIVE B:	Steel Pile Culver			teel Pile Culverts	S DIFFERENCE		
INITIAL COSTS				INI	TIAL COST				INITIAL	COST	DIFF	ERENCE	
				\$	790,000				\$	1,396,000	\$	(606,000)	
O & M ANNUAL COS STAFFING OPERATIONS STAFFING MAINTENANCE SUPPLIES OPERATIONS SUPPLIES MAINTENANCE		n current	ENERGY				Cost in						
Subcomponents	\$	in our one	Esc.	Pres.	Worth \$	Subcomponents	current \$	Esc.	Pres. W	orth \$			
·			0.03	\$	-			0.030	\$	-	\$	-	
			0.03	\$	-			0.030	\$	-	\$	-	
			0.03	\$	-			0.030	\$	-	\$	-	
			0.03	\$	-			0.030	\$	-	\$	-	
			0.03	\$	-			0.030	\$	-	\$	-	
			0.03	\$	-			0.030	\$	-	\$	-	
			0.03	\$	-			0.030	\$	-	\$	-	
SUBT. O & M OVER LIFE CYC	CL \$	-		\$	-		-		\$	-	\$	-	
				<u> </u>			-	-	<u> </u>		•		
REPLACEMENT and	CYCLI	CAL CO	STS										
		n current					Cost in						
Subcomponents	\$		Yr.		Worth \$	Subcomponents	current \$	Yr.	Pres. W				
CSP 24 Inch	\$	75,000	15	\$	83,078				\$	-	\$	83,078	
CSP 36 Inch	\$	250,000	15	\$	276,926				\$	-	\$	276,926	
CSP 48 Inch	\$	36,000	15	\$	39,877				\$	-	\$	39,877	
CSP 72 Inch	\$	104,000	15	\$	115,201				\$	-	\$	115,201	
Borrow	\$	87,567	15	\$	96,998				\$	-	\$	96,998	
Aggregate Surface Course, E1	\$	61,155	15	\$	67,741				\$	-	\$	67,741	
Subbase, Grading F	\$	8,047	15	\$	8,913				\$	-	\$	8,913	
Thaw Pipe 1/2 Inch Diameter	\$	16,000	15	\$	17,723				\$	-	\$	17,723	
SUBT. REPLACEMENT				\$	706,458				\$		\$	706,458	
TOT. O & M & REPL. (Pres. W	orth)			\$	706,458				\$	-	\$	706,458	
TOT. INITIAL, O&M, & REPL. ((Pres. W	orth)		\$	1,496,458				\$	1,396,000	\$	100,458	
	Cost in \$	n current					Cost in current \$						
SALVAGE VALUE	Ψ		30	\$	-			30	\$		\$	-	
TOT. INITIAL, O&M, REPL. MI	NUS SA	LVAGE		\$	1,496,458				\$	1,396,000	\$	100,458	

D1b

COST ESTIMATE FORM

COMPONENT:

Drainage - Pipe Culvert Material Upgrade

VALUE ENGINEERING STUDY

CURRENT DESIGN			VE PROPOSAL						
ITEM	QTY	UNIT	UNIT COST	TOTAL COST	ITEM	QTY	UNIT	UNIT COST	TOTAL COST
CSP 24 Inch	1,000	LF	\$ 150	150,000	Steel Pile, 24 Inch	500	LF	\$ 290	145,000
CSP 36 Inch	2,500	LF	\$ 200	500,000	Steel Pile, 36 Inch	1,250	LF	\$ 460	575,000
CSP 48 Inch	120	LF	\$ 300	36,000	Steel Pile, 48 Inch	120	LF	\$ 540	64,800
CSP 72 Inch	260	LF	\$ 400	104,000	Stele Pile, 72 Inch	260	LF	\$ 1,100	286,000
					CSP 24 Inch	500	LF	\$ 150	75,000
30-year life cycle assumes 50% of 2	4" and 36" pipe	s rep	laced		CSP 36 Inch	1,250	LF	\$ 200	250,000
Assumes 48" (WFT Trib #1) and 72" (I	Rosebud) repla	ced	due to settl	ment					
					Assumes 50% of 24" and 36" culverts up	graded to s	steel	pile	
					Assumes 48" and 72" culverts upgraded	d to steel pil	е		
					Geotech prelim suggest ~42% of align	ment is on i	ce-ric	ch soils	
					Assumes bid cost is 2x material cost fro	m supplier			
Subtotal				790,000	Subtotal				1,395,800
General Contractor Markup		%			General Contractor Markup		%		
Total to nearest \$1000				790,000	Total to nearest \$1000				1,396,000
· · · · · · · · · · · · · · · · · · ·									· · · · ·
					Difference	1			(606,000)

MENG Analysis DOWL D1b Proposal

		Proposal					
COMPONENT: Drainage – Pipe In:	inage – Pipe Installation Method Autнor RD						
CURRENT CONCEPT:							
Replacement of existing culverts along existing highway segments of project (MP 6.5 to 9 and Elliott Highway) will be completed through traditional open-cut excavation.							
VE CONCEPT:							
Replace deep-fill culverts (e.g. Decommission and abandon ex	, , , ,	ning trenchless te	echnologies.				
FUNCTIONS							
Convey Water	Support Loads	Protect Embank	ment				

CURRENT CONC	EPT	PROPOSED CHA	NGE	DIFFERENCE	
\$	493,000	\$	251,000	\$	242,000
 Reduce Reduce costs Reduce 	l reduced installa ed impacts to traf ed traffic mainten ed maintenance ed differential set	fic operations ance/control	experie • Lower • Risk of	es specialize ence	n grade/alignment

VALUE ENGINEERING

	Proposal	D2
COMPONENT: Drainage – Pipe Installation Method	AUTHOR	RDP

DISCUSSION:

Consider installing replacement culverts in deep-fill locations along existing highway alignment (e.g., MP 8 culvert, station ~520+00) using pipe ramming trenchless technologies instead of traditional open-cut excavation. Pipe ramming will allow highway to stay open to traffic with minimal impacts during culvert installation, with subsequent reductions in traffic maintenance and traffic control costs. Open-cut excavation for culvert replacement will likely require detour roads/lanes to keep the highway open to traffic during culvert replacement work; a short road closure may also be required, which would impact traffic operations along the highway.

Pipe ramming also allows the existing embankment material to stay in place; excavation and backfill for open-cut installation increases the risk of differential settlement and longterm maintenance issues as embankment reconsolidates. M&O staff will not have to address differential settlement from reconstructed portion of road.

Pipe ramming requires the contractor/subcontractor to be experienced with technology to complete work. Trenchless installation includes the risk of the rammed pipe striking an obstruction, requiring a contingency plan being in place with potential excavation to resolve. Ramming a pipe through frozen soils may not be feasible, though it is existing embankment is likely not frozen. Rammed pipe typically has a lower tolerance for the finished pipe grade and alignment; aiming the pipe is only realistic within the first 10 to 20 feet of installation.

										Propc	DSAL	D2
ONENT	: Drainag	ge – P	ipe In	stallat	ion M	ethod				AUTHOR	2	RDF
	D1b - Dra	ainage Ste	el Pile Uni	t Costs	L.	· ·			1			
		I			Eng Est	Min Bid	Avg Bid	Max Bid				
	Year	Project	ltem	Quantity	% of Bid	Low Bidder	2** Low Bidder	3 ^{r4} Low Bidder				
	2003 12	Dalton Hwy Culverts MP 260- 321	505(5) Furnish Structural Steel Piles - HP 12x53	102.04	55 0.18%			300 56	\$ 15	1		
	2016 01	Denali Hwy Seattle	505(5) Furnish Pile (1'-6''	480 LF	200				\$ 110	6		
	2013 06	Ck Elliott Hwy Livengoo	dia pipe) 505(5) Furnish	580 LF	2.78%		133	88 250				
		d Ck Bridge	Pile (1'-6'' dia)		3.45%	210	112	250	\$ 17	7 \$ 148		
	0000 40	Richards on MP 235 Ruby	505(5) Furnish Structural	4504-01-5	150	125	152.31	182				
	2016 11	Ck Bridge #0594	Steel Piles (2'- 0'' dia)	1524.8 LF	3,45%	170	125	130	\$ 15:	3		
	2016 01	Tok Cutoff MP 17	505(5) Furnish Pile (2'0''	896 LF	150	155.55	151.79	200	\$ 16:	9		
	-	Tulsona Ck	dia %" Pipe Pile)		3.40%	170	160	160	•	-		
	2014 08	Parks Hwy MP 237 Riley		1213.6 LF	185			196.75	\$ 19(0 \$ 171		
		Ck	O" Pipe)		1.92%	196.75	-	•				
	2015 11	Tok Cutoff MP 75.6 Slana River	505(5B) Furnish Piles (3'- 0'' PIPE)	441.3 LF	400				\$ 48:	3		
		Bridge Edgerton	505(5B)		2.40%	275	320	525				
	2015 05	Hwy Lakina River	Furnish Piles (3'- 0" Dia.	459 LF	500				\$ 375	9		
		Bridge Richards	Pipe)		3.90%	356.17	327.67	440				
	2015 04	on Hwy MP 295 Banner	505(5B) Furnish Piles (3'- 0" Dia.	366 LF	500	181.5	370.63	495	\$ 34	9		
		Ck Bridge	Pipe)		2.65%	181.5	400	360	* •	-		
	2014 11	Tok Cutoff MP 104 Tok River	505(5B) Furnish Plies (3'-	1200.9 LF	350	350	421.57	480	\$ 41	7		
		Bridge	0" pipe)		4,10%	480	350	375				
	2014 08	Parks Hwy MP 237 Riley		634.8			655.22	693.43	\$ 65	7 \$ 457		
		Ck	O" Pipel	L	1.73%	689.43	ŀ	·	l			

		Proposal	D
омемт: Drainage – Pipe Installatic	n Method	AUTHOR	RD
DALTON 0-9 VG	6	18/2017	
45	A E-1 = 45 × 0.7 A Subbure F= 45 A Barrow = 37	15" = 34 5F "X 0.75" 345F "X 2" = 444 5F	And The
D2 245 14 30' 4'' 5 42'	7 4:1 Cut slope holf-omch b of pipe Vol El = 245730 Vul F = 237×49 Vul B = 233×48	×.75/27 - 276	et ons
36'+2(5') 2 30' 1=162'	L': 50'+162 = 10 Vol Ex = 233+5 Z	16' -(285')×106'/ = 13,311 ≩ 13,000	rcr
	ABOUTE 4X CALD VA FOR DETUUR ROD AND ~900' OF	ADS/LANES (2)	

VALUE ENGINEERING STUDY

D2

COST ESTIMATE FORM

COMPONENT:

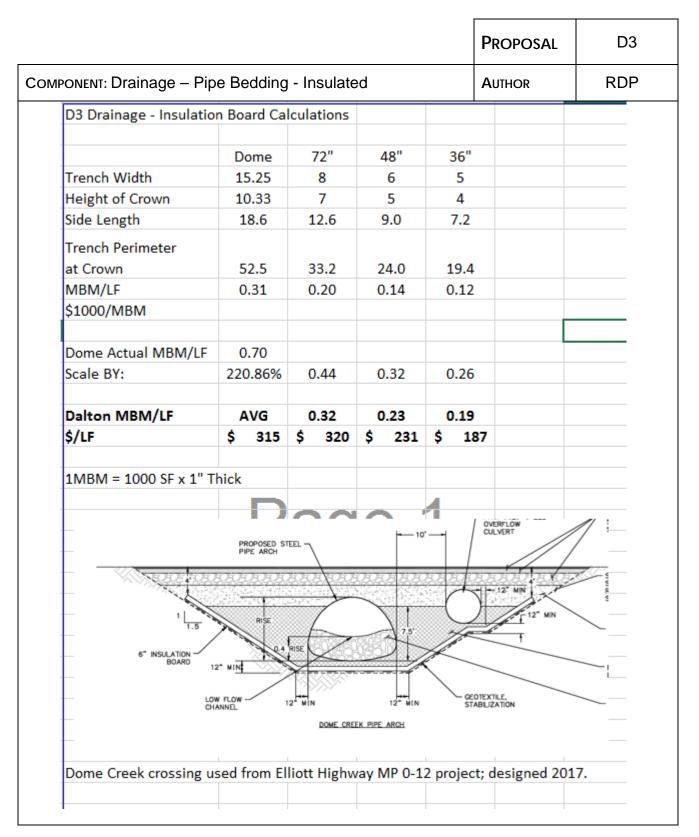
Drainage - Pipe Installation Method

CURRENT DESIGN						ve proposal				
ITEM	QTY	UNIT	UN		TOTAL COST	ITEM	QTY	UNIT	UNIT COST	TOTAL COST
CSP 36 Inch	162	LF	\$	200	32,400	36 Inch Steel Pipe, Rammed	162	LF	\$ 1,500	243,000
Removal of Culvert Pipe	1	EA	\$	2,500	2,500	Decommision of Culvert Pipe	162	LF	\$ 50	8,100
Unclassified Excavation	52,000	CY	\$	6.5	338,000					
Borrow	3,320	CY	\$	5	16,600	Assumes failed pipe at MP 8 under 30'	fill replaced	l by p	pipe rammir	ng.
Aggregate Surface Course, E1	1,860	Ton	\$	24	44,640	Assumes existing pipe decommissioned	d and aban	Idone	ed in place.	
Subbase, Grading F	1,110	CY	\$	6	6,660					
Traffic Maintenance	1	LS	\$	12,000	12,000					
Traffic Control	1	CSUM	\$	40,000	40,000					
Earthwork quantities assume two deto half-and-half culvert construction; deta	ours ~500' la	ong.		ary for						
Traffic Maintenance and Traffic Contro										
project totals; MP 8 culvert is the prime										
be replaced within existing highway re	econstructio	on segr	nent.							
Subtotal					492,800	Subtotal				251,100
General Contractor Markup		%			· · · ·	General Contractor Markup		%		
Total to nearest \$1000					493,000	Total to nearest \$1000				251,000
			_							0.40.000
						Difference				242,000

MENG Analysis DOWL

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION & PUBLIC FACILITIES DALTON HIGHWAY MP 0-9 RECONSTRUCTION

VALUE ENGINEERING


			Proposal	D3
COMPONENT: Drainage – Pipe B	edding - Insulated	k	AUTHOR	RDP
CURRENT CONCEPT:				1
Existing culverts will be replace	ed with new corru	gated steel pi	ipe (CSP) culver	ts.
VE CONCEPT:				
Add insulation board in bottom	n of culvert trench	(below bedc	ling, up to Selec	ted Material,
Type A/B) in areas of ice-r			permafrost degra	adation and
subsequent embankment settle	ement and pipe d	eformation.		
FUNCTIONS				
Convey Water	Protect Emban	ment	Protect Permaf	rost
CURRENT CONCEPT	PROPOSED CHANC	ЭЕ.	DIFFERENCE	
		1 000 000		(110.000)
\$ 790,000	\$	1,233,000	\$	(443,000)
\$ 1,496,458 (LCCA)	\$ 1,233,0	00 (LCCA)	\$ 263	,458 (LCCA)
	r			

Advantages:	DISADVANTAGES:
Reduced settlement	Increased initial construction costs
Improved culvert performance	
Reduced maintenance	
Life cycle cost savings	

Value Engineering

	Proposal	D3
COMPONENT: Drainage – Pipe Bedding - Insulated	AUTHOR	RDP
DISCUSSION:		
Consider installing insulation board in the bottom of the trench in areas of known ice-rich soils. Insulation board reduces embankment to underlying permafrost, reducing subseque deformation from permafrost thaw.	heat transfe	r from new

Higher initial construction costs are offset by 30-year life cycle maintenance costs, assuming eventual need to replace culverts (50% of 36" and smaller pipes and the 48" and 72" pipes) due permafrost thaw, settlement, and pipe deformation.

COMPONENT LIFE CYCLE COST ANALYSIS (LCCA)

Dalton Highway MP 0 - 9 Reconstruction

Project:	Dalton Highway MP 0 - 9 Reconstruction							
Client:	laska Department of Transportation and Public Facilities							
Date:	6/9/2017							
By:								
COMPONENT	Drainage - Pipe Bedding - Insulated							
COMPONENT #	D3							
Escalation rate	0.03							
Discount rate	0.023							
Study Period	30 Yrs.							
Instructions: Enter escalation	on, discount, and study period above.							

Enter annual costs, replacement costs (and appropriate replacement year), and salvage value. Enter these costs in the shaded cells using today's (current) dollars. For annual costs, escalation rates will be automatically entered, but can be individually overwritten below for differential escalation. All costs will automatically be escalated and discounted.

