Manh Choh Twin Road Developer: Peak Gold, LLC

Traffic Impact Analysis Report

November 2022

Prepared For: Alaska Department of Transportation & Public Facilities Prepared By: RESPEC 2700 Gambell Street, Suite 500 Anchorage, AK 99503 907-743-3200 AECC163270

Manh Choh Twin Road Traffic Impact Analysis Requirement Checklist

Peak Gold, LLC plans to operate a mine near Tok, Alaska. The project will require a new access with an approach at Mile 1307.6 of the Alaska Highway. There will be 130 ore trucks using the highway spread over 24 hours (approximately 6 per hour). Exhibit A is a map that shows the vicinity of the new access to the Alaska Highway. The map shows proximity to adjacent facilities, traffic generated, and existing vs minimum sight distances. The traffic of the area was analyzed and shows that the expected traffic will have little impact on safety and operations of the Alaska Highway. To evaluate the traffic, the month with the highest traffic since 2019 was used to get a peak daily volume that is nearly 4 times the winter volumes (i.e. when road conditions are suboptimal, the volume will be at its lowest). Exhibit B shows the turning traffic at the new approach.

Pre-analysis meeting

The developer and the registered engineer that will sign and seal the TIA must meet with the DOT&PF&PF Regional Traffic & Safety engineer and Right-of-Way agent before beginning the TIA. At the meeting, the following will be determined:

- The design year (This is typically the buildout year or 10 years beyond the buildout year, depending on the development size and location)
 - 5 years 2028
 - Peak in 2023 during construction.
 - 2024 begin normal operations decommissioned in 2028
- The study area
 - Tok River to Manh Choh Twin Road turn-off
- Key intersections and key road segments to consider/evaluate in the TIA
 - DOT&PF Weigh Station
 - Young's Timber
 - Tetlin Village Road
 - Manh Choh Twin Road
- The projected area-wide traffic growth rate
 - 1%
- Level of Service (LOS) standards
 - LOS C (lowest acceptable)
- Other planned developments to consider
 - None

- Planned road improvements to consider
 - None
- Any other items of note regarding the TIA
 - TIA is limited to the study area, and a broader look at the corridor is being analyzed by DOT&PF in another project.

Traffic Impact Analysis. Include the following:

Development Information

- Development description
 Description of mine/traffic
 - Ore will be hauled by B-Trains running at regular intervals over 24 hours
 - The mine will operate with double shifts and personnel will be bussed to and from the site.
- □ Land use intensity including square footage, types of land use, employees, etc.
 - Land use will be a gold mine operation.
- □ Proposed zoning changes or zoning variances
 - N/A
- □ Construction year, opening year, projected year for full buildout
 - Construct 2023-2024
 - Open 2024 -2028 for operations 6 trucks per hour plus operations bussed workers, light vehicles, and deliveries.
- □ Map of the development, including traffic circulation and parking area
 - Overall site map with study area along the road provided in Exhibit A.
- □ Sight distance evaluation from access points
 - Approximately 13,000' to the East assuming a 3.5' height of eye.
 - Approximately 4,000' to the West assuming a 3.5' height of eye. This distance is between Young's Timber and DOT&PF & PF's weigh station. With the B-Trains having a height of eye significantly higher than 3.5' the ore haulers expect to have a line of sight to the weigh station, and similarly, any trucks at the weigh station will have a line of sight to any trucks coming from the mine.
 - The calculated minimum sight distance is 1,200' and is well exceeded by existing conditions.
- □ Alternatives to the proposed location
 - Sharing Tetlin Village Road (not desired by Tetlin Village, and ruled out)
 - Previous design next to Tetlin Village Road (approximately 450' between approaches)

Project Area Background

□ Surrounding land zoning

- N/A
- □ Surrounding land uses and site land use
 - Tetlin Village land
 - State land for DOT&PF material site, weigh station, and Tok River rest area
- □ Adjacent development
 - Young's Timber, DOT&PF, Tok River
- □ Traffic improvements already funded, programmed, or planned
 - N/A
- □ Other planned developments
 - N/A

Data Requirements

□ Map of the study area street network

- Map of Tok River to Manh Choh Twin Road, plus the intersection sight triangle
- □ Peak hour intersection turning movement counts for all key intersections
 - From DOT&PF
 - Estimate of weigh station usage
 - 2022 and 2021 peak data were received from the scale operator and peak hour volumes are:
 - Eastbound 9 Trucks in 2022
 - Westbound 8 Trucks in 2022
 - Estimates from Young's Timber
 - 3 vehicles per hour
- Daily volume counts for all streets and roadways in the study area
 - Alaska Highway data
 - AADT obtained from CCS 13901310 at Mile 1310 of Alaska Highway showed a maximum of 619 in 2019
 - Estimates from Tetlin Village
 - AADT obtained from ST 36011000 on Tetlin Village Road showed a maximum of 69 in 2019
- □ Number of lanes on the streets in the study area
 - Two
- □ Intersection geometry information for all key intersections
 - Included in driveway permit
- □ Traffic signal phasing and timing information for all key intersections
 - N/A

- □ 5-year crash history within the study area
 - From DOT&PF
 - Study area is between DOT&PF & PF Weigh Station and MP 1307.5
 - 3 crashes from 2016 2020
 - 2 live animal strikes
 - 1 rollover/overturn
- □ Sidewalks and other pedestrian facilities
 - Shoulders of Alaska Highway
- □ Bike lanes and other bicycle facilities
 - Shoulders of Alaska Highway
- □ Transit operation and facilities including pullouts, frequency of service and utilization
 - N/A

Traffic Forecasting

□ Projected traffic to be generated by the development (Use the ITE Trip Generation Manual, latest version)

Peak Gold forecast on personnel and support vehicles plus ore haul

- Peak Gold traffic projection for peak hours are (Veh/HR):
 - Ore Haul 6
 - Crew Change 10
 - Light Vehicles 6
 - Deliveries 2
 - Other 6
- Peak hours are expected to occur at shift changes. Shift change hours are anticipated to be:
 - 6:00 AM 7:00 AM
 - 6:00 PM 7:00 PM
- □ Projected trip distribution, turning movements, and rationale for determining same
 - N/A single intersection leading to mine outside of study area
- □ Projected total traffic for the design year (base traffic + site traffic) at all key intersections and route segments within the study area
 - Figure showing anticipated traffic from Manh Choh Twin Road, Tetlin Village Road, Young's Timber, and DOT&PF weigh station.
- □ Trip generation from other planned developments
 - N/A

Traffic Analysis

- □ Baseline LOS calculations for all key intersections and key road segments (For LOS computations, use the TRB Special Report 209, Highway Capacity Manual, latest version)
 - 3 mile segment of the Alaska Highway was analyzed from MP 1307 MP 1310
 - ATS = 57 MPH Exhibit 15-3 HCM shows LOS A
 - PTSF = 26% Exhibit 15-3 HCM shows LOS A
 - Weigh station LOS not calculated because proposed calculations from the Manh Choh Twin Road intersection showed LOS A therefore it is expected that the weigh station's LOS is A as well because there is less traffic. Data obtained from the scale house showed a maximum of 9 trucks in an hour which equates to a 6-minute gap between trucks.

No-Build Alternative – Without Development – using existing

- □ Projected LOS calculations for all key intersections and key road segments for the opening date or the design year, as required
 - Exhibit B shows proposed traffic movements.
- □ Vehicle queue lengths (95th percentile) and available storage
 - n/a no existing queuing
- Pedestrian considerations, including applicable school walking routes
 - Shoulders of Alaska Highway
- □ Bicycle considerations
 - Shoulders of Alaska Highway
- □ Transit considerations
 - N/A no public transit
- □ Safety considerations for all key intersections and key road segments
 - No existing safety concerns

Build Alternative – With Development – using new

- □ Projected LOS calculations for all key intersections and key road segments for the opening date or the design year, as required
 - Simple figure with analysis of road segments and intersections.
 - 3 mile segment of the Alaska Highway was analyzed from MP 1307 MP 1310
 - ATS = 55.7 MPH Exhibit 15-3 HCM shows LOS A
 - PTSF = 28% Exhibit 15-3 HCM shows LOS A

- Intersection LOS
 - Mainline left turn onto Manh Choh Site Road has control delay of 7.5 sec. Exhibit 20-2 of HCM shows LOS A.
 - Manh Choh Site Road has control delay of 9 sec. Exhibit 20-2 of HCM shows LOS A.
- □ Turn lane warrants for all movements
 - New driveway left and right turn lane warrants
 - The proposed peak hourly driveway volume is 30, with a peak hourly right-hand turn movement of 13 vehicles.
 - HCPM pg. 1190-8 states that a minimum of 100 Veh/HR is required to warrant a speed change lane; or use the following:
 - Figure 4-23 of NCHRP 279 intersection channelization Design Guide shows that the peak hourly right turn volume does not require a right turn lane. The total peak hour approach volume (79) versus the right turn in peak hour (13) is well below the threshold for a full-width turn lane on the graph.
 - Exhibit 9-75 in AASHTO *A Policy on the Geometric Design of Highways and Streets 2001* (Table 9-23 of the 2011 Edition) shows the volumes do not warrant a turn lane. For example, when opposed by 100 vehicles, the minimum suggested left turn volume requiring a left turn lane is 25 at 60 mph. (we are expecting 2 or less vehicles making a left-hand turn from the Alaska Highway.)
 - Weigh scale turn lane warrants
 - Weigh station has existing speed change lanes
- \Box Vehicle queue lengths (95th percentile) and available storage
 - Mainline left turn onto Manh Choh Site Road has queue length of 0.004 Veh.
 - No queuing expected at peak volume
 - Manh Choh Twin Road has queue length of 0.007 Veh.
 - Approach provides ample queuing space.
- □ Pedestrian considerations, including applicable school walking routes
 - Shoulders of Alaska Highway
- □ Bicycle considerations
 - Shoulders of Alaska Highway
- □ Transit considerations
 - N/A no transit
 - Mine employees will be bussed to and from the mine at shift change, eliminating passenger vehicles for staff.

