Manh Choh Twin Road
 Developer: Peak Gold, LLC

Traffic Impact Analysis Report

November 2022

Prepared For:	Prepared By:
Alaska Department of	RESPEC
Transportation \& Public	2700 Gambell Street,
Facilities	Suite 500
	Anchorage, AK 99503
	$907-743-3200$
	AECC163270

2022.11.03 17:26:08-08'00'

Manh Choh Twin Road Traffic Impact Analysis Requirement Checklist

Peak Gold, LLC plans to operate a mine near Tok, Alaska. The project will require a new access with an approach at Mile 1307.6 of the Alaska Highway. There will be 130 ore trucks using the highway spread over 24 hours (approximately 6 per hour). Exhibit A is a map that shows the vicinity of the new access to the Alaska Highway. The map shows proximity to adjacent facilities, traffic generated, and existing vs minimum sight distances. The traffic of the area was analyzed and shows that the expected traffic will have little impact on safety and operations of the Alaska Highway. To evaluate the traffic, the month with the highest traffic since 2019 was used to get a peak daily volume that is nearly 4 times the winter volumes (i.e. when road conditions are suboptimal, the volume will be at its lowest). Exhibit B shows the turning traffic at the new approach.

Pre-analysis meeting

The developer and the registered engineer that will sign and seal the TIA must meet with the DOT\&PF\&PF Regional Traffic \& Safety engineer and Right-of-Way agent before beginning the TIA. At the meeting, the following will be determined:

- The design year (This is typically the buildout year or 10 years beyond the buildout year, depending on the development size and location)
- 5 years - 2028
- Peak in 2023 during construction.
- 2024 begin normal operations - decommissioned in 2028
- The study area
- Tok River to Manh Choh Twin Road turn-off
- Key intersections and key road segments to consider/evaluate in the TIA
- DOT\&PF Weigh Station
- Young's Timber
- Tetlin Village Road
- Manh Choh Twin Road
- The projected area-wide traffic growth rate
- 1%
- Level of Service (LOS) standards
- LOS C (lowest acceptable)
- Other planned developments to consider
- None
- Planned road improvements to consider
- None
- Any other items of note regarding the TIA
- TIA is limited to the study area, and a broader look at the corridor is being analyzed by DOT\&PF in another project.

Traffic Impact Analysis. Include the following:

Development Information

\square Development description
Description of mine/traffic

- Ore will be hauled by B-Trains running at regular intervals over 24 hours
- The mine will operate with double shifts and personnel will be bussed to and from the site.
\square Land use intensity including square footage, types of land use, employees, etc.
- Land use will be a gold mine operation.
\square Proposed zoning changes or zoning variances
- N/A
\square Construction year, opening year, projected year for full buildout
- Construct 2023-2024
- Open 2024-2028 for operations 6 trucks per hour plus operations bussed workers, light vehicles, and deliveries.
Map of the development, including traffic circulation and parking area
- Overall site map with study area along the road provided in Exhibit A.
\square Sight distance evaluation from access points
- Approximately 13,000 ' to the East assuming a 3.5 ' height of eye.
- Approximately $4,000^{\prime}$ to the West assuming a 3.5^{\prime} height of eye. This distance is between Young's Timber and DOT\&PF \& PF's weigh station. With the B-Trains having a height of eye significantly higher than 3.5' the ore haulers expect to have a line of sight to the weigh station, and similarly, any trucks at the weigh station will have a line of sight to any trucks coming from the mine.
- The calculated minimum sight distance is $1,200^{\prime}$ and is well exceeded by existing conditions.
Alternatives to the proposed location
- Sharing Tetlin Village Road (not desired by Tetlin Village, and ruled out)
- Previous design next to Tetlin Village Road (approximately 450' between approaches)

Project Area Background

\square Surrounding land zoning

- N/A

Surrounding land uses and site land use

- Tetlin Village land
- State land for DOT\&PF material site, weigh station, and Tok River rest areaAdjacent development
- Young's Timber, DOT\&PF, Tok RiverTraffic improvements already funded, programmed, or planned
- N/AOther planned developments
- N/A