ALTERNATIVE A : Current des	sign			Std	CSP Culverts	ALTERNATIVE B:			s with Insulation	n DIFFERENCE		
INITIAL COSTS					FIAL COST					COST		ERENCE
				\$	790,000				\$	1,233,000	\$	(443,000)
O & M ANNUAL COS STAFFING OPERATIONS STAFFING MAINTENANCE SUPPLIES OPERATIONS SUPPLIES MAINTENANCE			ENERGY									
Subcomponents	Cost in o \$	current	Esc.	Pres	Worth \$	Subcomponents	Cost in current \$	Esc.	Pres V	Vorth \$		
Cubeenpenence	¥		0.03	\$	-	Cubcomponento	ourroint ¢	0.030	\$	-	\$	-
			0.03	\$	-			0.030	\$	-	\$	-
			0.03	\$	-			0.030	\$	-	\$	-
			0.03	\$	-			0.030	\$	-	\$	-
			0.03	\$	-			0.030	\$	-	\$	-
			0.03	\$	-			0.030	\$	-	\$	-
			0.03	\$	-			0.030	\$	-	\$	-
SUBT. O & M OVER LIFE CYC	:L \$			\$	-		-	_	\$	-	\$	-
REPLACEMENT and			ете									
	Cost in o		515				Cost in					
Subcomponents	\$	ourroint	Yr.	Pres.	Worth \$	Subcomponents	current \$	Yr.	Pres. V	Vorth \$		
CSP 24 Inch	\$	75,000	15	\$	83,078				\$	-	\$	83,078
CSP 36 Inch	\$	250,000	15	\$	276,926				\$	-	\$	276,926
CSP 48 Inch	\$	36,000	15	\$	39,877				\$	-	\$	39,877
CSP 72 Inch	\$	104,000	15	\$	115,201				\$	-	\$	115,201
Borrow	\$	87,567	15	\$	96,998				\$	-	\$	96,998
Aggregate Surface Course, E1	\$	61,155	15	\$	67,741				\$		\$	67,741
Subbase, Grading F	\$	8,047	15	\$	8,913				\$	-	\$	8,913
Thaw Pipe 1/2 Inch Diameter	\$	16,000	15	\$	17,723				\$	-	\$	17,723
SUBT. REPLACEMENT				\$	706,458				\$		\$	706,458
TOT. O & M & REPL. (Pres. W	orth)			\$	706,458				\$	-	\$	706,458
TOT. INITIAL, O&M, & REPL. (Pres. Wor	rth)		\$	1,496,458				\$	1,233,000	\$	263,458
	Cost in o	current					Cost in					
SALVAGE VALUE	\$		30	\$			current \$	30	\$	-	\$	
TOT. INITIAL, O&M, REPL. MI	NUS SALV	/AGE		\$	1,496,458				\$	1,233,000	\$	263,458

VALUE ENGINEERING STUDY

COST ESTIMATE FORM

COMPONENT:

Drainage - Pipe Bedding - Insulated

D3	
----	--

CURRENT DESIGN	CURRENT DESIGN						VE PROPOSAL				
ITEM	QTY	UNIT	UNI	t COST	TOTAL COST	ITEM	QTY	UNIT	UN	IT COST	TOTAL COST
CSP 24 Inch	1,000	LF	\$	150	150,000	CSP 24 Inch	1,000	LF	\$	150	150,000
CSP 36 Inch	2,500	LF	\$	200	500,000	CSP 36 Inch	2,500	LF	\$	200	500,000
CSP 48 Inch	120	LF	\$	300	36,000	CSP 48 Inch	120	LF	\$	300	36,000
CSP 72 Inch	260	LF	\$	400	104,000	CSP 72 Inch	260	LF	\$	400	104,000
30-year life cycle assumes 50% of 24" &	36" pipes re	eplac	ced o	due to	settlement	Insulation Board, 24" CSP	95	MBM	\$	1,000	95,000
Assumes 48" (WFT Trib #1) and 72" (Rose	bud) repla	ced	due	to settli	ment	Insulation Board, 36" CSP	238	MBM	\$	1,000	237,500
						Insulation Board, 48" CSP	28	MBM	\$	1,000	27,600
						Insulation Board, 72" CSP	83	MBM	\$	1,000	83,200
						Assumes insulation used with 50% of 24"	l ' and 36'' pi	pes			
						Assumes insulation used with 48" and 72	2" pipes				
						Geotech prelim suggest ~42% of alignment is on ice-rich soils					
Subtotal					790,000	Subtotal					1,233,300
General Contractor Markup		%				General Contractor Markup		%			
Total to nearest \$1000					790,000	Total to nearest \$1000					1,233,000
						Difference					(443,000)

MENG Analysis DOWL D3

٦

	Proposal	B1					
COMPONENT: Bridge – Structural Design Refinement	AUTHOR	MJM					
CURRENT CONCEPT:							
Lost Creek Bridge Crossing consisting of a single span pre-cast concrete bridge (39'x142.5' bulb-tee) on driven steel HP14x117 piles. Design also includes over 2,000 cubic yards of riprap (Classes I and III) for scour protection.							
VE CONCEPT:							
Refine the proposed design by adjusting the quantities and unit prices for the driven steel H-pile design and Class I and III riprap quantities.							

Functions		
Span Creek	Support Vehicles	Pass Fish

CURRENT CONCEPT		PROPOSED CHA	ANGE	DIFFERENCE		
\$	2,334,000	\$	1,915,000	\$	419,000	
Advanta	GES:		DISADVANTAGE	ES:		
• Pil gre	ss cost e supply and driving r eatly reduced. ss riprap material to s	·	provide protect		ction may not mbankment n the final	

	Proposal	B1				
COMPONENT: Bridge – Structural Design Refinement	AUTHOR	MJM				
DISCUSSION:						
This VE proposal is based on reducing foundation and riprap material quantities. It is understood the proposed bridge design is based on a similar single span bridge crossing recently built at MP 265 which reportedly did not have shallow bedrock. As such, the pile quantities in the current concept may very well be placeholders. The VE proposal assumes the piles on the north abutment will extend through native soils and be driven to practical refusal at about 5 feet into the chert formation. On the south abutment, the piles will be much shorter on the order of 15 feet of length per pile and will be placed in core drilled holes and grouted in.						
As for the reduction in riprap quantity, a reduction of 50% is bas cad drawing illustrating the extent of riprap in the vicinity of the both directions (North and South) along the road embankment.						

COST ESTIMATE FORM

COMPONENT:

Bridge - Structural Design Refinement

VALUE ENGINEERIN	VALUE ENGINEERING STUDY					
	B1					

CURRENT DESIGN	CURRENT DESIGN					VE PROPOSAL				
ITEM	QTY	UNIT	UNIT COST	TOTAL COST	ITEM	QTY	UNIT	UNIT COST	TOTAL COST	
205(3) Structural Fill	1400	CY	35	49,000	205(3) Structural Fill	1400	CY	35	49,000	
501(1) Class A Concrete	125	CY	2500	312,500	501(1) Class A Concrete	125	CY	2500	312,500	
501(7) Precast Concrete Member	7	EA	110000	770,000	501(7) Precast Concrete Member	7	ΕA	110000	770,000	
503(1) Reinforcing Steel	20000	LBS	2.5	50,000	503(1) Reinforcing Steel	20000	LBS	2.5	50,000	
503(2) Epoxy Coated Rein Steel	10000	LBS	2.75	27,500	503(2) Epoxy Coated Rein Steel	10000	LBS	2.75	27,500	
505(5) Furnish Steel H-Piles HP14x117	1400	LF	125	175,000	505(5) Furnish Steel H-Piles HP14x117	415	LF	125	51,875	
505(6) Drive Steel H-Piles HP14x117	14	EA	20000	280,000	505(6) Drive Steel H-Piles HP14x117	14	ΕA	6500	91,000	
507(1) Steel Bridge Railing	368	LF	275	101,200	507(1) Steel Bridge Railing	368	LF	275	101,200	
512(X) Temporary Work Structure	2720	SF	125	340,000	512(X) Temporary Work Structure	2720	SF	125	340,000	
606(16) Transition Rail	4	ΕA	4000	16,000	606(16) Transition Rail	4	ΕA	4000	16,000	
611(A) Riprap, Class I	500	CY	75	37,500	611(A) Riprap, Class I	250	CY	75	18,750	
611(B) Riprap, Class III	1750	CY	100	175,000	611(B) Riprap, Class III	875	CY	100	87,500	
Subtotal				2,333,700	Subtotal				1,915,325	
General Contractor Markup		%			General Contractor Markup		%			
Total to nearest \$1000		1		2,334,000	Total to nearest \$1000				1,915,000	
·		ĺ								
					Difference				419,000	

MENG Analysis DOWL

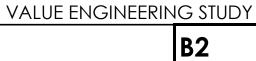
	Proposal	B2				
COMPONENT: Bridge – Width Criteria	AUTHOR	MJM				
CURRENT CONCEPT:						
Lost Creek Bridge Crossing consisting of a single span pre-cast concrete bridge (39'x142.5' bulb-tee) on driven steel HP14x117 piles. The 39' bridge width accommodates the lane/shoulder width criteria of 12' lanes and 6' shoulders with 1.5' barriers. Design also includes over 2,000 cubic yards of riprap (Classes I and III) for scour protection.						
VE CONCEPT:						
Reduce the bridge deck overall width to the minimum required for a rural bridge having an ADT of 400 or less (39 feet down to 31 feet).						
FUNCTIONS						

FUNCTIONS		
Span Creek	Support Vehicles	Pass Fish

CURRENT CONCEPT		PROPOSED CHANGE		DIFFERENCE			
\$	2,334,000	\$ 2	,051,000	\$	283,000		
			Disadvantad	GES:	dth than adjacent		

	Proposal	B2				
COMPONENT: Bridge – Width Criteria	AUTHOR	MJM				
DISCUSSION:						
This VE proposal is based on reducing the overall deck width from 39 feet to 31 feet.						
Design Designations assume a 2% growth rate over a 30-year design life with:						
• Current year AADT (2010) = 330						
• Mid-Year AADT (2020) = 490						
 Design Year AADT (2040) = 600 						
A review of recent historical actual ADT data shows it is not growing as predicted:						
• 2013 = 363						
• 2014 = 310						
• 2015 = 227						
These volumes fit within the AASHTO section 7.2.3 (AASHTO 2011).						
If this proposal is combined with proposal B1, costs would be reduced further due to shallower pile installation.						

COST ESTIMATE FORM


COMPONENT:

Bridge - Width Criteria

CURRENT DESIGN				VE PROPOSAL					
ITEM	QTY	UNIT	UNIT COST	TOTAL COST	ITEM		UNIT	UNIT COST	TOTAL COST
205(3) Structural Fill	1400	CY	35	49,000	205(3) Structural Fill	1120	CY	35	39,200
501(1) Class A Concrete	125	CY	2500	312,500	501(1) Class A Concrete	100	CY	2500	250,000
501(7) Precast Concrete Member	7	EA	110000	770,000	501(7) Precast Concrete Member	6	ΕA	110000	660,000
503(1) Reinforcing Steel	20000	LBS	2.5	50,000	503(1) Reinforcing Steel	16000	LBS	2.5	40,000
503(2) Epoxy Coated Rein Steel	10000	LBS	2.75	27,500	503(2) Epoxy Coated Rein Steel	800	LBS	2.75	2,200
505(5) Furnish Steel H-Piles HP14x117	1400	LF	125	175,000	505(5) Furnish Steel H-Piles HP14x117	1200	LF	125	150,000
505(6) Drive Steel H-Piles HP14x117	14	ΕA	20000	280,000	505(6) Drive Steel H-Piles HP14x117	12	ΕA	20000	240,000
507(1) Steel Bridge Railing	368	LF	275	101,200	507(1) Steel Bridge Railing	368	LF	275	101,200
512(X) Temporary Work Structure	2720	SF	125	340,000	512(X) Temporary Work Structure	2720	SF	125	340,000
606(16) Transition Rail	4	ΕA	4000	16,000	606(16) Transition Rail	4	ΕA	4000	16,000
611(A) Riprap, Class I	500	CY	75	37,500	611(A) Riprap, Class I	500	CY	75	37,500
611(B) Riprap, Class III	1750	CY	100	175,000	611(B) Riprap, Class III	1750	CY	100	175,000
Subtotal				2,333,700	Subtotal				2,051,100
General Contractor Markup		%			General Contractor Markup		%		
Total to nearest \$1000				2,334,000	Total to nearest \$1000				2,051,000
					Difference				283,000

MENG Analysis DOWL

	Proposal	В3
Сомронент: Bridge - Span	AUTHOR	MJM
CURRENT CONCEPT:		
Lost Creek Bridge Crossing consisting of a single span pre-cas (39'x142.5' bulb-tee) on driven steel HP14x117 piles. Design a cubic yards of riprap (Classes I and III) for scour protection.		-
VE CONCEPT:		
Refine the proposed design reducing the proposed bridge span	from 142.5 fee	et to 110 feet.
FUNCTIONS		

Span Creek	Support Vehicles	Pass Fish

CURRENT CONCEPT		PROPOSED CHANGE		DIFFERENCE	
\$	2,334,000	\$	2,057,00	\$	277,000
• Sm	GES: ss Cost naller girders to transp pears to be hydraulica		is decre • May inc	eased from 2:	due to increase

	Proposal	В3
COMPONENT: Bridge - Span	AUTHOR	MJM
DISCUSSION:		
This VE proposal is based on reducing the overall bridge span is success of this proposal will be dependent on the final hydraulic estimates of scour.		
The shorter span will allow for a shallower girder which results i reduction. By inspection, shorter and lighter girders should be a Further savings could be realized if this proposal is combined w discussed in proposals B1 and B2.	easier to ship a	nd erect.

Project #: 1129.62473.01 COMPUTATIONS Client Name WWW.DOWL.COM ADOTY PF Dect Name: DELTON HWY MP OTO 9 Prepared by: Checked by: Date 6/19/17 PLOPONE B3 LOST CAREK BRIDGE V 224' 1.5 14' SPAN LENGTH (THEORETICAL) L= 14' + 2(36) + 2(5) + 2(4) 6= 104' = SAY 110' CONCRETE TECHNOLOGIES 53" (4:5") BULB TEE WILL SUMMANT HL-93 CONDING AT THIS SPAN GINDER WEICHT = 963 12/PH TOTAL WEIGHT = 963 (110) = 105,930140 COST = \$0.72/16 × 105,930 = \$ 76,270 ASSUME ALL OTHER QUANTIFIES REMAINS THE SAME HYDRAULIC CHECK WATER DEPTH = 15" $A = 15' \left(1 + \frac{1}{2} + \frac{1}{2} \right) (15) (1.5) = 442.5 + 12^{-2}$ $P = 15' + 2\sqrt{15^2 + 22.5^2} = 69.14t$ R = A/P = 442.5/69.1 = 6.4 $Q = (1.49/0.04) (442.5ft*)(6.4)^{2/3} \int_{0.01}^{0.01} = 5720 \, \text{cFs} \cdot 0.4$ Qso= 194005 ۱D Qua= 2300CFS Qso = 3090 CFS

COST ESTIMATE FORM

COMPONENT:

Bridge - Span

CURRENT DESIGN			VE PROPOSAL						
ITEM	QTY	UNIT	UNIT COST	TOTAL COST	ITEM	QTY	UNIT	UNIT COST	TOTAL COST
205(3) Structural Fill	1400	CY	35	49,000	205(3) Structural Fill	1400	CY	35	49,000
501(1) Class A Concrete	125	CY	2500	312,500	501(1) Class A Concrete	125	CY	2500	312,500
501(7) Precast Concrete Member	7	ΕA	110000	770,000	501(7) Precast Concrete Member	7	ΕA	76270	533,890
503(1) Reinforcing Steel	20000	LBS	2.5	50,000	503(1) Reinforcing Steel	20000	LBS	2.5	50,000
503(2) Epoxy Coated Rein Steel	10000	LBS	2.75	27,500	503(2) Epoxy Coated Rein Steel	10000	LBS	2.75	27,500
505(5) Furnish Steel H-Piles HP14x117	1400	LF	125	175,000	505(5) Furnish Steel H-Piles HP14x117	1400	LF	125	175,000
505(6) Drive Steel H-Piles HP14x117	14	ΕA	20000	280,000	505(6) Drive Steel H-Piles HP14x117	14	ΕA	20000	280,000
507(1) Steel Bridge Railing	368	LF	275	101,200	507(1) Steel Bridge Railing	220	LF	275	60,500
512(X) Temporary Work Structure	2720	SF	125	340,000	512(X) Temporary Work Structure	2720	SF	125	340,000
606(16) Transition Rail	4	ΕA	4000	16,000	606(16) Transition Rail	4	ΕA	4000	16,000
611(A) Riprap, Class I	500	CY	75	37,500	611(A) Riprap, Class I	500	CY	75	37,500
611(B) Riprap, Class III	1750	CY	100	175,000	611(B) Riprap, Class III	1750	CY	100	175,000
Subtotal				2,333,700	Subtotal				2,056,890
General Contractor Markup		%			General Contractor Markup		%		
Total to nearest \$1000				2,334,000	Total to nearest \$1000				2,057,000
					Difference				277,000

MENG Analysis DOWL B3

Proposal

VALUE ENGINEERING STUDY

B3

	Proposal	B4
COMPONENT: Bridge – Structural Plate	AUTHOR	MJM
CURRENT CONCEPT:		
Lost Creek Bridge Crossing consisting of a single span pre-cas (39'x142.5' bulb-tee) on driven steel HP14x117 piles. Design a cubic yards of riprap (Classes I and III) for scour protection.		•
VE CONCEPT:		
Corrugated, low-rise structural plate-arch structure having a spa approximately 19'. Culvert will be supported on concrete grade cast or pre-cast off-site and transported to the field. The culver materials depicted on the current typical sections (E1 surfacing Select C).	beams that ca t will be buried	n be site using earth

FUNCTIONS		
Span Creek	Support Vehicles	Pass Fish

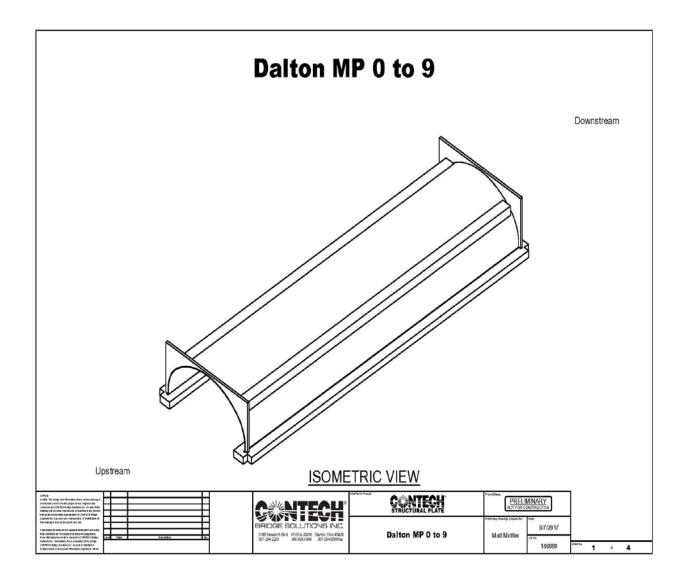
CURRENT CONCEPT		PROPOSED CI	HANGE	DIFFERENCE	
\$	2,334,000	\$	1,265,000	\$	1,069,000