- □ Safety considerations for all key intersections and key road segments
 - The analysis does not indicate any need for safety considerations. The team discussed signage for "Truck Crossing", and it was decided that signing will not be required. It can be added in the future if warranted.

Summary

- □ Summary of impacts
 - There will not be enough traffic generated by the mine to have a negative effect on the Alaska Highway. According to the HCM the capacity of a twolane highway is 3,200 passenger cars per hour. The base peak volume is approximately 49 Veh/HR and the proposed volume is 79 Veh/HR. The proposed volume makes the Alaska Highway at 2.5% of the capacity.
 - Given the anticipated volume of 6 ore trucks per hour that could potentially add between 2 and 3 trucks per hour at the weigh station. That would make the time between trucks at peak volume 5 minutes. 5 minutes is significantly more time than required for trucks to decelerate and enter the weigh station or leave the weigh station and accelerate prior to the next truck.
 - Traffic analysis assumed a 50/50 directional split for traffic on Alaska Highway. The base peak volume is 49 Veh/HR giving approximately 25 vehicles in each direction allowing for over 2 minutes between vehicles.

Mitigation

- Mitigation measure alternatives to address capacity, delay, pedestrian, bicycle, transit and safety issues caused by or exacerbated by the development
 - See comments on weigh scale coordination with MS/CVC to reduce number of trucks weighed at the DOT&PF weigh station.
 - See comments on employee bussing at shift change, eliminating the need for staff passenger vehicles.
- □ Proposed mitigation measures
 - About a year ago Peak Gold discussed a concept with Daniel Smith Director of the Division of Measurement Standards and Commercial Vehicle Compliance (MS/CVC) to allow the ore haul trucks to bypass the DOT&PF scales except for ad-hoc inspections.

The general idea is that Peak Gold would set up and certify the scale at Manh Choh to DOT&PF standards and Peak Gold would provide scale tickets to DOT&PF to audit. This transparency and ad-hoc inspections of ore haul vehicles at the scales would allow the ore haul contractor (BGT) permission to bypass the majority of the state scales. This trust would need to be earned and maintained by consistently sending safe and legal loads that passed ad-hoc inspections. This was to be a mutual benefit to BGT, Peak Gold, and DOT&PF by saving everyone time and resources.

- □ Proposed improvements to development parking and circulation routes
 - N/A
- ☐ Mitigation measure affects (include projected LOS calculations and / or crash reduction factors as applicable)
 - None anticipated
- □ Conclusion
 - The project plans to provide employee bussing to keep traffic to a minimum and proposes to work with DOT&PF's MS/CVC to reduce weigh scale redundancy.

Typical Reporting Requirements:

• Submit electronic data/files compatible with Microsoft Office products, latest release of Autodesk AutoCAD, Trafficware Synchro Studio 7, and MacTrans HCS+

	LEGEND								
r.	SYMBOL	DESCRIPITION	2021 AADT	2020 AADT	2019 AADT	TRUCK PERCENTAGE			
		CONTINUOUS COUNT STATION	450	400	619	22			
	\bigcirc	SHORT TERM COUNTER	60	60	69	_			
	77777	SIGHT TRIANGLE	N/A	N/A	N/A	N/A			

_		1	1 1																				
D								+			-	\square		-	airhan	ka AK					ISSU	ED FO	R
													R	10 Fa	28 Aurora airbanks, A	AK 99709				IN	FERN/	AL REV	VIEW
ł								+					ци Ш Пре	Ph	hone: 907	.452.1414							
AM											-		arsbi		ECC16327	70			DRAWN	CHECKED	APPROVE	DESIGN	PROJ. ENG.
10:12																		BY	K. GARCIA	H. ESTABROOK	K. HANNEMAN	K. GARCIA	
022			A INTERNAL REVIEW		10/31/2022	KMG HDE	KLH											DATE	10/31/22	10/31/22	10/31/22	10/31/22	
31/2	DRAWING NO.	TITLE	NO. DESCRIPT	ON	DATE	BY CH.	SUPV PE	PROC M	MECH PL&P	C/S INS	ST ELEC	PEM						SCALE		CAD DRAV	VING FILE N	0 .	
10/		REFERENCE DWGS		R	REVISIONS												ENGINEER 5 SEAL	UNITS	US UNITS	Exhibit.dwg			
-		1	2			3							4				5				6		

Appendix A Calculations

	Alaska Highway Design Speed Time Gap ISD=1.47*Vmaj*tg		70 11.5	MPH sec	Combina	ation Truck	
	IS	SD	1183.35	FT	<==Leg	b	Use <mark>1,200 FT</mark>
А	Dist from edge of pavement to stop point		15	FT			
В	Shoulder width		6	FT			
С	Lane width		12	FT			
	-						_
	leg a2=A+B+1.5*C						
	a2		39	FT	For left tu	urn	
	Leg a1=A+B+0.5*C		27	FT	For right	turn	

Table 9-5. Time Gap for Case B1, Left Turn from Stop

Design Vehicle	Time Gap (t _a)(s) at Design Speed of Major Road
Passenger car	7.5
Single-unit truck	9.5
Combination truck	11.5

Note: Time gaps are for a stopped vehicle to turn left onto a two-lane highway with no median and with grades of 3 percent or less. The table values should be adjusted as follows:

For multilane highways—For left turns onto two-way highways with more than two lanes, add 0.5 s for passenger cars or 0.7 s for trucks for each additional lane, from the left, in excess of one, to be crossed by the turning vehicle.

For minor road approach grades—If the approach grade is an upgrade that exceeds 3 percent, add 0.2 s for each percent grade for left turns.

The intersection sight distance along the major road (distance b in Figure 9-15B) is determined by:

Metric	U.S. Customary
$ISD = 0.278 V_{\text{major}} t_g$	$ISD = 1.47 V_{\text{major}} t_g$
where:	where:
<i>ISD</i> = intersection sight distance (length of the leg of sight triangle along the major road) (m)	<i>ISD</i> = intersection sight distance (length o the leg of sight triangle along the major road) (ft)
$V_{\text{major}} = \text{design speed of major road (km/h)}$	$V_{\text{major}} = \text{design speed of major road (mph)}$
t_g = time gap for minor road vehicle to enter the major road (s)	t_g = time gap for minor road vehicle to enter the major road (s)

this is much more conservative than the HPCM values, as it is calculated for a combination truck.

Sight Distance for Case F,			
Left turns from the Major Road	Time Gap	Sight Dist	Use
Passenger Car	5.5	565.95	
SU Truck	6.5	668.85	
Comb Truck	7.5	771.75	
Design Speed	70	МРН]

Design Vehicle	Time Gap (t _g)(s) at Design Speed of Major Road
Passenger car	5.5
Single-unit truck	6.5
Combination truck	7.5
Note: Adjustment for multilane h hicles that cross more than for passenger cars and 0.7 lane to be crossed.	<i>ighways</i> —For left-turning ve- one opposing lane, add 0.5 s s for trucks for each additional

Traffic PG 2 of 11

Station Type	Station Type Station ID Logation		Mile Point		21	20	20	2019	
Station Type	Station ID	Location	Wille Politi	AADT	Truck %	AADT	Truck %	AADT	Truck %
CCS	13601300	Taylor Hwy & AK Hwy	1300	210	27%	210	27%	369	23%
ST	33002301	AK Hwy West of Taylor	1301	280		250		319	
ST	36011000	Tetlin Village Road	1307.8	60		60		69	
CCS	13901310	AK Hwy West of Weigh Sta	1310	450	22%	400	22%	619	
WIM	tok	AK Hwy WIM	1310	470	14%	420	14%		

2028	
AADT	
282	
283	
63	
490	
445	

Ore Trucks	144	ADT	130 per day from their calculationsbut 6x24=144
Other Traffic	576	ADT	30-6 trucks = 2424x24 = 576
Truck %	0.20		ok, 18% if we use 130