Data Requirements

Map of the study area street network- Map of Tok River to Manh Choh Twin Road, plus the intersection sight trianglePeak hour intersection turning movement counts for all key intersections
- From DOT\&PF
- Estimate of weigh station usage
- 2022 and 2021 peak data were received from the scale operator and peak hour volumes are:
- Eastbound - 9 Trucks in 2022
- Westbound - 8 Trucks in 2022
- Estimates from Young's Timber
- 3 vehicles per hourDaily volume counts for all streets and roadways in the study area
- Alaska Highway data
- AADT obtained from CCS 13901310 at Mile 1310 of Alaska

Highway showed a maximum of 619 in 2019

- Estimates from Tetlin Village
- AADT obtained from ST 36011000 on Tetlin Village Road showed a maximum of 69 in 2019Number of lanes on the streets in the study area
- TwoIntersection geometry information for all key intersections
- Included in driveway permit

Traffic signal phasing and timing information for all key intersections

- N/A5-year crash history within the study area
- From DOT\&PF
- Study area is between DOT\&PF \& PF Weigh Station and MP 1307.5
- 3 crashes from 2016-2020
- 2 live animal strikes
- 1 rollover/overturn
\square Sidewalks and other pedestrian facilities
- Shoulders of Alaska Highway

Bike lanes and other bicycle facilities

- Shoulders of Alaska Highway
\square Transit operation and facilities including pullouts, frequency of service and utilization
- N/A

Traffic Forecasting

Projected traffic to be generated by the development (Use the ITE Trip Generation Manual, latest version)
Peak Gold forecast on personnel and support vehicles plus ore haul

- Peak Gold traffic projection for peak hours are (Veh/HR):
- Ore Haul - 6
- Crew Change - 10
- Light Vehicles - 6
- Deliveries - 2
- Other-6
- Peak hours are expected to occur at shift changes. Shift change hours are anticipated to be:
- 6:00 AM - 7:00 AM
- 6:00 PM - 7:00 PMProjected trip distribution, turning movements, and rationale for determining same
- N/A - single intersection leading to mine outside of study area

Projected total traffic for the design year (base traffic + site traffic) at all key intersections and route segments within the study area

- Figure showing anticipated traffic from Manh Choh Twin Road, Tetlin Village Road, Young's Timber, and DOT\&PF weigh station.Trip generation from other planned developments
- N/A

Traffic Analysis

\square Baseline LOS calculations for all key intersections and key road segments (For LOS computations, use the TRB Special Report 209, Highway Capacity Manual, latest version)

- 3 mile segment of the Alaska Highway was analyzed from MP 1307 - MP 1310
- ATS $=57$ MPH - Exhibit 15-3 HCM shows LOS A
- PTSF = 26\% - Exhibit 15-3 HCM shows LOS A
- Weigh station LOS not calculated because proposed calculations from the Manh Choh Twin Road intersection showed LOS A therefore it is expected that the weigh station's LOS is A as well because there is less traffic. Data obtained from the scale house showed a maximum of 9 trucks in an hour which equates to a 6-minute gap between trucks.

No-Build Alternative - Without Development - using existing
\square Projected LOS calculations for all key intersections and key road segments for the opening date or the design year, as required

- Exhibit B shows proposed traffic movements.
\square Vehicle queue lengths (95 th percentile) and available storage
- n/a - no existing queuing
\square Pedestrian considerations, including applicable school walking routes
- Shoulders of Alaska Highway

Bicycle considerations

- Shoulders of Alaska Highway
\square Transit considerations
- N/A - no public transit

Safety considerations for all key intersections and key road segments

- No existing safety concerns

Build Alternative - With Development - using new

\square Projected LOS calculations for all key intersections and key road segments for the opening date or the design year, as required

- Simple figure with analysis of road segments and intersections.
- 3 mile segment of the Alaska Highway was analyzed from MP 1307 - MP 1310
- \quad ATS $=55.7$ MPH - Exhibit 15-3 HCM shows LOS A
- PTSF $=28 \%$ - Exhibit 15-3 HCM shows LOS A
- Intersection LOS
- Mainline left turn onto Manh Choh Site Road has control delay of 7.5 sec . Exhibit 20-2 of HCM shows LOS A.
- Manh Choh Site Road has control delay of 9 sec . Exhibit 20-2 of HCM shows LOS A.