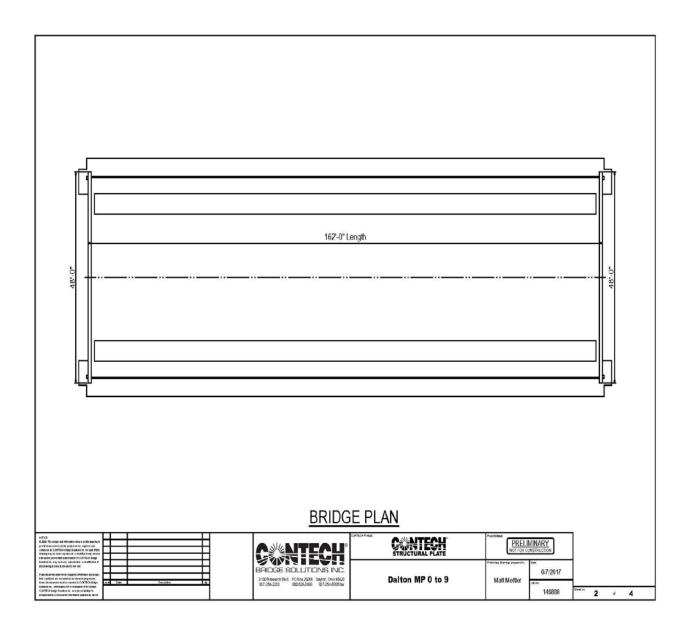
VALUE ENGINEERING

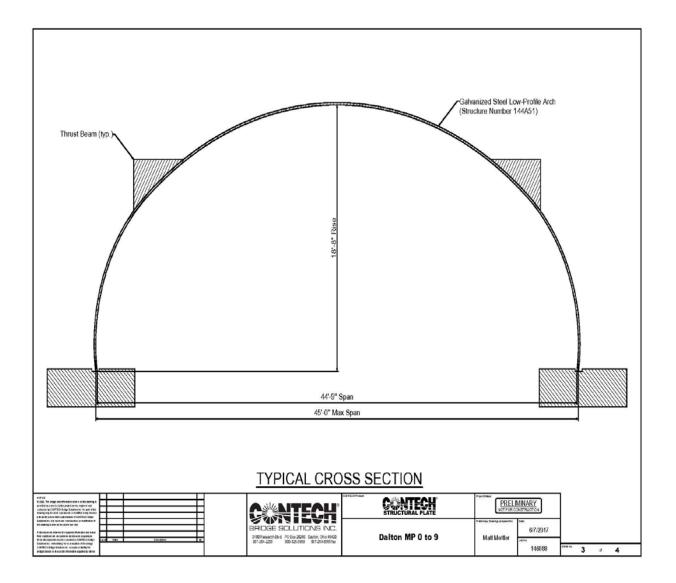
		Proposal	B4
COMPONENT: Bridge – Structural Plate		AUTHOR	MJM
Advantages:	Disadvantages:		
 Less cost Less transportation cost to mobilize construction materials to the site. Provides adequate hydraulic opening for the design flows. Will use materials already planned for road construction 	 Hydraulic proposed 	opening is not bridge.	as large as

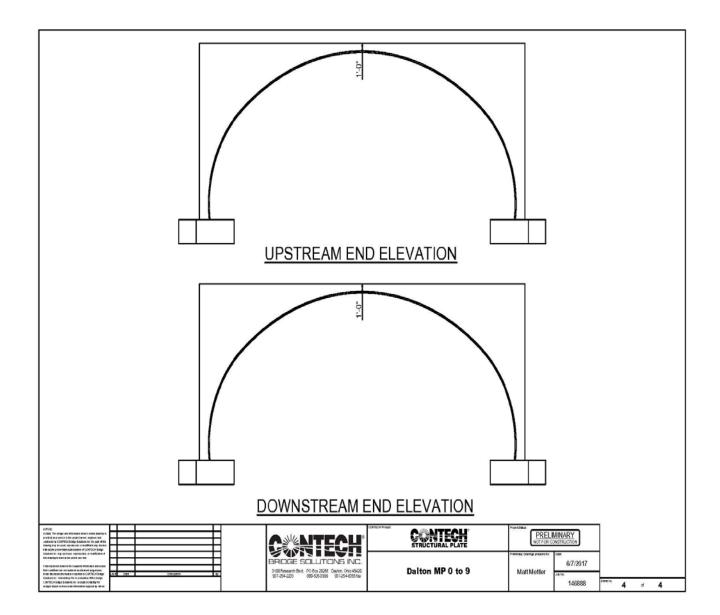
DISCUSSION:

This VE proposal is based on material unit costs listed in the DSR estimate and costs obtained from a known manufacturer/supplier of plate arch structures. Cost for the plate arch structure includes panels, fasteners and labor required to erect the structure. Grade beams and thrust beams are included as separate line items.


We verified the hydraulic capacity based on calculated flows provided by ADOT&PF. Assumptions included a channel slope of 1% and a manning's coefficient of 0.04. Based on these assumptions the proposed alternative can pass the 100 and 500 year flows satisfactorily.


DOW	COMPUTATIONS	Project #: //24, 62437, 0/
	Client Name:	
Dect Name:	ADOT+PF Prepared by: Date Checked by	Sheet of C Date
DALTON HWY MP 0 TO 9	MM 6/7/17	
$A = 1258, 44 f$ $DES164 FLOWS FOR Q_{50} = 1940 CI Q_{100} = 2270 C Q_{500} = 3090 QVICK HYDANULIC MANNINGS ECUATION Q = VA = (1.4) K_{A} = 195 S = 7 19. I \rightarrow 0.0$	(18.62) = 659.8 Pt2 $(18.62) = 659.8 Pt2$ $(19.62) = 659.8 Pt2$ $(19.62) = 659.8 Pt2$ $(19.62) = 70$ (19.62)	DO EFS


	COMPUTATIONS	Project #: //24.62437.01
	Client Name: ADOT+PF	Sheet of
DALTON AWY MP 0709	Prepared by: Date Checked by:	Date
B-4 CONTINUED		
FOR A FLOW DEPTH OF	1 6= 1	-
7.5'	D=	,
$P = 14 + 2(7.5^2 + 18^2)^{1/2}$		
P = 53 ft	14' = 9	
$A = (50 + 14) \frac{1}{2} (7.5)$	= 240ftz	-
$R = A/P = 4.53^{\circ}$		-
: Q = 2460 CFS	7 Q100 = 2270 CF.	s -
FOR A FLOW DEPTH O	F 12 Ft	-
b = 14' + 12(2.4)	(2) = 71.6'	-
A = (71.6 + 14)/2	(12) = 5/3.6 ++ 2	-
$P = 1 + 2(12^{2} +$		-
R = A/P = 6.723		-
-		
·· Q = 6,858 CFS	71 Q 500 = 33 48 4	-
- THERE FORE, IT U	NOULD APPEAR THAT	-
PLATE ARCH STRUCTO		-
WOULD HAVE ADEQU		-
- AND PERHAPS THE		
COULD BE SHORTER		-
		-
-		


	COMPUTATIONS	Project #: /124, 62437, 0
	Client Name:	
Name: DALTON HWY MP OTO	ADOT + PF Prepared by: Date Checked by:	Sheet of Date
Discretions Have High Brid	D) MM 6/7/17	
PLATE ARCH CONT.	13 4	
GRADE BEAM ESTIM		
Grape Dom Estim	A/C	
L= (2) 162 - =	324-	
W = (2) 4' =	84	
$\tau = 2'$		
	B·)(2') = 192 cy	
	27	
THRUST BEAM		
V- 2 (2'x3'	x 162') * 1 = 36 cy	
	77 7	
HEND WALLS		
₩ = (2) (20';	x 4 8 ' x 1') = 72 cy	
5. (4)		
301(F) / DFAL	CLASS & CONE. = 303 cy	
REBAL - CAME BOAM	5	
(6) #6's 77B		
162 #4 1tools	2	
l= 11-	4'	
24 (162') (1,502)	= 594014	
324 (11') (0.668)	= 2381 14	
300 ft = (8 x 1. 502/4.)	$z = 42101b^{1}$	
503(1) REDAL	= 15,430.6 1h => 16k	

	COMPUTATIONS	Project #: //24.62437.01
DOWL	Client Name:	
WWW.DOWL.COM	ADOT + PF Prepared by: Date , Checked by:	Sheet of Date
Dect Name: DALTON HWY MP 0 TO	9 Prepared by: Date Checked by: MM 6/7/17 Checked by:	20222
EARTHWORK S" SUI	a F	
24" TYPE A		
		~
115		
12.65	SELECTC	23.75'
	Jeccer e	<u>_</u>
<	/62-	
	162- L= 170-	
GROSS ANDA		
A= (162+36)	(23.75) & ZBS2 fts	
2		
AGG SURFACING	A = 28.5 ft2	
SUB F	A= 56 ft2	
TYNE A	A= 98 ++2	
SELLET C	A= 2352 - E (20.5+ 50	\$ +98)
-	A = 2169.5 ++2	
301(3) \$ 100. SURF =		15
304(2) H SUD F =		
203(3) + TYDE A =	604 cy 1	
203(5) # SELECT C =	= 13,660 cy - 1/27 (36+6	3) (659.8)
	= 11, 241 cy	

COST ESTIMATE FORM

COMPONENT:

Bridge - Structural Plate

CURRENT DESIGN					VE PROPOSAL				
ITEM	QTY	UNIT	UNIT COST	TOTAL COST	ITEM	QTY	UNIT	UNIT COST	TOTAL COST
205(3) Structural Fill	1400	CY	35	49,000	203(5) Borrow (Select C)	11241	CY	5	56,205
501(1) Class A Concrete	125	CY	2500	312,500	301(3) Aggregate Surface Course E1	395	Ton	24	9,480
501(7) Precast Concrete Member	7	EA	110000	770,000	304(2) Subbase Grading F	957	CY	6	5,742
503(1) Reinforcing Steel	20000	LBS	2.5	50,000	501(4) Class A Concrete	300	CY	2500	750,000
503(2) Epoxy Coated Rein Steel	10000	LBS	2.75	27,500	503(1) Reinforcing Steel	15435	LB	2.5	38,588
505(5) Furnish Steel H-Piles HP14x117	1400	LF	125	175,000	602(1) Low Rise Structural Plate Pipe	162	LF	2500	405,000
505(6) Drive Steel H-Piles HP14x117	14	ΕA	20000	280,000					
507(1) Steel Bridge Railing	368	LF	275	101,200					
512(X) Temporary Work Structure	2720	SF	125	340,000					
606(16) Transition Rail	4	ΕA	4000	16,000					
611(A) Riprap, Class I	500	CY	75	37,500					
611(B) Riprap, Class III	1750	CY	100	175,000					
Subtotal				2,333,700	Subtotal				1,265,015
General Contractor Markup		%			General Contractor Markup		%		
Total to nearest \$1000				2,334,000	Total to nearest \$1000				1,265,000
					Difference				1,069,000

MENG Analysis DOWL B4 Proposal

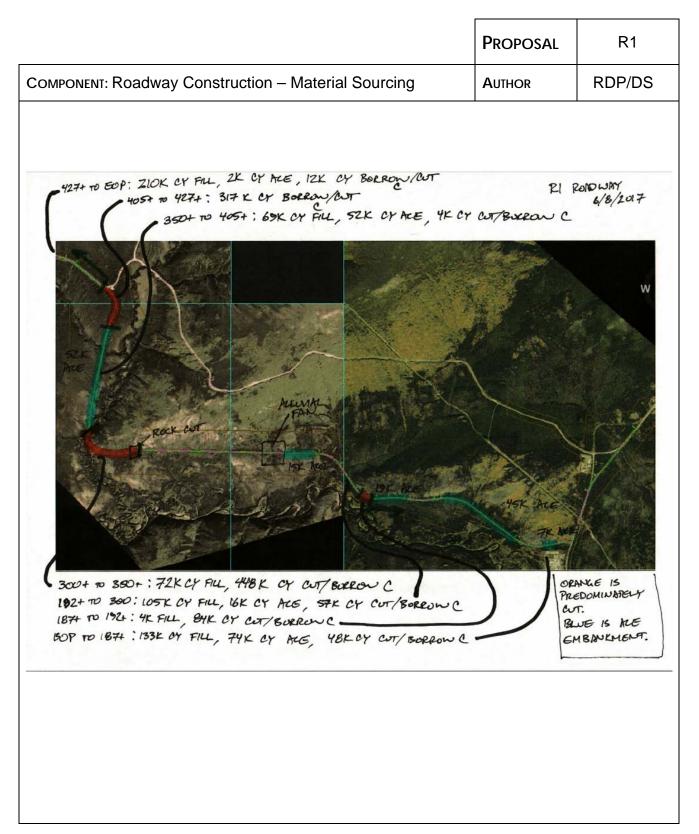
VALUE ENGINEERING STUDY

B4

		Proposal	R1
COMPONENT: Roadway Constru	ction – Material Sourcing	AUTHOR	RDP/DS
CURRENT CONCEPT:			
Provide ACE material from predominately from Lost Cree	n 19-mile pit for entire prok k material site near MP 6.5.	oject. Provide	borrow A/B
VE CONCEPT:			
	to 308+00 for producing ACE COW similar to or exceeding source).		
reduce haul costs, and allow f	cut materials from 10+00 to 35 for substantial embankment con ional required borrow A/B from	mpletion without	hauling over
FUNCTIONS			
Support Loads	Improve Safety	Stabilize Emba	nkment
	PROPOSED CHANGE		

CURRENT CONCEPT		Proposed Change		DIFFERENCE		
\$	20,436,000	\$	17,082,000	\$	3,354,000	
Advant	AGES:		DISADVANTAGES:			
• 6	Reduced haul and mate	rial costs	May require further permitting/ROW			
	mproved efficiency for n production	naterial	Potentially reduced material qualityReduces availability of other			
				als		
•	Reduced construction co	ost				

	Proposal	R1
COMPONENT: Roadway Construction – Material Sourcing	AUTHOR	RDP/DS


DISCUSSION:

There are several advantages of acquiring the materials as close as possible to the fill and embankment areas. Haul costs are always a large driver in overall project costs and reducing these costs is certainly a significant advantage. Sporadic areas of ACE as identified in the geotechnical recommendations will also require a staged type of embankment construction. ACE is unique as it is recommended for winter placement and may not be driven on after placement without the driving surface being placed.

Dividing the project into two sections at Lost Creek will be the most effective and efficient method to complete the ACE embankment, and to be efficient requires identifying an ACE source south of Lost Creek. Hauling the entire project ACE embankment from the north end (19-mile pit) may require winter haul/stockpiling on the south side of Lost Creek, or hauling on the existing Dalton/Elliott to the southern part of the project. Sourcing ACE material south of Lost Creek would reduce material costs and the quantity of material that would need to be hauled from the 19-mile pit.

Mining a sufficient quantity of ACE material south of Lost Creek (~74K CY) may require additional ROW acquisition and permitting; specifically, between 300+00 and 308+00 or 187+00 to 192+50. Using material for ACE may reduce material available to process for select A or B; mining of the alluvial fan at 250+00 may provide adequate material.

STATE OF ALASKA DEPARTMENT OF TRANSPORTATION & PUBLIC FACILITIES DALTON HIGHWAY MP 0-9 RECONSTRUCTION

									Proposal	R1
OMPONE	NT: Ro	badw	ay Co	nstruct	tion – Mate	erial Sou	rcing		AUTHOR	RDP/DS
	ACE		5' embank	ment heigh	t					
	То		From	Length	Embank Height	Full ACE	Should	der ACE		
	ft		ft	ft	ft	CY	CY			
		2000	2200	200	5	6		741		
		2200	2900					2593		
		8600	9350				22			
		10550								
		16850 20100	18850 20300				59	741		
		22550	24150				07	/41		
		35150								
		35750								
		37250	38250	1000	5	96	30			
		38250	39450	1200	5	115	56			
		39450	40500	1050			11			
		48300	49400					2037	Total	
	Total:			14350		1381		6111	144296 CY	
				Tabala	and a fill and County			L4 tons/CY	202015 TON	
				Total v	vest of Lost Creek:	515	19		\$ 10,100,741	
	ACE		7' embank	ment heigh						
	То		From	Length	Embank Height	Full ACE	Should	der ACE		
	ft		ft	ft	ft	CY	CY			
		2000	2200	200	7	,		1037		
		2200	2900	700	7	1		3630		
		8600	9350	750			89			
		10550	15200							
		16850					37			
		20100	20300					1037		
		22550 35150								
		35750	37250							
		37250								
		38250	39450							
		39450	40500							
		48300	49400					2852	Total	
	Total:			14350		2083	41	8556	216896 CY	
							Assumes 1	1.4 tons/CY	303655 TON	
				Total v	vest of Lost Creek:	776	74		\$ 15,182,741	
					(R1 AC	E Quan	tities)			

COST ESTIMATE FORM

COMPONENT:

Roadway Construction - Materials Sourcing

VALUE ENGINEERING STUDY

CURRENT DESIGN					VE PROPOSAL					
ITEM	QTY	UNIT	UNIT COST				UNIT COST	TOTAL COST		
Unclassified Excavation	1,347,000	CY	\$ 6.50	8,755,500	Unclassified Ex, W of Lost Creek	392,000	CY	\$ 6.00	2,352,000	
Borrow	320,000	CY	\$ 5.00		Unclassified Ex, E of Lost Creek	955,000	CY	\$ 6.00	5,730,000	
ACE Fill	201,600	Ton	\$ 50.00	10,080,000	Borrow, west of Lost Creek	128,000		\$ 4.50	576,000	
					Borrow, east of Lost Creek	192,000	CY	\$ 4.50	864,000	
Assume all ACE material provided fro	om 19-mile	e Pit.	Assume m	ajority of	ACE Fill	75,600	Ton	\$ 50.00	3,780,000	
Select A/B processed from Lost Crk n	ntl site with	n son	ne materic	al coming	ACE Fill, on-site source	126,000	Ton	\$ 30.00	3,780,000	
from East Rock cut site near 190+.										
					Assume material is managed for two	segment	s: no	rth of Lost (Creek and	
					south of Lost Creek. Efficiencies in bo	alancing c	ut fill	l are assum	ned to	
					provide \$0.5/CY savings on excavat	ion and b	orrov	∨.		
					North End: Assume useable cut from	Lost Crk n	ntl sit	e used for	fill north of	
					bridge; 317K CY available and 263k CY needed; remainder can be				an be	
					processed to Select A/B. ACE material is assumed to come from 19-mi					
					for north segment.					
					South End: Useable excavation from	cut area	at 19	90+ is suffic	ient for	
					needed fill to south (BOP to 187+). Us	seable exc	cava	ition from 3	300+ to	
					bridge is more than sufficient to cover required fill (~49K C) 192+ and 300+; profile could be modified to reduce excav					
									ion. Assume	
					ACE material can be mined from roo	ck cut are	a at	300+ or fro	m alluvial fan	
					area at 250+, resulting in lower unit cost. Assume needed Select . required south of bridge can be mined from alluvial fan; quantiti				ect A/B	
									ntities	
					indicate 1.5' depth provides 90K CY	Select A/B	8, so i	mining 3-4'	deep to	
					provide 192K CY required is reasona	ble.				
Subtotal				20,435,500	Subtotal				17,082,000	
General Contractor Markup		%			General Contractor Markup		%			
Total to nearest \$1000				20,436,000	Total to nearest \$1000				17,082,000	
					Difference				3,354,000	

MENG Analysis DOWL

	PROPOSAL	R2
COMPONENT: Roadway – Surface	AUTHOR	KLK
CURRENT CONCEPT:	·	
Place 9" of Surface Course E-1.		
VE CONCEPT:		
Place 6" of Surface Course E-1 and emulsified asphalt.		