PEAK	GOLD	NUME	BERS

6	based on 110% of planned haul rate; 24 hr
4	ops crew change by crew bus from Tok cam
6	security, supervision, misc
2	e.g. fuel, parts, explosives
12	contingency for others
30	
	6 4 6 2 12 30

	Veh/HR	Truck %
Base Traffic	49	26%
Site Traffic	30	20%

Total Traffic 79 24%

	Mont	ly Average Daily Total - CCS 13901	310	
	2019	2020	2021	2022
Jan	249.36		233.08	199.67
Feb	265.75	289.44	239.33	228.38
Mar	351.58	304.23	343.69	
Apr	495.16	293.92	409.41	
May	770.72	458.24	542.89	609.52
Jun	1098.21	513.09	643.9	932.38
Jul	1177.52	561.57	622.8	948.84
Aug	1158.73	632.64	692.39	1018.07
Sep	883.42	691.82	745.75	952.84
Oct	412.21	369.94	361.33	485.31
Nov	296.63	258.06	270	
Dec	269.85	266.81	229.96	
Highest Average Daily				
Volume	1177.52	Jul-19		

Annual Stats										
Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
AADT	565	596	577	611	643	592	593	619	400	450

Growth Rate	1.00%

ir operations mp

(later bumped up by 6)

(later bumped down by 6)

Highway Level of Service PG 3 of 11

	Base	Total						
Assuming Class I Hwy			Exhibit 15-3				Class II	Class III
Demand Volume	49.1	79.1	Motorized Vehicle LOS for		Class I Hig	hways	Highways	Highways
Directional Split	0.5	0.5	Two-Lane Highways	LOS	ATS (mi/h)	PTSF (%)	PTSF (%)	PFFS (%)
PHF	0.88			A	>55	≤35	≤40	>91.7
No Passing Zone %	50%			B	>50-55	>35-50	>40-55	>83.3-91.7
Rolling Terrain				D	>40-45	>65-80	>70-85	>66.7-75.0
Truck %	24%			E	≤40	>80	>85	≤66.7
Lane Width (FT)	12			F		Demand excee	eds capacity	
Shoulder Width (FT)	6			Note: For Class I hi	ighways, LOS is determined	d by the worse of ATS-	based LOS and PTSF-b	ased LOS.
Access Points/MI	3.33							
Base FFS (BFFS)	60	estimating the tr	ucks 5 mph less than posted					
Segment Length (MI)	3							
LOSATS	А	А						
LOS PTSF	А	А						
ATS	57.0	55.7						
PTSF	26	28						
LOS	Α	A						
FFS=BFFS-fLS-fA			Highway Capacity Manual: A Guide for	Multimodal Mobility Analysis				
fLS	C)		· · ·				
fA	0.8	3	Adjustment Factor for Lane and Shoulder Width (f_{LS}) $\geq 9, <10$	<u>Shoulder Width (</u> ≥0, <2 ≥2, <4 6.4 4.8	$\frac{ \mathbf{ft} }{24, <6} \ge 6$ 3.5 2.2			
FFS=	59.2	2 MPH	≥10, <11 ≥11, <12 >12	5.3 3.7 4.7 3.0 4.2 2.6	2.4 1.1 1.7 0.4 1.3 0.0			
			Adjustment Factor for Access Point Density (<i>f_a</i>)	ts per Mile (Both Sides) Redu 0 10	0.0 2.5			
				20 30 40	5.0 7.5 10.0			
			Note: Interpolation	to the nearest 0.1 is recommended.				
Vi,ATS=Vi/(PHF*fq,ATS*fHV,ATS)				-				
			One-Direction Demand Flow Rate, Vuph	Adjustm Level Terrain and	nent Factor	ATS Grade Adjustment Facto	or	
fa,ATS	0.67	0.67	(veh/h) ≤100	Specific Downgrades 1.00	0.67	(<i>T_{g,ATS}</i>) for Level Terrain, Rolling Terrain, and Specific		
Demand Volume	27.9	44.9	200 300	1.00 1.00	0.75 0.83	Downgrades		
Vi.ATS=	68	107	400 500	1.00 1.00	0.90 0.95			
		107	600 700	1.00 1.00	0.97 0.98			
			800 ≥900	1.00 1.00	0.99 1.00			
			Note: Interpolation to the neare	st 0.01 is recommended.				
fHV.ATS=1/(1+PT*(FT-1)+PR*(FR-1))			[Directional Demand		Exhibit 15-11		
PT	26%	24%	Vehicle Type	Flow Rate, v_{vph} Lev (veh/h) Speci	el Terrain and ific Downgrades Rolling Terrain	ATS Passenger Car Equivalents for Trucks (E	7)	
PR	() 0	<==assuming ()	≤100 200	1.9 2.7 1.5 2.3	and RVs (<i>E_k</i>) for Level Terrain, Rolling Terrain, a	and	
ET	2.7	2.7		300 400	1.4 2.1 1.3 2.0	Specific Downgrades		
EHV.ATS=	0.70) 0.71	Trucks, E_T	500 600	1.2 1.8 1.1 1.7			
	0.70	0.71		700 800	1.1 1.6 1.1 1.4			
			RVs, <i>E_R</i>	≥900 All flows	1.0 1.3 1.0 1.1			
			Note: Interpolation to	the nearest 0.1 is recommended.			I	

ATS=FFS-0.00776*(Vd,ATS+V0,ATS)-fnp,ATS

ATS=	57.0	55.7
fnp,ATS	1.2	1.8

FFS 55			
VO (PC/H)	% No Pass		
	40	50	60
100	1.2	1.7	2.2
68		1.2	
100	1.2	1.7	2.2

	FFS 55			
V0 (PC/H)		% No Pass		
		40	50	60
	100	1.2	1.7	2.2
	107		1.8	
	100	1.2	1.7	2.2

Vi,PTSF=Vi/(PHF*fg,PTSF*fHV,PTSF)

fg,PTSF	0.73	0.73
Demand Volume	27.9	44.9
Vi,PTSF=	23	37

fHV,PTSF=1/(1+PT*(ET-1)+PR*(ER-1))

PT	26%	24%	
PR	0	0	<==assuming 0
ET	0.1	0.1	
FHV,PTSF=	1.90	1.90	

FFS 60 VO (PC/H) % No Pass 40 50 60 1.7 2.2 1.2 100 68 1.2 2.2 1.7 100 1.2

	FFS	60	
VO (PC/H) % No Pass			
	40	50	60
100	1.2	1.7	2.2
107		1.8	
100	1.2	1.7	2.2

Exhibit 15-15	Opposing Demand Flow Rate,		Perce	nt No-Passing	Zones	
ATS Adjustment Factor for	<i>v₀</i> (pc/h)	≤20	40	60	80	100
No-Passing Zones (f _{np,ATS})		- Fi	FS ≥ 65 mi/h			
	≤100	1.1	2.2	2.8	3.0	3.1
	200	2.2	3.3	3.9	4.0	4.2
	400	1.6	2.3	2.7	2.8	2.9
	600	1.4	1.5	1.7	1.9	2.0
	800	0.7	1.0	1.2	1.4	1.5
	1,000	0.6	0.8	1.1	1.1	1.2
	1,200	0.6	0.8	0.9	1.0	1.1
	1,400	0.6	0.7	0.9	0.9	0.9
	≥1,600	0.6	0.7	0.7	0.7	0.8
		F	FS = 60 mi/h			
	≤100	0.7	1.7	2.5	2.8	2.9
	200	1.9	2.9	3.7	4.0	4.2
	400	1.4	2.0	2.5	2.7	3.9
	600	1.1	1.3	1.6	1.9	2.0
	800	0.6	0.9	1.1	1.3	1.4
	1,000	0.6	0.7	0.9	1.1	1.2
	1,200	0.5	0.7	0.9	0.9	1.1
	1,400	0.5	0.6	0.8	0.8	0.9
	≥1,600	0.5	0.6	0.7	0.7	0.7
		F	FS = 55 mi/h			
	≤100	0.5	1.2	2.2	2.6	2.7
	200	1.5	2.4	3.5	3.9	4.1
	400	1.3	1.9	2.4	2.7	2.8
	600	0.9	1.1	1.6	1.8	1.9
	800	0.5	0.7	1.1	1.2	1.4
	1,000	0.5	0.6	0.8	0.9	1.1
	1,200	0.5	0.6	0.7	0.9	1.0
	1,400	0.5	0.6	0.7	0.7	0.9
	≥1,600	0.5	0.6	0.6	0.6	0.7