Turn lane warrants for all movements

- New driveway left and right turn lane warrants
- The proposed peak hourly driveway volume is 30 , with a peak hourly right-hand turn movement of 13 vehicles.
- HCPM pg. 1190-8 states that a minimum of 100 Veh/HR is required to warrant a speed change lane; or use the following:
- Figure 4-23 of NCHRP 279 intersection channelization Design Guide shows that the peak hourly right turn volume does not require a right turn lane. The total peak hour approach volume (79) versus the right turn in peak hour (13) is well below the threshold for a full-width turn lane on the graph.
- Exhibit 9-75 in AASHTO A Policy on the Geometric Design of Highways and Streets 2001 (Table 9-23 of the 2011 Edition) shows the volumes do not warrant a turn lane. For example, when opposed by 100 vehicles, the minimum suggested left turn volume requiring a left turn lane is 25 at 60 mph . (we are expecting 2 or less vehicles making a left-hand turn from the Alaska Highway.)
- Weigh scale turn lane warrants
- Weigh station has existing speed change lanes

Vehicle queue lengths (95 ${ }^{\text {th }}$ percentile) and available storage

- Mainline left turn onto Manh Choh Site Road has queue length of 0.004 Veh.
- No queuing expected at peak volume
- Manh Choh Twin Road has queue length of 0.007 Veh.
- Approach provides ample queuing space.Pedestrian considerations, including applicable school walking routes
- Shoulders of Alaska Highway
\square Bicycle considerations
- Shoulders of Alaska Highway

Transit considerations

- N/A - no transit
- Mine employees will be bussed to and from the mine at shift change, eliminating passenger vehicles for staff.

Safety considerations for all key intersections and key road segments

- The analysis does not indicate any need for safety considerations. The team discussed signage for "Truck Crossing", and it was decided that signing will not be required. It can be added in the future if warranted.

Summary

Summary of impacts

- There will not be enough traffic generated by the mine to have a negative effect on the Alaska Highway. According to the HCM the capacity of a twolane highway is 3,200 passenger cars per hour. The base peak volume is approximately 49 Veh/HR and the proposed volume is 79 Veh/HR. The proposed volume makes the Alaska Highway at 2.5% of the capacity.
- Given the anticipated volume of 6 ore trucks per hour that could potentially add between 2 and 3 trucks per hour at the weigh station. That would make the time between trucks at peak volume 5 minutes. 5 minutes is significantly more time than required for trucks to decelerate and enter the weigh station or leave the weigh station and accelerate prior to the next truck.
- Traffic analysis assumed a 50/50 directional split for traffic on Alaska Highway. The base peak volume is 49 Veh/HR giving approximately 25 vehicles in each direction allowing for over 2 minutes between vehicles.

Mitigation

Mitigation measure alternatives to address capacity, delay, pedestrian, bicycle, transit and safety issues caused by or exacerbated by the development

- See comments on weigh scale coordination with MS/CVC to reduce number of trucks weighed at the DOT\&PF weigh station.
- See comments on employee bussing at shift change, eliminating the need for staff passenger vehicles.

Proposed mitigation measures

- About a year ago Peak Gold discussed a concept with Daniel Smith Director of the Division of Measurement Standards and Commercial Vehicle Compliance (MS/CVC) to allow the ore haul trucks to bypass the DOT\&PF scales except for ad-hoc inspections.