FUNCTIONS		
Support Loads	Reduce Dust	

CURR	RENT CONCEPT	PROPOSED CHA	NGE	DIFFERENCE		
\$	2,904,000	\$	2,684,000	\$	220,000	
\$	15,296,418 (LCCA)	\$ 8,594	,270 (LCCA)	\$	6,702,149 (LCCA)	
A dv <i>i</i>	ANTAGES:		DISADVANTAGES	:		
•	Increases long term such embankment.	cess of ACE	 Creates larger M&O effort for resurfacing every 5 years. 			
•	Lower initial cost		Increased risk of major settling on			
 Less annual M&O efforts and cost over a 30-yr life cycle cost 				cing effo	creating larger orts in the initial	
•	 Uses project excess Sel Material to replace 2" Sumaterial 					

	Proposal	R2
COMPONENT: Roadway – Surface	Author	KLK

DISCUSSION:

The Dalton 0-9 project currently has approximately 16,500 feet of Air Cooled Embankment (ACE) or modified ACE embankment. This realignment does traverse considerable ice rich soils and there is a high probability for embankment movement even with ACE and other mitigation measures.

Typically, on new alignment areas with questionable subsurface conditions, a gravel surface wearing course is recommended for the first several years for maintenance considerations.

This realignment has the benefit of considerable soils and foundation investigations as well as significant areas with ACE enhanced embankments. This geotechnical information, embankment insulation and ACE embankments make the application of a "sealed" surface a viable option during the initial construction project. A sealed surface will also provide a significant advantage to the success of the ACE embankment areas by limiting gravel, dust and other roadway debris from contaminating the ACE embankment and reducing the effectiveness of the embankment airflow.

High float surfacing will reduce future summer maintenance costs by not requiring regrading efforts as well as the depletion of the surface course through traffic and natural degradation.

In the event of unanticipated large-scale embankment failures, the high float could be "blended" back into the surface course and the section maintained as a gravel surface.

COMPONENT LIFE CYCLE COST ANALYSIS (LCCA)

Dalton Highway MP 0 - 9 Reconstruction

Project:	Dalton Highway MP 0 - 9 Reconstruction
Client:	Alaska Department of Transportation and Public Facilities
Date:	6/9/2017
By:	
COMPONENT	Roadway - Surface
COMPONENT #	R2
Escalation rate	0.03
Discount rate	0.023
Study Daried	30 Vrs

 Study Period
 30
 Yrs.

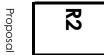
 Instructions: Enter escalation, discount, and study period above.
 Enter annual costs, replacement costs (and appropriate replacement year), and salvage value.

 Enter these costs in the shaded cells using today's (current) dollars. For annual costs, escalation rates will be automatically entered, but can be individually overwritten below for differential escalation.

 All costs will automatically be escalated and discounted.

	esign				ALTERNATIVE B:			Ing	gh Float Surface	DIFFE	
INITIAL COSTS				TIAL COST					AL COST		RENCE
			\$	2,904,000				\$	2,684,000	\$	220,000
O & M ANNUAL COS STAFFING OPERATIONS STAFFING MAINTENANCE SUPPLIES OPERATIONS SUPPLIES MAINTENANCE	STS Cost in current	ENERGY				Cost in					
Subcomponents	\$	Esc.	Pres. W	/orth \$	Subcomponents	current \$	Esc.	Pres.	Worth \$		
Regrading every 2 weeks	371,000	0.03	\$	12,392,418	25% Length Resurface	106,333	0.030	\$	3,551,814	\$	8,840,604
		0.03	\$	-			0.030	\$	-	\$	-
		0.03	\$	-			0.030	\$	-	\$	-
		0.03	\$	-			0.030	\$	-	\$	-
		0.03	\$	-			0.030	\$	-	\$	-
		0.03	\$	-			0.030	\$	-	\$	-
		0.03	\$	-			0.030	\$	-	\$	-
SUBT. O & M OVER LIFE CY	CL <u>\$ 371,000</u>	-	\$	12,392,418		106,333		\$	3,551,814	\$	8,840,604
REPLACEMENT and	CYCLICAL CO	STS									
	Cost in current					Cost in		_			
REPLACEMENT and Subcomponents	-	STS <u>Yr.</u>	Pres. W	/orth \$	Subcomponents	current \$	Yr.		Worth \$		(440.005
	Cost in current		Pres. W	/orth \$	Whole Length Resurface	current \$ 425,333	5	\$	440,085	\$	
	Cost in current		Pres. W	/orth \$	Whole Length Resurface Whole Length Resurface	current \$ 425,333 425,333	5 10	\$ \$	440,085 455,350	\$	(455,350
	Cost in current		Pres. W	Vorth \$	Whole Length Resurface Whole Length Resurface Whole Length Resurface	current \$ 425,333 425,333 425,333	5 10 15	\$ \$	440,085 455,350 471,143	\$ \$	(455,350 (471,143
	Cost in current		Pres. W	Vorth \$	Whole Length Resurface Whole Length Resurface Whole Length Resurface Whole Length Resurface	current \$ 425,333 425,333 425,333 425,333 425,333	5 10 15 20	\$ \$ \$	440,085 455,350 471,143 487,485	\$ \$ \$	(455,350 (471,143 (487,485
	Cost in current		Pres. W	Vorth \$	Whole Length Resurface Whole Length Resurface Whole Length Resurface	current \$ 425,333 425,333 425,333	5 10 15	\$ \$ \$ \$	440,085 455,350 471,143 487,485 504,393	\$ \$ \$ \$	(455,350 (471,143 (487,485 (504,393
	Cost in current		Pres. W	Vorth \$	Whole Length Resurface Whole Length Resurface Whole Length Resurface Whole Length Resurface	current \$ 425,333 425,333 425,333 425,333 425,333	5 10 15 20	\$ \$ \$ \$	440,085 455,350 471,143 487,485 504,393 -	\$ \$ \$ \$	(455,350 (471,143 (487,485 (504,393
	Cost in current		Pres. W	Vorth \$	Whole Length Resurface Whole Length Resurface Whole Length Resurface Whole Length Resurface	current \$ 425,333 425,333 425,333 425,333 425,333	5 10 15 20	\$ \$ \$ \$ \$ \$	440,085 455,350 471,143 487,485 504,393 - -	\$ \$ \$ \$ \$	-
	Cost in current		Pres. W	Vorth \$	Whole Length Resurface Whole Length Resurface Whole Length Resurface Whole Length Resurface	current \$ 425,333 425,333 425,333 425,333 425,333	5 10 15 20	\$ \$ \$ \$	440,085 455,350 471,143 487,485 504,393 -	\$ \$ \$ \$	(455,350 (471,143 (487,485 (504,393
Subcomponents	Cost in current \$				Whole Length Resurface Whole Length Resurface Whole Length Resurface Whole Length Resurface	current \$ 425,333 425,333 425,333 425,333 425,333	5 10 15 20	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	440,085 455,350 471,143 487,485 504,393 - - -	\$ \$ \$ \$ \$ \$	(455,350 (471,143 (487,485 (504,393
Subcomponents	Cost in current \$ Vorth)		\$	-	Whole Length Resurface Whole Length Resurface Whole Length Resurface Whole Length Resurface	current \$ 425,333 425,333 425,333 425,333 425,333	5 10 15 20	\$ \$ \$ \$ \$ \$ \$ \$	440,085 455,350 471,143 487,485 504,393 - - - 2,358,456	\$ \$ \$ \$ \$ \$ \$	(455,350 (471,143 (487,485 (504,393 - - - (2,358,456 6,482,149
SUBCOMPONENTS	Cost in current \$ Vorth)	Yr.	\$ \$ \$	- 12,392,418	Whole Length Resurface Whole Length Resurface Whole Length Resurface Whole Length Resurface	current \$ 425,333 425,333 425,333 425,333 425,333	5 10 15 20 25	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	440,085 455,350 471,143 487,485 504,393 - - - 2,358,456 5,910,270	\$ \$ \$ \$ \$ \$ \$ \$ \$	(455,350 (471,143 (487,485 (504,393 - - - -
Subcomponents	Cost in current		\$	- 12,392,418	Whole Length Resurface Whole Length Resurface Whole Length Resurface Whole Length Resurface	Current \$ 425,333 425,332 425,322 425,	5 10 15 20	\$ \$ \$ \$ \$ \$ \$ \$ \$	440,085 455,350 471,143 487,485 504,393 - - - 2,358,456 5,910,270	\$ \$ \$ \$ \$ \$ \$ \$	(455,350 (471,143 (487,485 (504,393 - - - (2,358,456 6,482,149

R2


COST ESTIMATE FORM

COMPONENT:

Roadway - Surface

CURRENT DESIGN					VE PROPOSAL				
ITEM	QTY	UNIT	UNIT COST	TOTAL COST	ITEM	QTY	UNIT	UNIT COST	TOTAL COST
9" Aggregate Surface Course, Grading _E1	121,000	ton	24	2,904,000	6" Aggregate Surface Course, Grading _E1	94,111	ton	24	2,258,667
					Add 2" Select C -use excess (no cost)	12,437	су		
					High Float (oil/material)	260	ton	550	143,000
					Add 3/4" layer Aggregate Surface Course, Grading _E1	11,764	ton	24	282,333
					Unit weight assumptions				
					140 lb/ft3				
					0.27 gal/yd2				
					233 gal/ton				
Subtotal				2,904,000	Subtotal				2,684,000
General Contractor Markup		%			General Contractor Markup		%		
Total to nearest \$1000				2,904,000	Total to nearest \$1000				2,684,000
					Difference				220,000

MENG Analysis DOWL

/- Surface

VALUE ENGINEERING STUDY

R2

58

		Proposal	R3					
COMPONENT: Roadway – Surface	urface Section Author MJM/L							
CURRENT CONCEPT:								
The typical roadway embankment sections are requiring 9" of Select E-1, 8" of Subbase Gradation F and up to 24" of Select Material, Type A.								
VE CONCEPT:								
Reduce the concept pavement increasing Subbase Gradation			•					
FUNCTIONS	1							
Our man and the second		Ducia Of a manual						

Support Loads	Reduce Dust	Drain Stormwater
---------------	-------------	------------------

CURRENT CONCEPT	PROPOSED CHA	ANGE	DIFFERENCE	
\$ 4,320,000	\$	3,210,000	\$	1,110,000
Advantages:		DISADVANTAGES		
 Fewer material types to Less on-site processing stockpiling 		-	quire expans al mining site	ion of proposed s

VALUE ENGINEERING

	Proposal	R3
COMPONENT: Roadway – Surface Section	AUTHOR	MJM/LK

DISCUSSION:

The typical sections illustrate multiple material types to construct the complete embankment. Minimizing the quantity of material types appears to simplify the contractor's effort in processing, stockpiling, hauling and compacting numerous material types. Simply put, fewer is better. This proposal assumes the calculated waste quantity will make up 2/3 of the required quantity of subbase A with the balance being made up by expanding the proposed mining sites along the proposed alignment.

It is worth noting the proposed section is consistent with the section used for the 9 Mile North and MP 118 projects.

COST ESTIMATE FORM

COMPONENT:

Roadway - Surface Section

CURRENT DESIGN					VE PROPOSAL				
ITEM	QTY	UNIT	UNIT COST	TOTAL COST	ITEM	QTY	UNIT	UNIT COST	TOTAL COST
301(3) Agg Surface Grading E-1	121000	Ton	24	2,904,000	301(1) Agg Surface Grading D-1	80667	Ton	24	1,936,008
304(2) Subbase Grading F	61000	CY	6	366,000	203(5) Subbase Grading A	137250	CY	6	823,500
203(5)Subbase Grading A	210000	СҮ	5	1,050,000	Type C Select	90000	СҮ	5	450,000
Subtotal	1			4,320,000	Subtotal				3,209,508
General Contractor Markup		%			General Contractor Markup		%		
Total to nearest \$1000				4,320,000	Total to nearest \$1000				3,210,000
					Difference				1,110,000

MENG Analysis DOWL

VALUE ENGINEERING STUDY

R3

			-				
		Proposal	G1				
Component: Geotechnical – Pei Berms	mafrost Provisions – Thermal	Author	DJ				
CURRENT CONCEPT:							
For areas with non-ice-rich foundation soils: clear and grub, construct a conventional embankment with select material Type C borrow.							
VE CONCEPT:							
	oundation soils: clear and grub						
FUNCTIONS							
Reduce Maintenance	Embankment Stability 0	Control Thawing	g/Settlement				

CURRENT CONCEPT		T CONCEPT PROPOSED CHANGE		DIFFERENCE			
\$	9,184,500	\$	10,527,000	\$	(1,342,000)		
Advantage	S:		DISADVANTAGE	S:			
 Potential to improve embankment stability. 			Cost ir	ncrease (~1	5%)		
	luced rotational failu ulders.	re at					
• Add	litional roadway clea	r-zone.					
	vides location for pla ess and waste mate						

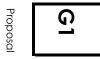
	Proposal	G1
Сомронент: Geotechnical – Permafrost Provisions – Thermal Berms	Author	DJ

DISCUSSION:

In areas with non-ice-rich permafrost, excess and waste material from unclassified excavation can be used as thermal berms. This allows for a location to place excess and waste material on-site and provides additional roadway clear-zone. The additional embankment material has the potential to add support to the core embankment via a "buttress" affect, and keeps embankment toe settlement and water farther from the structural embankment.

(15/2017 D. Jensen ADOT + PF GI NR Design NORTHWESTERN UNIVERSITY CENTER FOR PUBLIC SAFETY Thermal Berms vs offsite dispasal of excess and waste Assumptions: • Designer's 203(3) unit cost accounts for 54.8% of material being placed as embankment fill and 45.2% being hould and dumped as waste or excess. · Hauling and dumping excess and waste costs 50% of placement cost. · Placing material for thermal berm costs 75% of embankment placement cast. Known: Total 203(3) = 1,413,000 cy Unit cast of 203(3) = \$6.5/cy 54.8% of 203(3) is re-used as embankment fill 45.2% of 203/3) is excess or woste Placement of all excess or waste material as thermal berms will increase unit cost of 203(3). \$6.50/cy = x (0.548)(1,413,000 cy) + x (0.5)(0.452)(1,413,000 cy) $\chi = 13$ 2187324 New unit cost = 13 (0.548) (1,413,000) + 13 (0.75) (0.452) (1,413,000) 2187324 2187324 New unit cost = \$ 7.45/cy OF nucp@northwestern.edu 800-323-4011

DOWL


COST ESTIMATE FORM

COMPONENT:

Geotechnical - Permafrost Provisions - Thermal Berms

CURRENT DESIGN		VE PROPOSAL							
CURRENT DESIGN	1		1						
ITEM	QTY	UNIT	UNIT COST	TOTAL COST	ITEM	QTY	UNIT	UNIT COST	TOTAL COST
203(3) Unclassified Excavation	1413000	CY	6.5	9,184,500	203(3) Unclassified Excavation	1413000	CY	7.45	10,526,850
Subtotal				9,184,500	Subtotal				10,526,850
General Contractor Markup		%			General Contractor Markup		%		
Total to nearest \$1000				9,185,000	Total to nearest \$1000				10,527,000
-									
					Difference				(1,342,000)

MENG Analysis DOWL

VALUE ENGINEERING STUDY

G1

	Proposal	G2						
COMPONENT: Geotechnical – Permafrost Provisions – Tundra Excavation	AUTHOR	DJ						
CURRENT CONCEPT:	•							
During winter, clear and grub prior to placing ACE fill (assuming minimum ACE fill height of 5'). Replace grubbed material with select material Type C.								
VE CONCEPT:								
Replace clearing and grubbing with clearing only and place select material Type C over existing ground.								
Functions								

Extend Life of Roadway	Reduce Maintenance	Control Thawing/Settlement

CURRENT CONCEPT		PROPOSED CHANGE		DIFFERENCE		
\$	198,000	\$	124,000	\$	74,000	
Advantages	:		DISADVANTAGES	S:		
 ADVANIAGES: Lower cost (~37%) Simplified construction (no grubbing or additional Type C) 		Potentially longer freeze-back time beneath embankment.				

	Proposal	G2
COMPONENT: Geotechnical – Permafrost Provisions – Tundra Excavation	AUTHOR	DJ

DISCUSSION:

Clearing and grubbing may not be necessary beneath the recommended 5' ACE. The tundra is likely to be highly compressed after placement of the ACE fill and will have a much lower thermal conductivity, thus reducing its insulating properties. Therefore, it is not likely to have a significant impact on the ACE performance. Clearing and placement of select material Type C and ACE over existing ground is believed to be sufficient for embankment performance, and has a lower cost compared to clearing and grubbing and replacing the grubbed material with additional select material Type C.