TSF Grade Adjustment	Directional Rate, v _v	Demand Flow (veh/h)	Level Terrain and Specific Downgrades	Rolling Terrain	
actor (<i>f_{g.PTSF}</i>) for Level	≤	100	1.00	0.73	
errain, Rolling Terrain, and		200	1.00	0.80	
pecific Downgrades		300	1.00	0.85	
		400	1.00	0.90	
		500	1.00	0.96	
		600	1.00	0.97	
		700	1.00	0.99	
		800	1.00	1.00 1.00	
	>	900	1.00		
	Note: Interpolat	tion to the nearest 0.01	is recommended.		
	Note: Interpolat	tion to the nearest 0.01	is recommended.		
Exhibit 15-18	Note: Interpolat	Directional Dema	is recommended.]	
Exhibit 15-18 TSF Passenger Car	Note: Interpolat	Directional Dem Flow Rate, Vuph (ve	is recommended. and Level and Specific eh/h) Downgrade	Rolling	
Exhibit 15-18 TTSF Passenger Car Equivalents for Trucks (E_7) and R/s (E_2) for Level	Note: Interpolat	Directional Dema Flow Rate, v _{vph} (ve ≤100	and Level and Specific b/h) Downgrade 1.1	Rolling 1.9	
Exhibit 15-18 TSF Passenger Car Equivalents for Trucks (<i>E</i> ₇) and RVs (<i>E</i> ₈) for Level Ferrain Rolling Terrain and	Note: Interpolat	Directional Dem Flow Rate, v _{vph} (ve ≤100 200	is recommended. Level and Specific Downgrade 1.1 1.1	Rolling 1.9 1.8	
Exhibit 15-18 TSF Passenger Car Equivalents for Trucks (<i>E₇</i>) and RVS (<i>E₈</i>) for Level Ferrain, Rolling Terrain, and Specific Downgrades	Note: Interpolat	Directional Dema Flow Rate, <i>v_{vph}</i> (ve ≤100 200 300	is recommended. and h) Level and Specific Downgrade 1.1 1.1 1.1 1.1	Rolling 1.9 1.8 1.7	
Exhibit 15-18 PTSF Passenger Car Equivalents for Trucks (E_7) and RVs (E_R) for Level Ferrain, Rolling Terrain, and Specific Downgrades	Note: Interpolat	Directional Dema Flow Rate, v _{sph} (ve ≤100 200 300 400	is recommended. And Level and Specific Downgrade 1.1 1.1 1.1 1.1 1.1	Rolling 1.9 1.8 1.7 1.6	
Exhibit 15-18 PTSF Passenger Car Equivalents for Trucks (<i>E_r</i>) and RVs (<i>E_R</i>) for Level Ferrain, Rolling Terrain, and Specific Downgrades	Note: Interpolat Vehicle Type Trucks, E _T	ion to the nearest 0.01 Directional Demi Flow Rate, <i>v_{vph}</i> (ve ≤100 200 300 400 500	Level and Specific Downgrade	Rolling 1.9 1.8 1.7 1.6 1.4	
Exhibit 15-18 TSF Passenger Car Equivalents for Trucks (<i>E</i> ₇) and RVs (<i>E</i> ₈) for Level Ferrain, Rolling Terrain, and Specific Downgrades	Note: Interpolat Vehicle Type Trucks, E ₇	Directional Dema Flow Rate, v _{vph} (ve ≤100 200 300 400 500 600	Level and Specific Downgrade	Rolling 1.9 1.8 1.7 1.6 1.4 1.2	
Exhibit 15-18 PTSF Passenger Car Equivalents for Trucks (<i>E₇</i>) and RVs (<i>E₈</i>) for Level Ferrain, Rolling Terrain, and Specific Downgrades	Note: Interpolat	Directional Dema Flow Rate, <i>v_{vph}</i> (ve ≤100 200 300 400 500 600 700 200	Level and Specific by Downgrade 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0	Rolling 1.9 1.8 1.7 1.6 1.4 1.2 1.0	
Exhibit 15-18 TSF Passenger Car Equivalents for Trucks (E_7) and RVs (E_R) for Level Terrain, Rolling Terrain, and Specific Downgrades	Note: Interpolat	Directional Dema Flow Rate, v _{pph} (ve ≤100 200 300 400 500 600 700 800	Level and Specific Downgrade 1.1 1.1 1.1 1.1 1.1 1.1 1.0 1.0	Rolling 1.9 1.8 1.7 1.6 1.4 1.2 1.0 1.0 1.0	
Exhibit 15-18 PTSF Passenger Car Equivalents for Trucks (<i>E</i> ₇) and RVs (<i>E</i> _R) for Level Ferrain, Rolling Terrain, and Specific Downgrades	Note: Interpolat	ion to the nearest 0.01 Directional Dema Flow Rate, <i>v_{vph}</i> (ve ≤100 200 300 400 500 600 700 800 ≥900	Level and Specific Downgrade 1.1 1.1 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0	Rolling 1.9 1.8 1.7 1.6 1.4 1.2 1.0 1.0 1.0 1.0 1.0	

Exhibit 15-18 PTSF Passenger Car Equivalents for Trucks (<i>E</i> _r)	Vehicle Type	Directional Demand Flow Rate, v _{vph} (veh/h)	Level and Specific Downgrade
and RVs (E) for Level		≤100	1.1
Terrain Polling Terrain and		200	1.1
Specific Downgrades		300	1.1
Specific Downgrades		400	1.1
	Trucks, E_T	500	1.0
		600	1.0
		700	1.0
		800	1.0
		≥900	1.0
	RVs, E _R	All	1.0
	Note: Interpolation in	this exhibit is not recommended.	

Highway Level of Service PG 4 of 11

Highway Level of Service PG 5 of 11

P15r=BP15r+tnp,P15r^(Va,P15r/(Va,P15F+V0,P1SF)											
PTSF=	26	<mark>28</mark>	Exhibit 15-20	Opposing Demand Flow							
			PTSF Coefficients for Use in	Rate, v _o (pc/h)	Coefficient a	Coefficient b					
			Equation 15-10 for Estimating	≤200	-0.0014	0.973					
			BPISE	400	-0.0022	0.923					
				600	-0.0033	0.870					
				800	-0.0045	0.833					
BPTSF=100(1-exp(aVd^b))				1,000	-0.0049	0.829					
0	0.0014	0.001		1,200	-0.0054	0.825					
d	-0.0014	-0.001		1,400	-0.0058	0.821					
b	0.973	0.973		≥1,600	-0.0062	0.817					
RPTSE=	3	5		Note: Straight-line interpolation of a to	the nearest 0.0001 and b to the nearest 0	.001 is recommended.					
fnp,PTSF	46.4	46.4									
llolal Z-way how rate	10	74			Exhibit 15-21	Total Two Way Flow Pate		Dance	ant No. Dessin	Zanac	
	46	74			Exhibit 15-21 No-Passing-Zone Adjustment	Total Two-Way Flow Rate, $y = y_{1} + y_{2} (p_{2}/h)$	0	Perce	ent No-Passin	Zones	100
	46	74			Exhibit 15-21 No-Passing-Zone Adjustment Factor ($f_{ng,PTSP}$) for	Total Two-Way Flow Rate, $v = v_d + v_o(pc/h)$	0 Direction	<u>Perce</u> 20 <i>ral Split = 5</i>	ent No-Passin 40 6 50/50	<u>q Zones</u>) 80	100
	46	74 %NIP7		06NP7	Exhibit 15-21 No-Passing-Zone Adjustment Factor ($f_{RQ,PTSP}$) for Determination of PTSF	Total Two-Way Flow Rate, $v = v_d + v_o (pc/h)$ ≤ 200	0 Direction 9.0	<u>Perce</u> 20 nal Split = 5 29.2	ent No-Passin 40 6 50/50 43.4 49.	a Zones 3 80 4 51.0	100 52.6
	46	74 %NPZ		%NPZ	Exhibit 15-21 No-Passing-Zone Adjustment Factor ($f_{ng,PTSF}$) for Determination of PTSF	Total Two-Way Flow Rate, $v = v_d + v_o (\text{pc/h})$ ≤ 200 400	0 Direction 9.0 16.2	<u>Perce</u> 20 <i>nal Split = 5</i> 29.2 41.0	ent No-Passin 40 6 50/50 43.4 49. 54.2 61.	g Zones b 80 4 51.0 5 63.8	100 52.6 65.8
	46	74 %NPZ 50	60	%NPZ 40 50	Exhibit 15-21 No-Passing-Zone Adjustment Factor (f _{rap,PTSP}) for Determination of PTSF 60	Total Two-Way Flow Rate, $v = v_d + v_o(pc/h)$ ≤ 200 400 600	0 Direction 9.0 16.2 15.8	<u>Perce</u> 20 <i>nal Split = 5</i> 29.2 41.0 38.2 22.0	ent No-Passin 40 6 50/50	g Zones b 80 4 51.0 6 63.8 2 55.2 2 55.2	100 52.6 65.8 56.8
200	46	74 %NPZ 50	<u> 60 </u>	%NPZ 40 50	Exhibit 15-21 No-Passing-Zone Adjustment Factor (f _{rap,PTSP}) for Determination of PTSF	Total Two-Way Flow Rate, $v = v_d + v_o(pc/h)$ ≤200 400 600 800 1400	0 Direction 9.0 16.2 15.8 15.8 15.8	<u>Perce</u> 20 <i>nal Split = 5</i> 29.2 41.0 38.2 33.8 20.0	ent No-Passin 40 6 50/50	g Zones 80 0 80 4 51.0 6 63.8 2 55.2 0 44.8 2 27.4	100 52.6 65.8 56.8 46.6 28.6
200	46 40 43.4	74 %NPZ 50 46.4	60 49.4 20	%NPZ 40 50 0 43.4 46.4	Exhibit 15-21 No-Passing-Zone Adjustment Factor (f _{rap.PTSP}) for Determination of PTSF 60 49.4	Total Two-Way Flow Rate, $v = v_d + v_o(pc/h)$ ≤200 400 600 800 1,400 2,000	0 Direction 9.0 16.2 15.8 15.8 12.8 10.0	Perce 20 nal Split = 3 29.2 41.0 38.2 33.8 20.0 13.6	40 6 50/50 6 43.4 49. 54.2 61. 47.8 53. 40.4 44. 23.8 26. 15.8 17.	g Zones 80 0 80 4 51.0 6 63.8 2 55.2 0 44.8 2 27.4 4 18.2	100 52.6 65.8 56.8 46.6 28.6 18.8
200 46	46 40 43.4	74 %NPZ 50 46.4 46.4	60 49.4 20 7	%NPZ 40 50 0 43.4 46.4 4 46.4	Exhibit 15-21 No-Passing-Zone Adjustment Factor (f _{rag.PTSP}) for Determination of PTSF 60 49.4	Solution Solution	0 <i>Direction</i> 9.0 16.2 15.8 15.8 12.8 10.0 5.5	Perce 20 <i>nal Split = 1</i> 29.2 41.0 38.2 33.8 20.0 13.6 7.7	40 6 50/50 6 43.4 49. 54.2 61. 47.8 53. 40.4 44. 23.8 26. 15.8 17.8 8.7 9.	g Zones 80 4 51.0 6 63.8 2 55.2 0 44.8 2 27.4 4 18.2 5 10.1	100 52.6 65.8 56.8 46.6 28.6 18.8 10.3
200 200 46	46	74 %NPZ 50 46.4 46.4	60 49.4 20 7 49.4 20	%NPZ 40 50 0 43.4 46.4 4 46.4 0 43.4 46.4	Exhibit 15-21 No-Passing-Zone Adjustment Factor (f _{AQ,PTSF}) for Determination of PTSF 60 49.4	Solution Solution	0 Direction 9.0 16.2 15.8 15.8 12.8 10.0 5.5 3.3	20 nal Split = 1 29.2 41.0 38.2 33.8 20.0 13.6 7.7 4.7	Ato G 50/50 43.4 49. 54.2 61. 47.8 53. 40.4 44. 23.8 26. 15.8 17. 8.7 9. 5.1 5. 5.1 5.	g Zones 80 4 51.0 6 63.8 2 55.2 0 44.8 2 27.4 4 18.2 5 10.1 5 5.7	100 52.6 65.8 56.8 46.6 28.6 18.8 10.3 6.1