The general idea is that Peak Gold would set up and certify the scale at Manh Choh to DOT\&PF standards and Peak Gold would provide scale tickets to DOT\&PF to audit. This transparency and ad-hoc inspections of ore haul vehicles at the scales would allow the ore haul contractor (BGT)
permission to bypass the majority of the state scales. This trust would need to be earned and maintained by consistently sending safe and legal loads that passed ad-hoc inspections. This was to be a mutual benefit to BGT, Peak Gold, and DOT\&PF by saving everyone time and resources.Proposed improvements to development parking and circulation routes

- N/A

Mitigation measure affects (include projected LOS calculations and / or crash reduction factors as applicable)

- None anticipatedConclusion
- The project plans to provide employee bussing to keep traffic to a minimum and proposes to work with DOT\&PF's MS/CVC to reduce weigh scale redundancy.

Typical Reporting Requirements:

- Submit electronic data/files compatible with Microsoft Office products, latest release of Autodesk AutoCAD, Trafficware Synchro Studio 7, and MacTrans HCS+

$\underset{\substack{\text { ces } \\ \text { un } 130130}}{ }$

LEGEND					
SYMBOL	DESCRIPITION	2021 AADT	2020 AADT	2019 AADT	TRUCK PERCENTAGE
Δ	CONTINUOUS COUNT STATION	450	400	619	22
\bigcirc	SHort term counter	60	60	69	-
戊为	SICHT TRIANGLE	N/A	N/A	N/A	N/A

Appendix A
 Calculations

Sight Distance for Case F, Left turns from the Major Road	Time Gap	Sight Dist	Use							
Passenger Car	5.5	565.95	570							
SU Truck	6.5	668.85	670							
Comb Truck	7.5	771.75	780		Design Speed				70	MPH
:---	:---	:---:	:---:	:---:	:---:					

Table 9-13. Time Gap for Case F, Left Turns from the Major Road	
Design Vehicle	Time Gap $\left(t_{f}\right)(s)$ at Design Speed of Major Road
Passenger car	5.5
Single-unit truck	6.5
Combination truck	7.5
Note: Adjustment for multilane highways - For left-turning ve- hicles that cross more than one opposing lane, add 0.5 s for passenger cars and 0.7 s for trucks for each additional lane to be crossed.	

Traffic
PG 2 of 11

Station Type	Station ID		Location	Mile Point	2021		2020		2019		
			AADT		Truck\%	AADT	Truck \%	AADT	Truck\%		
CCS		13601300		Taylor Hwy \& AK Hwy	1300	210	27\%	210	27\%	369	23\%
ST		33002301	AK Hwy West of Taylor	1301	280		250		319		
ST		36011000	Tetlin Village Road	1307.8	60		60		69		
CCS		13901310	AK Hwy West of Weigh Sta	1310	450	22\%	400	22\%	619		
WIM	tok		AK Hwy WIM	1310	470	14\%	420	14\%			

2028	Growth Rate	1.00\%
AADT		
282		
283		
63		
490		
445		

Ore Trucks	144	ADT	130 per day from their calculations...but $6 \times 24=144$ $30-6$ trucks $=24 \ldots 24 \times 24=576$ ok, 18% if we use 130
Other Traffic	576	ADT	
Truck \%	0.20		

PEAK GOLD NUMBERS			
Ore Haul	6	based on 110\% of planned haul rate; 24 hr operations	
Crew Changı	4	ops crew change by crew bus from Tok camp	(later bumped up by 6)
Light Vehiclf	6	security, supervision, misc	
Deliveries	2	e.g. fuel, parts, explosives	
Other (contir	12	contingency for others	(later bumped down by 6)
Total	30		

Annual Stats										
Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
AADT	565	596	577	611	643	592	593	619	400	450

	Base	Total
Assuming Class I Hwy		
Demand Volume	49.1	79.1
Directional Split	0.5	0.5
PHF	0.88	
No Passing Zone \%	50%	
Rollingit 15-3 Terrain		
Motorized Vehicle Los for		
Two-Lane Highways		

LOS	Class I Highways		Class II Highways PTSF (\%)	Class III Highways PFFS (\%)
	ATS (mi/h)	PTSF (\%)		
A	>55	≤ 35	≤ 40	>91.7
B	>50-55	>35-50	>40-55	>83.3-91.7
C	>45-50	>50-65	>55-70	>75.0-83.3
D	>40-45	>65-80	>70-85	>66.7-75.0
E	≤ 40	>80	>85	≤ 66.7
F	Demand exceeds capacity			
For Class I highways, LOS is determined by the worse of ATS-based LOS and PTSF-based LOS.				