VALUE ENGINEERING 6/8/2017 D. Jensen ADOT + PF 62 NR Design NORTHWESTERN UNIVERSITY CENTER FOR Replace clearing and Grubbing 201(3A) w/ Clearing 201 (1A) Beneath Minimum 5' High ACE Assumptions: • Embankment height to top of ACE is typically 8' · Approximately 1' of material is removed and replaced w/ Type C borrow to EG. · Typical Section is as shown below. 42'-5 8' 2:1 2:1 ACE 3' Type C diin L'Type C (1') after grubbing 74' 201 (3A) = \$8,000/ACRE Known: 201(1A) = # 5,000/ACRETotal Length of full ACE = 14,550 LF 203 (3) for Type C after grubbing = \$6.50/cy Current Design Cost Area = (741) (14,550 LF) / 43560 of = 24.72 Acres => \$ 197,760 Type C Vol = (74')(1')(14550')/27 = 39,878 cy ⇒ \$ 0, assuming placement of 1' of Type C does not add to cost due to excess Type C being generated by required cuts. Proposed Design Cost Area = (71')(14,550 LF)/43560 sf = 24.72 Acres => \$123,600 OF nucp@northwestern.edu 800-323-4011

VALUE ENGINEERING STUDY

G2

COST ESTIMATE FORM

COMPONENT:

Geotechnical - Permafrost Provisions - Tundra Excavation

CURRENT DESIGN			VE PROPOSAL						
ITEM	QTY	UNIT	UNIT COST	TOTAL COST		QTY	UNIT	UNIT COST	TOTAL COST
201 (3A) Clearing and Grubbing	24.72	ACRE	8000		201(1A) Clearing	24.72	ACRE	5000	123,600
						_			
						_			
Subtotal				197,760	Subtotal				123,600
General Contractor Markup		%			General Contractor Markup		%		0,000
Total to nearest \$1000					Total to nearest \$1000				124,000
									,000
		<u> </u>			Difference				74,000

MENG Analysis DOWL

	G2

Proposal

	Proposal	G3
Сомронент: Geotechnical – Permafrost Provisions – Deep Excavation/ Oversized Embankments	Author	MEK

CURRENT CONCEPT:

Per the geotechnical recommendations, ACE Embankment is planned for 14,550 If of the alignment where ice rich soils were encountered. ACE embankment requires well graded rock of a specific size range that can be costly.

VE CONCEPT:

In areas where ACE embankment is proposed, there is significant ice within the near surface subgrade soils.

Where ACE embankment is proposed, the proposed road alignment is 8 to 13 feet above original ground (OG).

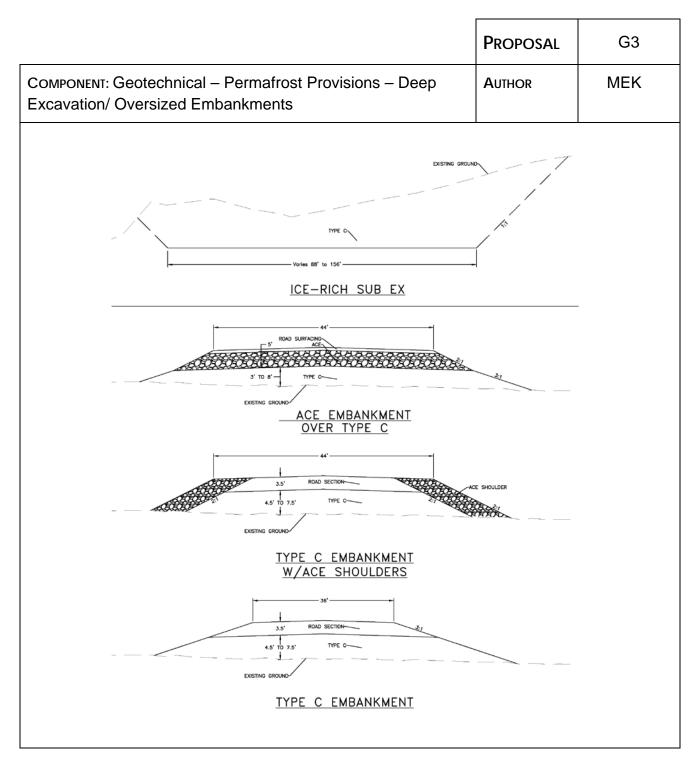
This concept proposes the removal of ACE embankment from the alignment, overexcavation of the near surface high ice soils, replacement with Type C, and the construction of the road embankment above OG with Type C.

FUNCTIONS		
Embankment Stability	Reduce Settlement	Ease of Maintenance

CURRENT CONCEPT	PROPOSED CHANGE		DIFFERENCE	
\$ 11,500,000	\$	7,351,000	\$	4,149,000

		Proposal	G3
COMPONENT: Geotechnical – Permafrost Provis Excavation/ Oversized Embankments	ions – Deep	Author	MEK
 ADVANTAGES: Removal of subgrade. (near surface, ice rich areas) will reduce subsequent settlement Thickness of Type C embankment above grade will help to reduce settlement Able to drive on during construction Eliminates the need to use insulation Eliminates the need for ACE fill 	 Summer of difficult and possible of 	nstruction reco construction wi nd time consum dewatering ste material qu	ll be more ning –

DISCUSSION:


The depth of near surface excess ice varies from 3 - 12 feet with the majority of the ice present at less than 8 feet below OG. By excavating the near surface ice and replacing with Type C, a large amount of future settlement will be avoided.

The elevation of the road profile is significantly higher than OG. The height varies from 8 to 11 feet. Multiple cross sections were developed to evaluate incorporating additional embankment height above the ACE Recommended minimum of 5 feet. These sections include:

- 1) All Type C (With and without insulation)
- 2) All ACE Embankment
- 3) Type C core with ACE shoulders and 5' ACE Embankment on top
- 4) Type C with ACE shoulders

An all Type C embankment is a more appropriate section given the road profile.

	Proposal	G3
Сомронент: Geotechnical – Permafrost Provisions – Deep Excavation/ Oversized Embankments	AUTHOR	MEK
The combination of a Type C embankment with the subex of Type C would further reduce the potential for settlement wh more cost effective than ACE.	ile still being o	considerably
Insulation could be placed on embankments less than 10 fer 25% of the alignment).	et in height (a	n estimated

COST ESTIMATE FORM

COMPONENT:

Geotechnical - Permafrost Provisions - Deep Excavation/ Oversized Embankments

VALUE ENGINEERING	STUDY

G3

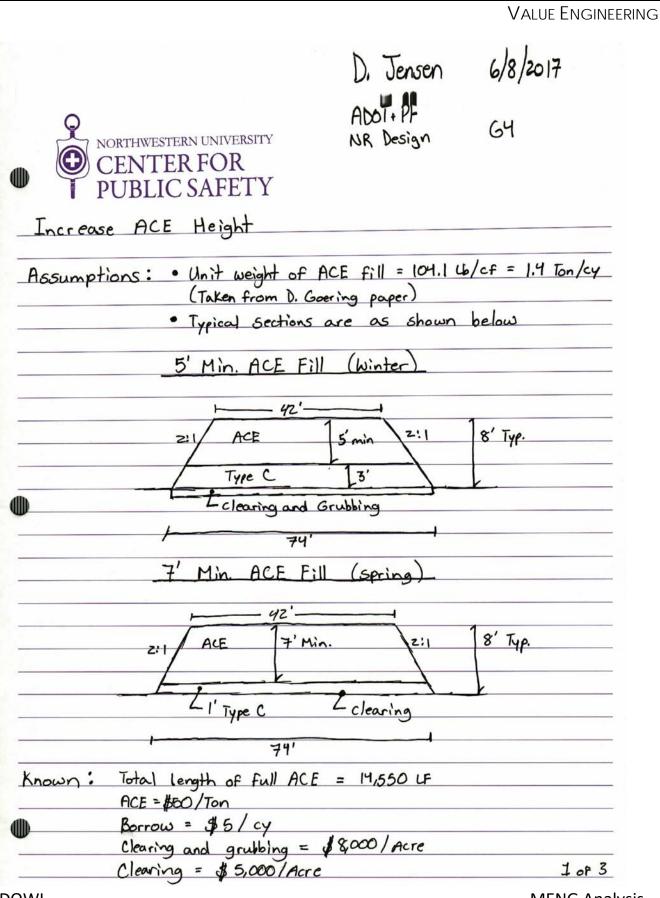
CURRENT DESIGN **VE PROPOSAL** UNIT UNIT ITEM QTY UNIT COST TOTAL COST ITEM QTY UNIT COST TOTAL COST Grubbing of ACE Embankment Areas 15,900 Grubbing of ACE Embankment Areas 22.95 Acre 5.3 Acres 3000 3000 68,850 252,779 Unclassified Excavation Unclassified Excavation 38889 cy 6.5 333987 cy 6.5 2,170,916 ACE Fill 196155 ton 50 9,807,770 Type C 669082 cy 6.5 4,349,033 Type C 218954 cy 6.5 1,423,201 Insulation 761.775 MBM 1000 761,775 11,499,650 Subtotal 7,350,574 Subtotal General Contractor Markup % General Contractor Markup % 11,500,000 Total to nearest \$1000 7,351,000 Total to nearest \$1000 Difference 4,149,000

MENG Analysis DOWL

Proposa

G3

	PROPOSAL	G4
Сомронент: Geotechnical – Permafrost Provisions – ACE Embankment Height	AUTHOR	DJ
CURRENT CONCEPT: Winter construction: clear and grub, Type C, and 5' Min. ACE. Type C, and 7' Min. ACE. (Assume design will use 5' Min. ACE		iction: clear,
VE CONCEPT: Winter or spring construction: clear, Type C, 6' Min. ACE.		


FUNCTIONS		
Control Thawing/Settlement	Extend Life of Roadway	Reduce Maintenance

	Concept	PROPOSED CH	ANGE	DIFFERENCE	
\$	10,768,000	\$	12,723,000	\$	(1,955,000)
Advanta	GES:		DISADVANTAGE	S:	
• W	/inter or spring constru	ction	Increase	sed cost (~1	8%)
• C	learing only (no grubbi	ng)			
	nproved ACE performa inimum 5' height.	nce over			
	otentially less settleme educed maintenance co				

	Proposal	G4
COMPONENT: Geotechnical – Permafrost Provisions – ACE Embankment Height	AUTHOR	DJ

DISCUSSION:

By replacing clearing and grubbing with clearing only and using a minimum ACE fill thickness of 6', instead of 5', the overall embankment stability and ACE performance may be improved for a minor cost increase of approximately 18% for the embankment materials and construction. This design simplifies construction and allows for winter or spring construction. Improved ACE performance and embankment stability would result in reduced long term maintenance costs, as well as an improved factor of safety against unusually warm summers or future climate change.

DOWL

MENG Analysis

VALUE ENGINEERING 6/8/2017 D. Jensen ADOT + PF 64 NORTHWESTERN UNIVERSITY NR Design CENTER FOR PUBLIC SAFETY Increased ACE Height Current Design Cost Spring (7' ACE) Winter (5' ACE) ACE Area = 392 sf ACE Acea = 260 sf ACE V61/LF = 392 of = 14.52 cy/LF ACE VO1/LF = 260 cf = 9.63 cy/LF ACE W/LF = (1,4 Ton/cy)(14,52cy/LF) ACE W/LF = (14 Ton/cy)(9.63 cy/cF) = 20.3 Ton/LF = 13.5 Ton/LF Total W= 13,5 Ton/LF (14,550 LF) Total W = 20.3 Ton/LF (14,550 LF) = 295,365 Ton = 196,425 Tan ACE Cost = \$50/Ton (196,425 Ton) ACE Cast = \$50/5n (295,365 Ton) = \$14,768,250 = \$9,821,250 (lear torut Area = (741) (14550) Clear/Grub Area = (74')(14550') = 1076,700sf = 24,72 Acre = 1076,700 sf = 24,72 Acre clear cost = \$123,600 clear/Grub Gst = \$ 197,760 Type C = (70'(1')+ (2')(1') Type C = (62')(5')+(6')(3')+(74')(1') = 72 sf = 278sf No) Type C = (72sf)(14550')/27 = 38,800 cy Vottype C = (278 sf)(14550)/27 # 149,811 cy cost Type C = \$ 194,000 Cost Type C = # 749,055 Total Cost = \$10,768,065 Total Cost = \$ 15,085,850 ≈ 40% more expensive Assume designers will opt for 5' ACE for cost sourings. 2 of 3

DOWL

MENG Analysis

6/9/207 D. Jensen ADOT + PF GY. NORTHWESTERN UNIVERSITY NR Design JBLIC SAFETY Increased ACE Height Proposed Design Cost Use a minimum ACE height of 6' and only clear (no grubbing) beneath embankment. 6 Min. ACE Fill (Winter or Spring 42'-6' Min. 8' Typ. ACE 211 211 2' Type C Lclearing Winter or Spring (6' ACE) ACE Area = 324 of ACE Vol/LF = 12,00 cy/LF ACE W/LF = (1.4 Ton/4) (12.00 cy/LF) = 16.8 Ton/LF Total W = 16.8 Ton/F (14,550 J) = 244,440 Ton ACE Cast = \$\$ 50/Ton (244,440 Ton) = \$12,222,000 Clearing Cost = \$ 123,600 Type C = (44)(2') + (4')(2') = 140 sf # No) Type C = (140 sf)(14950 f)/27 = 75,449 cy (ost Type (= \$ 377,225 Total Cost = \$ 12,722,825 (\$ 18% more expensive) 3 of 3

COST ESTIMATE FORM

COMPONENT:

Geotechnical - Permafrost Provisions - ACE Embankment Height

CURRENT DESIGN **VE PROPOSAL** UNIT UNIT UNIT COST UNIT COST TOTAL COST QTY QTY TOTAL COST ITEM ITEM 201 (3A) Clearing and Grubbing 197,760 201(1A) Clearing 24.72 ACRE 8000 24.72 ACRE 5000 123,600 149811 CY 749,055 203(5) Borrow 75445 CY 203(5) Borrow 5 5 377,225 9,821,250 203(106) ACE Fill 203(106) ACE Fill 50 196425 TON 244440 TON 50 12,222,000 10,768,065 Subtotal 12,722,825 Subtotal General Contractor Markup % General Contractor Markup % Total to nearest \$1000 10,768,000 Total to nearest \$1000 12,723,000 (1,955,000) Difference

MENG Analysis DOWL

Proposa

80

	Proposal	C1	
COMPONENT: Construction - Schedule	AUTHOR	LK	
CURRENT CONCEPT:			
Contract time will be based on a project completion date which will allow 2 seasons of physical work. Current schedule shows field work beginning in May.			
VE CONCEPT:			
Contract time will be based on a project completion date which will allow 1 season of physical work. Physical Work will begin in March.			

FUNCTIONS		
Roadway Base-Permafrost Protection	Roadway Grading	Construction Support

CURRENT C	RRENT CONCEPT PROPOSED CHA		PROPOSED CHANGE		
\$	8,155,000	\$	\$ 5,659,000 \$ 2		2,496,000
Advantag	ES:		DISADVANTAGE	S:	
• Cla	aim avoidance		Settlement repair is M&O cost		
• Us	er cost decrease				

		Proposal	C1
Сомро	DNENT: Construction - Schedule	AUTHOR	LK
Discus	SION:		
to the would	hysical construction season contract time (March thru Oo Contractor for the requirement to repair settled areas. The be difficult to estimate. The estimate of settlement would ctor to provide fair and reasonable costs.	e amount of se	ettlement
majori linear prices	of settlement areas may require the contractor to remain ty of crew and equipment for another season. Settlement nature and decease the production experienced by origin would no longer be applicable and could be a "Material of eans has changed from original bid items).	t repair would r nal bid prices. (ot be of a Driginal bid
	nining the actual value of this proposal will require a deta ssociated costs.	iled analysis of	f quantities
The co	ost value of this proposal is based on the following assun	nptions:	
٠	DSR quantities include a volume for settlement		
•	DSR estimate includes an increased cost for out of sequences of material	ience mainline	placement
A decr	ease in costs for one season construction comes from th	ne following fac	tors:
٠	Decrease of material quantity supplied by contractor		
•	Risk burden is shifted from Contractor to State. Risk inve quantities and production rates for settlement spot repai		settlement
•	Reduced traffic maintenance and control		
	Reduced construction engineering cost		

	Proposal	C1
COMPONENT: Construction - Schedule	AUTHOR	LK
Standard Specifications and Special Provisions Cost Estimate	Influences	

The costs estimated are based on utilizing the Standard Specifications without project specific Special Provisions. Special Provisions could be authored to attempt to define risk allocation for subgrade settlement. The project specific Special Provisions effectiveness and impact on getting a fair and reasonable bid may be questionable. The latitude in which the Department allows for project specific Special Provision authoring needs to be considered.

NTP to Letter of Project Completion

A two-season construction period could have a NTP in March of the first year with Substantial Completion issued in November of the second year. There would be approximately 8 months of full production, 10 months of less than full production and 3 months of winter shutdown. Also, an additional 4 months (December to March) while the Contractor may need to wait to demobilize depending on weather conditions will be required after Substantial Completion. A Letter of Project Completion could be issued the following year after demobilization.

A one season construction period could have a NTP in March of year 1 and Substantial Completion issued in November of the same year. There would be approximately 4 months of full production and 5 months of less than full production. An additional 4 months (December to March) while the Contractor may need to wait to demobilize depending on weather conditions will be required after Substantial Completion. A Letter of Project Completion could be issued the following year after demobilization.

Borrow, Subbase F, Aggregate Surface Course Costs

Cost savings were generated using the following reductions: 20 %for Borrow, 20% for Subbase F and 33% for Aggregate Surface Course. These percentages are based on a premise that an estimated rough calculation of 4" of settlement across the project would require around 30K CY of material. An assumption was made that the amount of settlement was included in the DSR Estimate. This assumption allows a quantity in which to base the calculations on what additional costs may occur when settlement is encountered on a two-season construction project. Doubling the cost of the allocated material will yield the estimated savings shown.

	PROPOSAL	C1
COMPONENT: Construction - Schedule	AUTHOR	LK

Since there is no detailed settlement prediction analysis numerous assumptions had to be made. What stage of the fill are the repairs to be made, inefficiencies of being out of the mainline spread operation, time of the year weather influences, availability of men and equipment and the accuracy of the contract documents on the ability to designate settlement locations and the control of the contractor's sequence of operations.