	Basis	Proposed	.								_
Mainline Demand Vol (Veh/HR)	49	79	64								
IPCM - More than 100 Veh/HR								2		HWAYS	1
esign Hourly Volume (Right Turns)	0	13						2 -	Entre Hit		
need Change Lane Required?	No	No	10							_	
			(H	-						-	
			ž m s				FU	LL- WIDTH	TURN LAN	4E	
			INOH		TAPER						
			AK	\sim						-	11
			N PE	₀⊢				$\overline{}$		_	1
			SNS	· L						-	41
			TUE	RADIUS	NLY REQU	IRED					
			THD								1
			8	F						-	11
			1		For posted peak hour	speeds at or ight turns q	under 45 mph, reater than 40 v	ph,			41
					and total p adjust right	eak hour ap turn volum	proach less than es.	300 vph,		-	41
					Adjust pea Peak hour	k hour right right turns -	turns = - 20				
				1	00 2	200	300 40	0 5	00 6	300 7	00
						TOTAL PE	AK HOUH APP	ROACH VU	LOME (VPH		
_eft turn lane required?		Table 0	12 Cuido fo	Laft Town			V-h-1-1-1				
.eft turn lane required?)pposing volume	38	Table 9-2	23. Guide for	Left-Turn L Metric	anes on T	wo-Lane H	lighways <mark>(10</mark>)) U.S.	Customa	rv	_
.eft turn lane required?)pposing volume <mark>Jo left turn lane required</mark>	38	Table 9-7	23. Guide for	Left-Turn L Metric dvancing Vo	anes on T	wo-Lane F	lighways (10	1) U.S. Adv	. Customa	ry olume (veh	ı/h)
eft turn lane required? pposing volume o left turn lane required	38	Table 9-7	23. Guide for A ing 5%	Left-Turn L Metric dvancing Vo 10%	anes on The olume (vel	wo-Lane F n/h) 30%	lighways (10	1) U.S. Adv 5%	. Customa vancing Vo 10%	ry olume (veh	ı/h) 30%
eft turn lane required? pposing volume <mark>o left turn lane required</mark>	38	Table 9-7 Oppos Volur	23. Guide for ing 5% ne Left	Left-Turn L Metric dvancing Vo Left Turner	anes on Tr plume (vel 20% Left	wo-Lane H n/h) 30% Left	Highways (10 Opposing Volume	U.S. Adv 5% Left Turns	. Customa vancing Vo 10% Left Turne	ry olume (veh 20% Left	ı/h) 30% Left
eft turn lane required? Opposing volume Io left turn lane required	38	Table 9-7 Oppos Volur (veh/	23. Guide for ing 5% ne Left 'h) Turns	Left-Turn L Metric dvancing Vo 10% Left Turns	anes on Tr plume (vel 20% Left Turns	wo-Lane H n/h) 30% Left Turns	lighways (10 Opposing Volume (veh/h)	U.S. Adv 5% Left Turns 40-mph	. Customa vancing Vo 10% Left Turns Operating	ry Dume (veh 20% Left Turns	ı/h) 30% Left Turns
eft turn lane required?)pposing volume <mark>Io left turn lane required</mark>	38	Table 9-7 Oppos Volur (veh/	23. Guide for ing 5% ne Left h) Turns 60-km/ 330	Left-Turn L Metric dvancing Vo Left Turns n Operating 240	anes on To olume (vel 20% Left Turns 3 Speed 180	n/h) 30% Left Turns	lighways (10 Opposing Volume (veh/h)	0) U.S. 5% Left Turns 40-mph 330	. Customa vancing Vo 10% Left Turns Operating 240	ry Dume (veh 20% Left Turns Speed 180	1/h) 30% Left Turns 160
eft turn lane required? Opposing volume <mark>Jo left turn lane required</mark>	38	Table 9-3 Oppos Volur (veh/ 800 600	23. Guide for ing 5% ne Left Turns 60-km/ 330 410	Left-Turn L Metric dvancing Vo Left Turns n Operating 240 305	anes on Tropic de la constante	wo-Lane H a/h) 30% Left Turns 160 200	lighways (10 Opposing Volume (veh/h) 800 600	0) U.S. Adv 5% Left Turns 40-mph 330 410	Customa vancing Vo 10% Left Turns Operating 240 305	ry Dlume (veh 20% Left Turns Speed 180 225	1/h) 30% Left Turns 160 200
eft turn lane required? Opposing volume Jo left turn lane required	38	Table 9-7 Oppos Volur (veh/ 800 600 400	23. Guide for ing 5% ne Left Turns 60-km/ 330 410 510	Left-Turn L Metric dvancing Vo Left Turns Derating 240 305 380	anes on To plume (vel 20% Left Turns Speed 180 225 275	wo-Lane H n/h) 30% Left Turns 160 200 245	lighways (10 Opposing Volume (veh/h) 800 600 400	0) U.S. Adv 5% Left Turns 40-mph 330 410 510	Customa vancing Vo 10% Left Turns Operating 240 305 380	ry Dlume (veh 20% Left Turns Speed 180 225 275	1/h) 30% Left Turns 160 200 245
eft turn lane required? pposing volume o left turn lane required	38	Table 9-7 Oppos Volur (veh/ 800 600 400 200	23. Guide for ing 5% ne Left h) Turns 60-km/ 330 410 510	Left-Turn L Metric dvancing Vo Left Turns Operating 240 305 380 470	anes on Tr 20% Left Turns Speed 180 225 275 350	wo-Lane H 30% Left Turns 160 200 245 305	lighways (10 Opposing Volume (veh/h) 800 600 400 200	0) U.S. 5% Left Turns 40-mph 330 410 510 640	Customa vancing Vo 10% Left Turns Operating 240 305 380 470	20% Left Turns Speed 180 225 275 350	1/h) 30% Left Turns 160 200 245 305
eft turn lane required? pposing volume o left turn lane required	38	Table 9-7 Oppos Volur (veh/ 800 600 400 200 100	23. Guide for ing 5% ne Left h) Turns 60-km/ 330 410 510 640 720	Left-Turn L Metric dvancing Vo Left Turns Operating 240 305 380 470 515	anes on Tr 20% Left Turns Speed 180 225 275 350 390	wo-Lane P 30% Left Turns 160 200 245 305 340	lighways (10 Opposing Volume (veh/h) 800 600 400 200 100	0) U.S. Adv 5% Left Turns 40-mph 330 410 510 640 720	Customa vancing Vo 10% Left Turns Operating 240 305 380 470 515	ry plume (veh 20% Left Turns Speed 180 225 275 350 390	1/h) 30% Left Turns 160 200 245 305 340
eft turn lane required? Opposing volume Io left turn lane required	38	Table 9-7 Oppos Volur (veh/ 800 600 400 200 100	23. Guide for ing 5% ne Left Turns 60-km/ 330 410 510 640 720 80-km/	Left-Turn L Metric dvancing Vo Left Turns Operating 240 305 380 470 515 Operating	anes on To plume (vel 20% Left Turns 3 Speed 180 225 275 350 390 390 5 Speed 165	wo-Lane H 30% Left Turns 160 200 245 305 340	lighways (10 Opposing Volume (veh/h) 800 600 400 200 100 800) U.S. Adv 5% Left Turns 40-mph 330 410 510 640 720 50-mph 280	Customa vancing Vo 10% Left Turns Operating 240 305 380 470 515 Operating 210	ry plume (veh 20% Left Turns Speed 180 225 275 350 390 Speed 165	1/h) 30% Left Turns 160 200 245 305 340 135
eft turn lane required? Opposing volume No left turn lane required	38	Table 9-7 Oppos Volur (veh/ 800 600 400 200 100 800 600	23. Guide for ing 5% ne Left h) 510 60-km/ 330 410 510 640 720 80-km/ 280 350	Left-Turn L Metric dvancing Vo Left Turns Operating 305 380 470 515 Operating 210 260	anes on To 20% Left Turns Speed 180 225 275 350 390 390 Speed 165 195	wo-Lane H 30% Left Turns 160 200 245 305 340 135 170	lighways (10 Opposing Volume (veh/h) 800 600 400 200 100 800 600) U.S. Adv 5% Left Turns 40-mph 330 410 510 640 720 50-mph 280 350	Customa vancing Vo 10% Left Turns Operating 240 305 380 470 515 Operating 210 260	ry olume (veh 20% Left Turns Speed 180 225 275 350 390 Speed 165 195	1/h) 30% Left Turns 160 200 245 305 340 135 170
eft turn lane required? Opposing volume No left turn lane required	38	Table 9-7 Oppos Volur (veh/ 800 600 400 200 100 800 600 400 200 100 800 600 400	23. Guide for ing 5% ne Left h) Turns 60-km/ 330 410 510 640 720 80-km/ 280 350 430	Left-Turn L Metric dvancing Vo Left Turns Derating 240 305 380 470 515 Derating 210 260 320	anes on To 20% Left Turns Speed 180 225 275 350 390 390 390 5peed 165 195 240	NO-Lane H 30% Left Turns 160 200 245 305 340 135 170 210	lighways (10 Opposing Volume (veh/h) 800 600 400 200 100 800 600 400) U.S. Adv 5% Left Turns 40-mph 330 410 510 510 640 510 640 280 350 350 430	Customa vancing Vo 10% Left Turns Operating 240 305 380 470 515 Operating 210 260 320	ry olume (veh 20% Left Turns Speed 180 225 275 350 350 350 390 Speed 165 195 240	1/h) 30% Left Turns 160 200 245 305 340 135 170 210
eft turn lane required?)pposing volume Io left turn lane required	38	Table 9-3 Oppos Volur (veh/ 800 600 400 200 100 800 600 400 200 100 800 600 400 200	A S% Left Turns 60-km/ 330 410 550 80-km/ 230 430 510 640 720 80-km/ 280 430 550	Left-Turn L Metric dvancing Vo Left Turns 0 Derating 240 305 380 470 515 0 Derating 210 260 320 400	anes on To 20% Left Turns Speed 180 225 275 350 390 390 5peed 165 195 240 300	No-Lane P 30% Left Turns 160 200 245 305 340 135 170 210 270	Highways (10 Opposing Volume (veh/h) 800 600 400 200 100 800 600 400 200) U.S. Adv 5% Left Turns 40-mph 330 410 510 640 720 50-mph 280 350 430 550	Customa vancing Vo 10% Left Turns Operating 240 305 380 470 515 Operating 210 260 320 400	ry plume (veh 20% Left Turns \$peed 180 225 275 350 390 \$peed 165 195 240 300	160 200 245 305 340 135 170 210 270
eft turn lane required? Opposing volume No left turn lane required	38	Table 9-7 Oppos Volur (veh/ 800 600 400 200 100 800 600 400 200 100 800 600 100	23. Guide for ing ne b) 5% Left Turns 60-km/ 330 410 510 640 720 80-km/ 280 350 430 550 615	Left-Turn L Metric dvancing Vo Left Turns Operating 240 305 380 470 515 Operating 210 260 320 445	anes on To 20% Left Turns Speed 180 225 275 350 390 390 Speed 165 195 240 300 335	Joh 30% Left Turns 160 200 245 305 340 1135 170 210 270 295	lighways (10 Opposing Volume (veh/h) 800 600 400 200 100 800 600 400 200 100) U.S. Adv 5% Left Turns 40-mph 330 410 510 640 720 50-mph 280 350 430 550 430	Customa vancing Vo 10% Left Turns Operating 240 305 380 470 515 Operating 210 260 320 400 445	ry olume (veh 20% Left Turns 35peed 180 225 275 350 390 390 390 390 240 300 300	1/h) 30% Left Turns 160 200 245 305 340 135 170 210 270 295
eft turn lane required? Opposing volume No left turn lane required	38	Table 9-2 Oppos Volur (veh/ 800 600 400 200 100 800 600 400 200 100 800 600 400 200 100 200 100	23. Guide for ing 5% ne Left h) 510 60-km/ 330 410 510 640 720 80-km/ 280 350 430 550 615 100-km/	Left-Turn L Metric dvancing Vo Left Turns 1 09erating 240 305 380 470 515 0 0perating 210 260 320 400 445 h Operating	anes on To 20% Left Turns Speed 180 225 275 350 390 390 390 390 5peed 165 195 240 300 335 g Speed	N/h) 30% Left Turns 160 200 245 305 340 135 170 210 270 295	lighways (10 Opposing Volume (veh/h) 800 600 400 200 100 800 600 400 200 100) U.S. Adv 5% Left Turns 40-mph 330 410 510 640 720 50-mph 280 350 430 350 430 615 60-mph	Customa vancing Vo 10% Left Turns Operating 240 305 380 470 515 Operating 210 260 320 400 445 Operating	ry olume (veh 20% Left Turns 5 Speed 180 225 275 350 390 5 Speed 165 195 240 300 335 5 Speed	1/h) 30% Left Turns 160 200 245 305 340 135 170 210 270 295
eft turn lane required? Opposing volume No left turn lane required	38	Table 9-3 Oppos Volur (veh/ 800 600 400 200 100 800 600 400 200 100 800 600 400 200 100 800 600 400 200 100	A S% Left Turns 60-km/ 330 410 510 60-km/ 230 80-km/ 280 350 440 550 100 230 230 230 230 230 230 230 230 230 230 230 230	Left-Turn L dvancing Vo Left Turns Derating 240 305 380 470 515 Derating 210 260 320 400 445 h Operating 170 210	anes on To 20% Left Turns Speed 180 225 275 350 390 390 390 390 390 350 390 390 350 390 350 390 390 350 390 390 350 390 390 390 390 350 390 390 390 390 390 390 390 390 390 39	No-Lane P 30% Left Turns 160 200 245 305 340 135 170 210 270 295 115 140	lighways (10 Opposing Volume (veh/h) 800 600 400 200 100 800 600 400 200 100 200 100 800 600 400 200	U.S. Adv 5% Left Turns 40-mph 330 410 510 640 720 50-mph 280 350 430 550 615 60-mph 230 220	Customa vancing Vo 10% Left Turns Operating 240 305 380 470 515 Operating 210 260 320 400 445 Operating 170 210	ry plume (veh 20% Left Turns Speed 180 225 275 350 390 390 Speed 165 195 240 300 335 Speed 125 160	1/h) 30% Left Turns 160 200 245 305 340 135 170 210 270 295 115 140
eft turn lane required? Dpposing volume No left turn lane required	38	Table 9-3 Oppos Volur (veh/ 800 600 400 200 100 800 600 400 200 100 800 600 400 200 100 800 600 400 200 100	A S% Left Turns 60-km/ 330 410 510 60-km/ 230 80-km/ 230 80-km/ 230 510 640 720 80-km/ 280 350 615 100-km/ 230 230 230 230 335 100-km/ 330 300 300 <td>Left-Turn L dvancing Vo Left Turns Operating 240 305 380 470 515 Operating 210 220 400 470 515 Operating 100 210 100 100 100 100 100 100</td> <td>anes on To 20% Left Turns Speed 180 225 275 350 390 225 275 350 390 390 390 390 390 390 240 300 335 240 300 335 240 300 335 240</td> <td>wo-Lane H 30% Left Turns 160 200 245 305 340 245 305 245 305 245 305 245 305 245 200 295 115 140 175</td> <td>Highways (10 Opposing Volume (veh/h) 800 600 400 200 100 800 600 400 200 100 100 800 600 400 200 100</td> <td>U.S. Adv 5% Left Turns 40-mph 330 410 510 640 720 50-mph 280 350 615 60-mph 230 230 230 230 230 230 230 230 230 230 230 230 230 230</td> <td>Customa vancing Vo 10% Left Turns Operating 240 305 380 470 515 Operating 210 260 320 400 445 Operating 170 210</td> <td>ry lume (veh 20% Left Turns Speed 180 225 275 350 390 Speed 165 195 240 300 335 Speed 125 165 195 240 300 335</td> <td>1/h) 30% Left Turn: 160 200 245 305 340 135 170 210 270 295 115 140 175</td>	Left-Turn L dvancing Vo Left Turns Operating 240 305 380 470 515 Operating 210 220 400 470 515 Operating 100 210 100 100 100 100 100 100	anes on To 20% Left Turns Speed 180 225 275 350 390 225 275 350 390 390 390 390 390 390 240 300 335 240 300 335 240 300 335 240	wo-Lane H 30% Left Turns 160 200 245 305 340 245 305 245 305 245 305 245 305 245 200 295 115 140 175	Highways (10 Opposing Volume (veh/h) 800 600 400 200 100 800 600 400 200 100 100 800 600 400 200 100	U.S. Adv 5% Left Turns 40-mph 330 410 510 640 720 50-mph 280 350 615 60-mph 230 230 230 230 230 230 230 230 230 230 230 230 230 230	Customa vancing Vo 10% Left Turns Operating 240 305 380 470 515 Operating 210 260 320 400 445 Operating 170 210	ry lume (veh 20% Left Turns Speed 180 225 275 350 390 Speed 165 195 240 300 335 Speed 125 165 195 240 300 335	1/h) 30% Left Turn: 160 200 245 305 340 135 170 210 270 295 115 140 175
Left turn lane required? Opposing volume No left turn lane required	38	Table 9-3 Oppos Volur (veh/ 800 600 400 200 100 800 600 400 200 100 800 600 400 200 100 800 600 400 200 100	A 5% Left Turns 60-km/ 330 410 510 640 720 80-km/ 280 350 640 510 640 550 650-km/ 280 350 80-km/ 280 350 280 350 280 350 280 350 280 350	Left-Turn L dvancing Vo Left Turns Derating 240 305 380 470 515 Derating 210 260 320 400 445 h Operating 170 210 210 320 320 320 320 320 320 320 32	anes on To 20% Left Turns Speed 180 225 275 350 390 225 350 390 390 390 390 390 255 40 300 335 5peed 105 195 240 300 335 5peed 105 195 240 105 195 240 105 195 240 105 195 240 105 195 240 105 195 240 105 195 240 105 195 240 105 195 240 105 195 240 105 195 240 105 195 240 105 195 240 105 195 240 105 195 240 105 195 240 105 195 240 105 195 240 105 195 195 195 195 195 195 195 195 195 19	A/h) 30% Left Turns 160 200 245 305 340 135 170 210 270 295 115 140 175 215	lighways (10 Opposing Volume (veh/h) 800 600 400 200 100 800 600 400 200 100 800 600 400 200 100	U.S. Adv 5% Left Turns 40-mph 330 410 550 640 720 50-mph 350 615 6280 2300 2510 350 365 365	Customa vancing Vo 10% Left Turns Operating 240 305 380 470 515 Operating 210 260 320 400 445 Operating 170 210 210 210 210	ry olume (veh 20% Left Turns 5 5 2255 275 350 390 2255 350 390 390 5 5 240 300 335 5 240 300 335 5 240 105 105 105 105 105 105 105 10	1/h) 30% Left Turns 160 200 245 305 340 135 170 210 270 295 115 140 175 215