FFS=BFFS-fLS-fA							
fLS	0		Highway Capacity Manual: A Guide for Multimodal Mobility Analysis				
fA	0.8		Exhibit 15-7Adjustment Factor for Laneand Shoulder Width $\left(f_{i s}\right)$			${ }_{22}^{24}$	
FFS=	59.2	MPH			-5, 4, 4.2	$\substack{3.0 \\ \text { 2. } \\ 2.6}$	
			Exhibit 15-8 Adjustment Factor for Access Point Density $\left(f_{A}\right)$				

Vi,PTSF=Vi/(PHF**g, PTSF**HV,PTSF)		
fg,PTSF	0.73	0.73
Demand Volume	27.9	44.9
Vi,PTSF=	23	37
fHV, PTSF $=1 /\left(1+\mathrm{PT}^{*}(\mathrm{ET}-1)+\mathrm{PR}^{*}(\mathrm{ER}-1)\right)$		
PT	26\%	24\%
PR	0	0
ET	0.1	0.1
FHV,PTSF=	1.90	1.90

	$\begin{gathered} \text { Directional Demand Flow } \\ \text { Rate, } v_{v p h}(\text { veh/h) } \\ \hline \end{gathered}$			el Terrain and fic Downgrade	Rollin
	-			1.00	
				1.00	
	400			1.00	
	500600			1.00 1.00	
	700			1.00	
	Note: Interpolation to the nearest 0.01 is recommended.				
Exhibit 15-18 TSF Passenger Car Equivalents for Trucks (E_{T}) and RVs $\left(E_{R}\right)$ for Level Terrain, Rolling Terrain, andSpecific Downgrades	vehicle Type	Directional Demand Flow Rate, $v_{\text {vph }}$ (veh/h)		Level and Specific Downgrade	Rolling
	5100200			1.1 1.1	${ }_{1}^{1.9}$
	200300			${ }_{1.1}^{1.1}$	1.7
					1.6
	Trucks, E_{T}	500500		1.0	1.4
		700		1.0 1.0	${ }_{1.0}^{1.2}$
		8002900		${ }_{1.0}^{1.0}$	1.0
	$\frac{\text { RVs }}{} \frac{E_{s}}{\text { Note: }}$ Interoation in this exhbibi is not recommended.			1.0	1.0

PTSF=BPTSF+fnp,PTSF*(Vd,PTSF/(Vd,PTSF+V0,PTSF)																				
PTSF=	26	28	Exhibit 15-20 PTSF Coefficients for Use in Equation 15-10 for Estimating BPTSF		$\begin{gathered} \begin{array}{c} \text { Opposing Demand Flow } \\ \text { Rate, } \boldsymbol{v}_{o}(\mathbf{p c} / \mathbf{h}) \end{array} \\ \hline \leq 200 \end{gathered}$			ficient a	Coefficient b											
					. 0014	0.973														
					400600			. 0022	0.923											
					. 0045	0.870 0.833														
BPTSF=100(1-exp(aVd^b))					1,000	. 0049	0.829													
a	-0.0014	-0.001			1,200	. 0054	0.825 0.821													
b	0.973	0.973			Note: Straight-line interpolation of a to the nearest 0.00001 and b to the nearest 0.001 is recommended.															
BPTSF=																				
fnp,PTSF	46.4	46.4																		
total 2-way flow rate	46							Exhibit 15-21 No-Passing-Zone Adjustment Factor ($f_{n, p, P r s t}$) for Determination of PTSF	Total Two-Way Flow Rate, $v=v_{d}+v_{o}(\mathrm{pc} / \mathrm{h})$	Percent No-Passing Zones										
										D	20	40	60	80	100					
	\%NPZ				\%NPZ				S200	${ }^{9.0}$	${ }^{29.2}$	${ }_{54.4}^{43.4}$	49.4	51.0 638 182	${ }_{5}^{52.6}$					
	40	50	60		40	50	60		600 800	15.2 15.8 158	38.0 38.2 38.8	47.8 478.8	53.1 1.2	55.8 5.8 18.8	65.8 56.8 46.6					
200	43.4	46.4	49.4	200	43.4	46.4	49.4		- 1,400	15.8 12.8	30.8 20.8	${ }_{23.8}^{40.4}$	${ }_{26.2}^{44.0}$	${ }_{27.4}^{44.8}$	${ }_{28.6}^{46.6}$					
46		46.4		74		46.4			2,000 2,600	10.0 5.5	13.6 7.7	15.8 8.7	17.4 9.5	18.2 10.1	18.8 10.3					
200	43.4	46.4	49.4	200	43.4	46.4	49.4		3,200	3.3	4.7	5.1	5.5	5.7	6.1					