<u>ACE</u>

The cost of the ACE was reduced by 25%. Any settlement repair on the ACE will be extremely equipment specific and difficult. The probability of contamination and degradation of the ACE is high if settlement repair is required.

Mobilization

The cost savings number utilized for the mobilization and demobilization item is an extremely subjective number. The costs saving number does not directly fall into the 600 bid item definition however the contract cost implications need to be allocated.

If a contract is awarded that uses the Standard Specifications and allows for a twoseason construction period and the contractor intends to complete the work in one season and undefined settlements occur a contract dispute would likely occur. A contract dispute due to a mixture of performance and prescriptive specifications is fraught with "what if's".

A cost was used based on: 8 months of full production vs 4 months, 10 months of less than full production vs 5 months, and 3 months of shutdown vs 0 months of shutdown. Using 12 months of standby time for 50 pieces of equipment yields around \$560,000 in standby costs. The costs generated in the MOB item are extremely subjective and are open to scrutiny. Without devoting time to analyzing numerous scenario permutations the cost number can only be used as an indicative value.

Traffic Maintenance

A reduced time period of active construction from 18 months to 9 months will reduce the number of days of traffic maintenance required by 50%. There will be some fixed costs associated with performing this item.

	Proposal	C1
COMPONENT: Construction - Schedule	AUTHOR	LK
	·	

Traffic Control

A reduced time period of active construction from 18 months to 9 months will reduce the number of days of traffic control required by 50%.

CEng Items

Minimal CEng Field staff could be required during periods of less than full production, however, the amount of overall documentation of field work will remain the same. There will be a savings generated with a larger field staff during a shorter period of time due to job assignment sharing.

COST ESTIMATE FORM

COMPONENT:

Construction - Schedule

CURRENT DESIGN	JRRENT DESIGN				VE PROPOSAL				
ITEM	QTY	UNIT	UNIT COST	TOTAL COST	ITEM	QTY	UNIT	UNIT COST	TOTAL COST
BORROW	210K	CY	5	1,000,000	Borrow				800,000
ACE	30K	Т	50	1,500,000	ACE				1,200,000
Agg Surface	121K	Т	24	3,000,000	Agg Surface				2,000,000
Sub F	61K	CY	6						290,000
МОВ	LS	LS	LS	1,400,000	МОВ				840,000
Traffic Maintenance	LS	LS	LS	140,000	Traffic Maint				84,000
Traffic Control	LS		LS		Traffic Control				200,000
Ceng Items	LS	LS	LS	350,000	Ceng Items				245,000
Subtotal				8,155,000					5,659,000
General Contractor Markup		%			General Contractor Markup		%		
Total to nearest \$1000				8,155,000	Total to nearest \$1000				5,659,000
					Difference				2,496,000

MENG Analysis DOWL

VALUE ENGINEERING STUDY

C1

86

TECHNICAL COMMENTS

In the Value Engineering process, the team may explore issues that could be useful to the design team and the owner as the project progresses. These are typically not alternative design systems resulting in cost adjustments to the project, but they may improve constructability and avoid potential change orders. They are mentioned here as a courtesy to the design team.

TECHNICAL REPORT	Proposal	T1		
COMPONENT: Material Criteria – Degradation Values	AUTHOR	RDP, LK		
CURRENT CONCEPT:				
Use Standard Specification for Deg. values on Processed Mater	rials			
Considerations:				
Based on the knowledge of the area within the project boundarie Material Sources probably will not meet the Standard Specificat	-			
Quality specifications need to match the material quality that is r increased haul costs for the items.	readily availabl	e or include		
Contract needs to address the possible location of material meeting the specifications. The Statewide Material Site Inventory –Material Site Inspection Report MS 65-3-013-2 19Mile Quarry shows evidence that acceptable material may be available.				

VALUE ENGINEERING

TECHNICAL REPORT	PROPOSAL	T2
COMPONENT: Construction Delivery	AUTHOR	LK
CURRENT CONCEPT:		
Design-Bid-Build Contracting Method.		
CONSIDERATIONS:		
Utilize CMGC Contracting Method.		

The phasing of embankment construction required by the several types of typical sections is critical to short and long-term roadway profile stability.

The new alignment will encounter several areas of ice rich soils. The typical sections have sound engineering principals employed to ensure long term viability. The risk involved is knowing the exact location a type of typical section should be utilized, the rate and amount of settlement that can be expected, and a construction method and phasing plan to meet the design intent. Determining accurate biddable settlement amount locations and rates would require a preconstruction materials investigation that would be cost prohibitive. A contracting methodology is required that will more evenly proportion the liability of risk.

The ACE and other suggested typical section require construction phasing that will be impacted by weather. Some typical sections will require the placement of thawed Select material, compaction and refreezing of the material. ACE typical sections will require the ACE material to be placed and not damaged by construction methods of hauling and placement.

Highway Standard Specifications are a mix of performance and prescriptive specifications. When using a mix of performance and prescriptive specifications a distinction between method and performance is critical in assessing liability. DDB during a competitive bidding climate will award to the lowest responsive and responsible contractor.

CMGC is well suited for this project because it can be considered to be:

• Technically complex: ACE embankment's thermodynamic theory has specific requirements that must be met it order for it to function

TECHNICAL REPORT	Proposal	Т2			
COMPONENT: Construction Delivery AUTHOR LI					
 Difficult to define: developing performance and prescr not mixed 	ptive specificatio	ns that are			
 Subject to change: changing of typical section location required once the actual subsurface conditions are dis 	•	ction will be			
 Having several design options: the success of the typ cost and function is dependent on the contractor's me allow detailed discussions over key constructability iss work 	thod and means.	CMGC will			
 In the appropriate design stage: 30% design completi 	on stage				
GMGC – GCCM Considerations:					
These contracting methods are viable and useful for complex advance contractor coordination.	r projects that wa	rrant			
Price competition					
These methods are not necessarily less expensive methods way the contract is written as well as the availability of comp the specific project. These contracts can vary in price comp many work items are self-performed and how many are requ within the GCCM / GMGC contract. For the Dalton project, r	etitive GCCM cor etition, depending ired to attain cor	ntractors for g on how npetitive bids			

important to provide a method for attaining competition on this work. GMGC – GCCM contracts can benefit also from contractor pre-construction services in the planning and design stages. For this to be useful in the Dalton project, which is currently at the 40% design stage, and scheduled for construction in Spring of 2018; it will be necessary to engage the contractor soon. Typically, it takes 6 months to engage a GCCM contract, so if this project stays on the currently defined schedule, it would be a

material mining and handling. They account for most of the project cost. It will be

late engagement if initiated now.

TECHNICAL REPORT	Proposal	Т2
COMPONENT: Construction Delivery	AUTHOR	LK
GCCM – GMGC Third party review:		1
Although the GMGC – GCCM contractors do participate during are not a substitute for third party review and value-added serv of this size. Valuable services such as constructability, risk as management are still recommended by independent third-party directly by the "owner" rather than the "contractor". Typically, th greatly to discussions of means and methods, and even materi seldom have the design or engineering background still needed preconstruction. (Nor are they typically given the responsibility of design analysis)	ices often used sessment, and providers emp ne contractor ca al substitutions d by the owner	for projects value bloyed an contribute , but during

TECHNICAL REPORT	Proposal	ТЗ		
COMPONENT: Construction Considerations	AUTHOR	LK, DS		
CURRENT CONCEPT:				
Contract time will be based on a project completion date which will allow 2 seasons of physical work.				
CONSIDERATIONS:				
Schedule, construction cost and public safety can be controlle and special provisions.	d by the use of	standard		
The costs associated with embankment settlements which will of settlement can either be borne by the construction contract				
The costs associated with traffic control and roadway maintenance during contract time for each portion of the project can either be borne by construction contract or DOT maintenance.				
The allocation of risks associated with traffic maintenance and each portion of the project needs to be clearly defined in the c	•	ion dates for		
Designate 5 geographically separate portions of project:				
• Elliot Tie In #1: BOP 10+00 to 25+00				
 New Elliot Alignment: 25+00 to 45+00 				
• Elliot Tie in #2: 45+00 to 80+00				
 New Alignment: 80+00 to 425+00 				
 Dalton Tie in: 425+00 to 573+06 (EOP) 				
Existing Alignment				
Each Geographically Separate Portion of Project will have a p	artial completion	n date		

TECHNICAL REPORT	Proposal	Т3		
COMPONENT: Construction Considerations	AUTHOR	LK, DS		
nested into the Project Completion Date.	1			
Applicable Specifications:				
105-1.13 MAINTENANCE DURING CONSTRUCTION				
• 107-1.14 OPENENING SECTIONS OF THE PROJECT	TO TRAFFIC			
107-1.15 CONTRACTORS RESPONSIBILITY FOR THE	WORK			
108-1.04 Limitations OF OPERATIONS				
• 108-1.07 FAILURE TO COMPLETE ON TIME				
Delete the second paragraph and substitute the following:				
Maintain the entire highway and related highway facilities located within the project (between the beginning of the project and end of the project shown on thePlans) from the date construction begins until you have received a letter of Substantial completion. Maintain these areas continually and effectively on a daily basis, with adequate resources to keep them in a satisfactory condition at all times.				
Elliott tie in #1. BOP 10+00 – 25+00 Contractor will not begin tie in work at this station prior to fill completion between 25+00 - 45+00. This will allow for uninterrupted traffic and limit traffic control costs at this location until the majority of the new alignment embankment is constructed.				
Elliott Tie in #2 Station 45+00 – 80+00 Contractor will provide and maintain signage for the duration of the project. Flaggers or other project engineer approved traffic control methods will be provided during all material hauling through this section. This will allow for uninterrupted traffic during times when hauling operations are not active. It will also reduce traffic control costs.				
Station 80+00 – 425+00 Contractor will assume responsibility t alignment areas at both stations by non-project personnel / ver duration of the project. Contractor will provide security to preve	icles throughou	ut the		

TECHNICAL REPORT	Proposal	Т3
COMPONENT: Construction Considerations	AUTHOR	LK, DS

approved by the project engineer.

Station 425+00 – 573+06 EOP. Contractor will not begin work on this section prior to completion of embankment throughout re-alignment sections. This does not include pipe ramming efforts. This will allow for uninterrupted traffic flows throughout this area until the majority of the new alignment embankment is constructed.

Existing Alignment: Contractor shall not begin work on existing alignment and will not be responsible for Traffic Maintenance until all other portion of project are partially complete as identified in the special provisions. Prior to contractor performing work as outlined within the contract on existing Dalton/ Elliott highways, all maintenance for these sections will be provided by the state.

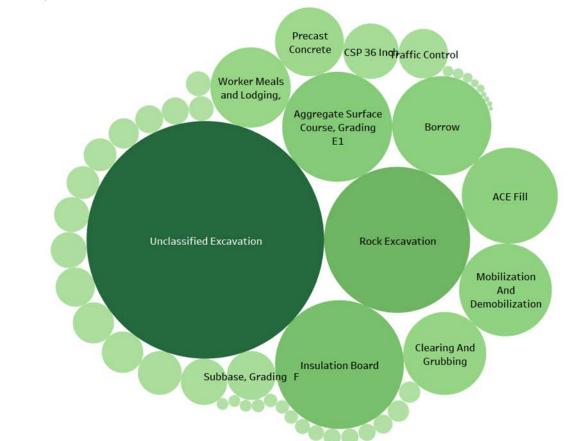
TECHNICAL REPORT	Proposal	Τ4			
COMPONENT: Utilities – Pipeline Casing	AUTHOR	DS			
CURRENT CONCEPT:	•				
Compensate Alyeska Pipeline Service Company (APSC) for the removal of the highway crossing sleeve at the Elliott Highway crossing.					
CONSIDERATIONS:					
APSC Elliott Highway Crossing:					
Dalton Highway project MP 0-9 realignment will require an exp highway embankment over the APSC /TAPS oil line crossing a		•			
APSC provided an estimated cost for modifications to the pipeline to accommodate the roadway expansion over the pipeline to be approximately \$2 million.					
As this is a significant cost to the project, and the assertion by the department that the costs for this should be borne by APSC the following information should be requested:					
1. What are the impacts to the pipeline from widening the roadway?					
2. Does the expansion of the road foot print require the pipeline sleeve to be replaced?					
3. Is there a requirement or regulation requiring the sleeve to be full width under the entire highway or just the driving lanes?					
4. If the sleeve is removed will it be replaced?					
5. Has APSC replaced similar sleeves at highway crossings for improved cathodic protection or other reasons?					
6. Has APSC previously determined that the sleeve at this crossing should be replaced or removed at this location?					
7. Are there other areas where buried pipeline crossings have not been modified during highway improvement /widening projects?					

TECHNICAL REPORT	Proposal	T4	
COMPONENT: Utilities – Pipeline Casing	AUTHOR	DS	
8. Would there be fewer impacts to APSC to widen the roany other combination?	ad 4 feet on eac	h side? Or	
9. The new road will have the same drive lanes 2 @ 12 feet each. The additional will is for shoulders only. Would there be fewer impacts to APSC if this area was sign for emergency stopping only or no stopping/parking?			

TE	CHNICAL REPORT		Proposal	Т5	
Со	MPONENT: Planning - Alig		AUTHOR	KLK	
Cur	RENT CONCEPT:				
	ablish realignment of th tom. The new alignmen		U		•
Со	NSIDERATIONS:				
gra rec	s VE Team explored and des to match the waiv commend this as a pro- reloped further.	ered design criteri	a. After this review	, this VE Te	am does no
	e existing stretch of roades up to 12%.	d has numerous su	ubstandard horizont	al and vertica	al curves wit
An alig to 1	alignment study was connent up to current generatest extent pos	ometric standards.	Two options include	ed: 1) reducii	ng excavatio
An alig to 1 gre	alignment study was connent up to current ge	ometric standards. sible, and 2) bala	Two options includencing cut/fill (borrow	ed: 1) reducii	ng excavatio
An alig to 1 gre	alignment study was con nment up to current gen he greatest extent pos atest extent possible.	ometric standards. sible, and 2) bala	Two options includencing cut/fill (borrow	ed: 1) reducir w material ne	ng excavatio
An alig to 1 gre	alignment study was connent up to current gen he greatest extent pos atest extent possible.	ometric standards. sible, and 2) bala sts differences bety	Two options includencing cut/fill (borrow	ed: 1) reducir w material ne Total	ng excavatio eeded) to th
An alig to 1 gre	alignment study was connent up to current gen he greatest extent pos atest extent possible. nmary of cut/borrow cos "Exist_Dalt_0" Profile 1 – Limited	ometric standards. sible, and 2) bala sts differences betw Cut Cost (per CY)	Two options include ncing cut/fill (borrow ween alignments: Borrow Cost (per CY)	ed: 1) reducir w material ne Total \$70,80	ng excavatio eeded) to the
An alig to 1 gre	alignment study was co nment up to current ge he greatest extent pos atest extent possible. nmary of cut/borrow cos "Exist_Dalt_O" Profile 1 – Limited Excavation Profile 2 – Balanced Cut	ometric standards. sible, and 2) bala sts differences betw Cut Cost (per CY) \$8	Two options include ncing cut/fill (borrow ween alignments: Borrow Cost (per CY) \$6	ed: 1) reducii w material ne Total \$70,80 \$36,00	ng excavatio eeded) to th

TECHNICAL REPORT	Proposal	Т5	
COMPONENT: Planning - Alignment	AUTHOR	KLK	

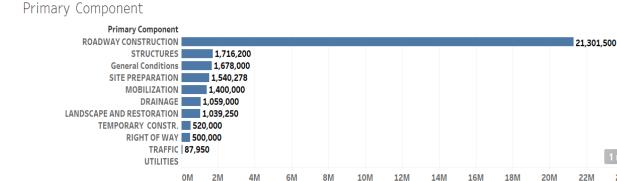
This discussion is based on the standpoint that widening the roadway on an established alignment is typically much easier and less risk in already settled areas.


We applied these criteria at the valley and hill climb from 215+00 to 305+00 and determined excavation would have to occur in areas that have high probability of ice rich soils. The only option to avoid this would be to apply a long 9% grade for 1.2 miles which adds another long climb/downgrade near the previously approved design exception at 9-Mile of 9.4%.

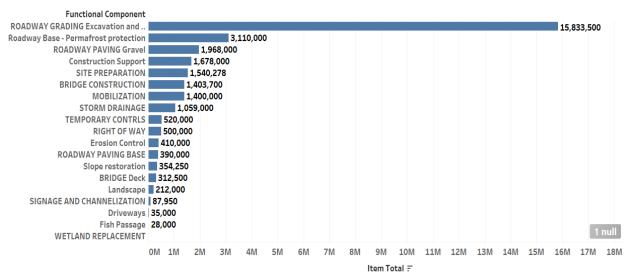
Compared to the proposed realignment the benefit does not appear to be high enough to please users and adds to the potential high risk of encountering ice rich soils when excavating into the hillside.

COST / BUDGET ANALYSIS

The VE team was not tasked to complete a detailed cost estimate review; but does use the estimate to better understand the most impacting systems and components and to compare the current design to VE alternatives. Therefore, the VE team prepares cost models and a summary of items that may warrant cost estimate adjustments.


Project Cost Models - Work Items

Work Item Graph


24M

Cost Model – Primary Components

Cost Model – Functional Components

FUNCTIONAL COMPONENT

Item Total 🖅

Cost Estimate Comments

CE#	ROADWAY COMPONENT	CURRENT TOTAL	VE TOTAL	DIFF TOTAL	COMMENT
					The current project quantities reflect 30,000 tons of ACE fill. Recent Geotech recommendations increase
1	ACE Fill	\$1,500,000	\$9,821,000	-\$8,321,000	the need to ~ 196,425 tons.

NOTE: This is not a comment on the bottom overall estimate. The VE team highlighted these items for further study based on differing cost opinion discussions.