ions that include parking lanes. Removal of parking upstream	lanes on rural	highways.		
of the intersection creates the opportunity to develop an exclu-		CONDITIONS	WARRANTING RIGHT	TURN
ive right-turn lane.		LANE OFF M.	AJOR (THROUGH) HIC	GHWAY
At suburban and high-speed rural intersections, design con- cerns should focus on right-turn lanes as a solution to potential	STATE	THROUGH VOLUME	RIGHT-TURN VOLUME	HIGHWAY
ear-end conflicts. High volumes of right turns generated by	Alaska	N/A	DHV = 25 vph	
ant construction of right-turn lanes of multilane highways. For	Idaho	DHV = 200 vph	DHV = 5 vph	2-lane
lane highways, volume warrants for right turns are generally unch lower. This is because right and through vehicles are	Michigan	N/A	ADT = 600 vpd	2-lane
estricted to a single lane. Figure 4-23 and Table 4-7 can be consulted to provide guidance for including right-turn lanes.	Minnesota	ADT = 1,500 vpd	All	Des. speed > 45 mph
Additional factors not explicitly covered in the volume war- nts, but clearly appropriate in considering right-turn lanes,	Utah	DHV = 300 vph	crossroad ADT = 100 ypd	2-lane
nclude:				
1. Geometrics (both horizontal and vertical) that significantly	Virginia	DHV = 500 All	DHV = 40 vph $DHV = 120 vph$	2-lane, Des. speed > 45 mph
 the case or speed of the right-turn maneuver. Marked routes that make a turn (<i>Note:</i> these may require ability of a spectrum considerations: driver as a spectrum considerations). 		DHV = 1200 vph All	DHV = 40 vph DHV = 90 vph	4-lane
ectations are important in this case). 3. Minimum stopping sight distance to the intersection (ver-	West Virginia	DHV = 500 vph	DHV = 250 vph	Divided highways
us desirable stopping sight or decision sight distance).			crossroad	
	Wisconsin	ADT = 2500 vpd	ADT = 1000 vpd	2-lane
econstruction / Rehabilitation	DHV—desi ADT—aver	gn hourly volume age daily traffic		