- From the outre edge of traveled way Whichever is sreater the diriveway
profile rades should be the same as the
- From the outre redge of the shouller, profici to a positive or negative grade,
which will bring the driveway profict to which will bring the dingevany yrofice to
the adjacent property yrade
Driveway with Curb Cuts
- From the botom face of curb or flow line, the diriveway profil grade shou
slope unifommly ypurd ata a arade n

cross.slope.
- If sidewalk or portion thererof remain match the surface of the sidewalk.
- The profileshould then follow a necessary, to connect with a positive
ncgative grade, which will bring the negative grade,
dirivewy profic
property rade.
c. Vertical Curves: Vertical curve should be
 verical curres should not exceda a 314 inin
hump in 12 2-foot chord, and sag vertical
 curves mist not have humps.or dopression
exceceding 3.6 inches in a 12 -foo thord.
f. Landings: All driveways are to have

g. Pedestrian Areas: Wherc curbed return
 Sped Change Lane and Left- Turn Lanes:
high-sped 50
mph or over) or high-wolume
 $\xrightarrow{1190 . \text { Drivoway standards }}$ ${ }^{1190.8}$

$$
\begin{aligned}
& \begin{array}{l}
\text { tequired for the acceleration or declecration of } \\
\text { chicless stetering or leaving the public roadway }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { NCHRP } 279 \text { Intersection Channcliz } \\
& \begin{array}{l}
\text { treatments. On a one-way strect, the above } \\
\text { eriteria isso apply to the ce ceft through lane. Fo, } \\
\text { endel }
\end{array} \\
& \text { widelines on the need for teft-umm lanes on } \\
& \text { main strect or road a a a diviveway, refer to } \\
& \text { Geometric Design of Hightwas and and Strees } \\
& \text { Seomerric Design of Highways and Strean }
\end{aligned}
$$

1190.8 Alaska Highway Proconstruction Manual

Traffic Info	
Traffic AK Hwy (Veh/HR)	49
Traffic New Road (Veh/HR)	30

			Hour Volumes	
	Base	Proposed	V1	0
Directional Split	0.5		V2	25
East Bound	25	25	V3	13
West Bound	25	25	V4	2
Northbound	6	15	V5	25
Southbound	6	15	V6	0
			V7	13
Peak 15 Min			V9	2
			V13	0
			V14	0
			V15	0

Mainline Left Turn LOS	A	
Northbound LOS	A	
Mainline Left Turn 95th Queue	0.004	Veh
Northbound 95th Queue	0.007	Veh