VALUE ENGINEERING STUDY

CE1

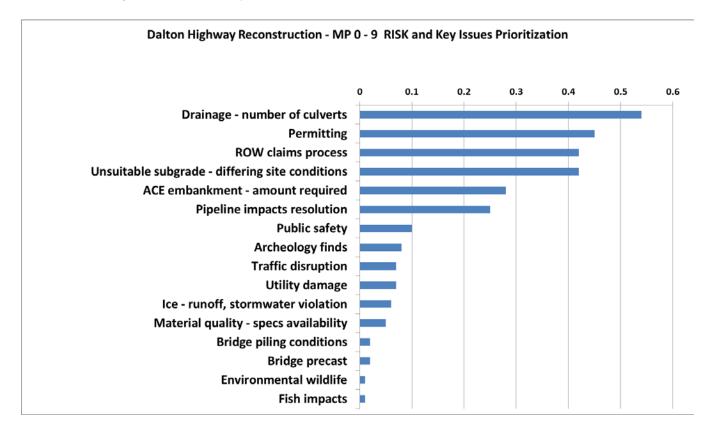
COST ESTIMATE FORM

COMPONENT:

ACE Fill

CURRENT DESIGN					VE PROPOSAL				
ITEM	QTY	UNIT	UNIT COST	TOTAL COST	ITEM	QTY	UNIT	UNIT COST	TOTAL COST
ACE FIII	30000				ACE Fill	196425		50	9,821,250
							ļ		
	_								
							ļ		
	-								
Subtotal				1,500,000	Subtotal				9,821,250
General Contractor Markup		%			General Contractor Markup		%		
Total to nearest \$1000					Total to nearest \$1000				9,821,000
					Difference				(8,321,000)

MENG Analysis DOWL



RISK ANALYSIS

The VE team discussed the potential project risks and assessed their probability as well as potential impacts. Risks were identified as very low (10%), low (30%), medium (50%), high (70%) or very high (90%) probability, as well as very low, low, medium, high or very high impact for both cost and schedule. Importance scores were calculated as the product of probability and impact.

This analysis was used to identify focus areas for the study, as well as to look for ways to balance the relationship between cost and risk with specific VE proposals. It is often possible to reduce risk with additional expenditures; but it is important to keep a good value ratio between those costs and the value of the reduced risk.

Prioritized Project Risks - Graph

VE PURPOSE AND METHODOLOGY

Value Engineering provides an independent, impartial project review by a team assembled specifically for this study. Value Engineering itself is an organized creative process, which examines the proposed project and identifies alternatives to optimize cost and performance and assure compliance with project requirements. Through a structured system of investigation, idea generation, and analysis, the independent multi-disciplined team is able to consider and identify alternatives for design, budget, schedule and construction methods, concurrently in a concentrated study.

After the initial presentation by the design team, the VE team analyzed the budget and cost estimate, and defined the basic functions of each project component. The VE team looked for ways to eliminate or modify design elements that add either first cost or life cycle cost without contributing to its required function. Specific proposals and reports were prepared and analyzed by the group for conformance to the project goals and VE study goals, prior to final prioritization. The design team, DOT & PF, specialists, and other suppliers were contacted regarding design questions, material options and pricing.

Prioritization and brainstorming were conducted in group sessions alternating with additional small group and individual study sessions. All members supported an "open minded" attitude to new suggestions, and all alternatives were considered valid until rejected by the entire team.

At the conclusion of the VE workshop all reports and information were assembled into an oral presentation to the stakeholders; and a written report was distributed to further study the proposals and findings. Key items for study are contained in the Executive Summary, the Technical Reports, and in the VE Proposals.

VE TEAM

Eric Meng

Team Leader MENG Analysis 2001 Western Ave. Suite 200 Seattle, WA 98121 (206) 587-3797 Office EMeng@mengnet.com

Kelly Kilpatrick

VE Project Manager / Roadway Engineer DOWL 4041 B Street Anchorage, Alaska 99503 (907) 562-2000 Office kkilpatrick@dowl.com

Dwight Stuller Construction / Maintenance DOWL DStuller@dowl.com

Lon Krol Civil Engineer longinkrol@gmail.com

Maria Kampsen Geotechnical Engineer DOWL mkampsen@dowl.com

David Jensen Civil Engineer (DOT & PF) Alaska DOT & PF 2301 Peger Rd Fairbanks, AK 99709 (907) 374-3773 Office david.jensen@alaska.gov

Rich Pribyl Hydraulic Engineer DOWL 4041 B Street Anchorage, Alaska 99803 (907) 562-2000 Office rpribyl@dowl.com

DOWL

Matt Mettler Structural Engineer

DOWL 222 N 32nd Street, Suite 700 Billings, Montana 59101 (406) 869-6384 Office mmettler@dowl.com

Sarah Partap VE Project Manager

MENG Analysis 2001 Western Ave. Suite 200 Seattle, WA 98121 (206) 587-3797 Office sarah@menganalysis.com

Adrianne Larsen

VE Project Coordinator MENG Analysis 2001 Western Ave. Suite 200 Seattle, WA 98121 (206) 587-3797 Office adrianne@menganalysis.com

FUNCTIONAL ANALYSIS

The VE team completed a function analysis of the Dalton Reconstruction project. The function analysis diagram arranges the functions with the higher order (Why) functions to the left of the diagram and supporting functions (How) to the right of the diagram. This identification and understanding of basic functions, support functions, and criteria were used to better understand the project; and during the speculative phase, as a basis for seeking alternative concepts.

אומצאמ שקטמו וווושוו טו	אומאמ טקאמונווושוו טו דומואסטמוטוו - רמטווכ רמכווונופא (טכט - רר)	רמטוווושה (חטו - רר)	2	LEGEND			
Dalton Highway MP 0-9 Reconstruction	9 Reconstruction		why ←	•	How		
FUNCTIONAL ANALYSIS DIAGRAM	SIS DIA GRAM	Working DRAFT		When			
6/5/2017	egm				INK		
CRITERIA			PROGRAM SUPPORT FUNCTIONS	T FUNCTIONS			
Safety	Cost	Highway Standards	Control Traffic	Construction	Maintain Traffic	Maintain road / structures	Manage project
Mobility	Maintainability	AASHTO/DOT Criteria	Inform Drivers	Stage equipment	Separate traffic - construction	Maintain surfacing	Permit project
Support Commerce	Constructability	Traffic Loads	Control speeds	Deliver materials	Managetraffic	Manage snow / ice	Design Project
Support Tourism				Support workers	Detour traffic	Repair setttlement	Manage construction
				House / feed workers	Transport workers		
HIGHER ORDER FUNCTIONS	CTIONS	CRITICAL PATH FUNCTIONS	SNORS				
PROGRAM FUNCTIONS	<u>s</u>						
Support Commerce - trucking	Reduce slopes	Realign Roadway					
Access Deadhorse / Prudo Bay	Widen roadway	Reconstruct Existing roadway					
Protect people	hcrease run out						
Respond emergencies	Flatten curves						
Reduce accidents	Widen shoulders						
Extend Life of highway	Control melting / settlement	Reconstruct surfacing	Foam emban kments				
	Support highway Ioads	Reconstruct road base	Air coded embankment				
	Manage snow / ice	Reconstruct embankments		0			
	Control stomwater / runoff						

Dalton Highway MP 0-9 Reconstruction)-9 Reconstruction					
FUNCTIONAL ANALYSIS DIAGRAM	YSIS DIAGRAM					
CONSTRUCTION FUNCTIONS	VCTIONS					
Construct Road	Seal surface	Construct road surface aggregate	Build road base	Mine material	Clear site	Acess site
				Haul material	Demolish rock	Temporary roads
			Rip rap	Import material	Excavate earthwork	
			Export Dispose excess			
SYSTEM FUNCTIONS	S					
Site	Stormwater	Utilities	Structure - Bridge	Restoration		
Procure site (ROW)	Drain stormwater	Reroute communications	Retain earth	Restore vegetation		
Clear site	Prevent hvdroplaning	Reroute fiber	Span creek	Plant grass		
Remove soil	Reduce icing		Support bridge	Reduce dust		
	Reduce erosion		Support paving	Reduce erosion		
	Convey stormwater		Access bridge construction			
	Culvert stormwater		Railing			
	Reconfigure culverts		Stop vehicles (impact)			

VE IMPLEMENTATION FORM

The VE Implementation form is used to track the acceptance of the Value Engineering proposals.

We request a copy of the completed VE Implementation form be returned to MENG Analysis.

Receipt of the completed implementation form also helps track and analyze studies in order to improve future Value Engineering services.

	VALUE ENGINEERING PROPOSAL	PROPOSED COST AVOIDANCE	ACCEPT	REJECT	MODIFY	ACCEPTED VALUE OF PROPOSAL	COMMENTS / DISCUSSION
D1a	Drainage - Pipe Culvert - Culvert Gauge	(540,000)					
D1b	Drainage - Pipe Culvert Material Upgrade	(606,000)					
D2	Drainage - Pipe Installation Method	242,000					
D3	Drainage - Pipe Bedding - Insulated	(443,000)					
B1	Bridge - Structural Design Refinement	419,000					
B2	Bridge - Width Criteria	283,000					
В3	Bridge - Span	277,000					
B4	Bridge - Structural Plate	1,069,000					
R1	Roadway Construction - Materials Sourcing	3,354,000					
R2	Roadway - Surface	220,000					
R3	Roadway - Surface Section	1,110,000					
G1	Geotechnical - Permafrost Provisions - Thermal Berms	(1,342,000)					
G2	Geotechnical - Permafrost Provisions - Tundra Excavation	74,000					

	VALUE ENGINEERING PROPOSAL	PROPOSED COST AVOIDANCE	ACCEPT	REJECT	MODIFY	ACCEPTED VALUE OF PROPOSAL	COMMENTS / DISCUSSION
G3	Geotechnical - Permafrost Provisions - Deep Excavation / Oversized Embankments	4,149,000					
G4	Geotechnical - Permafrost Provisions - ACE Embankment Height	(1,955,000)					
C1	Construction - Schedule	2,496,000					
	TOTAL ACCEPTED and PENDING						
the Valu	F has reviewed each of e Engineering						
	Is and recommends the es contained herein.						
by							
,							
title							
date							

Value Engineering

COMPLETED VE IMPLEMENTATION FORM

			1	-	-		
	VALUE ENGINEERING PROPOSAL	PROPOSED COST AVOIDANCE				ACCEPTED VALUE OF PROPOSAL	COMMENTS / DISCUSSION
			ACCEPT	REJECT	MODIFY		
D1a	Drainage - Pipe Culvert - Culvert Gauge	(540,000)	X			(\$540,000)	This is a normal NR design approach for thaw- unstable or areas with high expected settlement; for conveyances in these areas, thicker gauge culverts will be used except where smooth steel culverts (from proposal D1b) are determined to be a more desirable choice. The decision to accept this proposal is contingent on affordability in STIP.
D1b	Drainage - Pipe Culvert Material Upgrade	(606,000)	x			(\$606,000)	Similar to proposal D1b, this is a normal NR design approach for areas with expected differential settlement - which is anticipated. Smooth wall steel pipes have "held up" well to excessive settlement per M&O's experience in this region.
D2	Drainage - Pipe Installation Method	242,000		x			The culvert to be replaced at this location is not planned to be replaced at the depth of the original - rather the replacement culvert will be at a more appropriate grade and include the design of a long outfall protection from outlet to beyond the new embankment toe; this anticipated replacement does not lead to the savings shown here from employing trenchless culvert installation techniques. Furthermore, the availability of contractors to perform this type of work is very limited and the cost to mobilize this specialized equipment and crew would further lead to no net savings from this alternative installation method.
D3	Drainage - Pipe Bedding - Insulated	(443,000)	х			(\$443,000)	Similar to proposal D1a and D1b, this is a normal NR design approach and will be used where conditions are appropriate.
B1	Bridge - Structural Design Refinement	419,000	x			\$419,000	As discussed during the VE proposal presentation, these savings would have likely been realized through the normal and expected design refinement process; The preliminary bridge plans were prepared with no geotechnical, hydraulic or refined site survey. The final bridge design will utilize the SFER, H&H Report and site survey thereby addressing the uncertainty in the preliminary design but may or may not result in a cost savings.
B2	Bridge - Width Criteria	283,000		x			For consistency with all new bridges on this highway and at the NR's decision this proposal was rejected. Furthermore, the proposed shoulder width would not safely accommodate bicycle use on this roadway.

		DRODOSED	r		r –	ACCEDTED	COMMENTS / DISCUSSION
	VALUE ENGINEERING	PROPOSED COST				ACCEPTED VALUE OF	COMMENTS / DISCUSSION
	PROPOSAL	AVOIDANCE				PROPOSAL	
	I NOI USAL	AVOIDANCE				I NOI USAL	
			Ч	5	Ϋ́		
			Ē	Ш	H ۲		
			ACCEPT	REJECT	MODIFY		
B3	Bridge Ster	277 000	◄	₩ X	Σ		The bridge length for water crossing is
БЗ	Bridge - Span	277,000		^			The bridge length for water crossing is established by the hydraulic engineer. The
							proposed 1.5:1 side slopes are steeper than that
							commonly used for bridge projects. The proposed
							steep slopes may result in hydraulic, slope
							stability (static and/or seismic), and
							constructability problems. Furthermore, the
							savings from a reduction in length would likely
							not be as significant a proposed due to the
							economies of scale (i.e., the same foundations,
							abutments, wingwalls, bridge rails, etc. would still
P (Datata	4 000 000	 				be required).
B4	Bridge -	1,069,000		х			Culverts are not as well suited for areas where
	Structural Plate						differential settlement could be expected such as
	ridle						this location. If a SPPA was used at this location, a deep-pile foundation would likely be required
							rather than the spread footing shown for this
							proposal; the proposed cost savings would be
							significantly reduced with this type of foundation.
							Aufeis and overtopping has been an ongoing
							maintenance issue for the existing Lost Creek
							crossing of the Dalton Highway, with the roadway
							having washed out 3 times in the last 10 years.
							While Aufeis is unpredictable, it should be
							expected given the history and site conditions
							and, as such, a bridge is much more capable of
							preventing problems to the roadway due to
							aufeising. Large trees in this region that may
							become waterborne could cause issues with a SPPA whereas this is less likely with a bridge.
							Finally, NR has limited experience with these
							types of culverts and, coupled with this being a
							completely new alignment, there is an
							uncomfortable amount of uncertainty in using this
							type of SPPA.
R1	Roadway	3,354,000		Х			This proposal is not applicable as the material at
	Construction -						the noted locations is not expected to be capable
	Materials						of producing ACE material, even with a reduction
	Sourcing						in the proposed degradation values. The amount
							of waste generated to meet the gradations needed
							for effective ACE performance would be highly
R2	Roadway -	220,000	<u> </u>		x		cost-prohibitive. While Hi-Float surfacing would prevent
Π2	Surface	220,000			^		embankment from being bladed or pushed onto
	Junaue						the ACE shoulders over time, the installation
							process is very messy and would result in a lot of
							material entering the ACE shoulders immediately
							upon installation. Hi-Float was also not
							determined to be a good idea for areas with
							expected settlement and, with the little depth of
							material above the ACE and below the surfacing,
							Hi-Float would not provide sufficient strength to
							resist deformations, even minor ones, that might
							be expected due to the surface characteristics of
							the finished ACE layer. The Department has
							determined it would be best to install some type
							of impervious, wearing driving surface in the ACE
							sections at a minimum, however; this will be investigated further with locations and types to be
							determined during the detailed design process.
L	I		1		I	l	determined during the detailed design process.