- From the outer edge of traveled way to the edge of the shoulder or 8 feet, whichever is greater, the driveway profile grade should be the same as the traveled way superelevation rate.
- From the outer edge of the shoulder, a vertical curve should connect the profile to a positive or negative grade, which will bring the driveway profile to the adjacent property grade

d. Driveway with Curb Cuts

- From the bottom face of curb or flow line, the driveway profile grade should slope uniformly upward at a grade not to exceed an algebraic difference of 8 percent with the adjacent lane or shoulder cross-slope.
- If a sidewalk or portion thereof remains to be crossed, the driveway profile may match the surface of the sidewalk.
- The profile should then follow a vertical curve or have an angle point, if necessary, to connect with a positive or negative grade, which will bring the driveway profile to the adjacent property grade.
- c. Vertical Curves: Vertical curve should be symmetrical and as flat as feasible. Crest vertical curves should not exceed a 3¼-inch hump in a 12-foot chord, and sag vertical curves should not exceed a 2-inch depression in a 12-foot chord. Vertical curves must not have humps or depressions exceeding 3.6 inches in a 12-foot chord.
- f. Landings: All driveways are to have landing zones. Landing length depends on anticipated traffic. Passenger cars require 12 feet minimum while semi-tractor trailers require 30 feet based on wheel bases.
- g. Pedestrian Areas: Where curbed returns intersect a pedestrian way, provide appropriate handicapped access ramps.
- Speed Change Lane and Left-Turn Lanes: On high-speed (50 mph or over) or high-volume arterial roadways, speed change lanes may be

1190. Driveway Standards Effective January 1, 2005

Alaska Highway Preconstruction Manual

required for the acceleration or deceleration of vehicles entering or leaving the public roadway from or to a higher-volume traffic generation

(greater than or equal to 100 vehicles per hour) or attracting development. Use Figure 4-3 of NCHRP 279 Intersection Channelization Design

Guide as a guideline for the right-turn treatments. On a one-way street, the above criteria also apply to the left through lane. For

guidelines on the need for left-turn lanes on a

main street or road at a driveway, refer to Exhibit 9-75 in AASHTO A Policy on the Geometric Design of Highways and Streets

2001.