$\mathrm{VC}, 4=\mathrm{V} 2+\mathrm{V} 3+\mathrm{V} 15$	$38 \mathrm{Veh} / \mathrm{HR}$
$\mathrm{VC}, 4=$	
$\mathrm{Vc}, 9=\mathrm{V} 2+0.5 \mathrm{~V} 3+\mathrm{V} 14+\mathrm{V} 15$	$31 \mathrm{Veh} / \mathrm{HR}$
$\mathrm{Vc}, 9=$	
$\mathrm{Vc}, 7=\left(2 * \mathrm{~V} 1+2^{*} \mathrm{~V} 1 \mathrm{U}+\mathrm{V} 2+0.5^{*} \mathrm{~V} 3+\mathrm{V} 15\right)+(2 * \mathrm{~V} 4$	
$+2 * \mathrm{~V} 4 \mathrm{U}+\mathrm{V} 5+0.5 * \mathrm{~V} 6+\mathrm{V} 13)$	
$\mathrm{Vc}, 7=$	$64 \mathrm{Veh} / \mathrm{HR}$

$\mathrm{tc}, 4=\mathrm{tc}$, base+tc,HV*PHV+tC,G*G-tc,LT	
$\mathrm{tc}, 4 \mathrm{base}$	4.1
tc, HV	1
PHV	24%
tC, G	-
tc, LT	0
$\mathrm{tc}, 4=$	4.3
sec	
$\mathrm{tc}, 9 \mathrm{base}$	6.2
t, LT	0
$\mathrm{tc}, 9=$	6.4
sec	
$\mathrm{tc}, 7 \mathrm{Fbase}$	7.1
t, LT	0.7
$\mathrm{tc}, 7=$	6.6
	sec

$\mathrm{tf}, 4=\mathrm{tf}$, base+tf,HV*PHV 0.9 tv, HV 24% PHV 2.4 sec $\mathrm{tf}, 4=$ 3.5 $\mathrm{tf}, 9=$ 3.7 $\mathrm{sf}, 7=$ sec l			

$t_{f, x}=t_{f, \text { base }}+t_{f, H V} P_{H V}$				Equation 20-31
where				
$t_{f x x}=$ follow-up headway for movement $x(\mathrm{~s})$,				
$t_{f, H V}=$ adjustment factor for heavy vehicles (0.9 for major streets with one lane in each direction; 1.0 for major streets with two or three lanes in each direction), and				
$P_{H V}=$ proportion of heavy vehicles for movement (expressed as a decimal; e.g., $P_{H V}=0.02$ for 2% heavy vehicles).				
Base Follow-Up Headway, $t_{\text {mane }}(\mathrm{s})$				Exhibit 20-13 Base Follow-Up Headways for TWSC Intersections
$\frac{\text { Vehicle Movement }}{\text { Left turn from major street }}$	Two Lanes	${ }_{3.5}^{2.5 \text { (wide) }{ }^{\text {a }} \text {) }}$	$\frac{\text { Six Lanes }}{3.1}$	
U-turn from major street	NA		2.3	
	3.3	${ }^{3.1}$ (narrow) ${ }^{3.3}$	3.9	
Through traffic on minor street Left turn from minor street	4.0 3.5	4.0 3.5	4.9 3.8	
NA $=$ not available. ${ }^{a}$ Narrow U-turns have a median nose width $<21 \mathrm{ft}$; wide U-turns have a median nose width $\geq 21 \mathrm{ft}$.				

Cp,4=	1,445	$\mathrm{Veh} / \mathrm{HR}$		Equation 20.32	
C , $9=$	985	V / $/ \mathrm{HR}$			
$\mathrm{cp}, 7=$	891	$\mathrm{Veh} / \mathrm{HR}$			
			where $c_{p, x}=$ potential capacity of movement x (veh/h), $v_{c, x}=$ conflicting flow rate for movement x (veh/h),		
				Chapter 20/Two-Way Stop-Controlled Intersections	
				Phway Capacity Manual: A Guide for Multimodal Mobility Analysis	
			$\begin{array}{l\|l} t_{\infty}=\text { critical headway for minor movement } x(s) \text { and } \\ & t_{t / s}=\text { follow-up head } \mathbf{x} \text { foy for minor movement } x(s) . \end{array}$		
P0,4=1-(V4/Cm,4)					
P0,4=	1.00				
Cm, $7=$	890	Veh/HR			
CSH,NB=(V7+V9)/(V7/Cm,7)+(V9/Cm,9)	902	Veh/HR			

Intersection Level of Service

PG 11 of 11