			1	-			
	VALUE	PROPOSED				ACCEPTED	COMMENTS / DISCUSSION
	ENGINEERING	COST				VALUE OF	
	PROPOSAL	AVOIDANCE				PROPOSAL	
			H	F	~		
			ACCEPT	REJECT	MODIFY		
			0	Ë	Q		
			AC	L L L L	ž		
R3	Roadway -	1,110,000			Х	(\$1,000,000)	The Department has modified this proposal to
	Surface						maintain a moderately thick section of Non-Frost
	Section						Susceptible soil but reduce the number of layers,
							however the surface course was also increased
							upon further discussion. The final section will be
							a 12" E-1 layer underlain by a 30" Select A Layer,
							eliminating the subbase F layer as the likely
							source for the majority of the Select A layer is
							expected to contain primarily 3"-minus material
							which will result in an overall reduced unit cost as
							there will be no screening required.
G1	Geotechnical -	(1,342,000)	Х			(\$1,342,000)	Thermal Berms - or more appropriately -
	Permafrost		1				Embankment Stabilization Buttresses (ESB's,
	Provisions -						AKA "Steve's Buttress"), will be formed from
	Thermal						suitable excess (waste) excavation in locations to
	Berms						be determined during detailed design.
G2	Geotechnical -	74,000	Х			\$74,000	This will be added along with the requirement that
	Permafrost					- -	clearing is to occur during the winter (or frozen
	Provisions -						conditions).
	Tundra						
	Excavation						
G3	Geotechnical -	4,149,000			Х		This proposal will/may be utilized at very
	Permafrost						limited/select locations and only during winter
	Provisions -						and only as scheduling would practically
	Deep						accommodate. Overall, NR is uncomfortable
	Excavation /						subexcavating to remove frozen material as the
	Oversized						risk is uncertain yet potentially high, not only due
	Embankments						to the uncertainty of the limits of excavation or
							the conditions encountered but also due to the
							negative scheduling impacts these ambiguous
							"dig outs" could have, primarily as they would all
							take place along the new road and likely sole haul
							route. There is also some moderate risk in efforts
							route. There is also some moderate risk in efforts necessary to maintain CGP compliance. There
							necessary to maintain CGP compliance. There are insolated locations, however, where the limits
							necessary to maintain CGP compliance. There
							necessary to maintain CGP compliance. There are insolated locations, however, where the limits of are either better known or will have a more manageable amount of potential risk.
G4	Geotechnical -	(1,955,000)		x			necessary to maintain CGP compliance. There are insolated locations, however, where the limits of are either better known or will have a more
G4	Geotechnical - Permafrost	(1,955,000)		x			necessary to maintain CGP compliance. There are insolated locations, however, where the limits of are either better known or will have a more manageable amount of potential risk.
G4		(1,955,000)		x			necessary to maintain CGP compliance. There are insolated locations, however, where the limits of are either better known or will have a more manageable amount of potential risk. This proposal was rejected as the basis for ACE height was determined from thermal modeling based on the expected conditions. Simply
G4	Permafrost Provisions - ACE	(1,955,000)		x			necessary to maintain CGP compliance. There are insolated locations, however, where the limits of are either better known or will have a more manageable amount of potential risk. This proposal was rejected as the basis for ACE height was determined from thermal modeling
G4	Permafrost Provisions -	(1,955,000)		x			necessary to maintain CGP compliance. There are insolated locations, however, where the limits of are either better known or will have a more manageable amount of potential risk. This proposal was rejected as the basis for ACE height was determined from thermal modeling based on the expected conditions. Simply
G4	Permafrost Provisions - ACE	(1,955,000)		x			necessary to maintain CGP compliance. There are insolated locations, however, where the limits of are either better known or will have a more manageable amount of potential risk. This proposal was rejected as the basis for ACE height was determined from thermal modeling based on the expected conditions. Simply averaging the heights could result in excessive
G4	Permafrost Provisions - ACE Embankment	(1,955,000)		x			necessary to maintain CGP compliance. There are insolated locations, however, where the limits of are either better known or will have a more manageable amount of potential risk. This proposal was rejected as the basis for ACE height was determined from thermal modeling based on the expected conditions. Simply averaging the heights could result in excessive heights in some areas and insufficient heights in others. The final thicknesses may change, however, due to other project design changes
G4	Permafrost Provisions - ACE Embankment	(1,955,000)		x			necessary to maintain CGP compliance. There are insolated locations, however, where the limits of are either better known or will have a more manageable amount of potential risk. This proposal was rejected as the basis for ACE height was determined from thermal modeling based on the expected conditions. Simply averaging the heights could result in excessive heights in some areas and insufficient heights in others. The final thicknesses may change, however, due to other project design changes resulting from other accepted proposals in this
	Permafrost Provisions - ACE Embankment	(1,955,000)		x			necessary to maintain CGP compliance. There are insolated locations, however, where the limits of are either better known or will have a more manageable amount of potential risk. This proposal was rejected as the basis for ACE height was determined from thermal modeling based on the expected conditions. Simply averaging the heights could result in excessive heights in some areas and insufficient heights in others. The final thicknesses may change, however, due to other project design changes resulting from other accepted proposals in this VES (such as not-grubbing - G2).
G4 C1	Permafrost Provisions - ACE Embankment	(1,955,000)		x	x		necessary to maintain CGP compliance. There are insolated locations, however, where the limits of are either better known or will have a more manageable amount of potential risk. This proposal was rejected as the basis for ACE height was determined from thermal modeling based on the expected conditions. Simply averaging the heights could result in excessive heights in some areas and insufficient heights in others. The final thicknesses may change, however, due to other project design changes resulting from other accepted proposals in this
	Permafrost Provisions - ACE Embankment Height			x	x		necessary to maintain CGP compliance. There are insolated locations, however, where the limits of are either better known or will have a more manageable amount of potential risk. This proposal was rejected as the basis for ACE height was determined from thermal modeling based on the expected conditions. Simply averaging the heights could result in excessive heights in some areas and insufficient heights in others. The final thicknesses may change, however, due to other project design changes resulting from other accepted proposals in this VES (such as not-grubbing - G2).
	Permafrost Provisions - ACE Embankment Height Construction -			x	x		necessary to maintain CGP compliance. There are insolated locations, however, where the limits of are either better known or will have a more manageable amount of potential risk. This proposal was rejected as the basis for ACE height was determined from thermal modeling based on the expected conditions. Simply averaging the heights could result in excessive heights in some areas and insufficient heights in others. The final thicknesses may change, however, due to other project design changes resulting from other accepted proposals in this VES (such as not-grubbing - G2).
	Permafrost Provisions - ACE Embankment Height Construction -			x	x		necessary to maintain CGP compliance. There are insolated locations, however, where the limits of are either better known or will have a more manageable amount of potential risk. This proposal was rejected as the basis for ACE height was determined from thermal modeling based on the expected conditions. Simply averaging the heights could result in excessive heights in some areas and insufficient heights in others. The final thicknesses may change, however, due to other project design changes resulting from other accepted proposals in this VES (such as not-grubbing - G2). This proposal restricted the field season to begin in May, however a substantial amount of work (pit
	Permafrost Provisions - ACE Embankment Height Construction -			x	x		necessary to maintain CGP compliance. There are insolated locations, however, where the limits of are either better known or will have a more manageable amount of potential risk. This proposal was rejected as the basis for ACE height was determined from thermal modeling based on the expected conditions. Simply averaging the heights could result in excessive heights in some areas and insufficient heights in others. The final thicknesses may change, however, due to other project design changes resulting from other accepted proposals in this VES (such as not-grubbing - G2). This proposal restricted the field season to begin in May, however a substantial amount of work (pit development, clearing, access development, etc.)
	Permafrost Provisions - ACE Embankment Height Construction -			x	x		necessary to maintain CGP compliance. There are insolated locations, however, where the limits of are either better known or will have a more manageable amount of potential risk. This proposal was rejected as the basis for ACE height was determined from thermal modeling based on the expected conditions. Simply averaging the heights could result in excessive heights in some areas and insufficient heights in others. The final thicknesses may change, however, due to other project design changes resulting from other accepted proposals in this VES (such as not-grubbing - G2). This proposal restricted the field season to begin in May, however a substantial amount of work (pit development, clearing, access development, etc.) could be completed in winter conditions while still
	Permafrost Provisions - ACE Embankment Height Construction -			x	x		necessary to maintain CGP compliance. There are insolated locations, however, where the limits of are either better known or will have a more manageable amount of potential risk. This proposal was rejected as the basis for ACE height was determined from thermal modeling based on the expected conditions. Simply averaging the heights could result in excessive heights in some areas and insufficient heights in others. The final thicknesses may change, however, due to other project design changes resulting from other accepted proposals in this VES (such as not-grubbing - G2). This proposal restricted the field season to begin in May, however a substantial amount of work (pit development, clearing, access development, etc.) could be completed in winter conditions while still allowing the advantages of this proposal; this
	Permafrost Provisions - ACE Embankment Height Construction -			x	x		necessary to maintain CGP compliance. There are insolated locations, however, where the limits of are either better known or will have a more manageable amount of potential risk. This proposal was rejected as the basis for ACE height was determined from thermal modeling based on the expected conditions. Simply averaging the heights could result in excessive heights in some areas and insufficient heights in others. The final thicknesses may change, however, due to other project design changes resulting from other accepted proposals in this VES (such as not-grubbing - G2). This proposal restricted the field season to begin in May, however a substantial amount of work (pit development, clearing, access development, etc.) could be completed in winter conditions while still allowing the advantages of this proposal; this proposal was modified to restrict the physical work to one summer season, beginning in the fall after advertisement and a contract completion of
	Permafrost Provisions - ACE Embankment Height Construction -			x	x		necessary to maintain CGP compliance. There are insolated locations, however, where the limits of are either better known or will have a more manageable amount of potential risk. This proposal was rejected as the basis for ACE height was determined from thermal modeling based on the expected conditions. Simply averaging the heights could result in excessive heights in some areas and insufficient heights in others. The final thicknesses may change, however, due to other project design changes resulting from other accepted proposals in this VES (such as not-grubbing - G2). This proposal restricted the field season to begin in May, however a substantial amount of work (pit development, clearing, access development, etc.) could be completed in winter conditions while still allowing the advantages of this proposal; this proposal was modified to restrict the physical work to one summer season, beginning in the fall

Value Engineering

VALUE ENGINEERING PROPOSAL	PROPOSED COST AVOIDANCE	PT	ст	FΥ	ACCEPTED VALUE OF PROPOSAL	COMMENTS / DISCUSSION
		ACCEI	REJECT	MODIFY		
TOTAL ACCEPTED and PENDING					(\$3,438,000)	

	a
DOT & PF has reviewed each of the Value Engineering	
proposals and recommends the responses contained herein.	
Andrew Wells, P.E.	-
by	
Engineer I, Project Designer	
title	•
7/17/2017	
	·
date	
date	_
ENERAL COMMENTS REGARDING THIS VALUE ENGINEERING STUDY: DOT Proposa	I Review Team Meetings held June 29, 2017. Attendees:
Jeff Russell, Dalton District M&O Superintendent	
Elmer Marx, P.E.; Bridge Design	
David Hemstreet, P.E., Statewide Foundations	
Michael Knapp, P.E., Statewide Drainage/Hydro	
Jeff Stutzke, P.E., Reggional Drainage/Hydro	
Lauren Little, P.E., Northern Region Design Manager	
Mike Lund, P.E., Northern Region Construction Manager	
Jake Allen, P.E., Norther Region Group Chief/Project Delivery Team Leader	

Steve McGroarty, P.E, Regional Geotechnical Engineer Jeff Currey, P.E., Regional Materials Engineer

Matt Billings, P.E., Assistant Regional Geotechnical Engineer Andrew Wells, P.E., Engineer I

CREATIVITY ALTERNATIVES SHEETS

The following creativity worksheets are used by the VE team to record options discussed during the workshop. They are included herein to illustrate the range of options considered during the study for key project elements.

Note that the first column titled "#" indicates the VE team prioritization when the proposals were initially analyzed after the speculative phase.

CREATIVITY		
COMPONENT:	Drainage	
FUNCTIONS:	1 <u>Convey Runoff</u> 2 <u>Reduce Icing</u> 3 <u>Protect Permafrost</u> 4 <u>Reduce Erosion</u> 5 <u>Control Runoff</u> 6 <u>Control Runoff</u>	8 <u>Pass Fish</u> 9 10 11
CURRENT CONCEPT		
36" CSP = \$500,000; 24" CSP = \$150,000; 7 marker posts, riprap = \$65,000. 108" SSP = # ALTERNATIVES		CSP = \$78,000. End sections, thaw pipe,
Remove existing culverts \$ look		
8 Pile pre/straight wall steel pipe		
5 Increased pipe gauge (CSP)		
Plastic corrugated pipe		
Extend piles in lieu of full replacement		
1 Reline existing culverts in lieu of full repla	icement	
2 Don't remove all existing culverts		
4 Pipe ramming - new install		
Alternative fish structures (pipe arch, bu	ried bridge, bottomless)	
Alternate bedding - cold weather insula	ition	
Impacts to ACE		
Insulation in bedding/below pipe		
Concrete box/bridge		
1 Ponds/flow-thru embankment		
Ford - Armored crossing		
Realignment of streams/flows		
Offset roadside ditch		

CREA	ΓΙVΙΤΥ
	COMPONENT: Bridge FUNCTIONS: 1 Span Creek 7 2 Support Vehicles 8 3 Release Fish 9 4 Contain Flow 10 5 11 6 12
	CURRENT CONCEPT
	142.5' x 39' Bridge Structures = \$2,021k; Furnish and Drive H-Pieces = \$455k; Site Cast Abutments = \$390k; Erect Pre-Cast Bulb-Tee Girders = \$770k; Riprap = \$216.25k; Bridge and Approach Rail = \$189k
#	ALTERNATIVES
	Bottomless arch culvert (a = bebo; b = structural plate)
	Refine (E) (a = foundation; b = scour countermeasures) Reduce span
0	Alignment change/move crossing
	Alternative abutments
	Steel girders with site cast or precast flanks
3	Alternative scour countermeasure - articurative mat
8	Narrow bridge deck to 21'

ATIVITY		
COMPONENT:	Roadway Construction	
FUNCTIONS:	1 Improve Alignment 2 Obtain Material 3 Stable Structure 4 Wearing Surface 5 6	8
CURRENT CONCEPT		
Clearing 201 = \$1,400,000; Excavation/Ea E-1 120k Ton = \$3,000,000; F 60k CV = \$40 to 80k CY Waste (>40) (230 total useab ALTERNATIVES	00,000; 1.3 Million CY Cut Mat	
Change alignment		
7 Mining in ROW (220-320)		
4 Alternate material sources (EOP Materia	ls Source)	
Quality specs on materials		
Revise section for ACE		
6 Revise ACE deg. Values		
Tunneling		
Fill only embankment		
Expand ROW - use more material from lo	ower area vs. Lost Creek	

CREATIVITY	
CREATIVITY	
COMPONENT:	
FUNCTIONS:	2 Reduce Dust 8 3 Reduce Erosion 9 4 Drain Stormwater 10 5 11
	6 12
CURRENT CONCEPT	
	E-1 AG. Surface Course, 9", 82k Tons = \$1.97 million; Subbase f (320 k ef: 9 miles north y MP 11-18, 6" d-1 MOD/ 18" Subbase A.
# ALTERNATIVES	
Asphalt pavement	
8 High float (asphalt emulsion)	
4 Different grave: 6" D-1 & 18" sub A (reduc	ce borrow/optimize use of available material)
Calcium chloride	
Chip seal	
7 Revise material quality requirements E-1	

CREA	ATIVITY
	COMPONENT: Geotech/Permafrost FUNCTIONS: 1 Extend Life of Roadway 7 2 Overall Embankment Stability 8 3 Control Thawing/Settlement 9 4 Reduce Maintenance 10 5 11 6 12
	CURRENT CONCEPT
	ACE Fill (3,000 @ 5' height) = \$1,500,000 (30,000 Ton); Insulation Board = \$2,700,000 (2,700 MBM); Geotextile, Reinforcement = \$350,000 (100,000 SY); Geotextile, Erosion Control = \$60,000 (30,000 SY)
#	ALTERNATIVES
	1 Revisit existing alignment
	7 Thermal berms (in lieu of offsite disposal)
	1 Geotextile "burrito wrap"
	7 Don't excavate tundra under ACE
	4 Use large conventional embankment, plan for maintenance (delete insulation board)
	5 Deep subex of ice-rich material
	Thermosyphons
	Lightweight aggregates
	Bridge over permafrost
	Shoulder only insulation
	4 More investigation into alternative ACE source
	Lighter colored aggregate
	2 Pre-thawing and surcharging
	4 Increase ACE embankment height (maintenance - life cycle)

CREAT	IVITY		
	COMPONENT: FUNCTIONS:	Utilities 1 Relocate Utility 2 Determine Responsibility 3 Maintain Access 4 5 6	
	CURRENT CONCEPT		
F	Dalton Highway utilities owner responsibili Pipeline crossing casing = \$2,000,000 ALTERNATIVES	ty; Elliott Highway utilities project	responsibility = \$300,000; Alyeska
7	Determine need for casing removal		
1 [Do not remove casing		
N	Widen roadway to impact only one utility	FOC line	
/	Approval for road contractor to do earth	nwork	

TIVITY		
COMPONENT: FUNCTIONS:	Landscape/Restoration 1 Reduce Erosion 2 Reduce Dust 3 Restore Vegetation 4 Restore Habitat 5 Convey Runoff 6	- 7
CURRENT CONCEPT		
Seeding 5,300# = \$212,000; Removal of L	ost Creek Culverts (removal o	of culverts along existing highway)
\$100,000 ALTERNATIVES		
Rolled erosion control product		
Mulch/compost		
Cover in gravel		
Cover in tires		

ΤΙVΙΤΥ		
COMPONENT:	ROW	
FUNCTIONS	1 Prepare Site	7
ronenous.	2 Contain Roadway	78 9101112
	3	9
	5	10
	6	12
CURRENT CONCEPT		
New Alignment = 300ft; Existing Alignment Permanent Estimate, Mineral Closing Ord		
ALTERNATIVES	er. Approximately \$500	К.
Keep existing alignment		
Realign to avoid mining claims		
Expand ROW acquisitions for material		

REATIVITY		
COMPONENT:	Planning Alignmen	t -Horizontal
FUNCTIONS:	1 <u>Meet Criteria</u> 2 <u>Increase Safety</u> 3 <u>Reduce M&O</u> 4 5 6	8
CURRENT CONCEPT		
Horizontal - Reduce Curves/Flatten = 30 rural arterial standard. Proposed = \$10.6 ALTERNATIVES		eria); Upgrade alignment to current principa
1 Keep existing		
Keep existing and build new (one-way	roads)	
Realign at IMP.A (approximately 30+00		+00 Pinp)
Narrower traveled way		
Realign at IMP.A (approximately 30+00	CY; approximately 215	+00 Pinp)
Reconstruct existing - relax grade criter	a	· · ·

EATIVITY		
		gnment Vertical
CURRENT CONCEPT Reduce curves by 50% (66 exceeded maximum. Desig	to 33), 41 did not meet criter In waiver approved for max	ia. Reduce grades - segments (67 to 34), 27 grade (3% of corridor; reduces cost by \$7M, = 3.3% with pullout; Hill 2 = 9.7% (2,400ft).
Evaluate other locations for	design exception	
_		

CREA	IVITY
	COMPONENT: Planning - Lane Configuration & Design Criteria FUNCTIONS: 1 Meet Criteria 7 2 Widen Roadway 8 9 3 9 10 5 11 11 6 12 12
	CURRENT CONCEPT Viden Roadway (12' lanes; 6' shoulders). DC - upgrade to principal rural arterial standards (AASHTO 2001 Idhere to Dalton Highway Memo-Directive.
#	ALTERNATIVES

ATIVITY		
COMPONENT:	Construction General Cond	itions
FUNCTIONS:	1Contract Admin Method2Social Engineering3Field Engineering4Contract Compliance5Worker Wellness6Access Site	 7 Inform Drivers 8 Stage Equipment/Materials 9 Transport/House Workers 10 Control Traffic Environmental During 11 Construction 12
CURRENT CONCEPT		
Clearing 2011; Construction May 2018 - 2 \$400k; Traffic Maintenance = \$120k; Tem ALTERNATIVES		
2 Don't build Pioneer Road - build bridge a	after highway	
8 Winter construction mandate - 1 season	project	
Utility bedding		
31 season project		
82 season project (wait for 2nd season to	complete wearing course)	
Design/build with contractor responsibility	у	
Separate mining contract		
Separate clearing contract		
ACE material mined in advance		
7 Manage/specify traffic control - stage ti	e-ins	
Manage/specify traffic control - new alig	gnment	
Manage/specify traffic control - reconst	ruction	
Full contractor responsible for maintenar	nce	
4 Be specific where/when contractor take	s over maintenance vs. DOT ma	intenance
1		