1190-8

Intersection Level of Service PG 8 of 11

Traffic Info	
Traffic AK Hwy (Veh/HR)	49
Traffic New Road (Veh/HR)	30

			Hour V	olumes
	Base	Proposed	V1	0
Directional Split	0.5		V2	25
East Bound	25	25	V3	13
West Bound	25	25	V4	2
Northbound	6	15	V5	25
Southbound	6	15	V6	0
			V7	13
Peak 15 Min			V9	2
			V13	0
			V14	0
			V15	0

Mainline Left Turn LOS	А	
Northbound LOS	А	
Mainline Left Turn 95th Queue	0.004	Veh
Northbound 95th Queue	0.007	Veh

Manual Input Cells

VC,4=V2+V3+V15						
VC,4=	38 Veh/HR					
Vc.9=V2+0.5V3+V14+V15						
Vc.9=	31 Veh/HR					
Vc 7=(2*V1+2*V1U+V2+0 5*V3+V15)+(2*V4						
+2*V4U+V5+0 5*V6+V13)						
Vc 7=	64 Veh/HR					
tc,4=tc,base+tc,HV*PHV+tC,G*G-tc,LT						
tc,4base	4.1			$t_{c,x}$ = critical he	adway for movement x (s),	
tc,HV	1			$t_{c,\text{base}}$ = base critic	al headway from Exhibit 20-12 (s)	,
PHV	24%			$t_{c,HV} = adjustmentlane in each$	it factor for heavy vehicles (1.0 for the direction: 2.0 for major streets y	major streets with one with two or three lanes in
tC,G	-			each direc	tion) (s),	full two of three fulles in
tc,LT	0			P_{HV} = proportion	n of heavy vehicles for movement	(expressed as a decimal;
tc.4=	4.3 sec			e.g., P_{HV} =	0.02 for 2% heavy vehicles),	
,				$r_{c,G} = adjustmentand 12; 0.2$	2 for Movements 7, 8, 10, and 11) (s),
tc,9base	6.2			G = percentag	e grade (expressed as an integer; e	e.g., <i>G</i> = −2 for a 2%
t,LT	0			downhill	grade), and	(0.7.6)
tc,9=	6.4 sec			$t_{3,LT} = adjustmentturn move$	ement at three-leg intersection geometry	0.7 for minor-street left-
				Vahiala	Dana Critical Haad	
tc,7base	7.1			Movement	Two Lanes Four Lane	es Six Lanes
t,LT	0.7			street	4.1 4.1	5.3
tc,7=	6.6 sec			U-turn from major street	NA 6.9 (narrow	v) ^a 5.6
				Right turn from minor street	6.2 6.9	7.1
				Through traffic on minor street	1 stage: 6.5 1 stage: 6 2 stage, Stage I: 5.5 2 stage, Stage	.5 1 stage: 6.5 ^b I: 5.5 2 stage, Stage I: 5.5 ^b
				Left turn from minor	1 stage: 7.1 1 stage: 7	11: 5.5 2 stage, Stage 11: 5.5 5 1 stage: 6.4
				street	2 stage, Stage I: 6.1 2 stage, Stage 2 stage, Stage II: 6.1 2 stage, Stage	I: 6.5 2 stage, Stage I: 7.3 II: 6.5 2 stage, Stage II: 6.7
				Notes: NA = not available. ^a Narrow U-turns ha ^b Use caution; value	ve a median nose width <21 ft; wide U-turns ha s estimated.	ve a median nose width ≥21 ft.
tf,4=tf,base+tf,HV*PHV			$t_{f,x} = t_{f,\text{base}} + t_{f,HV} P_{HV}$		Equation 20-31	
tv,HV	0.9	where				
PHV	24%	t_{fx} = follow-up heady	way for movement x (s),			
tf,4=	2.4 sec	$t_{f,\text{base}} = \text{base follow-up } \mathbf{k}$	headway from Exhibit 20-13 (s),			
tf,9=	3.5 sec	t_{fHV} = adjustment facto	or for heavy vehicles (0.9 for major	streets with one		
tf,7=	3.7 sec	lane in each dire	ection; 1.0 for major streets with two	o or three lanes in		
		each direction),	and			
		P_{HV} = proportion of he	eavy vehicles for movement (expres	ssed as a decimal;		
		$e.g., r_{HV} = 0.02$ fo	51 276 neavy venicles).			
		Vehicle Movement	Base Follow-Up Headway	, t _{fbase} (s) Six Lanes	Exhibit 20-13 Base Follow-Up Headways for	
		Left turn from major street	2.2 2.2	3.1	TWSC Intersections	
		U-turn from major street	NA 2.5 (wide) ^a 3.1 (narrow) ^a	2.3		
		Right turn from minor street Through traffic on minor street	3.3 3.3 4.0 4.0	3.9 4.0		
		Left turn from minor street	3.5 3.5	3.8		
		^a Narrow U-turns have a med	lian nose width <21 ft; wide U-turns have a media	an nose width ≥21 ft.		1

Intersection Level of Service PG 10 of 11

Cn 4-	1 445	Vah/UD		
ср,4–	1,445	Ven/nk	The potential capacity $c_{p,x}$ of a movement is computed according to the gap	
Cp,9=	985	Veh/HR	acceptance model provided in Equation 20-32 (7).	
cp,7=	891	Veh/HR	$c_{p,x} = v_{c,x} \frac{e^{-v_{c,x}t_{c,x}/3,600}}{1 - e^{-v_{c,x}t_{f,x}/3,600}}$ Equation 20-32	
			where	
Cm,4=Cp,4			$c_{p,x}$ = potential capacity of movement x (veh/h),	
Cm,9=Cp,9			$v_{c,x}$ = conflicting flow rate for movement x (veh/h),	
	1			
			Chapter 20/Two-Way Stop-Controlled Intersections Motorized Vehicle Core Metho	
			phway Capacity Manual: A Guide for Multimodal Mobility Analysis	
			$r_{cx} = chical headway for minor movement x (s), and$	
			$t_{f,x} = 10100$ where $t_{f,x}$ is the following the following for minor movement x (s).	
P0,4=1-(V4/Cm,4)				
P0,4=	1.00]	
Cm,7=	890	Veh/HR		
CSH,NB=(V7+V9)/(V7/Cm,7)+(V9/Cm,9)	902	Veh/HR		

d4=3600/Cm,4+900*T((V4/Cm,4)-1+							
sqrt((V4/Cm,4)-1)^2+							
((3600/Cm,4)*(V4/Cm,4))/450*T)+5	7.5	sec	LOS	A			$\left[\frac{3,600}{v_x} \right]$
Т	0.25				-	Equation 20-64	$d = \frac{3,600}{c_{m,x}} + 900T \left \frac{v_x}{c_{m,x}} - 1 + \left \left(\frac{v_x}{c_{m,x}} - 1 \right)^2 + \frac{(c_{m,x})/(c_{m,x})}{450T} \right \right ^2$
3600/Cm,4	2.49	1					
V4/Cm,4	0.00138						where
		3					d = control delay (s/veh),
							v_x = flow rate for movement x (veh/h),
							$c_{m,x}$ = capacity of movement x (veh/h), and
							T = analysis time period (0.25 h for a 15-min period) (h).
						A constant value of 5 s/veh is used to reflect delay during deceleration to and acceleration from a stop.	The constant 5 s/veh is included in Equation 20-64 to account for deceleration of vehicles from free-flow speed to the speed of vehicle queue and the acceleration of vehicles from the stop line to free-flow

Intersection Level of Service PG 11 of 11

		I								
dSH,NB=3600/CSH,NB+900*T((V4/CSH,NB)-					Exhibit 20-2 LOS Criteria:	2 Motorized	Control Dela (s/veh)	ау	$\frac{\text{LOS by Volum}}{v/c} \le 1.0$	ne-to-Capacitv Ratio v/c > 1.0
1+					venicie mode	2	0-10		A	F
sqrt((V4/CSH,NB)-1)^2+							>10-15		В	F
((3600/CSH,NB)*(V4/CSH,NB))/450*T)+5	9.0	sec	LOS A				>25-35		D	F
Т	0.25						>35-50		E	F
3600/CSH,NB	3.99						>50		F	F
V4/CSH,NB	0.00222						not calculated f	or major-street app	proaches or for the inf	tersection as a whole.
Q95,4	0.004									
Т	0.25						г			
3600/Cm,4	2.49								2	$(3,600)(v_x)$
V4/Cm,4	0.00138		Equation 20-	68			$v_x \approx 900T \frac{v_x}{v_x}$	1+ ($\frac{v_x}{-1}$	$+ \frac{(c_{m,x})(c_{m,x})}{(c_{m,x})}$
900T	225		Equation 20				$c_{m,x}$		$(c_{m,x} - 1)$	150 <i>T</i>
(V4/Cm,4)-1	(0.998616)							N		
(3600/Cm,4)*(V4/Cm,4)	0.003449181					tubana	Ľ			
150T	37.5					where				
Cm,4/3600	0.40]				$Q_{95} =$	95th percentile	queue (ve	.h),	
		_				72 =	flow rate for m	ovement v	(veh/h)	
Q95,NB	0.007					<i>U_x</i> –	now rate for m	ovenient a	(venin),	
V4/CSH,NB	0.0022]				$C_{m,x} =$	capacity of mov	vement x (veh/h), and	
V4/CSH,NB-1	-0.99778]				T =	analysis time n	eriod (0.25	5 h for a 15-	min period) (h)
3600/CSH,NB	3.99]				I	anarysis time p	0.20	/ II IOI u 10-1	init period) (ii).
CSH,NB/3600	0.25]								

_	
ninor street. LOS is	
$\left \left(\frac{c_{m,x}}{3,600} \right) \right $	